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An adaptive integration scheme using a mixed quadrature of three

different quadrature rules

Debasish Das,a,∗Pritikanta Patraa and Rajani Ballav Dashb

a,bDepartment of Mathematics, Ravenshaw University, Cuttack-753003, Odisha, India.

Abstract

In the present work,a mixed quadrature rule of precision seven is constructed blending Gauss-Legendre

2-point rule, Fejer’s first and second 3-point rules each having precision three.The error analysis of the mixed

rule is incorporated.An algorithm is designed for adaptive integration scheme using the mixed quadrature

rule.Through some numerical examples,the effectiveness of adopting mixed quadrature rule in place of their

constituent rules in the adaptive integration scheme is discussed.

Keywords: Gauss-Legendre quadrature, Fejer’s quadrature, mixed quadrature and adaptive integration scheme

2010 MSC: 65D30, 65D32. c©2012 MJM. All rights reserved.

1 Introduction

In this article, we consider the following problem. Given a continuous function f (x) over a bounded

interval [a, b] and a prescribed tolerance ε, we seek to find an approximation Q( f ) using a mixed quadrature

rule to the integral

I( f ) =
∫ b

a
f (x)dx (1.1)

so that

|Q( f )− I( f )| ≤ ε (1.2)

This can be done following adaptive integration scheme (AIS)[1] [2] [3].

Conte and Boor[3] evaluated real definite integral (1.1) in the adaptive integration scheme using Simpson’s
1
3 rule as a base rule.They fix a termination criterion for adaptive integration scheme using Simpon’s 1

3

two panel rule and Simpson’s 1
3 four panel rule (composite rule). Recently, R.B.Dash and D.Das[7] [8] [9]

constructed some mixed quadrature rules and fix the termination criterion for adaptive integration using

the mixed quadrature rule and evaluated successfully various real definite integrals. Mixed quadrature [5]

[6] [7][8] [9] [10] [11] means a quadrature of higher precision which is formed by taking the linear/ convex

combination of two or more quadrature rules of equal lower precision.

∗Corresponding author.

E-mail address: debasisdas100@gmail.com (Debasish Das), pritikanta@yahoo.com (Pritikanta Patra), rajani bdash@rediffmail.com (Rajani

Ballav Dash)
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The idea of mixed quadrature was first given by R.N. Das and G. Pradhan (1996) [5], who constructed

a mixed quadrature rule of precision 5 blending Simpson’s 1
3 rule with Gauss- Legendre 2-point rule, each

having precision 3. Evaluating some real definite integrals on the whole interval, they showed the superiority

of the mixed quadrature rule over their constituent rules. N. Das and S.K. Pradhan(2004)[6] derived a mixed

quadrature rule of precision 7 by taking a linear combination of Simpson’s 1
3 rule,Simpson’s 3

8 rule and Gauss-

Legendre 2-point rule, each having precision 3. They also showed the superiority of the mixed quadrature

rule over their constituent rules by evaluating some real definite integrals in the whole interval method.

In this paper, we have constructed a mixed quadrature rule of precision 7 by mixing Gauss-Legendre 2-

point rule[4] with Fejer’s first and second 3-point rules[2] [10] each having equal precision (i.e. precision 3)

for approximating some real definite integrals in the adaptive integration scheme. The construction of mixed

quadrature rule is outlined in the following section.

2 Construction of the mixed quadrature rule of precision seven

A mixed quadrature rule of precision seven is constructed by using the following three well-known

quadrature rules.

(i) Gauss- Legendre 2-point rule

(ii) Fejer’s first 3-point rule

(iii) Fejer’s second 3- point rule

The Gauss-Legendre 2-point rule (RGL2( f )) is

I( f ) =
∫ b

a
f (x)dx =

∫ 1

−1
f (x)dx ≈ RGL2( f ) = f (− 1√

3
) + f (

1√
3
) (2.3)

The Fejer’s first 3-point rule (R1F3
( f )) is

I( f ) =
∫ b

a
f (x)dx =

∫ 1

−1
f (x)dx ≈ R1F3

( f ) =
1
9
[4 f (

−
√

3
2

) + 10 f (0) + 4 f (
√

3
2

)] (2.4)

The Fejer’s second 3-point rule (R2F3
( f )) is

I( f ) =
∫ b

a
f (x)dx =

∫ 1

−1
f (x)dx ≈ R2F3

( f ) =
2
3
[ f (

−1√
2
) + f (0) + f (

1√
2
)] (2.5)

Each of these rules (2.1), (2.2) and (2.3) is of precision 3. Let EGL2( f ), E1F3
( f ), E2F3

( f ) denote the errors in

approximating the integral I( f ) by the rules (2.1), (2.2) and (2.3) respectively.

Then,

I( f ) = RGL2( f ) + EGL2( f ) (2.6)
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I( f ) = R1F3
( f ) + E1F3

( f ) (2.7)

I( f ) = R2F3
( f ) + E2F3

( f ) (2.8)

Assuming f (x) to be sufficiently differentiable in −1 ≤ x ≤ 1 , and using Maclaurin’s expansion of function

f (x), we can express the errors associated with the quadrature rules under reference as

EGL2( f ) = 8
5!×9 f (iv)(0) + 40

7!×27 f (vi)(0) + 16
9!×9 f (viii)(0) + ...

E1F3
( f ) = − 1

5!×2 f (iv)(0)− 5
8! f (vi)(0)− 17

9!×32 f (viii)(0)− ...

E2F3
( f ) = 1

3×5! f (iv)(0) + 5
6×7! f (vi)(0) + 5

4×9! f (viii)(0) + ...

Now multiplying the Eqs (2.4), (2.5) and (2.6) by 27, 32 and -24 respectively, then adding the results we

obtain,

I( f ) = 1
35 (27RGL2( f ) + 32R1F3

( f )− 24R2F3
( f )) + 1

35 (27EGL2( f ) + 32E1F3
( f )− 24E2F3

( f ))

I( f ) = RGL21F3 2F3
( f ) + EGL21F3 2F3

( f ) (2.9)

Where

RGL21F3 2F3
( f ) =

1
35

(27RGL2( f ) + 32R1F3
( f )− 24R2F3

( f )) (2.10)

And

EGL21F3 2F3
( f ) =

1
35

(27EGL2( f ) + 32E1F3
( f )− 24E2F3

( f )) (2.11)

Eq.(2.8) expresses the desired mixed quadrature rule for the approximate evaluation of I( f ) and Eq (2.9)

expresses the error generated in this approximation.

Hence,

EGL21F3 2F3
( f ) =

1
9!× 35

f (viii)(0) + ... (2.12)

As the first term of EGL21F3 2F3
( f ) contains 8th order derivative of the integrand, the degree of precision of the

mixed quadrature rule is 7. It is called a mixed type rule as it is constructed from three different types of rules

of equal precision.

3 Error analysis of the mixed quadrature rule

An asymptotic error estimate and an error bound of the rule (2.8) are given in theorems 3.1 and 3.2

respectively.
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Theorem-3.1

Let f (x) be a sufficiently differentiable function in the closed interval [−1, 1]. Then the error EGL21F3 2F3
( f )

associated with the mixed quadrature rule RGL21F3 2F3
( f ) is given by

|EGL21F3 2F3
( f )| ≈ 1

9!×35 | f
(viii)(0)|

Proof The proof follows from the Eq (2.10).

Theorem 3.2

The bound for the truncation error EGL21F3 2F3
( f ) = I( f )− RGL21F3 2F3

( f ) is given by

EGL21F3 2F3
( f ) ≤ 2M

175

whereM = max−1≤x≤1| f (v)(x)|

Proof

EGL2( f ) = 8
5!×9 f (iv)(η1), η1 ∈ [−1, 1]

E1F3
( f ) = − 1

5!×2 f (iv)(η2), η2 ∈ [−1, 1]

E2F3
( f ) = 1

5!×3 f (iv)(η3), η3 ∈ [−1, 1]

EGL21F3 2F3
( f ) = 1

35 [27EGL2( f ) + 32E1F3
( f )− 24E2F3

( f )]

= 24
5!×35 f (iv)(η1)− 16

5!×35 f (iv)(η2)− 8
5!×35 f (iv)(η3)

Let K = maxx∈[−1,1]| f (iv)(x)| and k = minx∈[−1,1]| f (iv)(x)| . As f (iv)(x) is continuous and [−1, 1] is compact,

there exist points b and a in the interval [−1, 1] such that K = f (iv)(b) and k = f (iv)(a). Thus

EGL21F3 2F3
( f ) ≤ 24

5!×35 f (iv)(b)− 16
5!×35 f (iv)(a)− 8

5!×35 f (iv)(a)

= 24
5!×35 [ f (iv)(b)− f (iv)(a)]

= 1
175

∫ b
a f (v)(x)dx

= 1
175 (b− a) f (v)(ξ) f or some ξ ∈ [−1, 1] by mean value theorem.

Hence by choosing |(b− a)| ≤ 2

we have EGL21F3 2F3
( f ) ≤ 1

175 |(b− a)|| f (v)(ξ)| ≤ 2M
175
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Where M = max−1≤x≤1| f (v)(x)|

4 Algorithm for adaptive quadrature routine

Applying the constituent rules (RGL2( f ), R1F3
( f ), R2F3

( f )) and the mixed quadrature rule (RGL21F3 2F3
( f )) ,

one can evaluate real definite integrals of the type I( f ) =
∫ b

a f (x)dx in adaptive integration scheme. In the

adaptive integration scheme, the desired accuracy is sought by progressively subdividing the interval of

integration according to the computed behavior of the integrand, and applying the same formula over each

subinterval. A simple adaptive strategy is outlined using the mixed quadrature rule (RGL21F3 2F3
( f )) in the

following four step algorithm.

Input: Function F : [a, b] −→ R and the prescribed tolerance ε .

Output: An approximation Q( f ) to the integral I( f ) =
∫ b

a f (x)dx such that |Q( f )− I( f )| ≤ ε .

Step-1: The mixed quadrature rule (RGL21F3 2F3
( f )) is applied to approximate the integral I( f ) =

∫ b
a f (x)dx .

The approximate value is denoted by (RGL21F3 2F3
[a, b]).

Step-2 : The interval of integration [a, b] is divided into two equal pieces, [a, c] and [c, b]. The mixed

quadrature rule (RGL21F3 2F3
( f )) is applied to approximate the integral I1( f ) =

∫ c
a f (x)dx and the approximate

value is denoted by (RGL21F3 2F3
[a, c]). Similarly, the mixed quadrature rule (RGL21F3 2F3

( f )) is applied to

approximate the integral I2( f ) =
∫ b

c f (x)dx and the approximate value is denoted by (RGL21F3 2F3
[c, b]) .

Step-3:(RGL21F3 2F3
[a, c] + (RGL21F3 2F3

[c, b]) is compared with (RGL21F3 2F3
[a, b]) to estimate the error in

(RGL21F3 2F3
[a, c] + (RGL21F3 2F3

[c, b]).

Step-4: If |estimated error| ≤ ε
2 (termination criterion) then (RGL21F3 2F3

[a, c] + RGL21F3 2F3
[c, b]) is accepted as

an approximation to I( f ) =
∫ b

a f (x)dx . Otherwise the same procedure is applied to [a, c] and [c, b], allowing

each pieces a tolerance of ε
2 . If the termination criterion is not satisfied on one or more of the sub intervals,

then those sub-intervals must be further subdivided and the entire process repeated. When the process stops,

the addition of all accepted values yields the desired approximate value Q( f ) of the integral I( f ) such that

|Q( f )− I( f )| ≤ ε.

N:B: In this algorithm we can use any quadrature rule to evaluate real definite integrals in adaptive

integration scheme.
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5 Numerical verification

Table 5.1: Comparative study among the quadrature rule RGL2( f ), R1F3
( f ) and R2F3

( f )

for approximation of some real definite integrals without using adaptive integration scheme
Approximate Value (Q( f )) by

Integrals Exact Value I( f ) RGL2( f ) R1F3
( f ) R2F3

( f )

I1( f ) =
∫ 1

0
4

1+x2 dx π ≈ 3.14159265358 3.14754 3.1379 3.14336

I2( f ) =
∫ 3

0
sin2x
1+x2 dx 0.4761463020 0.7939 0.2752 0.5673

I3( f ) =
∫ 3

0 (sin4x)e−2xdx 0.1997146621 0.2398 0.2955 0.3898

I4( f ) =
∫ 1

0.04
1√
x dx 1.6 1.5116 1.620 1.5419

I5( f ) =
∫ 2

0
1

x2+ 1
10

dx 4.4713993943 3.9753 4.9022 4.4155

I6( f ) =
∫ 2

1
2π

sin( 1
x )dx 1.1140744942 1.4263 0.8665 1.2698

I7( f ) =
∫ π

2
0 (x2 + x + 1)cosxdx 2.038197427067 2.0366 2.0389 2.0375

I8( f ) =
∫ 5

0
x3

ex−1 dx 4.8998922 4.6016 5.0588 4.7760

I9( f ) =
∫ 1

0 e−x2
dx 0.7468241328 0.7465 0.7469 0.7467

I10( f ) =
∫ 4

0 13(x− x2)e−
3x
2 dx -1.5487883725279 -0.5999 -1.7966 -0.8318

I11( f ) =
∫ 2

0

√
4x− x2dx π 3.1844 3.1312 3.1683

I12( f ) =
∫ 6

1 [2 + sin(2
√

x)]dx 8.1834792077 8.2627 8.1420 8.2171

I13( f ) =
∫ 1

0
1

1+x4 dx 0.8669729870 0.8595 0.8715 0.8646

I14( f ) =
∫ 1

0 sin(
√

x)dx 0.6023373578 0.6097 0.6005 0.6069

Table 5.2: Comparative study among the quadrature/mixed quadrature rules (RGL3( f ),R2F5
( f ) and

RGL21F3 2F3
( f )) for approximation of integrals (table 5.1) without using adaptive integration scheme

Approximate Value (Q( f )) by

Integrals Exact Value I( f ) RGL3( f ) R2F5
( f ) RGL21F3 2F3

( f )

I1( f ) =
∫ 1

0
4

1+x2 dx π ≈ 3.14159265358 3.14106 3.14147 3.1415979

I2( f ) =
∫ 3

0
sin2x
1+x2 dx 0.4761463020 0.4415 0.4659 0.4751

I3( f ) =
∫ 3

0 (sin4x)e−2xdx 0.1997146621 0.3913 0.2326 0.1878

I4( f ) =
∫ 1

0.04
1√
x dx 1.6 1.5667 1.5844 1.5905

I5( f ) =
∫ 2

0
1

x2+ 1
10

dx 4.4713993943 4.6629 4.5628 4.5209

I6( f ) =
∫ 2

1
2π

sin( 1
x )dx 1.1140744942 1.1304 1.0498 1.0219

I7( f ) =
∫ π

2
0 (x2 + x + 1)cosxdx 2.038197427067 2.03810 2.03817 2.03819762

I8( f ) =
∫ 5

0
x3

ex−1 dx 4.8998922 4.8862 4.8968 4.90003

I9( f ) =
∫ 1

0 e−x2
dx 0.7468241328 0.746814 0.746822 0.74682421

I10( f ) =
∫ 4

0 13(x− x2)e−
3x
2 dx -1.5487883725279 -1.1196 -1.43307 -1.5350

I11( f ) =
∫ 2

0

√
4x− x2dx π 3.1560 3.1492 3.1468

I12( f ) =
∫ 6

1 [2 + sin(2
√

x)]dx 8.1834792077 8.1882 8.1847 8.1836

I13( f ) =
∫ 1

0
1

1+x4 dx 0.8669729870 0.8675 0.8670 0.866965

I14( f ) =
∫ 1

0 sin(
√

x)dx 0.6023373578 0.6048 0.6036 0.6032

RGL3( f ):Gauss-Legendre 3-point rule

R2F5
( f ): Fejer’s second 5-point rule
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Table 5.3: Comparison of the results following from the Gauss-Legendre 2-point rule, Fejer’s first 3-point rule

and Fejer’s second 3-point rule for approximating integrals using the adaptive integration scheme

Approximate value (Q( f )) by

Integrals (RGL2( f )) #steps (R1F3
( f )) #steps (R2F3

( f )) #steps

I1( f ) =
∫ 1

0
4

1+x2 dx 3.141592690 17 3.141592653573 15 3.14159265359 15

I2( f ) =
∫ 3

0
sin2x
1+x2 dx 0.47614627 41 0.476146256 35 0.476146332 35

I3( f ) =
∫ 3

0 (sin4x)e−2xdx 0.199714693 51 0.199714686 43 0.19971459 39

I4( f ) =
∫ 1

0.04
1√
x dx 1.59999986 39 1.6000001 35 1.59999986 31

I5( f ) =
∫ 2

0
1

x2+ 1
10

dx 4.471399346 53 4.471399461 49 4.471399326 43

I6( f ) =
∫ 2

1
2π

sin( 1
x )dx 1.114074589 51 1.114074448 43 1.114074503 41

I7( f ) =
∫ π

2
0 (x2 + x + 1)cosxdx 2.0381974132 23 2.0381974183 17 2.0381974106 15

I8( f ) =
∫ 5

0
x3

ex−1 dx 4.899892102 43 4.899892237 39 4.899892026 29

I9( f ) =
∫ 1

0 e−x2
dx 0.7468241276 15 0.746824114 13 0.746824120 11

I10( f ) =
∫ 4

0 13(x− x2)e−
3x
2 dx -1.5487882018 57 -1.5487884508 51 -1.5487882663 47

I11( f ) =
∫ 2

0

√
4x− x2dx 3.1415929475 45 3.141592395 37 3.141592855 39

I12( f ) =
∫ 6

1 [2 + sin(2
√

x)]dx 8.1834793329 31 8.18347908 27 8.183479317 25

I13( f ) =
∫ 1

0
1

1+x4 dx 0.8669729661 15 0.86697299 15 0.866972942 13

I14( f ) =
∫ 1

0 sin(
√

x)dx 0.602337696 29 0.602337112 25 0.602337592 25

N:B:The prescribed tolerance(ε)=0.000001

# Steps: No. of Steps
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Table 5.4: Comparison of the results following from the Gauss-Legendre 3-

point rule, Fejer’s second 5-point rule and mixed quadrature rule RGL21F3 2F3
( f ) for

approximating integrals (given in table 5.3) using the adaptive integration scheme
Approximate Value (Q( f )) by

Integrals (RGL3( f )) #steps (R2F5
( f )) # steps (RGL21F3 2F3

( f )) #steps

I1( f ) =
∫ 1

0
4

1+x2 dx 3.14159265347 7 3.141592651 3 3.141592653589621 3

I2( f ) =
∫ 3

0
sin2x
1+x2 dx 0.4761463032 15 0.4761463085 11 0.4761463008 5

I3( f ) =
∫ 3

0 (sin4x)e−2xdx 0.1997146667 19 0.1997146587 13 0.1997146616 9

I4( f ) =
∫ 1

0.04
1√
x dx 1.599999987 17 1.599999985 13 1.599999998 9

I5( f ) =
∫ 2

0
1

x2+ 1
10

dx 4.4713993946 17 4.471399387 15 4.471399396 11

I6( f ) =
∫ 2

1
2π

sin( 1
x )dx 1.114074506 21 1.114074477 19 1.114074495 11

I7( f ) =
∫ π

2
0 (x2 + x + 1)cosxdx 2.0381974267 7 2.0381974227 3 2.03819742776 1

I8( f ) =
∫ 5

0
x3

ex−1 dx 4.8998921534 13 4.8998921579 7 4.899892158 3

I9( f ) =
∫ 1

0 e−x2
dx 0.7468241324 3 0.7468241327 3 0.7468241329 1

I10( f ) =
∫ 4

0 13(x− x2)e−
3x
2 dx -1.5487883665 21 -1.548788353 13 -1.5487883721 9

I11( f ) =
∫ 2

0

√
4x− x2dx 3.1415928159 25 3.1415928990 19 3.141592813 19

I12( f ) =
∫ 6

1 [2 + sin(2
√

x)]dx 8.1834792212 9 8.1834792108 9 8.1834792081 5

I13( f ) =
∫ 1

0
1

1+x4 dx 0.8669729873 7 0.886972987 7 0.8669729873 3

I14( f ) =
∫ 1

0 sin(
√

x)dx 0.602337586 17 0.602337475 17 0.60233758 15
N:B:The prescribed tolerance(ε)=0.000001

All the computations are done using ‘C’ Program[8].

6 Conclusion

We observe from Tables-5.1 and 5.2, that the mixed quadrature rule gives more accurate result in

comparison to their constituent rules. Gauss-Legendre 3-point rule and Fejer’s second 5-point rule when

integrals (I1 − I14) are evaluated without using adaptive integration scheme. Tables-5.3 and 5.4, reveal that

when these integrals are evaluated using the adaptive integration scheme, the mixed qudrature rule reduces

the number of steps to achieve the prescribed accuracy and gives more accurate result in comparison to the

their constituent rules, Gauss-Legendre 3-point rule and Fejer’s second 5-point rule.
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Abstract

We investigate line graceful labeling of graphs obtained by switching of vertex operation.
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1 Introduction

Labeling of discrete structures is a one of the potential area of research due to its potential applications. The
optimal linear arrangement concern to network problems in electrical engineering and placement problems
in production engineering can be formalized as a graph labeling problems as stated by Yegnanaryanan and
Vaidhyanathan [13]. A dynamic survey on different graph labeling schemes with an extensive bibliography
can be found in Gallian [2].
In this paper, the term “graph” means finite, connected, undirected and simple graph G = (V(G), E(G)) with
p vertices and q edges. For standard terminology and notation we refer to Balakrishnan and Ranganathan [1].

Definition 1.1. A graph labeling is an assignment of numbers to the vertices or edges or both subject to certain
condition(s).

Definition 1.2. A function f is called graceful labeling of graph if f : V(G) → {0, 1, 2, 3, ..., q} is injective and the
induced function f ∗ : E(G) → {1, 2, ..., q} defined as f ∗(e = uv) = | f (x)− f (y)| is bijective. A graph which admits
graceful labeling is called a graceful graph.

Most of the graph labeling techniques trace their origin with graceful labeling which was introduced
independently by Rosa [7] and Golomb [4]. A variant of graceful labeling termed as edge graceful labeling is
introduced by Lo [6].

Definition 1.3. A graph G = (V(G), E(G)) is said to be edge graceful if there exists a bijection f : E(G) →
{1, 2, 3, ..., q} such that the induced mapping f ∗ : V(G) → {0, 1, ..., p − 1} defined by f ∗(v) = ∑

vvi∈E(G)
f (vvi)

(mod p) is bijection.

Lo [6] derived a necessary condition for a graph to be edge graceful and also investigate edge graceful
labeling of many graph families. Wilson and Risking [12] proved that the cartesian product of any number of
odd cycle is edge graceful. All trees of odd order are edge graceful was conjunctured by Lee [5]. Shiu, Lee
and Schaffer [8] investigated the edge gracefulness of multigraphs. Gnanajothi [3] introduced and studied
line graceful labeling in her Ph.D. thesis which is little weaker than edge graceful labeling.

∗Corresponding author.
E-mail address: samirkvaidya@yahoo.co.in (S K Vaidya), nirang kothari@yahoo.com(N J Kothari).
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Definition 1.4. A mapping f : E(G) → {0, 1, 2, ..., p} is called line graceful of graph with p vertices, if induced
function f ∗ : V(G) → {0, 1, 2, ..., p− 1} defined by f ∗(v) = ∑

vvi∈E(G)
f (vvi) (mod p) is bijective.

Definition 1.5. The triangular snake Tn is obtained from the path Pn by replacing every edge of a path by a triangle C3
.

Definition 1.6. A vertex switching Gv of a graph G is the graph obtained by taking a vertex v of G, removing all the
edges to v and adding edges joining v to every other vertex which are not adjacent to v in G.

Definition 1.7. The helm Hn is the graph obtained from a wheel Wn by attaching a pendant edge to every rim vertex.

Definition 1.8. The fan fn is a graph on n + 1 vertices obtained by joining all the vertices of Pn to a new vertex called
the center.

Vaidya and Kothari [9, 10, 11] have investigated many results on line gracefulness of graphs in various
contexts while this paper is focus on line gracefulness on the graph obtained by switching of a vertex.

2 Main results

Proposition 2.1. [3] If the graph is line graceful then its order is not congruent to 2 (mod 4).

Theorem 2.1. Switching of a pendant vertex in path Pn is line graceful except n ≡ 2 (mod 4).

Proof. Let v1, v2, . . . , vn be vertices of path Pn. Let Gv be the graph obtained by switching pendant vertex v of
Pn. Without loss of generality let the switched vertex be vn. We note that |V(Gv)| = n and |E(Gv)| = 2n − 4.
Define edge labeling f : E(Gv) → {0, 1, . . . , n− 1} as follows.
Case 1: n ≡ 0 (mod 4)
for odd i

f (vivi+1) =

{
i+1

2 for 1 ≤ i ≤ n
2

i+1
2 + 1 for n

2 ≤ i ≤ n− 3

for even i

f (vivi+1) = i+2
2 for 2 ≤ i ≤ n− 3

f (vn−2vn−1) = n
2 + 2

f (vnvi) = 0 for 1 ≤ i ≤ n− 2

Case 2: n ≡ 1 (mod 4)
for odd i

f (vivi+1) =

{
i+1

2 for 1 ≤ i ≤
⌊ n

2
⌋

i+3
2 for

⌈ n
2
⌉
≤ i ≤ n− 3

for even i

f (vivi+1) = i+2
2 for 2 ≤ i ≤ n− 3

f (vn−2vn−1) = 2
f (vnvi) = 0 for 1 ≤ i ≤ n− 2

Case 3: n ≡ 3 (mod 4)
for odd i

f (vivi+1) =

{
i+1

2 for 1 ≤ i ≤
⌊ n

2
⌋

i+3
2 for

⌈ n
2
⌉
≤ i ≤ n− 2

for even i
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f (vivi+1) = i+2
2 for 2 ≤ i ≤ n− 3

f (vn−2vn−1) =
⌊ n

2
⌋

+ 3
f (vnvi) = 0 for 1 ≤ i ≤ n− 2

Case 4: n ≡ 2 (mod 4)
In this case |V(Gv)| = n ≡ 2 (mod 4).
Then according to Proposition 2.1 Gv is not line graceful.
In view of above defined edge labeling function will induce the bijective vertex labeling function f ∗ : V(Gv) →
{0, 1, ..., n− 1} such that f ∗(v) = ∑

e∈E(Gv)
f (e) (mod (n)) for n ≡ 0, 1, 3 (mod 4). Hence we proved that graph

Gv obtained from switching of pendant vertex in path Pn is line graceful except n ≡ 2 (mod 4).

Illustration 2.1. Switching of vertex v8 in path P8 and its line graceful labeling is shown in figure 2.

2 2 3 41

0

0

0
0

0

0

1 3 4 5 7 2 6 0
6

figure 2

Theorem 2.2. Switching of vertex in cycle Cn is line graceful except n ≡ 2 (mod 4).

Proof. Let v1, v2, . . . , vn be the vertices of cycle Cn and Gv1 be the graph obtained by switching of vertex v1
of cycle Cn. Here without loss of generality, we have switched the vertex v1. Note that |V(Gv1)| = n and
|E(Gv1)| = 2n− 5. Define edge labeling f : E(Gv1) → {0, 1, . . . , n− 1} as follows.
Case 1: n ≡ 0 (mod 4)

f (v1vi) = 0 for 3 ≤ i ≤ n− 1

for odd i

f (vivi+1) = i+1
2 for 3 ≤ i ≤ n− 3

for even i

f (vivi+1) =

{
i
2 for 2 ≤ i ≤ n

2
i
2 + 1 for n

2 < i ≤ n− 2

f (vn−1vn) = f (vn−2vn−1) + 2

Case 2: n ≡ 1 (mod 4)

f (v1vi) = 0 for 3 ≤ i ≤ n− 1

for odd i

f (vivi+1) = i+1
2 for 3 ≤ i ≤ n− 2

for even i

f (vivi+1) =

{
i
2 for 2 ≤ i ≤

⌊ n
2
⌋

i
2 + 1 for

⌈ n
2
⌉
≤ i ≤ n− 3

f (vn−1vn) = 2

Case 3: n ≡ 3 (mod 4)

f (v1vi) = 0 for 3 ≤ i ≤ n− 1
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for odd i

f (vivi+1) = i+1
2 for 3 ≤ i ≤ n− 2

for even i

f (vivi+1) =

{
i
2 for 2 ≤ i ≤

⌈ n
2
⌉

i
2 + 1 for

⌈ n
2
⌉

< i ≤ n− 3

f (vn−1vn) =
⌈ n

2
⌉

+ 2

Case 4: n ≡ 2 (mod 4)
In this case |V(Gv1)| = n ≡ 2 (mod 4).
Then according to Proposition 2.1 Gv1 is not line graceful.
In view of above defined edge labeling function will induce the bijective vertex labeling function
f ∗ : V(Gv1) → {0, 1, ..., n − 1} such that f ∗(v) = ∑

e∈E(Gv1 )
f (e) (mod (n)) for n ≡ 0, 1, 3 (mod 4). Hence we

proved that graph Gv1 obtained from switching of vertex v1 in cycle Cn is line graceful except
n ≡ 2 (mod 4).

Illustration 2.2. Switching of vertex v1 in cycle C9 and its line graceful labeling is shown in figure 3.
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figure 3

Theorem 2.3. For n > 3, switching of a rim vertex in wheel Wn is line graceful except n ≡ 1 (mod 4).

Proof. Let v be a apex vertex, v1, v2, . . . , vn be rim vertices of Wn and Gv1 be the graph obtained by switching
a rim vertex v1 of Wn. Here without loss of generality, we have switched vertex v1. Observe that |V(Gv1)| =
n + 1 and |E(Gv1)| = 3n− 5. Define edge labeling f : E(Gv1) → {0, 1, . . . , n}. as follows.
Case 1: n = 4
The graph Gv1 and its line graceful labeling is shown in figure 4.
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figure 4
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Case 2: n = 6
The graph Gv1 and its line graceful labeling is shown in figure 5.
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Case 3: n ≡ 0, 2 (mod 4)

f (vvi) = i + 1 for 2 ≤ i ≤ n

f (vivi+1) =
{

0 for 2 ≤ i ≤ n− 2
1 for i = n− 1

f (v1vi) =
{

0 for 3 ≤ i ≤ n− 4, i = n− 1
1 n− 3 ≤ i ≤ n− 2

Case 4: n ≡ 3 (mod 4)

f (vvi) = i− 1 for 2 ≤ i ≤ n
f (v1vi) = 0 for 3 ≤ i ≤ n− 1

for 2 ≤ i ≤
⌈ n

2
⌉

+ 1

f (vivi+1) = 0

for
⌈ n

2
⌉

+ 2 ≤ i ≤ n− 1

f (vivi+1) =
{

1 for even i
0 for odd i

Case 5: n ≡ 1 (mod 4)
In this case |V(Gv1)| = n + 1 ≡ 2 (mod 4).
Then according to Proposition 2.1 Gv1 is not line graceful.
In view of above defined edge labeling function will induce the bijective vertex labeling function
f ∗ : V(Gv1) → {0, 1, ..., n} such that f ∗(v) = ∑

e∈E(Gv1 )
f (e) (mod (n + 1)) for n ≡ 0, 2, 3 (mod 4). Hence we

proved that for n > 3, the graph Gv1 obtained from switching of a rim vertex v1 in wheel Wn is line graceful
except n ≡ 1 (mod 4).

Illustration 2.3. Switching of vertex v1 in cycle W11 and its line graceful labeling is shown in figure 6.
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Theorem 2.4. Switching of apex vertex in helm Hn is line graceful for all n.

Proof. Let v be a apex vertex, v1, v2, . . . , vn be rim vertices and u1, u2, . . . , un be pendant vertices of helm Hn.
Gv be the graph obtained from switching apex vertex v of helm. Observe that |V(Gv)| = 2n + 1 and
|E(Gv)| = 3n. Define edge labeling f : E(Gv) → {0, 1, . . . , 2n} as follows.

f (vui) = n + 1
f (vivi+1) = 0 for 1 ≤ i ≤ n− 1
f (vnv1) = 0

for odd n

f (viui) =
⌊ n

2
⌋

+ i for 1 ≤ i ≤ n

for even n

f (viui) = 3n
2 + i for 1 ≤ i ≤ n

In view of above defined edge labeling function will induce the bijective vertex labeling function f ∗ : V(Gv) →
{0, 1, ..., 2n} such that f ∗(v) = ∑

e∈E(Gv)
f (e) (mod (2n + 1)). Thus we proved that graph Gv obtained by

switching apex vertex of helm admits line graceful labeling for all n.

Illustration 2.4. Switching of apex vertex v in helm H7 and its line graceful labeling is shown in figure 7.

8
8

8

8

8

8

8

0

0

0

0

0
0

0

4

5

6

78

9

10
4

5

6

78

9

10

01

 142

3

 11

12

 13

figure 7

Theorem 2.5. Switching of vertex having degree 2 in fan fn is line graceful except n ≡ 1 (mod 4).
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Proof. Let v be the apex vertex and v1, v2, . . . , vn be the vertices of fn. Let Gv1 denotes graph obtained by
switching of a vertex v1 having degree 2 of fn. Note that |V(Gv1)| = n + 1 and |E(Gv1)| = 3n− 5.
We define f : E(Gv1) → {1, 2, . . . , n + 1} as follows.
Case 1: n ≡ 0, 2 (mod 4)

f (vvi) = n for 2 ≤ i ≤ n
f (vivi+1) = 0 for 2 ≤ i ≤ n− 1

f (v1vi) =
{

i− 2 for i = 3, 4
i− 1 for 5 ≤ i ≤ n

Case 2: n ≡ 3 (mod 4)

f (vvi) =
⌊ n

4
⌋

for 2 ≤ i ≤ n
f (vivi+1) = 0 for 2 ≤ i ≤ n− 1

f (v1vi) =
{

i− 2 for 3 ≤ i ≤ 5 +
⌊ n

4
⌋

i− 1 for 6 +
⌊ n

4
⌋
≤ i ≤ n

Case 3: n ≡ 1 (mod 4)
In this case |V(Gv1)| = n + 1 ≡ 2 (mod 4).
Then according to Proposition 2.1 Gv1 is not line graceful.
In view of above defined edge labeling function will induce the bijective vertex labeling function
f ∗ : V(Gv1) → {0, 1, ..., n} such that f ∗(v) = ∑

e∈E(Gv1 )
f (e) (mod (n + 1)) for n ≡ 0, 2, 3 (mod 4). Hence we

proved that the graph Gv1 obtained by switching a vertex of degree 2 in fan fn is line graceful except
n ≡ 1 (mod 4).

Illustration 2.5. Switching of vertex v1 in fan f11 and its line graceful labeling is shown in figure 8.
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3 Concluding Remarks

Edge gracefulness and line gracefulness of a graph are independent concepts. A graph may posses one or
both of these or neither as mentioned below.

• C2n+1 is edge graceful as well as line graceful.

• Pn is neither edge graceful nor line graceful for n ≡ 2 (mod 4).

• C4n is not edge graceful but line graceful.

• Triangular snake Tn is edge graceful only for n = 3 while it is line graceful for all n.
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1 Introduction

The following definition for convex functions is well know in the mathematical literature:
A function f : I → R, ∅ 6=I ⊆ R is said to be convex on I if inequality

f (tx + (1− t) y) ≤ t f (x) + (1− t) f (y)

holds for all x, y ∈ I and t ∈ [0, 1].
The inequality

f
(

a + b
2

)
≤ 1

b− a

∫ b

a
f (x) dx ≤ f (a) + f (b)

2
(1.1)

which holds for all convex functions f : [a, b] → R, is known in the literature as Hermite-Hadamard’s
inequality. More details, one can consult ([1]-[11]).

In [3], Fejer established the following Hermite-Hadamard Fejer inequality which is the weighted general-
ization of Hermite-Hadamard inequality.

Theorem 1.1. Let f : [a, b] → R be convex function. Then the inequality

f
(

a + b
2

)∫ b

a
g (x) dx ≤

∫ b

a
f (x) g (x) dx ≤ f (a) + f (b)

2

∫ b

a
g (x) dx (1.2)

holds, where g : [a, b] → R is nonnegative, integrable and symmetric to (a + b) /2.

We recall that the notion of quasi-convex functions generalizes the notion of convex functions. More ex-
actly, a function f : [a, b] → R, is said quasi-convex on [a, b] if

f (λx + (1− λ) y) ≤ sup { f (x) , f (y)} , ∀x, y ∈ [a, b]

for all x, y ∈ [a, b] and λ ∈ [0, 1](see [10]).
∗Corresponding author.

E-mail address: erhanset@yahoo.com (Erhan SET).
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Furthermore, there exist quasi-convex functions which are not convex (see [5]).
In [8] Özdemir et. al. represented Hermite-Hadamard’s inequalities for quasi-convex functions in frac-

tional integral forms as follows:

Theorem 1.2. Let f : [a, b] → R be a differentiable mapping on (a, b) with a < b. If | f ′| is quasi convex on [a, b] and
α > 0, then the following inequality for fractional integrals holds∣∣∣∣ f (a) + f (b)

2
− Γ (α + 1)

2 (b− a)α

[
Jα
a+ f (b) + Jα

b− f (a)
]∣∣∣∣ (1.3)

≤ b− a
(α + 1)

(
1− 1

2α

)
sup

{∣∣ f ′ (a)
∣∣ ,
∣∣ f ′ (b)

∣∣} .

In [9] Set et. al. obtained the following lemma.

Lemma 1.1. Let f : [a, b] → R be a differentiable mapping on (a, b) with a < b and let g : [a, b] → R. If f ′, g ∈
L [a, b], then the following identity for fractional integrals holds:

(1.4)

f
(

a + b
2

) [
Jα

( a+b
2 )−

g (a) + Jα

( a+b
2 )+ g (b)

]
−
[

Jα

( a+b
2 )− ( f g) (a) + Jα

( a+b
2 )+ ( f g) (b)

]
=

1
Γ (α)

∫ b

a
k (t) f ′ (t) dt

where

k(t) =


∫ t

a
(s− a)α−1g(s)ds, t ∈

[
a, a+b

2

)
−
∫ b

t
(b− s)α−1g(s)ds, t ∈

[
a+b

2 , b
]

.

In [11] İşcan proved the following lemma.

Lemma 1.2. Let f : [a, b] → R be a differentiable mapping on (a, b) and a < b with f ′ ∈ L [a, b]. If g : [a, b] → R is
integrable and symmetric to (a + b) /2 then the following equality for fractional integrals holds

f (a) + f (b)
2

[
Jα
a+ g (b) + Jα

b−g (a)
]
−
[

Jα
a+ ( f g) (b) + Jα

b− ( f g) (a)
]

(1.5)

=
1

Γ (α)

∫ b

a

[∫ t

a
(b− s)α−1 g (s) ds−

∫ b

t
(s− a)α−1 g (s) ds

]
f ′ (t) dt

with α > 0.
We give some neccessary definitions and mathematical preliminiaries of fractional calculus theory which

are used throughout this paper.

Lemma 1.3. ([6],[7])For 0 < α ≤ 1 and 0 ≤ a < b, we have

|aα − bα| ≤ (b− a)α .

Definition 1.1. Let f ∈ L [a, b]. The Riemann-Liouville integrals Jα
a+ f (x) and Jα

b− f (x) of oder α > 0 with α ≥ 0 are
defined by

Jα
a+ f (x) =

1
Γ (α)

∫ x

a
(x − t)α−1 f (t) dt, x > a

and

Jα
b− f (x) =

1
Γ (α)

∫ b

x
(t− x)α−1 f (t) dt, x < b

respectively, where Γ (α) is the Gamma functions by Γ (α) =
∫ ∞

0 e−ttα−1dt and J0
a+ f (x) = J0

b− f (x) = f (x).

In this paper, motivated by the recent results given in [11], [9] , we established Hermite-Hadamard-Fejer
type inequalities for quasi convex functions via fractional integral.
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2 Main result

Throughout this paper, let I be an interval on R and let ‖g‖
[a,b],∞

= sup
t∈[a,b]

g (t), for the continuous function

g : [a, b] → R.

Theorem 2.3. Let f : I → R be a differentiable mapping on I◦ and f ′ ∈ L [a, b] with a < b and g : [a, b] → R is
continuous. If | f ′|q is quasi convex on [a, b], q > 1, then the following inequality for fractional integrals holds:

(2.6)∣∣∣∣ f ( a + b
2

) [
Jα

( a+b
2 )−

g (a) + Jα

( a+b
2 )+ g (b)

]
−
[

Jα

( a+b
2 )− ( f g) (a) + Jα

( a+b
2 )+ ( f g) (b)

]∣∣∣∣
≤

(b− a)α+1 ‖g‖[a,b],∞

2α (α + 1) Γ (α + 1)

(
sup

{∣∣ f ′ (a)
∣∣q ,
∣∣ f ′ (b)

∣∣q}) 1
q

with α > 0.

Proof. Since is | f ′|q is quasi-convex on [a, b] , we know that for t ∈ [a, b]∣∣ f ′(t)
∣∣q =

∣∣∣∣ f ′ ( b− t
b− a

a +
t− a
b− a

b
)∣∣∣∣q ≤ sup

{∣∣ f ′ (a)
∣∣q ,
∣∣ f ′ (b)

∣∣q} (2.7)

Using Lemma 1.1, Power mean inequality and the quasi-convex of | f ′|q, it follows that∣∣∣∣ f ( a + b
2

) [
Jα

( a+b
2 )−

g (a) + Jα

( a+b
2 )+ g (b)

]
−
[

Jα

( a+b
2 )− ( f g) (a) + Jα

( a+b
2 )+ ( f g) (b)

]∣∣∣∣
≤ 1

Γ (α)

(∫ a+b
2

a

∣∣∣∣∫ t

a
(s− a)α−1 g (s) ds

∣∣∣∣ dt

)1− 1
q
(∫ a+b

2

a

∣∣∣∣∫ t

a
(s− a)α−1 g (s) ds

∣∣∣∣ ∣∣ f ′ (t)
∣∣q dt

) 1
q

+
1

Γ (α)

(∫ b

a+b
2

∣∣∣∣∣
∫ b

t
(b− s)α−1 g (s) ds

∣∣∣∣∣ dt

)1− 1
q
(∫ b

a+b
2

∣∣∣∣∣
∫ b

t
(b− s)α−1 g (s) ds

∣∣∣∣∣ ∣∣ f ′ (t)
∣∣q dt

) 1
q

≤
‖g‖[a, a+b

2 ],∞
Γ (α)

(∫ a+b
2

a

∣∣∣∣∫ t

a
(s− a)α−1 ds

∣∣∣∣ dt

)1− 1
q

×

(∫ a+b
2

a

∣∣∣∣∫ t

a
(s− a)α−1 ds

∣∣∣∣ ∣∣ f ′ (t)
∣∣q dt

) 1
q

+
‖g‖[ a+b

2 ,b],∞
Γ (α)

(∫ b

a+b
2

∣∣∣∣∣
∫ b

t
(b− s)α−1 ds

∣∣∣∣∣ dt

)1− 1
q

×

(∫ b

a+b
2

∣∣∣∣∣
∫ b

t
(b− s)α−1 ds

∣∣∣∣∣ ∣∣ f ′ (t)
∣∣q dt

) 1
q

≤ 1
Γ (α + 1)

(
(b− a)α+1

2α+1 (α + 1)

)1− 1
q (

sup
{∣∣ f ′ (a)

∣∣q ,
∣∣ f ′ (b)

∣∣q}) 1
q

×

‖g‖[a, a+b
2 ],∞

(∫ a+b
2

a
(t− a)α dt

) 1
q

+ ‖g‖[ a+b
2 ,b],∞

(∫ b

a+b
2

(b− t)α dt

) 1
q


≤ 1
Γ (α + 1)

(
(b− a)α+1

2α+1 (α + 1)

)1− 1
q
(

(b− a)α+1

2α+1 (α + 1)

) 1
q

×
(
‖g‖[a, a+b

2 ],∞ + ‖g‖[ a+b
2 ,b],∞

) (
sup

{∣∣ f ′ (a)
∣∣q ,
∣∣ f ′ (b)

∣∣q}) 1
q

≤
(b− a)α+1 ‖g‖[a,b],∞

Γ (α + 1) 2α (α + 1)

(
sup

{∣∣ f ′ (a)
∣∣q ,
∣∣ f ′ (b)

∣∣q}) 1
q
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where it is easily seen that∫ a+b
2

a

∣∣∣∣∫ t

a
(s− a)α−1 ds

∣∣∣∣ dt =
∫ b

a+b
2

∣∣∣∣∣
∫ b

t
(b− s)α−1 ds

∣∣∣∣∣ dt

=
(b− a)α+1

2α+1 (α + 1) α
.

Hence, the proof is completed.

Corollary 2.1. If we choose g(x) = 1 and α = 1 in the inequality (2.6), then we have∣∣∣∣∣ 1
b− a

∫ b

a
f (x) dx − f

(
a + b

2

)∣∣∣∣∣ ≤ b− a
4

(
sup

{∣∣ f ′ (a)
∣∣q ,
∣∣ f ′ (b)

∣∣q}) 1
q .

We can state another inequality for q > 1 as follows:

Theorem 2.4. Let f : I → R be a differentiable mapping on I◦ and f ′ ∈ L [a, b] with a < b and g : [a, b] → R is
continuous. If | f ′|q is quasi convex on [a, b], q > 1, then the following inequality for fractional integrals holds:

(2.8)∣∣∣∣ f ( a + b
2

) [
Jα

( a+b
2 )−

g (a) + Jα

( a+b
2 )+ g (b)

]
−
[

Jα

( a+b
2 )− ( f g) (a) + Jα

( a+b
2 )+ ( f g) (b)

]∣∣∣∣
≤

(b− a)α+1 ‖g‖∞

2α (αp + 1)
1
p Γ (α + 1)

(
sup

{∣∣ f ′ (a)
∣∣q ,
∣∣ f ′ (b)

∣∣q}) 1
q

where 1
p + 1

q = 1.

Proof. Using Lemma 1.1, Hölder’s inequality and the quasi convexity of | f ′|q, it follows that∣∣∣∣ f ( a + b
2

) [
Jα

( a+b
2 )−

g (a) + Jα

( a+b
2 )+ g (b)

]
−
[

Jα

( a+b
2 )− ( f g) (a) + Jα

( a+b
2 )+ ( f g) (b)

]∣∣∣∣
≤ 1

Γ (α)

{∫ a+b
2

a

∣∣∣∣∫ t

a
(s− a)α−1 g (s) ds

∣∣∣∣ ∣∣ f ′ (t)
∣∣ dt

+
∫ b

a+b
2

∣∣∣∣∣
∫ b

t
(b− s)α−1 g (s) ds

∣∣∣∣∣ ∣∣ f ′ (t)
∣∣ dt

}

≤ 1
Γ (α)

(∫ a+b
2

a

∣∣∣∣∫ t

a
(s− a)α−1 g (s) ds

∣∣∣∣p dt

) 1
p
(∫ a+b

2

a

∣∣ f ′ (t)
∣∣q dt

) 1
q

+
1

Γ (α)

(∫ b

a+b
2

∣∣∣∣∣
∫ b

t
(b− s)α−1 g (s) ds

∣∣∣∣∣
p

dt

) 1
p
(∫ b

a+b
2

∣∣ f ′ (t)
∣∣q dt

) 1
q

≤
‖g‖∞,[a, a+b

2 ]

Γ (α)

(∫ a+b
2

a

∣∣∣∣∫ t

a
(s− a)α−1 ds

∣∣∣∣p
) 1

p
(∫ a+b

2

a

∣∣ f ′ (t)
∣∣q dt

) 1
q

+
‖g‖∞,[ a+b

2 ,b]

Γ (α)

(∫ b

a+b
2

∣∣∣∣∣
∫ b

t
(b− s)α−1 ds

∣∣∣∣∣
p) 1

p
(∫ b

a+b
2

∣∣ f ′ (t)
∣∣q dt

) 1
q

≤
‖g‖∞
Γ (α)

(
(b− a)αp+1

2αp+1 (αp + 1) αp

) 1
p
(∫ a+b

2

a
sup

{∣∣ f ′ (a)
∣∣q ,
∣∣ f ′ (b)

∣∣q} dt

) 1
q

+

(∫ b

a+b
2

sup
{∣∣ f ′ (a)

∣∣q ,
∣∣ f ′ (b)

∣∣q} dt

) 1
q


=
‖g‖∞ (b− a)α+1

2α (αp + 1)1/p Γ (α + 1)

(
sup

{∣∣ f ′ (a)
∣∣q ,
∣∣ f ′ (b)

∣∣q}) 1
q .
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Here we use ∫ a+b
2

a

∣∣∣∣∫ t

a
(s− a)α−1 ds

∣∣∣∣p dt =
∫ b

a+b
2

∣∣∣∣ ∫ b

t
(b− s)α−1ds

∣∣∣∣pdt =
(b− a)αp+1

2αp+1 (αp + 1) αp

∫ a+b
2

a

∣∣ f ′ (t)
∣∣q dt ≤ b− a

2
sup

{∣∣ f ′ (a)
∣∣q ,
∣∣ f ′ (b)

∣∣q}∫ b

a+b
2

∣∣ f ′ (t)
∣∣q dt ≤ b− a

2
sup

{∣∣ f ′ (a)
∣∣q ,
∣∣ f ′ (b)

∣∣q} .

Hence the inequality (2.8) is proved.

Corollary 2.2. If we choose g (x) = 1 and α = 1 in the inequality (2.8), then we have∣∣∣∣∣ 1
b− a

∫ b

a
f (x) dx − f

(
a + b

2

)∣∣∣∣∣ ≤ b− a

2 (p + 1)
1
p

(
sup

{∣∣ f ′ (a)
∣∣q ,
∣∣ f ′ (b)

∣∣q}) 1
q .

Theorem 2.5. Let f : I → R be a differentiable mapping on I◦ and f ′ ∈ L [a, b] with a < b. If | f ′| is quasi convex
on [a, b] and g : [a, b] → R is continuous and symmetric to (a+b)

2 , then the following inequality for fractional integrals
holds: ∣∣∣∣ f (a) + f (b)

2
[

Jα
a+ g (b) + Jα

b−g (a)
]
−
[

Jα
a+ ( f g) (b) + Jα

b− ( f g) (a)
]∣∣∣∣ (2.9)

≤
2 (b− a)α+1 ‖g‖∞
(α + 1) Γ (α + 1)

(
1− 1

2α

)
sup

{∣∣ f ′ (a)
∣∣ ,
∣∣ f ′ (b)

∣∣}
with α > 0.

Proof. From Lemma 1.2, we have∣∣∣∣ f (a) + f (b)
2

[
Jα
a+ g (b) + Jα

b−g (a)
]
−
[

Jα
a+ ( f g) (b) + Jα

b− ( f g) (a)
]∣∣∣∣ (2.10)

≤ 1
Γ (α)

∫ b

a

∣∣∣∣∣
∫ t

a
(b− s)α−1 g (s) ds−

∫ b

t
(s− a)α−1 g (s) ds

∣∣∣∣∣ ∣∣ f ′ (t)
∣∣ dt.

Since | f ′| is quasi convex on [a, b], we know that for t ∈ [a, b]∣∣ f ′ (t)
∣∣ =

∣∣∣∣ f ′ ( b− t
b− a

a +
t− b
b− a

b
)∣∣∣∣ ≤ sup

{∣∣ f ′ (a)
∣∣ ,
∣∣ f ′ (b)

∣∣} (2.11)

and since g : [a, b] → R is continuous and symmetric to (a + b) /2 we write∫ b

t
(s− a)α−1 g (s) ds =

∫ a+b−t

a
(b− s)α−1 g (a + b− s) ds

=
∫ a+b−t

a
(b− s)α−1 g (s) ds.

Then we get ∣∣∣∣∣
∫ t

a
(b− s)α−1 g (s) ds−

∫ b

t
(s− a)α−1 g (s) ds

∣∣∣∣∣
=

∣∣∣∣ ∫ a+b−t

t
(b− s)α−1 g (s) ds

∣∣∣∣

≤


∫ a+b−t

t

∣∣∣(b− s)α−1 g (s)
∣∣∣ ds, t ∈

[
a, a+b

2

]
∫ t

a+b−t

∣∣∣(b− s)α−1 g (s)
∣∣∣ ds, t ∈

[
a+b

2 , b
] (2.12)
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A combination of (2.10), (2.11) and(2.12), we get

∣∣∣∣ f (a) + f (b)
2

[
Jα
a+ g (b) + Jα

b−g (a)
]
−
[

Jα
a+ ( f g) (b) + Jα

b− ( f g) (a)
]∣∣∣∣ (2.13)

≤ 1
Γ (α)

∫ a+b
2

a

(∫ a+b−t

t

∣∣∣(b− s)α−1 g (s)
∣∣∣ ds

) (
sup

{∣∣ f ′ (a)
∣∣ ,
∣∣ f ′ (b)

∣∣}) dt

+
1

Γ (α)

∫ b

a+b
2

(∫ t

a+b−t

∣∣∣(b− s)α−1 g (s)
∣∣∣ ds
)

sup
{∣∣ f ′ (a)

∣∣ ,
∣∣ f ′ (b)

∣∣} dt

≤
‖g‖∞ sup {| f ′ (a)| , | f ′ (b)|}

Γ (α)

×

[∫ a+b
2

a

(∫ a+b−t

t

∣∣∣(b− s)α−1
∣∣∣ ds

)
dt +

∫ b

a+b
2

(∫ t

a+b−t

∣∣∣(b− s)α−1
∣∣∣ ds
)

dt

]

=
‖g‖∞ sup {| f ′ (a)| , | f ′ (b)|}

Γ (α + 1)

×

[∫ a+b
2

a

[
(b− t)α − (t− a)α] dt +

∫ b

a+b
2

[
(t− a)α − (b− t)α] dt

]
.

Since

∫ a+b
2

a
(b− t)α dt =

∫ b

a+b
2

(t− a)α dt =
(b− a)α+1 (2α+1 − 1

)
2α+1 (α + 1)

(2.14)

and

∫ a+b
2

a
(t− a)α dt =

∫ b

a+b
2

(b− t)α dt =
(b− a)α+1

2α+1 (α + 1)
. (2.15)

Hence, if we use (2.14) and (2.15) in (2.13), we obtaion the desired result. This completes the proof.

Remark 2.1. In Theorem 1.5, if we take g (x) = 1, then inequality (2.9), becomes inequality (1.3) of Theorem 1.2.

Theorem 2.6. Let f : I → R be a differentiable mapping on I◦ and f ′ ∈ L [a, b] with a < b. If | f ′|q, q ≥ 1, is quasi
convex on [a, b] and g : [a, b] → R is continuous and symmetric to (a+b)

2 , then the following inequality for fractional
integrals holds

∣∣∣∣( f (a) + f (b)
2

) [
Jα
a+ g (b) + Jα

b−g (a)
]
−
[

Jα
a+ ( f g) (b) + Jα

b− ( f g) (a)
]∣∣∣∣ (2.16)

≤
2 (b− a)α+1 ‖g‖∞
(α + 1) Γ (α + 1)

(
1− 1

2α

)(
sup

{∣∣ f ′ (a)
∣∣q ,
∣∣ f ′ (b)

∣∣q}) 1
q

where α > 0.
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Proof. Using Lemma 1.2, Power mean inequality, (2.12) and the quasi convexity of | f ′|q, it follows that∣∣∣∣( f (a) + f (b)
2

) [
Jα
a+ g (b) + Jα

b−g (a)
]
−
[

Jα
a+ ( f g) (b) + Jα

b− ( f g) (a)
]∣∣∣∣ (2.17)

≤ 1
Γ (α)

(∫ b

a

∣∣∣∣∣
∫ a+b−t

t
(b− s)α−1 g (s) ds

∣∣∣∣∣ dt

)1− 1
q

×

(∫ b

a

∣∣∣∣∣
∫ a+b−t

t
(b− s)α−1 g (s) ds

∣∣∣∣∣ ∣∣ f ′ (t)
∣∣q dt

) 1
q

≤ 1
Γ (α)

[∫ a+b
2

a

(∫ a+b−t

t

∣∣∣(b− s)α−1 g (s)
∣∣∣ ds

)
dt

+
∫ b

a+b
2

(∫ t

a+b−t

∣∣∣(b− s)α−1 g (s)
∣∣∣ ds
)

dt

]1− 1
q

×

[∫ a+b
2

a

(∫ a+b−t

t

∣∣∣(b− s)α−1 g (s)
∣∣∣ ds

) ∣∣ f ′ (t)
∣∣q dt

+
∫ b

a+b
2

(∫ t

a+b−t

∣∣∣(b− s)α−1 g (s)
∣∣∣ ds
) ∣∣ f ′ (t)

∣∣q dt

] 1
q

≤
2 (b− a)α+1 ‖g‖∞
(α + 1) Γ (α + 1)

(
1− 1

2α

)(
sup

{∣∣ f ′ (a)
∣∣q ,
∣∣ f ′ (b)

∣∣q}) 1
q

where it is easily seen that

∫ a+b
2

a

(∫ a+b−t

t

∣∣∣(b− s)α−1
∣∣∣ ds

)
dt +

∫ b

a+b
2

(∫ t

a+b−t

∣∣∣(b− s)α−1
∣∣∣ ds
)

dt

=
2 (b− a)α+1

α (α + 1)

(
1− 1

2α

)
.

Hence if we use (2.14) and (2.15) in (2.17), we obtain the desired result. This completes the proof.
We can state another inequality for q > 1 as follows:

Theorem 2.7. Let f : I → R be a differentiable mapping on I◦ and f ′ ∈ L [a, b] with a < b. If | f ′|q, q > 1, is
quasi convex on [a, b] and g : [a, b] → R is continuous and symmetric to (a + b) /2, then the following inequality for
fractional integrals holds

(i) ∣∣∣∣( f (a) + f (b)
2

) [
Jα
a+ g (b) + Jα

b−g (a)
]
−
[

Jα
a+ ( f g) (b) + Jα

b− ( f g) (a)
]∣∣∣∣

≤
2

1
p ‖g‖∞ (b− a)α+1

(αp + 1)
1
p Γ (α + 1)

(
1− 1

2αp

) 1
p (

sup
{∣∣ f ′ (a)

∣∣q ,
∣∣ f ′ (b)

∣∣q}) 1
q (2.18)

with α > 0.
(ii) ∣∣∣∣( f (a) + f (b)

2

) [
Jα
a+ g (b) + Jα

b−g (a)
]
−
[

Jα
a+ ( f g) (b) + Jα

b− ( f g) (a)
]∣∣∣∣

≤
‖g‖∞ (b− a)α+1

(αp + 1)
1
p Γ (α + 1)

(
sup

{∣∣ f ′ (a)
∣∣q ,
∣∣ f ′ (b)

∣∣q}) 1
q (2.19)

for 0 < α ≤ 1, where 1/p + 1/q = 1.
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Proof. (i) Using Lemma 1.2, Hölder’s inequality, (2.12) and the quasi convexity of | f ′|q, it follows that∣∣∣∣( f (a) + f (b)
2

) [
Jα
a+ g (b) + Jα

b−g (a)
]
−
[

Jα
a+ ( f g) (b) + Jα

b− ( f g) (a)
]∣∣∣∣ (2.20)

≤ 1
Γ (α)

(∫ b

a

∣∣∣∣∣
∫ a+b−t

t
(b− s)α−1 g (s) ds

∣∣∣∣∣
p

dt

) 1
p
(∫ b

a

∣∣ f ′ (t)
∣∣q dt

) 1
q

≤
‖g‖∞

Γ (α + 1)

(∫ a+b
2

a

[
(b− t)α − (t− a)α]p dt +

∫ b

a+b
2

[
(t− a)α − (b− t)α]p dt

) 1
p

×

(∫ b

a
sup

{∣∣ f ′ (a)
∣∣q ,
∣∣ f ′ (b)

∣∣q}) 1
q

=
‖g‖∞ (b− a)α+1

Γ (α + 1)

(∫ 1
2

0

[
(1− t)α − tα

]p dt +
∫ 1

1
2

[
tα − (1− t)α]p dt

) 1
p

×
(

sup
{∣∣ f ′ (a)

∣∣q ,
∣∣ f ′ (b)

∣∣q}) 1
q

≤
‖g‖∞ (b− a)α+1

Γ (α + 1)

(∫ 1
2

0

[
(1− t)αp − tαp] dt +

∫ 1

1
2

[
tαp − (1− t)αp] dt

) 1
p

×
(

sup
{∣∣ f ′ (a)

∣∣q ,
∣∣ f ′ (b)

∣∣q}) 1
q

≤
2

1
p ‖g‖∞ (b− a)α+1

Γ (α + 1) (αp + 1)
1
p

(
1− 1

2αp

) 1
p (

sup
{∣∣ f ′ (a)

∣∣q ,
∣∣ f ′ (b)

∣∣q}) 1
q .

Here we use [
(1− t)α − tα

]p ≤ (1− t)αp − tαp

for t ∈
[
0, 1

2

]
and [

tα − (1− t)α]p ≤ tαp − (1− t)αp

for t ∈
[

1
2 , 1
]

which follows from (A− B)q ≤ Aq − Bq for any A ≥ B ≥ 0 and q ≥ 1. Hence the inequality
(2.18) is proved.

(ii) The inequality (2.19) is easily proved using the inequality (2.20) and Lemma 1.3.
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Solution and stability of system of quartic functional equations
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Abstract

In this paper, the authors introduced and investigated the general solution of system of quartic functional
equations

f (x + y + z) + f (x + y− z) + f (x− y + z) + f (x− y− z)

= 2[ f (x + y) + f (x− y) + f (x + z) + f (x− z) + f (y + z) + f (y− z)]

− 4[ f (x) + f (y) + f (z)],

f (3x + 2y + z) + f (3x + 2y− z) + f (3x− 2y + z) + f (3x− 2y− z)

= 72[ f (x + y) + f (x− y)] + 18[ f (x + z) + f (x− z)] + 8[ f (y + z) + f (y− z)]

+ 144 f (x)− 96 f (y)− 48 f (z),

f (x + 2y + 3z) + f (x + 2y− 3z) + f (x− 2y + 3z) + f (x− 2y− 3z)

= 8[ f (x + y) + f (x− y)] + 18[ f (x + z) + f (x− z)] + 72[ f (y + z) + f (y− z)]

− 48 f (x)− 96 f (y) + 144 f (z).

Its generalized Hyers-Ulam stability using Hyers direct method and fixed point method are discussed.
Counter examples for non stable cases are also given.

Keywords: Quartic functional equation, Generalized Hyers-Ulam stability, fixed point

2010 MSC: 39B52,39B72,39B82. c©2012 MJM. All rights reserved.

1 Introduction

One of the interesting questions in the theory of functional analysis concerning the stability problem of
functional equations had been first raised by S.M. Ulam [28] as follows: When is it true that a mapping
satisfying a functional equation approximately must be close to an exact solution of the given functional
equation? For very general functional equations, the concept of stability for functional equations arises when
we replace the functional equation by an inequality which acts as a perturbation of the equation. Thus the
stability question of functional equations is that how do the solutions of the inequality differ from those of the
given functional equation?

In 1941, D. H. Hyers [9] gave an affirmative answer to the question of S.M. Ulam for Banach spaces. In
1950, T. Aoki [2] was the second author to treat this problem for additive mappings. In 1978, Th.M. Rassias
[20] succeeded in extending Hyers’ Theorem by weakening the condition for the Cauchy difference controlled
by ||x||p + ||y||p, p ∈ [0, 1), to be unbounded.

∗Corresponding author.
E-mail address: balamurugankaliyamurthy@yahoo.com(Balamurugan), annarun2002@yahoo.co.in(Arunkumar), p.ravindiran@gmail.com
.
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In 1982, J.M. Rassias [18] replaced the factor ||x||p + ||y||p by ||x||p||y||q for p, q ∈ R. A generalization
of all the above stability results was obtained by P. Gavruta [8] in 1994 by replacing the unbounded Cauchy
difference by a general control function ϕ(x, y).

In 2008, a special case of Gavruta’s theorem for the unbounded Cauchy difference was obtained by Ravi
et. al., [25] by considering the summation of both the sum and the product of two p− norms. The stability
problems of several functional equations have been extensively investigated by a number of authors and there
are many interesting results concerning this problem (see [1, 5, 6, 7, 10, 11, 12, 15, 21, 23]) and reference cited
there in.

The quartic functional equation

F(x + 2y) + F(x− 2y) + 6F(x) = 4[F(x + y) + F(x− y) + 6F(y)] (1.1)

was first introduced by J.M. Rassias [19], who solved its Ulam stability problem. Later P.K. Sahoo and J.K.
Chung [26], S.H. Lee et. al., [13] remodified J.M. Rassias’ equation as

f (2x + y) + f (2x− y) = 4 f (x + y) + 4 f (x− y) + 24 f (x)− 6 f (y) (1.2)

and obtained its general solution.
Also the generalized Hyers-Ulam-Rassias stability for a 3 dimensional quartic functional equation

g(2x + y + z) + g(2x + y− z) + g(2x− y + z) + g(−2x + y + z) + 16g(y) + 16g(z)

= 8[g(x + y) + g(x− y) + g(x + z) + g(x− z)] + 2[g(y + z) + g(y− z)] + 32g(x) (1.3)

in fuzzy normed space was discussed by M. Arunkumar [3]. Several other types of quartic functional
equations were introduced and investigated in [4, 16, 22, 24, 27].

In this paper, the authors introduced and investigated the general solution of system of quartic functional
equations

f (x + y + z) + f (x + y− z) + f (x− y + z) + f (x− y− z)

= 2[ f (x + y) + f (x− y) + f (x + z) + f (x− z) + f (y + z) + f (y− z)]

− 4[ f (x) + f (y) + f (z)], (1.4)

f (3x + 2y + z) + f (3x + 2y− z) + f (3x− 2y + z) + f (3x− 2y− z)

= 72[ f (x + y) + f (x− y)] + 18[ f (x + z) + f (x− z)] + 8[ f (y + z) + f (y− z)]

+ 144 f (x)− 96 f (y)− 48 f (z), (1.5)

f (x + 2y + 3z) + f (x + 2y− 3z) + f (x− 2y + 3z) + f (x− 2y− 3z)

= 8[ f (x + y) + f (x− y)] + 18[ f (x + z) + f (x− z)] + 72[ f (y + z) + f (y− z)]

− 48 f (x)− 96 f (y) + 144 f (z). (1.6)

Its generalized Ulam - Hyers stability using Hyers direct method and fixed point method are discussed.
Counter examples for non stable cases are also given.

In Section 2, we proved the general solutions of (1.4), (1.5) and (1.6) are provided.
In Section 3, the generalized Ulam - Hyers stability of the functional equation (1.5) using Hyers direct

method is investigated.
In Section 4, Counter examples of non stable cases are provided.
The generalized Ulam - Hyers stability of the functional equation (1.5) using another substitutions is given

in Section 5.
Also, the generalized Ulam - Hyers stability of the functional equation (1.5) using fixed point method is

present in Section 6.

2 General Solutions of (1.4), (1.5) and (1.6)

In this section, the general solutions of (1.4), (1.5) and (1.6) are given. Throughout this section, let X and Y be
real vector spaces.
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Lemma 2.1. [13] If a mapping f : X → Y satisfies the functional equation (1.2) for all x, y ∈ X, then f : X → Y is
quartic.

Proof. Let f : X → Y satisfies the functional equation (1.2) for all x, y ∈ X. Setting (x, y) by (0, 0) in (1.2), we
get f (0) = 0. Again setting x by 0 in (1.2), we reach

f (−y) = f (y)

for all y ∈ X. Therefore f is an even function. Replacing y by 0 and y by 2x in (1.2), we obtain

f (2x) = 24 f (x) and f (3x) = 34 f (x)

respectively, for all x ∈ X. In general for any positive integer a, we have

f (ax) = a4 f (x)

for all x ∈ X. Hence f is quartic.

Theorem 2.0. If the mapping f : X → Y satisfies the functional equation (1.2) for all x, y ∈ X, then f : X → Y
satisfies the functional equation (1.4) for all x, y, z ∈ X.

Proof. Let f : X → Y satisfies the functional equation (1.2) for all x, y ∈ X. Replacing (x, y) by (y, z) in (1.2),
we get

f (2y + z) + f (2y− z) = 4 f (y + z) + 4 f (y− z)− 6 f (z) + 24 f (y) (2.1)

for all y, z ∈ X. Replacing z by x + z in (2.1)and using evenness of f , we obtain

f (x + 2y + z) + f (x− 2y + z) = 4[ f (x + y + z) + f (x− y + z)]− 6 f (x + z) + 24 f (y) (2.2)

for all x, y, z ∈ X. Replacing z by −z in (2.2), we get

f (x + 2y− z) + f (x− 2y− z) = 4[ f (x + y− z) + f (x− y− z)]− 6 f (x− z) + 24 f (y) (2.3)

for all x, y, z ∈ X. Adding (2.2) and (2.3), we reach

f (x + 2y + z) + f (x− 2y + z) + f (x + 2y− z) + f (x− 2y− z)

= 4[ f (x + y + z) + f (x− y + z) + f (x + y− z) + f (x− y− z)]

− 6[ f (x + z) + f (x− z)] + 48 f (y) (2.4)

for all x, y, z ∈ X. Interchanging y and z in (2.4), we get

f (x + y + 2z) + f (x− y + 2z) + f (x + y− 2z) + f (x− y− 2z)

= 4[ f (x + y + z) + f (x− y + z) + f (x + y− z) + f (x− y− z)]

− 6[ f (x + y) + f (x− y)] + 48 f (z) (2.5)

for all x, y, z ∈ X. Interchanging x and z in (2.5) and using evenness of f , we have

f (2x + y + z) + f (2x− y + z) + f (2x + y− z) + f (2x− y− z)

= 4[ f (x + y + z) + f (x− y + z) + f (x + y− z) + f (x− y− z)]

− 6[ f (y + z) + f (y− z)] + 48 f (x) (2.6)

for all x, y, z ∈ X. Replacing y by 2y in (2.6) and using (2.4) and (2.1), we arrive

f (2x + 2y + z) + f (2x− 2y + z) + f (2x + 2y− z) + f (2x− 2y− z)

= 4[ f (x + 2y + z) + f (x− 2y + z) + f (x + 2y− z) + f (x− 2y− z)]

− 6[ f (2y + z) + f (2y− z)] + 48 f (x)

= 16[ f (x + y + z) + f (x− y + z) + f (x + y− z) + f (x− y− z)]

− 24[ f (x + z) + f (x− z)]− 24[ f (y + z) + f (y− z)]

+ 48 f (x) + 48 f (y) + 36 f (z) (2.7)
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for all x, y, z ∈ X. Replacing z by 2z in (2.7) and using (2.5) and (2.1), we obtain

f (2x + 2y + 2z) + f (2x− 2y + 2z) + f (2x + 2y− 2z) + f (2x− 2y− 2z)

= 16[ f (x + y + 2z) + f (x− y + 2z) + f (x + y− 2z) + f (x− y− 2z)]

− 24[ f (x + 2z) + f (x− 2z)]− 24[ f (y + 2z) + f (y− 2z)]

+ 48 f (x) + 48 f (y) + 36 f (2z) (2.8)

for all x, y, z ∈ X. With the help of Lemma 2.1, we desired our result.

Theorem 2.0. A mapping f : X → Y satisfies the functional equation (1.2) for all x, y ∈ X if, and only if, f : X → Y
satisfies the functional equation (1.5) for all x, y, z ∈ X.

Proof. Let f : X → Y satisfies the functional equation (1.2) for all x, y ∈ X. Replacing y by x + z in (1.2) and
evenness of f , we obtain

f (3x + z) + f (x− z) = 4[ f (2x + z) + f (z)] + 24 f (x)− 6 f (x + z) (2.9)

for all x, z ∈ X. Replacing z by −z in (2.9) and using evenness of f , we get

f (3x− z) + f (x + z) = 4[ f (2x− z) + f (z)] + 24 f (x)− 6 f (x− z) (2.10)

for all x, z ∈ X. Adding (2.9) and (2.10) and using (1.2), we arrive

f (3x + z) + f (3x− z) = 9[ f (x + z) + f (x− z)] + 144 f (x)− 16 f (z) (2.11)

for all x, z ∈ X. Replacing z by y + z in (2.11), we have

f (3x + y + z) + f (3x− y− z) = 9[ f (x + y + z) + f (x− y− z)] + 144 f (x)− 16 f (y + z) (2.12)

for all x, y, z ∈ X. Replacing z by −z in (2.12), we get

f (3x + y− z) + f (3x− y + z) = 9[ f (x + y− z) + f (x− y + z)] + 144 f (x)− 16 f (y− z) (2.13)

for all x, y, z ∈ X. Adding (2.12) and (2.13) and using Theorem 2.0, we have

f (3x + y + z) + f (3x− y− z) + f (3x + y− z) + f (3x− y + z)

= 9[ f (x + y + z) + f (x− y− z) + f (x + y− z) + f (x− y + z)]

− 16[ f (y + z) + f (y− z)] + 288 f (x)

= 18[ f (x + y) + f (x− y)] + 18[ f (x + z) + f (x− z)] + 2[ f (y + z) + f (y− z)]

+ 252 f (x)− 36 f (y)− 36 f (z) (2.14)

for all x, y, z ∈ X. Replacing y by 2y in (2.14) and using (2.1), we arrive (1.5) as desired.
Conversely, assume that f : X → Y satisfies the functional equation (1.5) for all x, y, z ∈ X. Setting

x = y = z = 0 in (1.5), we obtain f (0) = 0. Replacing (x, y, z) by (0, 0, x) in (1.5), we reach f (−x) = f (x) for
all x ∈ X. Setting x = z = 0 in (1.5), we have f (2y) = 24 f (y) for all y ∈ X. Setting y = z = 0 in (1.5), we get
f (3x) = 34 f (x) for all x ∈ X. In general for any positive integer a, we obtain f (ax) = a4 f (x) for all x ∈ X.
Replacing (x, y, z) by (0, x, y) in (1.5) and using evenness of f , we reach (1.2) as desired.

Theorem 2.0. If f : X → Y satisfies the functional equation (1.5), then there exists a unique symmetric multi - additive
function Q : X × X × X × X → Y such that

f (x) = Q(x, x, x, x)

for all x ∈ X.

Proof. By Theorem 2.0, if f : X → Y satisfies the functional equation (1.5), then f : X → Y satisfies the
functional equation (1.2) for all x, y ∈ X. By Theorem 2.1 of [13], we desired our result.

Corollary 2.0. If the mapping f : X → Y satisfies the functional equation (1.5) for all x, y, z ∈ X, then f : X → Y
satisfies the functional equation (1.4) for all x, y, z ∈ X.
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Corollary 2.0. If the mapping f : X → Y satisfies the functional equation (1.5) for all x, y, z ∈ X, then f : X → Y
satisfies the functional equation (1.6) for all x, y, z ∈ X.

Hereafter, through out this paper, let we consider G be a normed space and H be a Banach space. Define a
mapping D f : G → H by

D f (x, y, z) = f (3x + 2y + z) + f (3x + 2y− z) + f (3x− 2y + z) + f (3x− 2y− z)

− 72[ f (x + y) + f (x− y)]− 18[ f (x + z) + f (x− z)]

− 8[ f (y + z) + f (y− z)]− 144 f (x) + 96 f (y) + 48 f (z)

for all x, y, z ∈ G.

3 Stability results of (1.2): Direct method

In this section, the generalized Ulam - Hyers stability of the quartic functional equation (1.5) is given.

Theorem 3.0. Let j = ±1 and ψ : G3 → [0, ∞) be a function such that

lim
n→∞

ψ
(
6njx, 6njy, 6njz

)
64nj = 0 (3.1)

for all x, y, z ∈ G. Let f : G → H be a function satisfying the inequality

‖D f (x, y, z)‖ ≤ ψ (x, y, z) (3.2)

for all x, y, z ∈ G. Then there exists a unique quartic mapping Q : G → H which satisfies (1.5) and

‖ f (x)−Q(x)‖ ≤ 1
64

∞

∑
k= 1−j

2

ξ
(

6kjx
)

64kj (3.3)

where ξ (x) and Q(x) are defined by

ξ (x) = ψ (x, x, x) +
1
2

ψ (x, 0, x) +
89
4

ψ (0, x, 0) (3.4)

and

Q(x) = lim
n→∞

f (6njx)
64nj (3.5)

for all x ∈ G, respectively.

Proof. Replacing (x, y, z) by (x, x, x) in (3.2), we get

‖ f (6x) + f (4x)− 97 f (2x)‖ ≤ ψ (x, x, x) (3.6)

for all x ∈ G. Again, replacing (x, y, z) by (x, 0, x) in (3.2), we obtain

‖ f (4x)− 8 f (2x)− 128 f (x)‖ ≤ 1
2

ψ (x, 0, x) (3.7)

for all x ∈ G. Finally, replacing (x, y, z) by (0, x, 0) in (3.2), we have

‖ f (2x)− 16 f (x)‖ ≤ 1
4

ψ (0, x, 0) (3.8)

for all x ∈ G. It follows from (3.6), (3.7), and (3.8) that

‖ f (6x)− 1296 f (x)‖
= ‖ f (6x) + f (4x)− 97 f (2x)− f (4x) + 8 f (2x) + 128 f (x) + 89 f (2x)− 1424 f (x)‖
≤ ‖ f (6x) + f (4x)− 97 f (2x)‖+ ‖ f (4x)− 8 f (2x)− 128 f (x)‖+ 89 ‖ f (2x)− 16 f (x)‖

≤ ψ (x, x, x) +
1
2

ψ (x, 0, x) +
89
4

ψ (0, x, 0) (3.9)
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for all x ∈ G. Dividing the above inequality by 1296, we obtain∥∥∥∥ f (6x)
64 − f (x)

∥∥∥∥ ≤ ξ(x)
64 (3.10)

where
ξ(x) = ψ (x, x, x) +

1
2

ψ (x, 0, x) +
89
4

ψ (0, x, 0)

for all x ∈ G. Now replacing x by 6x and dividing by 64 in (3.10), we get∥∥∥∥ f (62x)
68 − f (6x)

64

∥∥∥∥ ≤ ξ(6x)
68 (3.11)

for all x ∈ G. From (3.10) and (3.11), we obtain∥∥∥∥ f (62x)
68 − f (x)

∥∥∥∥ ≤ ∥∥∥∥ f (6x)
64 − f (x)

∥∥∥∥ +
∥∥∥∥ f (62x)

68 − f (6x)
64

∥∥∥∥
≤ 1

64

[
ξ(x) +

ξ(6x)
64

]
(3.12)

for all x ∈ G. Proceeding further and using induction on a positive integer n, we get∥∥∥∥ f (6nx)
64n − f (x)

∥∥∥∥ ≤ 1
64

n−1

∑
k=0

ξ(6kx)
64k (3.13)

≤ 1
64

∞

∑
k=0

ξ(6kx)
64k

for all x ∈ G. In order to prove the convergence of the sequence
{

f (6nx)
64n

}
, replace x by 6mx and dividing by

64m in (3.13), for any m, n > 0 , we deduce∥∥∥∥ f (6n+mx)
64(n+m) − f (6mx)

64m

∥∥∥∥ =
1

64m

∥∥∥∥ f (6n · 6mx)
64n − f (6mx)

∥∥∥∥
≤ 1

64

n−1

∑
k=0

ξ(6k+mx)
64(k+m)

≤ 1
64

∞

∑
k=0

ξ(6k+mx)
64(k+m)

→ 0 as m → ∞

for all x ∈ G. Hence the sequence
{

f (6nx)
64n

}
is a Cauchy sequence. Since H is complete, there exists a mapping

Q : G → H such that

Q(x) = lim
n→∞

f (6nx)
64n , ∀ x ∈ G.

Letting n → ∞ in (3.13), we see that (3.3) holds for all x ∈ G. To prove that Q satisfies (1.5), replacing (x, y, z)
by (6nx, 6ny, 6nz) and dividing by 64n in (3.2), we obtain

1
64n

∥∥∥ f (6n(3x + 2y + z)) + f (6n(3x + 2y− z)) + f (6n(3x− 2y + z)) + f (6n(3x− 2y− z))

− 72[ f (6n(x + y)) + f (6n(x− y))]− 18[ f (6n(x + z)) + f (6n(x− z))]

− 8[ f (6n(y + z)) + f (6n(y− z))]− 144 f (6nx)

+ 96 f (6ny) + 48 f (6nz)
∥∥∥ ≤ 1

64n ψ(6nx, 6ny, 6nz)

for all x, y, z ∈ G. Letting n → ∞ in the above inequality and using the definition of Q(x), we see that

Q(3x + 2y + z) + Q(3x + 2y− z) + Q(3x− 2y + z) + Q(3x− 2y− z)

= 72[Q(x + y) + Q(x− y)] + 18[Q(x + z) + Q(x− z)] + 8[Q(y + z) + Q(y− z)]

+ 144Q(x)− 96Q(y)− 48Q(z).
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Hence Q satisfies (1.5) for all x, y, z ∈ G. To prove that Q is unique, let R(x) be another quartic mapping
satisfying (1.5) and (3.3), then

‖Q(x)− R(x)‖ =
1

64n ‖Q(6nx)− R(6nx)‖

≤ 1
64n {‖Q(6nx)− f (6nx)‖+ ‖ f (6nx)− R(6nx)‖}

≤ 2
64

∞

∑
k=0

ξ(6k+nx)
64(k+n)

→ 0 as n → ∞

for all x ∈ G. Thus Q is unique. Hence for j = 1 the theorem holds.
Now, replacing x by x

6 in (3.9), we reach∥∥∥ f (x)− 1296 f
( x

6

)∥∥∥ ≤ ψ
( x

6
,

x
6

,
x
6

)
+

1
2

ψ
( x

6
, 0,

x
6

)
+

89
4

ψ
(

0,
x
6

, 0
)

(3.14)

for all x ∈ G. The rest of the proof is similar to that of j = 1. Hence for j = −1 also the theorem holds. This
completes the proof of the theorem.

The following Corollary is an immediate consequence of Theorem 3.0 concerning the Ulam-Hyers [9],
Ulam-TRassias [20], Ulam-GRassias [18] and Ulam-JRassias [25] stabilities of (1.5).

Corollary 3.0. Let ρ and s be nonnegative real numbers. Let f : G → H be a function satisfying the inequality

‖D f (x, y, z)‖ ≤


ρ,
ρ {||x||s + ||y||s + ||z||s} , s 6= 4;
ρ||x||s||y||s||z||s, 3s 6= 4;
ρ

{
||x||s||y||s||z||s +

{
||x||3s + ||y||3s + ||z||3s}}

, 3s 6= 4;

(3.15)

for all x, y, z ∈ G. Then there exists a unique quartic function Q : G → H such that

‖ f (x)−Q(x)‖ ≤



ρ

4|33 − 1|
,

ρ||x||s

4|33 − 3s|
,

ρ||x||3s

4|33 − 33s|

(3.16)

for all x ∈ G.

4 Counter examples for non stable cases of (1.5)

Now, we will provide an example to illustrate that the functional equation (1.5) is not stable for s = 4 in
condition (ii) of Corollary 3.0. Let ψ : R → R be a function defined by

ψ(x) =
{

µx4, if |x| < 1
µ, otherwise

where µ > 0 is a constant, and define a function f : R → R by

f (x) =
∞

∑
n=0

ψ(6nx)
64n f or all x ∈ R.

Then f satisfies the functional inequality

|D f (x, y, z)| ≤ (488× 68)µ

1295
(|x|4 + |y|4 + |z|4) (4.1)

for all x, y, z ∈ R. Then there do not exist a quartic mapping Q : R → R and a constant κ > 0 such that

| f (x)−Q(x)| ≤ κ|x|4 f or all x ∈ R. (4.2)
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Proof. Now

| f (x)| ≤
∞

∑
n=0

|ψ(6nx)|
|64n|

≤
∞

∑
n=0

µ

64n =
1296µ

1295
.

Therefore, we see that f is bounded. We are going to prove that f satisfies (4.1).

If x = y = z = 0 then (4.1) is trivial. If |x|4 + |y|4 + |z|4 ≥ 1
64 then the left hand side of (4.1) is less than

488× 68µ

1295
. Now suppose that 0 < |x|4 + |y|4 + |z|4 <

1
64 . Then there exists a positive integer k such that

1
64(k+1) ≤ |x|4 + |y|4 + |z|4 <

1
64k , (4.3)

so that 6k−1x <
1
6

, 6k−1y <
1
6

, 6k−1z <
1
6

and consequently

6k−1(3x + 2y + z), 6k−1(3x− 2y + z), 6k−1(3x + 2y− z), 6k−1(3x− 2y− z),

6k−1(x + y), 6k−1(x− y), 6k−1(x + z), 6k−1(x− z),

6k−1(y + z), 6k−1(y− z), 6k−1(x), 6k−1(y), 6k−1(z) ∈ (−1, 1).

Therefore for each n = 0, 1, . . . , k− 1, we have

6n(3x + 2y + z), 6n(3x− 2y + z), 6n(3x + 2y− z), 6n(3x− 2y− z),

6n(x + y), 6n(x− y), 6n(x + z), 6n(x− z),

6n(y + z), 6n(y− z), 6n(x), 6n(y), 6n(z) ∈ (−1, 1).

and

ψ(6n(3x + 2y + z)) + ψ(6n(3x + 2y− z)) + ψ(6n(3x− 2y + z)) + ψ(6n(3x− 2y− z))

− 72[ψ(6n(x + y)) + ψ(6n(x− y))]− 18[ψ(6n(x + z)) + ψ(6n(x− z))]

− 8[ψ(6n(y + z)) + ψ(6n(y− z))]− 144ψ(6n(x)) + 96ψ(6n(y)) + 48ψ(6n(z)) = 0

for n = 0, 1, . . . , k− 1. From the definition of f and (4.3), we obtain that∣∣∣ f (3x + 2y + z) + f (3x + 2y− z) + f (3x− 2y + z) + f (3x− 2y− z)

− 72[ f (x + y) + f (x− y)]− 18[ f (x + z) + f (x− z)]− 8[ f (y + z) + f (y− z)]

− 144 f (x) + 96 f (y) + 48 f (z)
∣∣∣

≤
∞

∑
n=0

1
64n

∣∣∣ψ(6n(3x + 2y + z)) + ψ(6n(3x + 2y− z)) + ψ(6n(3x− 2y + z)) + ψ(6n(3x− 2y− z))

− 72[ψ(6n(x + y)) + ψ(6n(x− y))]− 18[ψ(6n(x + z)) + ψ(6n(x− z))]

− 8[ψ(6n(y + z)) + ψ(6n(y− z))]− 144ψ(6n(x)) + 96ψ(6n(y)) + 48ψ(6n(z))
∣∣∣

=
∞

∑
n=k

1
64n

∣∣∣ψ(6n(3x + 2y + z)) + ψ(6n(3x + 2y− z)) + ψ(6n(3x− 2y + z)) + ψ(6n(3x− 2y− z))

− 72[ψ(6n(x + y)) + ψ(6n(x− y))]− 18[ψ(6n(x + z)) + ψ(6n(x− z))]

− 8[ψ(6n(y + z)) + ψ(6n(y− z))]− 144ψ(6n(x)) + 96ψ(6n(y)) + 48ψ(6n(z))
∣∣∣

≤
∞

∑
n=k

1
64n 488µ = 488 µ× 1296

1295 · 64k ≤
68 × 488µ

1295
(|x|4 + |y|4 + |z|4).

Thus f satisfies (4.1) for all x ∈ R with 0 < |x|4 + |y|4 + |z|4 <
1
64 .

We claim that the quartic functional equation (1.5) is not stable for s = 4 in condition (ii) of Corollary 3.0.
Suppose on the contrary that there exist a quartic mapping Q : R → R and a constant κ > 0 satisfying (4.2).
Since f is bounded and continuous for all x ∈ R, Q is bounded on any open interval containing the origin and
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continuous at the origin. In view of Theorem 3.0, Q must have the form Q(x) = cx4 for any x in R. Thus, we
obtain that

| f (x)| ≤ (κ + |c|) |x|4. (4.4)

But we can choose a positive integer m with mµ > κ + |c|.

If x ∈
(

0, 1
6m−1

)
, then 6nx ∈ (0, 1) for all n = 0, 1, . . . , m− 1 . For this x, we get

f (x) =
∞

∑
n=0

ψ(6nx)
64n ≥

m−1

∑
n=0

µ(6nx)4

64n = mµx4 > (κ + |c|) x4

which contradicts (4.4). Therefore the quartic functional equation (1.5) is not stable in sense of Ulam, Hyers
and Rassias if s = 4, assumed in the inequality condition (ii) of (3.16).

A counter example to illustrate the non stability in Condition (iii) of Corollary 3.0. Let s be such that
0 < s < 4

3 . Then there is a function f : R → R and a constant λ > 0 satisfying

|D f (x, y, z)| ≤ λ|x|
4s
3 |y|

4s
3 |z|

4−8s
3 (4.5)

for all x, y, z ∈ R and

sup
x 6=0

| f (x)−Q (x)|
|x|4

= +∞ (4.6)

for every quartic mapping Q : R → R.

Proof. If we take

f (x) =
{

x4 ln |x| , i f x 6= 0,
0, i f x = 0.

Then from the relation (4.6), it follows that

sup
x 6=0

| f (x)−Q (x)|
|x|4

≥ sup
n∈N
n 6=0

| f (n)−Q (n)|
|n|4

= sup
n∈N
n 6=0

∣∣n4 ln |n| − n4 Q (1)
∣∣

|n|4
= sup

n∈N
n 6=0

|ln |n| −Q (1)| = ∞.

We have to prove (4.5) is true.
Case (i): If x, y, z > 0 in (4.5) then,

| f (3x + 2y + z) + f (3x + 2y− z) + f (3x− 2y + z) + f (3x− 2y− z)

− 72[ f (x + y) + f (x− y)]− 18[ f (x + z) + f (x− z)]− 8[ f (y + z) + f (y− z)]

−144 f (x) + 96 f (y) + 48 f (z)|
= |(3x + 2y + z) ln |3x + 2y + z|+ (3x + 2y− z) ln |3x + 2y− z|

+ (3x− 2y + z) ln |3x− 2y + z|+ (3x− 2y− z) ln |3x− 2y− z|
− 72[(x + y) ln |x + y|+ (x− y) ln |x− y|]

− 18[(x + z) ln |x + z|+ (x− z) ln |x− z|]
− 8[(y + z) ln |y + z|+ (y− z) ln |y− z|]

−144(x) ln |x|+ 96(y) ln |y|+ 48(z) ln |z||
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Set x = u, y = v, z = w it follows that

| f (3x + 2y + z) + f (3x + 2y− z) + f (3x− 2y + z) + f (3x− 2y− z)

− 72[ f (x + y) + f (x− y)]− 18[ f (x + z) + f (x− z)]− 8[ f (y + z) + f (y− z)]

−144 f (x) + 96 f (y) + 48 f (z)|
= |(3x + 2y + z) ln |3x + 2y + z|+ (3x + 2y− z) ln |3x + 2y− z|

+ (3x− 2y + z) ln |3x− 2y + z|+ (3x− 2y− z) ln |3x− 2y− z|
− 72[(x + y) ln |x + y|+ (x− y) ln |x− y|]

− 18[(x + z) ln |x + z|+ (x− z) ln |x− z|]
− 8[(y + z) ln |y + z|+ (y− z) ln |y− z|]

−144(x) ln |x|+ 96(y) ln |y|+ 48(z) ln |z||
= |(3u + 2v + w) ln |3u + 2v + w|+ (3u + 2v− w) ln |3u + 2v− w|

+ (3u− 2v + w) ln |3u− 2v + w|+ (3u− 2v− w) ln |3u− 2v− w|
− 72[(u + v) ln |u + v|+ (u− v) ln |u− v|]

− 18[(u + w) ln |u + w|+ (u− w) ln |u− w|]
− 8[(v + w) ln |v + w|+ (v− w) ln |v− w|]

−144(u) ln |u|+ 96(v) ln |v|+ 48(w) ln |w||
| f (3u + 2v + w) + f (3u + 2v− w) + f (3u− 2v + w) + f (3u− 2v− w)

− 72[ f (u + v) + f (u− v)]− 18[ f (u + w) + f (u− w)]− 8[ f (v + w) + f (v− w)]

−144 f (u) + 96 f (v) + 48 f (w)|

≤ λ|u|
4s
3 |v|

4s
3 |w|

4−8s
3 = λ|x|

4s
3 |y|

4s
3 |z|

4−8s
3 .

For the Cases:

(ii) : x, y, z < 0

(iii) : x > 0, y, z < 0

(iv) : x < 0, y, z > 0

(v) : x = y = z = 0

the proof is similar to that of Case (i).

Now, we will provide an example to illustrate that the functional equation (1.5) is not stable for s = 4
3

in condition (iv) of Corollary 3.0. The proof of the following example is similar to that of Example 4. Let
ψ : R → R be a function defined by

ψ(x) =

 µx4, if |x| < 4
3

4µ

3
, otherwise

where µ > 0 is a constant, and define a function f : R → R by

f (x) =
∞

∑
n=0

ψ(6nx)
64n f or all x ∈ R.

Then f satisfies the functional inequality

|D f (x, y, z)| ≤ 488× 68 × 4µ

3 · 1295
(|x|

4
3 |y|

4
3 |z|

4
3 + |x|4 + |y|4 + |z|4) (4.7)

for all x, y, z ∈ R. Then there do not exist a quartic mapping Q : R → R and a constant κ > 0 such that

| f (x)−Q(x)| ≤ κ|x|4 f or all x ∈ R. (4.8)
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5 Stability results of (1.2) using various substitutions

In this section, the generalized Ulam-Hyers stability of (1.5) using various substitutions is investigated. The
proofs of the following theorems and corollaries are similar to that Theorem 3.0 and Corollary 3.0. Hence the
details of the proofs are omitted.

Theorem 5.0. Let j = ±1 and ψ : G3 → [0, ∞) be a function such that

lim
n→∞

ψ
(
4njx, 4njy, 4njz

)
44nj = 0 (5.1)

for all x, y, z ∈ G. Let f : G → H be a function satisfying the inequality

‖D f (x, y, z)‖ ≤ ψ (x, y, z) (5.2)

for all x, y, z ∈ G. Then there exists a unique quartic mapping Q : G → H which satisfies (1.5) and

‖ f (x)−Q(x)‖ ≤ 1
2 · 44

∞

∑
k= 1−j

2

ζ
(

4kjx
)

44kj (5.3)

where ζ (x) and Q(x) are defined by

ζ (x) =
1
2

ψ (x, 0, x) + 4ψ (0, x, 0) (5.4)

and

Q(x) = lim
n→∞

f (4njx)
44nj (5.5)

for all x ∈ G, respectively.

Corollary 5.0. Let ρ and s be nonnegative real numbers. Let f : G → H be a function satisfying the inequality

‖D f (x, y, z)‖ ≤


ρ,
ρ {||x||s + ||y||s + ||z||s} , s 6= 4;
ρ

{
||x||s||y||s||z||s +

{
||x||3s + ||y||3s + ||z||3s}}

, 3s 6= 4;
(5.6)

for all x, y, z ∈ G. Then there exists a unique quartic function Q : G → H such that

‖ f (x)−Q(x)‖ ≤



5ρ

2|44 − 1|
,

5ρ||x||s

2|44 − 4s|
,

5ρ||x||3s

2|44 − 43s|

(5.7)

for all x ∈ G.

Theorem 5.0. Let j = ±1 and ψ : G3 → [0, ∞) be a function such that

lim
n→∞

ψ
(
3njx, 3njy, 3njz

)
34nj = 0 (5.8)

for all x, y, z ∈ G. Let f : G → H be a function satisfying the inequality

‖D f (x, y, z)‖ ≤ ψ (x, y, z) (5.9)

for all x, y, z ∈ G. Then there exists a unique quartic mapping Q : G → H which satisfies (1.5) and

‖ f (x)−Q(x)‖ ≤ 1
4 · 34

∞

∑
k= 1−j

2

ψ
(

3kjx, 0, 0
)

34kj (5.10)

where Q(x) is defined by

Q(x) = lim
n→∞

f (3njx)
34nj (5.11)

for all x ∈ G.
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Corollary 5.0. Let ρ and s be nonnegative real numbers. Let f : G → H be a function satisfying the inequality

‖D f (x, y, z)‖ ≤


ρ,
ρ {||x||s + ||y||s + ||z||s} , s 6= 4;
ρ

{
||x||s||y||s||z||s +

{
||x||3s + ||y||3s + ||z||3s}}

, 3s 6= 4;
(5.12)

for all x, y, z ∈ G. Then there exists a unique quartic function Q : G → H such that

‖ f (x)−Q(x)‖ ≤



ρ

4|34 − 1|
,

ρ||x||s

4|34 − 3s|
,

ρ||x||3s

4|34 − 33s|

(5.13)

for all x ∈ G.

Theorem 5.0. Let j = ±1 and ψ : G3 → [0, ∞) be a function such that

lim
n→∞

ψ
(
2njx, 2njy, 2njz

)
24nj = 0 (5.14)

for all x, y, z ∈ G. Let f : G → H be a function satisfying the inequality

‖D f (x, y, z)‖ ≤ ψ (x, y, z) (5.15)

for all x, y, z ∈ G. Then there exists a unique quartic mapping Q : G → H which satisfies (1.5) and

‖ f (x)−Q(x)‖ ≤ 1
4 · 24

∞

∑
k= 1−j

2

ψ
(

0, 2kjx, 0
)

24kj (5.16)

where Q(x) is defined by

Q(x) = lim
n→∞

f (2njx)
24nj (5.17)

for all x ∈ G.

Corollary 5.0. Let ρ and s be nonnegative real numbers. Let f : G → H be a function satisfying the inequality

‖D f (x, y, z)‖ ≤


ρ,
ρ {||x||s + ||y||s + ||z||s} , s 6= 4;
ρ

{
||x||s||y||s||z||s +

{
||x||3s + ||y||3s + ||z||3s}}

, 3s 6= 4;
(5.18)

for all x, y, z ∈ G. Then there exists a unique quartic function Q : G → H such that

‖ f (x)−Q(x)‖ ≤



ρ

4|24 − 1|
,

ρ||x||s

4|24 − 2s|
,

ρ||x||3s

4|24 − 23s|

(5.19)

for all x ∈ G.

6 Stability results of (1.2): fixed point method

In this section, we apply a fixed point method for achieving stability of the functional equation (1.5) is present.
Now, first we will recall the fundamental results in fixed point theory.

Theorem 6.0. (Banach’s contraction principle) Let (X, d) be a complete metric space and consider a mapping T : X →
X which is strictly contractive mapping, that is
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(A1) d(Tx, Ty) ≤ Ld(x, y) for some (Lipschitz constant) L < 1. Then,
(i) The mapping T has one and only fixed point x∗ = T(x∗);
(ii)The fixed point for each given element x∗ is globally attractive, that is

(A2) limn→∞Tnx = x∗, for any starting point x ∈ X;
(iii) One has the following estimation inequalities:

(A3) d(Tnx, x∗) ≤ 1
1−L d(Tnx, Tn+1x), ∀ n ≥ 0, ∀ x ∈ X;

(A4) d(x, x∗) ≤ 1
1−L d(x, x∗), ∀ x ∈ X.

Theorem 6.0. [14] Suppose that for a complete generalized metric space (Ω, δ) and a strictly contractive mapping
T : Ω → Ω with Lipschitz constant L. Then, for each given x ∈ Ω , either

d(Tnx, Tn+1x) = ∞ ∀ n ≥ 0,

or there exists a natural number n0 such that
(FP1) d(Tnx, Tn+1x) < ∞ for all n ≥ n0 ;
(FP2) The sequence (Tnx) is convergent to a fixed point y∗ of T
(FP3) y∗ is the unique fixed point of T in the set ∆ = {y ∈ Ω : d(Tn0 x, y) < ∞};
(FP4) d(y∗, y) ≤ 1

1−L d(y, Ty) for all y ∈ ∆.

Hereafter throughout this section, let us consider G and H to be a normed space and a Banach space,
respectively.

Theorem 6.0. Let f : G → H be a mapping for which there exists a function ψ : G3 → [0, ∞) with the condition

lim
k→∞

1
τ4k

i
ψ(τk

i x, τk
i y, τk

i z) = 0 (6.1)

where

τi =
{

6 i f i = 0;
1
6 i f i = 1,

(6.2)

such that the functional inequality
‖D f (x, y, z)‖ ≤ ψ(x, y, z) (6.3)

for all x, y, z ∈ G. If there exists L = L(i) such that the function Φ : G → [0, ∞) defined by

Φ(x) = ξ
( x

6

)
where

ξ(x) = ψ (x, x, x) +
1
2

ψ (x, 0, x) +
89
4

ψ (0, x, 0)

has the property

Φ(x) =
L
τ4

i
Φ (τix) . (6.4)

for all x ∈ G. Then there exists a unique quartic mapping Q : G → H satisfying the functional equation (1.5) and

‖ f (x)−Q(x)‖ ≤ L1−i

1− L
Φ(x) (6.5)

for all x ∈ G.

Proof. Consider the set
Γ = {p/p : G → H, p(0) = 0}

and introduce the generalized metric on Γ,

d(p, q) = inf{K ∈ (0, ∞) :‖ p(x)− q(x) ‖≤ KΦ(x), x ∈ G}.
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It is easy to see that (Γ, d) is complete.
Define Υ : Γ → Γ by

Υp(x) =
1
τ4

i
p(τix),

for all x ∈ G. Now p, q ∈ Γ,

d(p, q) ≤ K ⇒ ‖ p(x)− q(x) ‖≤ KΦ(x), x ∈ G,

⇒

∥∥∥∥∥ 1
τ4

i
p(τix)− 1

τ4
i

q(τix)

∥∥∥∥∥ ≤ 1
τ4

i
KΦ(τix), x ∈ G,

⇒

∥∥∥∥∥ 1
τ4

i
p(τix)− 1

τ4
i

q(τix)

∥∥∥∥∥ ≤ LKΦ(x), x ∈ G,

⇒ ‖ Υp(x)− Υq(x) ‖≤ LKΦ(x), x ∈ G,

⇒d(Υp, Υq) ≤ LK.

This implies d(Υp, Υq) ≤ Ld(p, q), for all p, q ∈ Γ. i.e., T is a strictly contractive mapping on Γ with Lipschitz
constant L.

It follows from (3.9), we arrive
‖ f (6x)− 1296 f (x)‖ ≤ ξ(x) (6.6)

where
ξ(x) = ψ (x, x, x) +

1
2

ψ (x, 0, x) +
89
4

ψ (0, x, 0)

for all x ∈ G. It follows from (6.6) that ∥∥∥∥ f (6x)
64 − f (x)

∥∥∥∥ ≤ ξ(x)
64 (6.7)

for all x ∈ G. Using (6.4) for the case i = 0 it reduces to∥∥∥∥ f (6x)
64 − f (x)

∥∥∥∥ ≤ LΦ(x)

for all x ∈ G,
i.e., d(Υ f , f ) ≤ L ⇒ d(Υ f , f ) ≤ L = L1−i < ∞. (6.8)

Again replacing x = x
6 in (6.6), we get ∥∥∥ f (x)− 1296 f

( x
6

)∥∥∥ ≤ ξ
( x

6

)
(6.9)

for all x ∈ G. Using (6.4) for the case i = 1 it reduces to∥∥∥ f (x)− 1296 f
( x

6

)∥∥∥ ≤ Φ(x)

for all x ∈ G,
i.e., d( f , Υ f ) ≤ 1 ⇒ d( f , Υ f ) ≤ 1 = L1−i < ∞. (6.10)

From (6.8) and (6.10), we arrive
d( f , Υ f ) ≤ L1−i.

Therefore (FP1) holds.
By (FP2), it follows that there exists a fixed point Q of Υ in Γ such that

Q(x) = lim
k→∞

f (τk
i x)

τ4k
i

, ∀ x ∈ G. (6.11)

We have to prove Q : G → H is quartic. Replacing (x, y, z) by (τk
i x, τk

i y, τk
i z) in (6.3) and dividing by τ4k

i , it
follows from (6.1) that

1
τ4k

i

∥∥∥D f (τk
i x, τk

i y, τk
i z)

∥∥∥ ≤ 1
τ4k

i
ψ(τk

i x, τk
i y, τk

i z)
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for all x ∈ G. Letting k → ∞ in the above inequality and using the definition of Q(x), we see that

DQ(x, y, z) = 0

i.e., Q satisfies the functional equation (1.5) for all x, y, z ∈ G.
By (FP3), Q is the unique fixed point of Υ in the set

∆ = {Q ∈ Γ : d( f , Q) < ∞},

such that

‖ f (x)−Q(x)‖ ≤ KΦ(x)

for all x ∈ G and K > 0. Finally by (FP4), we obtain

d( f , Q) ≤ 1
1− L

d( f , Υ f )

this implies

d( f , Q) ≤ L1−i

1− L

which yields

‖ f (x)−Q(x)‖ ≤ L1−i

1− L
Φ(x)

this completes the proof of the theorem.

The following corollary is an immediate consequence of Theorem 6.0 concerning the stability of (1.5).

Corollary 6.0. Let f : G → H be a mapping and there exist real numbers ρ and s such that

‖D f (x, y, z)‖ ≤


ρ,
ρ {||x||s + ||y||s + ||z||s} , s 6= 4;
ρ||x||s||y||s||z||s, 3s 6= 4;
ρ

{
||x||s||y||s||z||s +

{
||x||3s + ||y||3s + ||z||3s}}

, 3s 6= 4;

(6.12)

for all x ∈ G. Then there exists a unique quartic function Q : G → H such that

‖ f (x)−Q(x)‖ ≤



95ρ

4|64 − 1|
,

105ρ||x||s

4|64 − 6s|
,

ρ||x||3s

|64 − 63s|
,

109ρ||x||3s

4|64 − 63s|

(6.13)

for all x ∈ G.

Proof. Setting

ψ(x, y, z) =


ρ,
ρ {||x||s + ||y||s + ||z||s} ,
ρ||x||s||y||s||z||s,
ρ

{
||x||s||y||s||z||s + ||x||3s + ||y||3s + ||z||3s} .
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for all x ∈ G. Now,

1
τ4k

i
ψ(τk

i x, τk
i y, τk

i z) =



ρ

τ4k
i

,

ρ

τ4k
i

{
||τk

i x||s + ||τk
i y||s + ||τk

i z||s
}

,

ρ

τ4k
i
||τk

i x||s||τk
i y||s||τk

i z||s,
ρ

τ4k
i

{
||τk

i x||s||τk
i y||s||τk

i z||s + ||τk
i x||3s + ||τk

i y||3s + ||τk
i z||3s

}
.

=


→ 0 as k → ∞,
→ 0 as k → ∞,
→ 0 as k → ∞,
→ 0 as k → ∞.

Thus, (6.1) is holds.
But we have Φ(x) = ξ

( x
6
)

where ξ(x) = ψ (x, x, x) + 1
2 ψ (x, 0, x) + 89

4 ψ (0, x, 0) has the property Φ(x) =
L
τ4

i
Φ (τix) for all x ∈ G. Hence

Φ(x) = ξ
( x

6

)
=



95ρ

4
,

105ρ

4 · 6s ||x||
s,

ρ

63s ||x||
3s,

109ρ

4 · 63s ||x||
3s.

Now,

1
τ4

i
Φ(τix) =



95ρ

4 · τ4
i

105ρ

4 · 6s · τ4
i
||τix||s,

ρ

63s · τ4
i
||τix||3s,

109ρ

4 · 63s · τ4
i
||τix||3s.

=


τ−1

i Φ(x),
τs−4

i Φ(x),
τ3s−4

i Φ(x),
τ3s−4

i Φ(x).

Hence the inequality (6.4) holds either, L = 6−4 if i = 0 and L = 64 if i = 1. Now from (6.5), we prove the
following cases for condition (i).
Case:1 L = 6−4 if i = 0

‖ f (x)−Q(x)‖ ≤
(
6−4)1−0

1− 6−4 Φ(x) =
95ρ

4(64 − 1)
.

Case:2 L = 64 if i = 1

‖ f (x)−Q(x)‖ ≤
(
64)1−1

1− 64 Φ(x) =
−95ρ

4(1− 64)
.

Also the inequality (6.4) holds either, L = 6s−4 for s < 4 if i = 0 and L = 64−s for s > 4 if i = 1. Now from
(6.5), we prove the following cases for condition (ii).
Case:3 L = 6s−4 for s < 4 if i = 0

‖ f (x)−Q(x)‖ ≤

(
6(s−4)

)1−0

1− 6(s−4) Φ(x) =
105ρ||x||s

64 − 6s .

Case:4 L = 64−s for s > 4 if i = 1

‖ f (x)−Q(x)‖ ≤
(
64−s)1−1

1− 64−s Φ(x) =
105ρ||x||s

6s − 64 .
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Again the inequality (6.4) holds either, L = 63s−4 for 3s < 4 if i = 0 and L = 64−3s for 3s > 4 if i = 1. Now
from (6.5), we prove the following cases for condition (iii).
Case:5 L = 63s−4 for 3s < 4 if i = 0

‖ f (x)−Q(x)‖ ≤

(
6(3s−4)

)1−0

1− 6(3s−4) Φ(x) =
ρ||x||3s

64 − 63s .

Case:6 L = 64−3s for 3s > 4 if i = 1

‖ f (x)−Q(x)‖ ≤
(
64−3s)1−1

1− 64−3s Φ(x) =
ρ||x||3s

63s − 64 .

The proof of condition (iv) is similar to that of condition (iii). Hence the proof is complete.
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Abstract

In this paper, we introduce the notion of µ̃-open sets in generalized topological spaces. Further, we
introduce the notions of interior, closure, boundary, exterior and study some of their properties. In addition,
we introduce the concepts of µ̃-Ti (i = 0, 1

2 , 1, 2) spaces are characterized them using µ̃-open and µ̃-closed
sets.

Keywords: µ̃-open, µ̃-closed, µ̃-interior, µ̃-closure, µ̃-boundary, µ̃-exterior and µ̃-Ti (i = 0, 1
2 , 1, 2).
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1 Introduction

Generalized topologies were introduced by A. Csaszar. Further, he defined the concepts of µ-open sets
and their corresponding interior and closure operators in generalized topological spaces. Also, he obtained
and studied the notions of µ-semi-open sets, µ-preopen sets, µ-α-open sets and µ-β-open sets in generalized
topological spaces. In this paper in section 3, we introduced the concept of µ̃-open sets, which is analogous
to µ-semi-open sets and introduced the notion µ̃O(X) which is the set of all µ̃-open sets in a generalized
topological space (X, µ). Further, we introduced the concepts of µ̃-interior, µ̃-closure, µ̃-boundary and µ̃-
exterior operators and studied some of their fundamental properties. In section 4, we introduced the notion
of µ̃-Ti spaces (i = 0, 1

2 , 1, 2) and characterized µ̃-Ti spaces using µ̃-closed and µ̃-open sets.

2 Preliminaries

We recall some basic definitions and notations. Let X be a nonempty set and exp(X) the power set of X.
We called a class µ ⊆ exp(X) a generalized topology (briefly, GT) if ∅ ∈ µ and the arbitrary union of elements
of µ belongs to µ [4]. We called the pair (X, µ) a generalized topological space (briefly, GTS). For a generalized
topological space (X, µ), the elements of µ are called µ-open sets and the complements of µ-open sets are
called µ-closed sets [4]. For A ⊆ X, we denote by cµ(A) the intersection of all µ-closed sets containing A, i.e.,
the smallest µ-closed set containing A [7]; and by iµ(A) the union of all µ-open sets contained in A, i.e., the
largest µ-open set contained in A [7]. It is easy to observe that iµ and cµ are idempotent and monotonic, where
γ : exp(X) → exp(X) is said to be idempotent iff A ⊆ B ⊆ X implies γ(γ(A)) = γ(A) and monotonic iff
γ(A) ⊆ γ(B) [2]. According to [9], let µ be a generalized topology on X, A ⊆ X and x ∈ X, then (1) x ∈ cµ(A)
if and only if M ∩ A 6= ∅ for each M ∈ µ containing x; (2) cµ(X \ A) = X \ iµ(A) and (3) cµ(cµ(A)) = cµ(A).
A subset A of a generalized topological space (X, µ) is said to be µ-semi-open (resp. µ-preopen, µ-α-open,
µ-β-open) if A ⊆ cµ(iµ(A)) (resp. A ⊆ iµ(cµ(A)), A ⊆ iµ(cµ(iµ(A))), A ⊆ cµ(iµ(cµ(A))). The complement of

∗Corresponding author.
E-mail address: saravana−13kumar@yahoo.co.in (D. Saravanakumar), kalaivani.rajam@gmail.com(N. Kalaivani).
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a µ-semi-open (resp. µ-preopen, µ-α-open, µ-β-open) set is said to be µ-semi-closed (resp. µ-preclosed, µ-α-
closed, µ-β-closed) [4]. For A ⊆ X, we denote by csµ (A) the intersection of all µ-semi-closed sets containing A,
i.e., the smallest µ-semi-closed set containing A [7]; and by isµ (A) the union of all µ-semi-open sets contained
in A, i.e., the largest µ-semi-open set contained in A [7]. According to [9], let µ be a generalized topology on
X, A ⊆ X and x ∈ X, then (1) x ∈ csµ (A) if and only if M ∩ A 6= ∅ for each µ-semi-open set M containing x;
(2) csµ (X \ A) = X \ isµ (A) and (3) csµ (csµ (A)) = csµ (A).

3 µ̃-open sets

Definition 3.1. Let (X, µ) be a generalized topological space. A subset A of X is said to be a µ̃-open set, if there exists a
µ-open set U of X such that U ⊆ A ⊆ csµ (U). The set of all µ̃-open sets is denoted by µ̃O(X).

Example 3.1. Let X = {a, b, c} and µ = {∅, {a}}. Then µ̃-open sets are {∅, X, {a}, {a, b}, {a, c}}.

Theorem 3.1. Let (X, µ) be a generalized topological space, A be a subset of X. If A is µ̃-open in (X, µ) if and only if
A ⊆ csµ (iµ(A)).

Proof. If A is a µ̃-open of X, then there exists a µ-open set U such that U ⊆ A ⊆ csµ (U). Since U is µ̃-
open, we have that U = iµ(U) ⊆ iµ(A). Therefore A ⊆ csµ (U) ⊆ csµ (iµ(A)) and hence A ⊆ csµ (iµ(A)).
Conversely, assume that A ⊆ csµ (iµ(A)). To prove that A is a µ̃-open set in (X, µ). Take U = iµ(A). Then
iµ(A) ⊆ A ⊆ csµ (iµ(A)). Hence A is µ̃-open in (X, µ).

Theorem 3.2. Let (X, µ) be a generalized topological space, A be a subset of X. If A is a µ-open set in (X, µ), then A is
µ̃-open in (X, µ).

Proof. If A is a µ-open set in (X, µ), then A = iµ(A). Since A ⊆ csµ (A), we have that A ⊆ csµ (iµ(A)). Then by
Theorem 3.1 A is µ̃-open in (X, µ).

Remark 3.1. The following example shows that the converse of the above theorem need not be true.

Let X = {a, b, c, d} and µ = {∅, X, {a}, {b}, {a, b}}. Then A = {a, b, d} is a µ̃-open set in (X, µ) but not µ-open.

Theorem 3.3. Let (X, µ) be a generalized topological space, A be a subset of X. If A is a µ̃-open set in (X, µ), then A is
µ-semi-open in (X, µ).

Proof. If A is a µ̃-open set in (X, µ), then by Theorem 3.1 A ⊆ csµ (iµ(A)). Since every µ-closed set is µ-semi-
closed and csµ (iµ(A)) is a least µ-semi-closed set containing iµ(A), this implies that csµ (iµ(A)) ⊆ cµ(iµ(A)).
Therefore A ⊆ cµ(iµ(A)) and hence A is a µ-semi-open set in (X, µ).

Remark 3.2. The following example shows that the converse of the above theorem need not be true.

Let X = {a, b, c, d} and µ = {∅, {a}, {a, b}, {b, c}, {a, b, c}}. Then A = {a, d} is a µ-semi-open set in (X, µ) but not
µ̃-open.

Theorem 3.4. Let {Aα : α ∈ J} be the collection of µ̃-open sets in a generalized topological space (X, µ). Then
⋃

α∈J Aα

is also a µ̃-open set in (X, µ).

Proof. Since Aα is µ̃-open, then there exists a µ-open set Uα of X such that Uα ⊆ A ⊆ csµ (Uα). This implies
that

⋃
α∈J Uα ⊆

⋃
α∈J Aα ⊆

⋃
α∈J csµ (Uα) ⊆ csµ (

⋃
α∈J Uα) since union of all µ-open sets is µ-open. Therefore⋃

α∈J Aα is a µ̃-open set in (X, µ).
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Remark 3.3. If A and B are two µ̃-open sets in (X, µ), then A ∩ B need not be µ̃-open in (X, µ).

(i) Let X = {1, 2, 3, ..., n} and µ = {∅, X} ∪ {M ⊆ X | M = X − {i} for some i ∈ X}. Take A = X − {1} and
B = X − {2}. Then A and B are µ̃-open sets in (X, µ) but A ∩ B = X − {1, 2} is not µ̃-open in (X, µ).

(ii) Let X = R, with the usual topology. If A = [-1, 0] and B = [0, 1], then A and B are µ̃-open sets in (X, µ) but
A ∩ B = {0} is not µ̃-open in (X, µ).

Theorem 3.5. Let A be a µ̃-open set in (X, µ) and B be any set such that A ⊆ B ⊆ csµ (iµ(A)). Then B is also a µ̃-open
set in (X, µ).

Proof. If A is a µ̃-open set in (X, µ), then by Theorem 3.1 A ⊆ csµ (iµ(A)). Since A ⊆ B, this implies that
csµ (iµ(A)) ⊆ csµ (iµ(B)). By hypothesis B ⊆ csµ (iµ(A)) ⊆ csµ (iµ(B)) and hence B ⊆ csµ (iµ(B)). This shows that
B is a µ̃-open set in (X, µ).

Definition 3.2. Let (X, µ) be a generalized topological space. A subset A of X is called µ̃-closed if its complement X \ A
is µ̃-open.

Theorem 3.6. Let (X, µ) be a generalized topological space, A be a subset of X. Then A is µ̃-closed in (X, µ) if and only
if isµ (cµ(A)) ⊆ A.

Proof. If A is a µ̃-closed set in (X, µ), then X \ A is µ̃-open. Therefore X \ A ⊆ csµ (iµ(X \ A)) (by Theorem 3.1)
= csµ (X \ cµ(A)) = X \ isµ (cµ(A)). This implies that isµ (cµ(A)) ⊆ A. Conversely, suppose that isµ (cµ(A)) ⊆ A.
Then X \ A ⊆ X \ isµ (cµ(A)) = csµ (X \ cµ(A)) = csµ (iµ(X \ A)). Therefore X \ A is µ̃-open set in (X, µ) and
this shows that A is µ̃-closed set in (X, µ).

Theorem 3.7. Let (X, µ) be a generalized topological space, A be a subset of X. If isµ (F) ⊆ A ⊆ F, then A is µ̃-closed
in (X, µ) for any µ-closed set F of (X, µ).

Proof. Let isµ (F) ⊆ A ⊆ F where F is µ-closed subset of X. Then X \ F ⊆ X \ A ⊆ X \ isµ (F) = csµ (X \ F). Let
U = X \ F. Then U is µ-open and U ⊆ X \ A ⊆ csµ (U). This implies that X \ A is a µ̃-open set in (X, µ) and
hence A is a µ̃-closed set in (X, µ).

Remark 3.4. The converse of the above theorem need not be true.

In Example 3.1 for the µ̃-closed set {b}, does not exist any µ-closed set in (X, µ).

Theorem 3.8. Let (X, µ) be a generalized topological space, A be a subset of X. Then (i) isµ (cµ(A)) is µ̃-closed;
(ii) csµ (iµ(A)) is µ̃-open.

Proof. (i) Obviously isµ (cµ(isµ (cµ(A)))) ⊆ isµ (cµ(cµ(A))) = isµ (cµ(A)). Hence isµ (cµ(A)) is µ̃-closed.
(ii) Follows from (i) and Theorem 3.1.

Theorem 3.9. Let {Aα : α ∈ J} be the collection of µ̃-closed sets in a generalized topological space (X, µ). Then⋂
α∈J Aα is also a µ̃-closed set in (X, µ).

Proof. Let Aα be µ̃-closed in (X, µ). Then X \ Aα is µ̃-open. By Theorem 3.4
⋃

α∈J(X \ Aα) is also µ̃-open. This
implies that

⋃
α∈J(X \ Aα) = X \

⋂
α∈J Aα is µ̃-open and hence

⋂
α∈J Aα is µ̃-closed in (X, µ).

Definition 3.3. Let (X, µ) be a generalized topological space, A be a subset of X. Then µ̃-interior of A is defined as
union of all µ̃-open sets contained in A. Thus iµ̃(A) = ∪{U : U ∈ µ̃O(X) and U ⊆ A}.
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Definition 3.4. Let (X, µ) be a generalized topological space, A be a subset of X. Then µ̃-closure of A is defined as
intersection of all µ̃-closed sets containing A. Thus cµ̃(A) = ∩{F : X \ F ∈ µ̃O(X) and A ⊆ F}.

Theorem 3.10. Let (X, µ) be a generalized topological space, A be a subset of X. Then (i) iµ̃(A) is a µ̃-open set contained
in A;
(ii) cµ̃(A) is a µ̃-closed set containing A;
(iii) A is µ̃-closed if and only if cµ̃(A) = A;
(iv) A is µ̃-open if and only if iµ̃(A) = A;
(v) iµ̃(iµ̃(A)) = iµ̃(A);
(vi) cµ̃(cµ̃(A)) = cµ̃(A);
(vii) iµ̃(A) = X \ cµ̃(X \ A);
(viii) cµ̃(A) = X \ iµ̃(X \ A).

Proof. (i) Follows from Definition 3.3 and Theorem 3.4.
(ii) Follows from Definition 3.4 and Theorem 3.9.
(iii) and (iv) Follows from Definition 3.5, (ii) and Definition 3.4, (i) respectively.
(v) and (vi) Follows from (i), (iv) and (ii), (iii) respectively.
(vii) and (viii) Follows from Definitions 3.2, 3.4 and 3.5.

Theorem 3.11. Let (X, µ) be a generalized topological space. If A and B are two subsets of X, then the following are
hold:
(i) If A ⊆ B, then iµ̃(A) ⊆ iµ̃(B);
(ii) If A ⊆ B, then cµ̃(A) ⊆ cµ̃(B);
(iii) iµ̃(A ∪ B) = iµ̃(A) ∪ iµ̃(B);
(iv) cµ̃(A ∩ B) = cµ̃(A) ∩ cµ̃(B);
(v) iµ̃(A ∩ B) ⊆ iµ̃(A) ∩ iµ̃(B).
(vi) cµ̃(A ∪ B) ⊇ cµ̃(A) ∪ cµ̃(B).

Proof. (i) Follows from Definition 3.3 and 3.4 respectively.
(ii) Follows from (i), Theorem 3.4 and (ii), Theorem 3.9 respectively.
(iii) Follows from (i) and (ii) respectively.

Theorem 3.12. Let (X, µ) be a generalized topological space, A be a subset of X. (i) If A ⊆ isµ (cµ(A)), then cµ̃(A) ⊆
isµ (cµ(A));
(ii) If csµ (iµ(A)) ⊆ A, then iµ̃(A) ⊇ csµ (iµ(A)).

Proof. (i) Since cµ̃(A) is the least µ̃-closed set containing A and Theorem 3.8(i) shows that isµ (cµ(A)) is
µ̃-closed. Therefore cµ̃(A) ⊆ isµ (cµ(A)).

(ii) Since iµ̃(A) is the greatest µ̃-open set containing A and Theorem 3.8(ii) shows that csµ (iµ(A)) is µ̃-open.
Therefore iµ̃(A) ⊇ csµ (iµ(A)).

Definition 3.5. Let (X, µ) be a generalized topological space. A subset A of X is called µ̃-regular if it is both µ̃-open
and µ̃-closed. The class of all µ̃-regular set of X is denoted by µ̃R(X).

Remark 3.5. If A is a µ̃-regular set in (X, µ), then X \ A is µ̃-regular in (X, µ).

Proof. Follows from Definition 3.5.

Definition 3.6. Let (X, µ) be a generalized topological space and A be a subset of X. Then µ̃-boundary of A is denoted
by bdµ̃(A) and is defined as bdµ̃(A) = cµ̃(A) ∩ cµ̃(X \ A).
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Theorem 3.13. For a subset A of X, bdµ̃(A) = ∅ if and only if A is µ̃-regular in (X, µ).

Proof. Let bdµ̃(A) = ∅. Then cµ̃(A) ∩ cµ̃(X \ A) = ∅. This implies that cµ̃(A) ⊆ X \ cµ̃(X \ A) = iµ̃(A)
(by Theorem 3.10(vii)). Therefore cµ̃(A) = A = iµ̃(A) and hence A is both µ̃-closed and µ̃-open in (X, µ).
Conversely, assume that A is µ̃-regular. Then A is both µ̃-closed and µ̃-open. This implies that cµ̃(A) =
A = iµ̃(A) = X \ cµ̃(X \ A) (by Theorem 3.10(vii)). Since X \ cµ̃(X \ A) ∩ cµ̃(X \ A) = ∅, we have that
cµ̃(A) ∩ cµ̃(X \ A) = ∅. This shows that bdµ̃(A) = ∅.

Theorem 3.14. In any generalized topological space (X, µ), the following are equivalent:
(i) X \ bdµ̃(A) = iµ̃(A) ∪ iµ̃(X \ A);
(ii) cµ̃(A) = iµ̃(A) ∪ bdµ̃(A);
(iii) bdµ̃(A) = cµ̃(A) ∩ cµ̃(X \ A) = cµ̃(A) \ iµ̃(A).

Proof. (i) ⇒ (ii). From (i) X \ bdµ̃(A) = iµ̃(A) ∪ iµ̃(X \ A) implies that bdµ̃(A) = [X \ iµ̃(A)] ∩ [X \ iµ̃(X \ A)].
Therefore iµ̃(A) ∪ bdµ̃(A) = [iµ̃(A) ∪ (X \ iµ̃(A))] ∩ [iµ̃(A) ∪ cµ̃(A)] = X ∩ cµ̃(A) = cµ̃(A). Hence
cµ̃(A) = iµ̃(A) ∪ bdµ̃(A).

(ii) ⇒ (iii). From (ii) cµ̃(A) \ iµ̃(A) = [iµ̃(A) ∪ bdµ̃(A)] \ iµ̃(A) = bdµ̃(A) .......(*1). Also from (ii)
X ∩ cµ̃(A) = iµ̃(A) ∪ bdµ̃(A) implies that [iµ̃(A) ∪ (X \ iµ̃(A))] ∩ [iµ̃(A) ∪ cµ̃(A)] = iµ̃(A) ∪ bdµ̃(A) implies
that iµ̃(A) ∪ [cµ̃(X \ A) ∩ cµ̃(A)] = iµ̃(A) ∪ bdµ̃(A). Therefore bdµ̃(A) = cµ̃(A) ∩ cµ̃(X \ A) .......(*2). From (*1)
and (*2), we have that bdµ̃(A) = cµ̃(A) ∩ cµ̃(X \ A) = cµ̃(A) \ iµ̃(A).

(iii) ⇒ (i). From (iii), we have that
X \ bdµ̃(A) = X \ [cµ̃(X \ A) ∩ cµ̃(A)] = [X \ cµ̃(X \ A)] ∪ [X \ cµ̃(A)] = iµ̃(A) ∪ iµ̃(X \ A). Therefore
X \ bdµ̃(A) = iµ̃(A) ∪ iµ̃(X \ A).

Theorem 3.15. For a subset A of generalized topological space (X, µ), we have the following conditions hold:
(i) bdµ̃(A) = bdµ̃(X \ A);
(ii) bdµ̃(A) = cµ̃(A) \ iµ̃(A);
(iii) bdµ̃(A) ∩ iµ̃(A) = ∅;
(iv) cµ̃(A) = iµ̃(A) ∪ bdµ̃(A);
(v) bdµ̃(iµ̃(A)) ⊆ bdµ̃(A);
(vi) bdµ̃(cµ̃(A)) ⊆ bdµ̃(A);
(vii) X \ bdµ̃(A) = iµ̃(A) ∪ iµ̃(X \ A);
(viii) X = iµ̃(A) ∪ iµ̃(X \ A) ∪ bdµ̃(A).

Proof. (i) By Definition 3.6, we have that
bdµ̃(A) = cµ̃(X \ A) ∩ cµ̃(A) = cµ̃(X \ A) ∩ cµ̃(X \ (X \ A)) = bdµ̃(X \ A). Therefore bdµ̃(A) = bdµ̃(X \ A).

(ii) By Definition 3.6, we have that bdµ̃(A) = cµ̃(A) ∩ cµ̃(X \ A) = cµ̃(A) \ (X \ cµ̃(X \ A)) = cµ̃(A) \ iµ̃(A)
(by Theorem 3.10 (vii)). Therefore bdµ̃(A) = cµ̃(A) \ iµ̃(A).

(iii) By Definition 3.6, we have that bdµ̃(A) ∩ iµ̃(A) = (cµ̃(A) \ iµ̃(A)) ∩ iµ̃(A) (by (ii)) = ∅. Hence
bdµ̃(A) ∩ iµ̃(A) = ∅.

(iv) Follows from (ii) and Theorem 3.14.

(v) By Definition 3.6, we have that
bdµ̃(iµ̃(A)) = cµ̃(X \ iµ̃(A)) ∩ cµ̃(iµ̃(A)) = cµ̃(cµ̃(X \ A)) ∩ cµ̃(iµ̃(A)) = cµ̃(X \ A) ∩ cµ̃(iµ̃(A)) (by Theorem
3.10 (vi)) ⊆ cµ̃(X \ A) ∩ cµ̃(A) = bdµ̃(A). This shows that bdµ̃(iµ̃(A)) ⊆ bdµ̃(A).

(vi) By Definition 3.6, we have that bdµ̃(cµ̃(A)) = cµ̃(X \ cµ̃(A)) ∩ cµ̃(cµ̃(A)) = cµ̃(iµ̃(X \ A)) ∩ cµ̃(A) (by
Theorem 3.10 (vi)) ⊆ cµ̃(X \ A) ∩ cµ̃(A) = bdµ̃(A). Therefore bdµ̃(cµ̃(A)) ⊆ bdµ̃(A).
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(vii) Follows from (iv) and Theorem 3.14.

(viii) Using (vii) (X \ bdµ̃(A)) ∪ bdµ̃(A) = [iµ̃(A) ∪ iµ̃(X \ A)] ∪ bdµ̃(A). This implies that
X = iµ̃(A) ∪ iµ̃(X \ A) ∪ bdµ̃(A).

Theorem 3.16. Let A be a subset of generalized topological space (X, µ). Then (i) A is µ̃-open if and only if A ∩
bdµ̃(A) = ∅;
(ii) A is µ̃-closed if and only if bdµ̃(A) ⊆ A.

Proof. Let A be a µ̃-open set in (X, µ). Then X \ A is µ̃-closed and cµ̃(X \ A) = X \ A. Also A 6= cµ̃(A). By
Definition 3.6 A ∩ bdµ̃(A) = A ∩ (cµ̃(A) ∩ cµ̃(X \ A)) = A ∩ cµ̃(A ∩ (X \ A)) = A ∩ ∅ = ∅. Thus
A ∩ bdµ̃(A) = ∅. Conversely, assume that A ∩ bdµ̃(A) = ∅. Then A ∩ (cµ̃(A) ∩ cµ̃(X \ A)) = ∅. This implies
that A ∩ cµ̃(X \ A) = ∅ and hence cµ̃(X \ A) ⊆ X \ A. Therefore cµ̃(X \ A) = X \ A. This shows that X \ A is
µ̃-closed in (X, µ) and hence A is µ̃-open in (X, µ).

(ii) Let A be a µ̃-closed set in (X, µ). Then A = cµ̃(A). Since bdµ̃(A) = (cµ̃(A) ∩ cµ̃(X \ A)) ⊆ cµ̃(A) = A.
Therefore bdµ̃(A) ⊆ A. Conversely, let bdµ̃(A) ⊆ A. Then bdµ̃(A) ∩ (X \ A) = ∅. By Theorem 3.15 (i)
bdµ̃(X \ A) ∩ (X \ A) = ∅. By (i) X \ A is µ̃-open in (X, µ). Hence A is µ̃-closed in (X, µ).

Definition 3.7. Let (X, µ) be a generalized topological space and A be a subset of X. Then µ̃-exterior of A is denoted
by extµ̃(A) and is defined as extµ̃(A) = iµ̃(X \ A).

Theorem 3.17. Let A and B be two subsets of generalized topological space (X, µ). Then (i) extµ̃(A ∪ B) ⊆ extµ̃(A) ∪
extµ̃(B);
(ii) bdµ̃(A ∪ B) = cµ̃(A ∪ B) ∩ cµ̃(X − A) ∩ cµ̃(X \ B);
(iii) bdµ̃(A ∩ B) = (bdµ̃(A) ∩ cµ̃(B)) ∪ (bdµ̃(B) ∩ cµ̃(A)).

Proof. By Definition 3.7, we have that
extµ̃(A ∪ B) = iµ̃(X \ (A ∪ B)) = iµ̃((X \ A) ∩ (X \ B)) ⊆ iµ̃(X \ A) ∩ iµ̃(X \ B) (by Theorem 3.11 (v)) =
extµ̃(A) ∪ extµ̃(B). Hence extµ̃(A ∪ B) ⊆ extµ̃(A) ∪ extµ̃(B).

(ii) By Definition 3.6, we have that bdµ̃(A ∪ B) = cµ̃(A ∪ B) ∩ cµ̃(X \ (A ∪ B)) =
cµ̃(A ∪ B) ∩ cµ̃((X \ A) ∩ (X \ B)) = cµ̃(A ∪ B) ∩ cµ̃(X \ A) ∩ cµ̃(X \ B) (by Theorem 3.11 (iv)). Hence
bdµ̃(A ∪ B) = cµ̃(A ∪ B) ∩ cµ̃(X \ A) ∩ cµ̃(X \ B).

(iii) By Definition 3.6, we have that bdµ̃(A ∩ B) = cµ̃(A ∩ B) ∩ cµ̃(X \ (A ∩ B)) =
(cµ̃(A) ∩ cµ̃(B)) ∩ (cµ̃(X \ A) ∪ cµ̃(X \ B)) = ((cµ̃(A) ∩ cµ̃(B)) ∩ cµ̃(X \ A)) ∪ ((cµ̃(A) ∩ cµ̃(B)) ∩ cµ̃(X \ B)) =
((cµ̃(A) ∩ cµ̃(X \ A)) ∩ cµ̃(B)) ∪ (cµ̃(A) ∩ (cµ̃(B) ∩ cµ̃(X \ B))) = cµ̃(A ∪ B) ∩ cµ̃(X \ A) ∩ cµ̃(X \ B). Hence
bdµ̃(A ∪ B) = cµ̃(A ∪ B) ∩ cµ̃(X \ A) ∩ cµ̃(X \ B).

Theorem 3.18. For any two subsets A and B of generalized topological space (X, µ), we have the following conditions
hold:
(i) extµ̃(X \ extµ̃(A)) = extµ̃(A);
(ii) extµ̃(A ∩ B) = extµ̃(A) ∪ extµ̃(B).

Proof. (i) By Definition 3.7, we have that extµ̃(X \ extµ̃(A)) = iµ̃(X \ (X \ extµ̃(A))) = iµ̃(extµ̃(A)) = extµ̃(A).
Hence extµ̃(X \ extµ̃(A)) = extµ̃(A).

(ii) By Definition 3.7, we have that
extµ̃(A ∩ B) = iµ̃(X \ (A ∩ B)) = iµ̃((X \ A) ∪ (X \ B)) = iµ̃(X \ A) ∪ iµ̃(X \ B) (by Theorem 3.11 (iii) =
extµ̃(A) ∪ extµ̃(B). Hence extµ̃(A ∩ B) = extµ̃(A) ∪ extµ̃(B).



274 D. Saravanakumar et al. / On µ̃-open sets...

4 Separation axioms

Definition 4.8. A generalized topological space (X, µ) is called a µ̃-T0 space if for each pair of distinct points x, y ∈ X,
there exists a µ̃-open set U such that either x ∈ U and y 6∈ U or y ∈ U and x 6∈ U.

Definition 4.9. A generalized topological space (X, µ) is called a µ̃-T1 space if for each pair of distinct points x, y ∈ X,
there exists a µ̃-open sets U and V contain x and y respectively such that y 6∈ U and x 6∈ V.

Definition 4.10. A generalized topological space (X, µ) is called a µ̃-T2 space if for each pair of distinct points x, y ∈ X,
there exists a µ̃-open sets U and V such that x ∈ U and y ∈ V and U ∩V = ∅.

Definition 4.11. Let (X, µ) be a generalized topological space and A be a subset of X. Then A is called a
µ̃-generalizedized closed (briefly µ̃-g.closed) set if cµ̃(A) ⊆ U whenever A ⊆ U and U is a µ̃-open set in (X, µ).

Remark 4.6. From Definition 4.4, every µ̃-closed set is µ̃-g.closed set. But, the converse need not be true.

Definition 4.12. A generalized topological space (X, µ) is called a µ̃-T1
2

space each µ̃-g.closed set of (X, µ) is µ̃-closed.

Theorem 4.19. Let (X, µ) be a generalized topological space. Then for a point x ∈ X, x ∈ cµ̃(A) if and only if
V ∩ A 6= ∅ for any V ∈ µ̃O(X) such that x ∈ V.

Proof. Let F0 be the set of all y ∈ X such that V ∩ A 6= ∅ for any V ∈ µ̃O(X) and y ∈ V. Now, we prove that
cµ̃(A) = F0. Let us assume x ∈ cµ̃(A) and x 6∈ F0. Then there exists a µ̃-open set U of x such that U ∩ A = ∅.
This implies that A ⊆ X \U. Therefore cµ̃(A) ⊆ X \U. Hence x 6∈ cµ̃(A). This is a contradiction. Hence
cµ̃(A) ⊆ F0. Conversely, let F be a set such that A ⊆ F and X \ F ∈ µ̃O(X). Let x 6∈ F. Then we have that
x ∈ X \ F and (X \ F) ∩ A = ∅. This implies that x 6∈ F0. Therefore F0 ⊆ F. Hence F0 ⊆ cµ̃(A).

Definition 4.13. Let (X, µ) be a generalized topological space and A be a subset of X. Then A is µ̃-g.closed if and only
if cµ̃({x}) ∩ A 6= ∅ holds for every x ∈ cµ̃(A).

Proof. Let U be any µ̃-open set in (X, µ) such that A ⊆ U. Let x ∈ cµ̃(A). By assumption there exists a
point z ∈ cµ̃({x}) and z ∈ A ⊆ U. Therefore from Theorem 5.1, we have that U ∩ {x} 6= ∅. This implies
that x ∈ U. Hence A is a µ̃-g.closed set in X. Conversely, suppose there exists a point x ∈ cµ̃(A) such that
cµ̃({x})∩ A = ∅. Since cµ̃({x}) is a µ̃-closed set implies that X \ cµ̃({x}) is a µ̃-open set. Since A ⊆ X \ cµ̃({x})
and A is µ̃-g.closed set, implies that cµ̃(A) ⊆ X \ cµ̃({x}). Hence x 6∈ cµ̃(A). This is a contradiction.

Theorem 4.20. Let (X, µ) be a generalized topological space and A be a subset of X. Then cµ̃({x}) ∩ A 6= ∅ for every
x ∈ cµ̃(A) if and only if cµ̃(A) ⊆ kerµ̃(A) holds, where kerµ̃(E) = ∩{V : V ∈ µ̃O(X) and E ⊆ V} for any subset E
of X.

Proof. Let x ∈ cµ̃(A). By hypothesis, there exists a point z such that z ∈ cµ̃({x}) and z ∈ A. Let U ∈ µ̃O(X)
be a subset of X such that A ⊆ U. Since z ∈ U and z ∈ cµ̃({x}). By Theorem 4.2, we have that U ∩ {x} 6= ∅,
this implies that x ∈ kerµ̃(A). Hence cµ̃(A) ⊆ kerµ̃(A). Conversely, let U ba any µ̃-open set such that A ⊆ U.
Let x be a point such that x ∈ cµ̃(A). By hypothesis, x ∈ kerµ̃(A) holds. Namely, we have that x ∈ U, because
A ⊆ U and U is µ̃-open set. Therefore cµ̃(A) ⊆ U. By Definition 4.4 A is µ̃-g.closed. Then by Theorem 4.2
cµ̃({x}) ∩ A 6= ∅ holds for every x ∈ cµ̃(A).

Theorem 4.21. Let (X, µ) be a generalized topological space and A be the µ̃-g.closed set in (X, µ). Then cµ̃(A) \ A
does not contain a non empty µ̃-closed set.



D. Saravanakumar et al. / On µ̃-open sets... 275

Proof. Suppose there exists a non empty µ̃-closed set F such that F ⊆ cµ̃(A) \ A. Let x ∈ F. Then x ∈ cµ̃(A),
implies that F ∩ A = cµ̃(A) ∩ A ⊇ cµ̃({x}) ∩ A 6= ∅ and hence F ∩ A 6= ∅. This is a contradiction.

Theorem 4.22. For each x ∈ X, {x} is µ̃-closed or X \ {x} is µ̃-g.closed.

Proof. Suppose that {x} is not µ̃-closed. Then X \ {x} is not µ̃-open. This implies that X is the only µ̃-open set
containing X \ {x} and hence X \ {x} is µ̃-g.closed.

Theorem 4.23. A generalized topological space (X, µ) is a µ̃-T1
2

space if and only if for each x ∈ X, {x} is µ̃-open or
µ̃-closed.

Proof. Suppose that {x} is not µ̃-closed. Then it follows from the assumption and Theorem 4.5, {x} is µ̃-open.
Conversely, let F be a µ̃-g.closed set in (X, µ). Let x ∈ cµ̃(F). Then by the assumption {x} is either µ̃-open or
µ̃-closed.

Case(i): Suppose that {x} is µ̃-open. Then by Theorem 4.1, {x} ∩ F 6= ∅. This implies that cµ̃(F) = F.
Therefore (X, µ) is a µ̃-T1

2
space.

Case(ii): Suppose that {x} is µ̃-closed. Let us assume x 6∈ F. Then x ∈ cµ̃(F) \ F. This is a contradiction.
Hence x ∈ F. Therefore (X, µ) is a µ̃-T1

2
space.

A space (X, µ) is µ̃-T1 if and only if for any x ∈ X, {x} is µ̃-closed.

Proof. Follows from Definitions 2.14 and 4.2.

Remark 4.7. (i) From the Theorems 4.5, 4.6 and 4.7, we have that every µ̃-T1
2

space is µ̃-T0, every µ̃-T1 space is µ̃-T1
2

and every µ̃-T2 space is µ̃-T1.

(ii) Let X = {a, b, c, d} and µ = {∅, X, {a}, {b, d}, {c, d}, {a, b, d}, {a, c, d}, {b, c, d}}. For the distinct points
a, k ∈ X, where k ∈ {b, c, d}, there exists a µ̃-open set {a} but which is not contain k; the pair b, c ∈ X, there exists a
µ̃-open set {b, d} but which is not contain c; the points b, d ∈ X, there exists a µ̃-open set {c, d} but which is not
contain b; more over for the points c, d ∈ X, there exists a µ̃-open set {a, b, d} but which is not contain c. This implies
that (X, µ) is a µ̃-T0 space. Also {b, c}, {a, b, c} are µ̃-g.closed sets but not µ̃-closed. Then by Definition 4.5 (X, µ) is
not a µ̃-T1

2
space.

(iii) Let X = {a, b, c}, µ = {∅, X, {a}, {b}, {a, b}, {a, c}}. Then the µ̃-g.closed sets ∅, X, {b}, {c}, {a, c}, {b, c} are
all µ̃-closed. This implies that (X, µ) is a µ̃-T1

2
space. Also for the point c ∈ X, we have that two µ̃-open sets {a, c} and

X but these sets containing the distinct point a. By Definition 4.2 (X, µ) is not a µ̃-T1 space. Then (X, µ) is a µ̃-T1
2

space but not µ̃-T1.

(iv) Let X = {a, b, c}, µ = {∅, X, {a}, {a, b}, {a, c}, {b, c}}. For the distinct points a, k ∈ X, where k ∈ {b, c}, there
exists µ̃-open sets {a} and {b, c} containing a and k respectively such that a 6∈ {b, c} and k 6∈ {a}. Also for the distinct
points b, c ∈ X, there exists µ̃-open sets {a, b} and {a, c} containing b and c respectively such that b 6∈ {a, c} and
c 6∈ {a, b}. This implies that (X, µ) is a µ̃-T1 space. More over for the distinct points b, c ∈ X, there does not exist
disjoint µ̃-open sets. By Definition 4.3 (X, µ) is not a µ̃-T2 space. Then (X, µ) is a µ̃-T1 space but not µ̃-T2.
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Abstract

This paper is concerned with the existence results of mild solution for an impulsive fractional order
stochastic differential equation with infinite delay subject to nonlocal conditions. The results are obtained
by using the fixed point techniques and solution operator generated by sectorial operator on a Hilbert space.
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conditions, stochastic differential equations.
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1 Introduction

Recently, fractional differential equations have been proved to be valuable tools in the modeling of many
phenomena in various fields of engineering, physics, economics and science. Fractional models have various
applications such as nonlinear oscillations of earthquakes, viscoelasticity, electrochemistry, seepage flow in
porous media, and electromagnetic, etc. There has been a significant development in fractional differential
equations since last few years for more details one can see the papers ([7],[8],[9],[11],[14],[15],[19]) and
references cited therein.

The deterministic systems often fluctuate due to environmental noise due to this reason it is important and
necessary for researcher to study these systems. These systems are modeled as stochastic differential systems.
In many evolution processes impulsive effects exist in which states are changed abruptly at certain moments
of time. Therefore the stochastic differential equations with impulsive effects exist in real systems and provide
a more accurate mathematical model. For more details one can see the papers ([16],[17],[18]) and references
therein.

Further, if we combine the stochastic differential equation with a nonlocal initial condition strengthens
the model even further. These fact motivate us to study such model in this paper. The basic tools are
used in this paper including fixed-point techniques, the theory of linear semi-groups, results for probability
measures, and results for infinite dimensional stochastic differential equations. The results are important
from the viewpoint of applications since they cover nonlocal generalizations of integro-differential stochastic
differential equation arising in various fields such as electromagnetic theory, population dynamics, and heat
conduction in materials with memory, for more detail one can see the papers ([6],[13],[16],[23],[24],[25]) and
references therein.

In [4] Bahuguna, considered the following problem{
u′(t) + Au(t) = f (t, u(t), u(b1(t)), u(b2(t)), . . . , u(bm(t))), t ∈ (0, T],

h(u) = φ0 on [−τ, 0],

∗Corresponding author.
E-mail address: mohdnadeem.jmi@gmail.com (Mohd Nadeem), jay.dabas@gmail.com(Jaydev Dabas).
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and found the existence, uniqueness and continuation of a mild solution on the maximal interval of existence.
The author also proved some regularity results under various conditions. Chauhan et al. [5] considered the
following semi-linear fractional order differential equations with nonlocal condition

dα

dtα
x(t) + Ax(t) = f (t, x(t), x(a1(t)), . . . , x(am(t))), t ∈ [0, T], t 6= ti,

x(0) + g(x) = x0, ∆x(ti) = Ii(x(t−i )),

and discussed the existence and uniqueness results of solutions using the applications of classical fixed point
theorems.

Balasubramaniam et al. [2] studied the existence of solutions for the the following semi-linear neutral
stochastic functional differential equations

d[x(t) + F(t, x(t), x(b1(t)), . . . , x(bm(t)))] = Ax(t)dt + G(t, x(t), x(a1(t)), . . . , x(an(t)))dw(t), t ∈ J = [0, b],

x(0) = x0 + g(x),

where A is a infinitesimal generator of an analytic semigroup of bounded linear operators T(t), t ≥ 0, on
a separable Hilbert space. By using fractional power of operators and Sadovskii fixed point theorem, the
authors established the existence of mild and strong solutions.

Sakthivel et al. [22] considered the following impulsive fractional stochastic differential equations with
infinite delay in the form{

Dα
t x(t) = Ax(t) + f (t, xt, B1x(t)) + σ(t, xt, B2x(t)) dw(t)

dt , t ∈ [0, T], t 6= tk,

∆x(tk) = Ik(x(tk)), k = 1, 2, . . . , m x(t) = φ(t), φ(t) ∈ Bh,

and studied the existence results of mild solutions and established the sufficient conditions for the existence
of mild solutions by using fixed point techniques.

Motivated by the works of these author’s ([2],[4],[5],[22]), we study the existence of mild solutions of the
following semi-linear stochastic fractional functional differential equation of the form:

cDα
t x(t) = Ax(t) + f (t, xt, x(a1(t)), . . . , x(am(t)))

+σ(t, xt, x(a1(t)), . . . , x(am(t)))
dw(t)

dt
, t ∈ J, t 6= tk, (1.1)

∆x(tk) = Ik(x(t−k )), k = 1, 2, . . . , p, (1.2)

x(t) + g(x) = φ(t), t ∈ (−∞, 0], (1.3)

where J = [0, T] and cDα
t denotes the Caputo’s fractional derivative of order α ∈ (0, 1). A : D(A) ⊂H→H is

a closed linear sectorial operator defined on a Hilbert space (H, ‖ · ‖). The functions f , σ are given and satisfy
some assumptions to be defined later. We assume that xt : (−∞, 0] → H, xt(s) = x(t + s), s ≤ 0, belong to
an abstract phase space Bh. Here 0 ≤ t0 < t1 < · · · < tp < tp+1 ≤ T, Ik ∈ C(H, H), (k = 1, 2, . . . , p), are
bounded functions, ∆x(tk) = x(t+k )− x(t−k ), x(t+k ) = limh→0 x(tk + h) and x(t−k ) = limh→0 x(tk − h) represent
the right and left-hand limits of x(t) at t = tk, respectively, also we take x(t−i ) = x(ti).

The nonlocal condition g : H → H is defined as g(x) = ∑
p
k=1 ckx(tk) where ck, k = 1, . . . , p, are given

constants and 0 < t1 < t2 < · · · < tp < T. Such nonlocal conditions were first introduced by Deng [10]. The
initial data φ = {φ(t), t ∈ (−∞, 0]} is an F0-measurable, Bh-valued random variable independent of w(t)
with finite second moments.

To the best of our knowledge, the existence and uniqueness of mild solution for the system (1.1)− (1.3)
with non local condition is an untreated topic yet in the literature and this fact is the motivation of the present
work.

Our work is divided in four sections, Second section provides the basic definitions and preliminaries
results which are used in proving our main results. In the third section, we state and prove the existence
results of the considered problem in this the paper. The fourth section includes examples.

2 Preliminaries

Let H, K be two separable Hilbert spaces and L(K, H) be the space of bounded linear operators from K

into H. For convenience, we will use the same notation ‖ · ‖ to denote the norms in H, K and L(K, H), and
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use (·, ·) to denote the inner product of H and K without any confusion. Let (Ω,F , {Ft}t≥0, P) be a complete
filtered probability space satisfying that F0 contains all P-null sets of F . W = (Wt)t≥0 be a Q-Wiener process
defined on (Ω,F , {Ft}t≥0, P) with the covariance operator Q such that TrQ < ∞. We assume that there exists
a complete orthonormal system {ek}k≥1 in K, a bounded sequence of nonnegative real numbers λk such that
Qek = λkek, k = 1, 2, . . . , and a sequence of independent Brownian motions {βk}k≥1 such that

(w(t), e)K =
∞

∑
k=1

√
λk(ek, e)Kβk(t), e ∈ K, t ≥ 0.

Let L0
2 = L2(Q

1
2 K, H) be the space of all Hilbert Schmidt operators from Q

1
2 K to H with the inner product

< ϕ, ψ >L0
2
= Tr[ϕQψ∗].

Now, we introduce abstract space phase Bh. Assume that h : (−∞, 0] → (0, ∞) with l =
∫ 0
−∞ h(t)dt < ∞,

a continuous function. An abstract phase Bh defined by

Bh = {φ : (−∞, 0]→H, for any a > 0, (E|φ(θ)|2)1/2 is bounded and measurable function on[−a, 0] with

φ(0) = 0 and
∫ 0

−∞
h(s) sup

s≤θ≤0
(E|φ(θ)|2)1/2ds < ∞}.

If Bh is endowed with the norm

‖φ‖Bh =
∫ 0

−∞
h(s) sup

s≤θ≤0
(E|φ(θ)|2)1/2ds, φ ∈ Bh,

then (Bh, ‖ · ‖Bh) is a Banach space ([20],[21]).
Now we consider the space

B′h = {x : (−∞, T]→H such that x|Jk ∈ C(Jk, H) and there exist

x(t+k ) and x(t−k ) with x(tk) = x(t−k ), x0 = φ ∈ Bh, k = 1, 2, . . . , p},

where x|Jk is the restriction of x to Jk = (tk, tk+1], k = 0, 1, 2, . . . , p. The function ‖ · ‖B′h to be a semi-norm in
B′h, it is defined by

‖x‖B′h = ‖φ‖Bh + sup
s∈[0,T]

(E‖x(s)‖2)1/2, x ∈ B′h.

Lemma 2.1. ([2]) Assume that x ∈ B′h, then for t ∈ J, xt ∈ Bh. Moreover,

l(E‖x(t)‖2)1/2 ≤ l sup
s∈[0,t]

(E‖x(s)‖2)1/2 + ‖x0‖Bh , where l =
∫ 0

−∞
h(s)ds < ∞.

Definition 2.1. The Reimann-Liouville fractional integral operator for order α > 0, of a function f : R+ → R

and f ∈ L1(R+, X) is defined by

J0
t f (t) = f (t), Jα

t f (t) =
1

Γ(α)

∫ t

0
(t− s)α−1 f (s)ds, α > 0, t > 0,

where Γ(·) is the Gamma function.

Definition 2.2. Caputo’s derivative of order α > 0 for a function f : [0, ∞)→ R is defined as

Dα
t f (t) =

1
Γ(n− α)

∫ t

0
(t− s)n−α−1 f (n)(s)ds = Jn−α f (n)(t),

for n− 1 < α < n, n ∈ N. If 0 < α < 1, then

Dα
t f (t) =

1
Γ(1− α)

∫ t

0
(t− s)−α f (1)(s)ds.

Obviously, Caputo’s derivative of a constant is equal to zero.
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Definition 2.3. A two parameter function of the Mittag Lefller type is defined by the series expansion

Eα,β(z) =
∞

∑
k=0

zk

Γ(αk + β)
=

1
2πι

∫
c

µα−βeµ

µα − z
dµ, α, β > 0, z ∈ C,

where c is a contour which starts and ends at −∞ and encircles the disc |µ| ≤ |z| 1α counter clockwise. The
most interesting properties of the Mittag Lefller functions are associated with their Laplace integral∫ ∞

0
e−λttβ−1Eα,β(ωtα)dt =

λα−β

λα −ω
, Reλ > ω

1
α , ω > 0.

Definition 2.4. [12] A closed and linear operator A is said to be sectorial if there are constants ω ∈ R, θ ∈
[π

2 , π], M > 0, such that the following two conditions are satisfied:

(1) ∑(θ,ω) = {λ ∈ C : λ 6= ω, |arg(λ−ω)| < θ} ⊂ ρ(A),

(2) ‖R(λ, A)‖L(X) ≤ M
|λ−ω| , λ ∈ ∑(θ,ω).

Definition 2.5. [1] Let A be a closed and linear operator with the domain D(A) defined in a Banach space X.
Let ρ(A) be the resolvent set of A. We say that A is the generator of an α-resolvent family if there exist ω ≥ 0
and a strongly continuous function Tα : R+ → L(X), where L(X) is a Banach space of all bounded linear
operators from X into X and the corresponding norm is denoted by ‖.‖, such that {λα : Reλ > ω} ⊂ ρ(A)

and
(λα I − A)−1 =

∫ ∞

0
eλtTα(t)xdt, Reλ > ω, x ∈ X,

where Tα(t) is called the α-resolvent family generated by A.

Definition 2.6. [11] Let A be a closed and linear operator with the domain D(A) defined in a Banach space X
and α > 0. We say that A is the generator of a solution operator if there exist ω ≥ 0 and a strongly continuous
function Sα : R+ → L(X), such that {λα : Reλ > ω} ⊂ ρ(A) and

λα−1(λα I − A)−1 =
∫ ∞

0
eλtSα(t)xdt, Reλ > ω, x ∈ X,

where Sα(t) is called the solution operator generated by A.

Theorem 2.1. [26](Schauder fixed point theorem) If U is a closed , bounded, convex subset of a Banach space
X and the mapping T : U → U is completely continuous, then T has a fixed point in U.

Definition 2.7. A measurable Ft− adapted stochastic process x : (−∞, T]→H is called a mild solution of the
system (1.1)-(1.3) if x(0) = φ(0)− g(x) ∈ Bh on (−∞, 0], ∆x|t=tk = Ik(x(t−k )), k = 1, 2, . . . , p, the restriction of
x(·) to the interval [0, T)\t1, . . . , tp, is continuous and x(t) satisfies the following fractional integral equation

x(t) =



Sα(t)(φ(0)− g(x)) +
∫ t

0 Tα(t− s) f (s, xs, x(a1(s)), . . . , x(am(s)))ds

+
∫ t

0 Tα(t− s)σ(s, xs, x(a1(s)), . . . , x(am(s)))dw(s), t ∈ [0, t1],

Sα(t− t1)[x(t−1 ) + I1(x(t−1 ))] +
∫ t

t1
Tα(t− s) f (s, xs, x(a1(s)), . . . , x(am(s)))ds

+
∫ t

t1
Tα(t− s)σ(s, xs, x(a1(s)), . . . , x(am(s)))dw(s), t ∈ (t1, t2],

. . .

Sα(t− tp)[x(t−p ) + Ip(x(t−p ))] +
∫ t

tp
Tα(t− s) f (s, xs, x(a1(s)), . . . , x(am(s)))ds

+
∫ t

tp
Tα(t− s)σ(s, xs, x(a1(s)), . . . , x(am(s)))dw(s), t ∈ (tp, T],

(2.4)

where

Sα(t) =
1

2πi

∫
Γ

eλtλα−1(λα I − A)−1dλ, Tα(t) =
1

2πi

∫
Γ

eλt(λα I − A)−1dλ,

are called analytic solutions operator and α−resolvent family and Γ is a suitable path lying on ∑θ,ω for more
details one can see [11].

Further we introduce the following assumptions to establish our results:
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(H0) If α ∈ (0, 1) and A ∈ Aα(θ0, ω0) then for any x ∈ H and t > 0 we have ‖Tα(t)‖ ≤ Meωt and ‖Sα(t)‖ ≤
Ceωt(1 + tα−1), ω > ω0. Thus we have

‖Tα(t)‖ ≤ M̃T and ‖Sα(t)‖ ≤ tα−1M̃S,

where M̃T = sup0≥t≥T ‖Tα(t)‖ and M̃S = sup0≥t≥T Ceωt(1 + t1−α)(for more details, see [12]).

(H1) There exist a constants Lg > 0, such that E‖g(x)− g(y)‖2
H ≤ Lg‖x− y‖2

H.

(H2) The nonlinear maps f : J ×Bh ×Hm → H and σ : J ×Bh ×Hm → L(K, H) are continuous and there
exist constants L f , Lσ, such that

E‖ f (t, ϕ, x1, x2, . . . , xm)− f (t, ψ, y1, y2, . . . , ym)‖2
H ≤ L f [‖ϕ− ψ‖2

Bh
+

m

∑
i=1

E‖xi − yi‖2
H],

E‖σ(t, ϕ, x1, x2, . . . , xm)− σ(t, ψ, y1, y2, . . . , ym)‖2
L(K,H) ≤ Lσ[‖ϕ− ψ‖2

Bh
+

m

∑
i=1

E‖xi − yi‖2
H],

for all (x1, x2, . . . , xm) and (y1, y2, . . . , ym) ∈Hm , t ∈ J and ϕ, ψ ∈ Bh.

(H3) The functions Ik : H→H are continuous and there exists Lk > 0, such that

E‖Ik(x)− Ik(y)‖2
H ≤ LkE‖x− y‖2

H,

x, y ∈H, k = 1, 2, . . . , p, L = max{Lk} > Lg.

3 Existence and uniqueness of solutions

Theorem 3.2. Let the assumptions (H0)-(H3) are satisfied and

Θ =

[
3M̃2

S(1 + L) + 3M̃2
T

T2α

α2 L f (l + m) + 3M̃2
T

T2α−1

2α− 1
Lσ(l + m)

]
< 1,

then the problem (1.1)-(1.3) has a unique mild solution x ∈H on J.

Proof. First we convert the problem (1.1)-(1.3) into a fixed point problem. Consider the operator P : B′h → B′h
defined by

(Px)(t) =



Sα(t)(φ(0)− g(x)) +
∫ t

0 Tα(t− s) f (s, xs, x(a1(s)), . . . , x(am(s)))ds

+
∫ t

0 Tα(t− s)σ(s, xs, x(a1(s)), . . . , x(am(s)))dw(s), t ∈ [0, t1],

Sα(t− t1)[x(t−1 ) + I1(x(t−1 ))] +
∫ t

t1
Tα(t− s) f (s, xs, x(a1(s)), . . . , x(am(s)))ds

+
∫ t

t1
Tα(t− s)σ(s, xs, x(a1(s)), . . . , x(am(s)))dw(s), t ∈ (t1, t2],

. . .

Sα(t− tp)[x(t−p ) + Ip(x(t−p ))] +
∫ t

tp
Tα(t− s) f (s, xs, x(a1(s)), . . . , x(am(s)))ds

+
∫ t

tp
Tα(t− s)σ(s, xs, x(a1(s)), . . . , x(am(s)))dw(s), t ∈ (tp, T].

Let y(.) : (−∞, T]→H be the function defined by

y(t) =

{
φ(t), t ∈ (−∞, 0]

0, t ∈ J,
then y0 = φ.

For each z : J →H with z |tk∈ C(Jk, H), k = 1, . . . , p and z(0) = 0, we denote by z the function defined by

z =

{
0, t ∈ (−∞, 0]

z(t), t ∈ J.
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If x(·) satisfies the system (2.4), then we can decompose x(·) as x(t) = y(t) + z(t), which implies xt = yt + zt
for t ∈ J and the function z(·) satisfies

z(t) =



Sα(t)(φ(0)− g(y + z)) +
∫ t

0 Tα(t− s) f (s, ys + zs, y(a1(s)) + z(a1(s)),

. . . , y(am(s)) + z(am(s)))ds +
∫ t

0 Tα(t− s)σ(s, ys + zs,

y(a1(s)) + z(a1(s)), . . . , y(am(s)) + z(am(s)))dw(s), t ∈ [0, t1],

Sα(t− t1)[y(t−1 ) + z(t−1 ) + I1(y(t−1 ) + z(t−1 ))]

+
∫ t

t1
Tα(t− s) f (s, ys + zs, y(a1(s)) + z(a1(s)), . . . , y(am(s)) + z(am(s)))ds

+
∫ t

t1
Tα(t− s)σ(s, ys + zs, y(a1(s)) + z(a1(s)), . . . , y(am(s)) + z(am(s)))dw(s), t ∈ (t1, t2],

. . .

Sα(t− tp)[y(t−p ) + z(t−p ) + Ip(y(t−p ) + z(t−p ))]

+
∫ t

tp
Tα(t− s) f (s, ys + zs, y(a1(s)) + z(a1(s)), . . . , y(am(s)) + z(am(s)))ds

+
∫ t

tp
Tα(t− s)σ(s, ys + zs, y(a1(s)) + z(a1(s)), . . . , y(am(s)) + z(am(s)))dw(s), t ∈ (tp, T].

Set B′′h , such that z0 = 0 and for any z ∈ B′′h , we have

‖z‖B′′h = ‖z0‖Bh + sup
t∈J

(E‖z(t)‖2)
1
2 = sup

t∈J
(E‖z(t)‖2)

1
2 .

Thus (B′′h , ‖ · ‖B′′h ) is a Banach space. Define an operator N : B′′h → B′′h by

(Nz)(t) =



Sα(t)(φ(0)− g(y + z)) +
∫ t

0 Tα(t− s) f (s, ys + zs, y(a1(s)) + z(a1(s)),

. . . , y(am(s)) + z(am(s)))ds +
∫ t

0 Tα(t− s)σ(s, ys + zs,

y(a1(s)) + z(a1(s)), . . . , y(am(s)) + z(am(s)))dw(s), t ∈ [0, t1],

Sα(t− t1)[y(t−1 ) + z(t−1 ) + I1(y(t−1 ) + z(t−1 ))]

+
∫ t

t1
Tα(t− s) f (s, ys + zs, y(a1(s)) + z(a1(s)), . . . , y(am(s)) + z(am(s)))ds

+
∫ t

t1
Tα(t− s)σ(s, ys + zs, y(a1(s)) + z(a1(s)), . . . , y(am(s)) + z(am(s)))dw(s), t ∈ (t1, t2],

. . .

Sα(t− tp)[y(t−p ) + z(t−p ) + Ip(y(t−p ) + z(t−p ))]

+
∫ t

tp
Tα(t− s) f (s, ys + zs, y(a1(s)) + z(a1(s)), . . . , y(am(s)) + z(am(s)))ds

+
∫ t

tp
Tα(t− s)σ(s, ys + zs, y(a1(s)) + z(a1(s)), . . . , y(am(s)) + z(am(s)))dw(s), t ∈ (tp, T].

In order to prove existence results, it is enough to show that N has a unique fixed point. Let z, z∗ ∈ B′′h
then for t ∈ [0, t1], we have

E‖(Nz)(t)− (Nz∗)(t)‖2
H ≤ 3E‖Sα(t)[g(y + z)− g(y + z∗)]‖2

H

+3E‖
∫ t

0
Tα(t− s)[ f (s, ys + zs, y(a1(s)) + z(a1(s)), . . . , y(am(s)) + z(am(s)))

− f (s, ys + z∗s , y(a1(s)) + z∗(a1(s)), . . . , y(am(s)) + z∗(am(s)))]ds‖2
H

+3E‖
∫ t

0
Tα(t− s)[σ(s, ys + zs, y(a1(s)) + z(a1(s)), . . . , y(am(s)) + z(am(s)))

−σ(s, ys + z∗s , y(a1(s)) + z∗(a1(s)), . . . , y(am(s)) + z∗(am(s)))]dw(s)‖2
H,

by applying assumptions, we have

E‖(Nz)(t)− (Nz∗)(t)‖2
H ≤ (3M̃2

SLg + 3M̃2
T

T2α

α2 L f (l + m) + 3M̃2
T

T2α−1

2α− 1
Lσ(l + m))‖z− z∗‖2

B′′h
.
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For t ∈ (t1, t2], we have

E‖(Nz)(t)− (Nz∗)(t)‖2
H ≤ 3E‖Sα(t− t1)[z(t−1 )− z∗(t−1 ) + I1(y(t−1 ) + z(t−1 ))− I1(y(t−1 ) + z∗(t−1 ))]‖

2
H

+3E‖
∫ t

t1

Tα(t− s)[ f (s, ys + zs, y(a1(s)) + z(a1(s)), . . . , y(am(s)) + z(am(s)))

− f (s, ys + z∗s , y(a1(s)) + z∗(a1(s)), . . . , y(am(s)) + z∗(am(s)))]ds‖2
H

+3E‖
∫ t

t1

Tα(t− s)[σ(s, ys + zs, y(a1(s)) + z(a1(s)), . . . , y(am(s)) + z(am(s)))

−σ(s, ys + z∗s , y(a1(s)) + z∗(a1(s)), . . . , y(am(s)) + z∗(am(s)))]dw(s)‖2
H.

by applying assumptions, we obtain

E‖(Nz)(t)− (Nz∗)(t)‖2
H ≤ (3M̃2

S(1 + L1) + 3M̃2
T

T2α

α2 L f (l + m) + 3M̃2
T

T2α−1

2α− 1
Lσ(l + m))‖z− z∗‖2

B′′h
.

Similarly, for t ∈ (tp, T], we have

E‖(Nz)(t)− (Nz∗)(t)‖2
H ≤ 3E‖Sα(t− tp)[z(t−p )− z∗(t−p ) + Ip(y(t−p ) + z(t−p ))− Ip(y(t−p ) + z∗(t−p ))]‖2

H

+3E‖
∫ t

tp
Tα(t− s)[ f (s, ys + zs, y(a1(s)) + z(a1(s)), . . . , y(an(s)) + z(an(s)))

− f (s, ys + z∗s , y(a1(s)) + z∗(a1(s)), . . . , y(am(s)) + z∗(am(s)))]ds‖2
H

+3E‖
∫ t

t1

Tα(t− s)[σ(s, ys + zs, y(a1(s)) + z(a1(s)), . . . , y(am(s)) + z(am(s)))

−σ(s, ys + z∗s , y(a1(s)) + z∗(a1(s)), . . . , y(am(s)) + z∗(am(s)))]dw(s)‖2
H,

by applying assumptions, we have

E‖(Nz)(t)− (Nz∗)(t)‖2
H ≤ (3M̃2

S(1 + Lp) + 3M̃2
T

T2α

α2 L f (l + m) + 3M̃2
T

T2α−1

2α− 1
Lσ(l + m))‖z− z∗‖2

B′′h
.

Thus for all t ∈ [0, T], we estimate

E‖(Nz)(t)− (Nz∗)(t)‖2
H ≤

{
3M̃2

S(1 + L) + 3M̃2
T

T2α

α2 L f (l + m) +3M̃2
T

T2α−1

2α− 1
Lσ(l + m)

}
‖z− z∗‖2

B′′h
,

≤ Θ‖z− z∗‖2
B′′h

.

Since Θ < 1 as in the Theorem 3.2, therefore N is a contraction. Hence N has a unique fixed point by Banach
contraction principle. This completes the proof of the theorem.

The second result is proved by using the Schauder fixed point theorem. For this we take the following
assumptions

(H4) There exist a constants M1 > 0, such that E‖g(x)‖2
H ≤ M1.

(H5) The functions Ik : H→H are continuous and there exists M2 > 0, such that E‖Ik(x)‖2
H ≤ M2.

(H6) f , σ : J ×Bh ×Hm →H are continuous and there exits constants M3, M4, such that

E‖ f (t, ϕ, x1, x2, . . . , xm)‖2
H ≤ M3, E‖σ(t, ϕ, x1, x2, . . . , xm)‖2

H ≤ M4.

Theorem 3.3. Let the assumptions (H3)-(H6) are satisfied then the impulsive stochastic differential equation
(1.1)-(1.3) has at least one mild solution.
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Proof. let us consider the space Br = {y ∈ B′′h : ‖y‖ ≤ r}. It is obvious that Br is closed convex and bounded
subset of B′′h . Consider the operator N : Br → Br defined by

(Nz)(t) =



Sα(t)(φ(0)− g(y + z)) +
∫ t

0 Tα(t− s) f (s, ys + zs, y(a1(s)) + z(a1(s)),

. . . , y(am(s)) + z(am(s)))ds +
∫ t

0 Tα(t− s)σ(s, ys + zs,

y(a1(s)) + z(a1(s)), . . . , y(am(s)) + z(am(s)))dw(s), t ∈ [0, t1],

Sα(t− t1)[y(t−1 ) + z(t−1 ) + I1(y(t−1 ) + z(t−1 ))]

+
∫ t

t1
Tα(t− s) f (s, ys + zs, y(a1(s)) + z(a1(s)), . . . , y(am(s)) + z(am(s)))ds

+
∫ t

t1
Tα(t− s)σ(s, ys + zs, y(a1(s)) + z(a1(s)), . . . , y(am(s)) + z(am(s)))dw(s), t ∈ (t1, t2],

. . .

Sα(t− tp)[y(t−p ) + z(t−p ) + Ip(y(t−p ) + z(t−p ))]

+
∫ t

tp
Tα(t− s) f (s, ys + zs, y(a1(s)) + z(a1(s)), . . . , y(am(s)) + z(am(s)))ds

+
∫ t

tp
Tα(t− s)σ(s, ys + zs, y(a1(s)) + z(a1(s)), . . . , y(am(s)) + z(am(s)))dw(s), t ∈ (tp, T].

First we shall show that N is continuous, for this let {zn}∞
n=1 be a sequence in Br such that lim zn → z ∈ Br.

When t ∈ [0, t1], we have

E‖(Nzn)(t)− (Nz)(t)‖2
H ≤ 3E‖Sα(t)[g(y + zn)− g(y + z)‖2

H

+3E‖
∫ t

0
Tα(t− s)[ f (s, ys + zn

s , y(a1(s)) + zn(a1(s)), . . . , y(am(s)) + zn(am(s)))

− f (s, ys + zs, y(a1(s)) + z(a1(s)), . . . , y(am(s)) + z(am(s)))]ds‖2
H

+3E‖
∫ t

0
Tα(t− s)[σ(s, ys + zn

s , y(a1(s)) + zn(a1(s)), . . . , y(am(s)) + zn(am(s)))

−σ(s, ys + zs, y(a1(s)) + z(a1(s)), . . . , y(am(s)) + z(am(s)))]dw(s)‖2
H.

Then for t ∈ (ti, ti+1], where i = 1, 2, . . . , p, then we have

E‖(Nzn)(t)− (Nz)(t)‖2
H ≤ 3E‖Sα(t− ti)[zn(t−i )− z(t−i ) + Ii(y(t−i ) + zn(t−i ))− Ii(y(t−i ) + z(t−i ))]‖

2
H

+3E‖
∫ t

ti

Tα(t− s)[ f (s, ys + zn
s , y(a1(s)) + zn(a1(s)), . . . , y(am(s)) + zn(am(s)))

− f (s, ys + zs, y(a1(s)) + z(a1(s)), . . . , y(am(s)) + z(am(s)))]ds‖2
H

+3E‖
∫ t

ti

Tα(t− s)[σ(s, ys + zn
s , y(a1(s)) + zn(a1(s)), . . . , y(am(s)) + zn(am(s)))

−σ(s, ys + zs, y(a1(s)) + z(a1(s)), . . . , y(am(s)) + z(am(s)))]dw(s)‖2
H.

Since the functions f , σ, g and Ii, i = 1, 2, . . . , p, are continuous, hence limn→∞ E‖(Nzn)(t)− (Nz)(t)‖2
H → 0.

This implies that the mapping N is continuous on Br.

Now we show that N maps bounded set into bounded sets in Br. Let z ∈ Br then we have E‖(Nz)(t)‖2
H ≤

M̂, for t ∈ (ti, ti+1], i = 0, 1, 2, . . . , p. Then for t ∈ [0, t1], we have

E‖(Nz)(t)‖2
H ≤ 3E‖Sα(t)[φ(0) + g(y + z)]‖2

H

+3E‖
∫ t

0
Tα(t− s)[ f (s, ys + zs, y(a1(s)) + z(a1(s)), . . . , y(am(s)) + z(am(s)))]ds‖2

H

+3E‖
∫ t

0
Tα(t− s)[σ(s, ys + zs, y(a1(s)) + z(a1(s)), . . . , y(am(s)) + z(am(s)))]dw(s)‖2

H,

≤ 3M̃2
S[r + M1] + 3M̃2

T
T2α

α2 M3 + 3M̃2
T

T2α−1

2α− 1
M4.
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For t ∈ (ti, ti+1], i = 1, 2, . . . , p, then we have

E‖(Nz)(t)‖2
H ≤ 3E‖Sα(t− ti)[y(t−i ) + z(t−i ) + Ii(y(t−i ) + z(t−i ))]‖

2
H

+3E‖
∫ t

ti

Tα(t− s)[ f (s, ys + zs, y(a1(s)) + z(a1(s)), . . . , y(am(s)) + z(am(s)))ds‖2
H

+3E‖
∫ t

ti

Tα(t− s)[σ(s, ys + zs, y(a1(s)) + z(a1(s)), . . . , y(am(s)) + z(am(s)))]dw(s)‖2
H

≤ 3M̃2
S[r + M2] + 3M̃2

T
T2α

α2 M3 + 3M̃2
T

T2α−1

2α− 1
M4 = M̂.

It proves that N maps bounded set into bounded sets in Br for all sub interval t ∈ (ti, ti+1], i = 1, 2, . . . , p.
Finally, we show that N maps bounded set into equi-continuous sets in Br. let l1, l2 ∈ (ti, ti+1], ti ≤ l1 < l2 ≤
ti+1, i = 0, 1, 2, . . . , p, z ∈ Br, we obtain for t ∈ [0, t1]

E‖(Nz)(l2)− (Nz)(l1)‖2
H ≤ 3E‖[Sα(l2)− Sα(l1)][φ0 + g(y + z)]‖2

H

+3E‖
∫ t

0
[Tα(l2 − s)− Tα(l1 − s)][ f (s, ys + zs, y(a1(s)) + z(a1(s)), . . . ,

y(am(s)) + z(am(s)))]ds‖2
H + 3E‖

∫ t

0
[Tα(l2 − s)− Tα(l1 − s)]

×[σ(s, ys + zs, y(a1(s)) + z(a1(s)), . . . , y(am(s)) + z(am(s)))]dw(s)‖2
H,

≤ 3[M1 + r]E‖[Sα(l2)− Sα(l1)]‖2
H + 3M3E‖

∫ t

0
[Tα(l2 − s)− Tα(l1 − s)]‖2

H

+3M4E‖
∫ t

0
[Tα(l2 − s)− Tα(l1 − s)]‖2

H.

For t ∈ (ti, ti+1], i = 1, 2, . . . , p, we have

E‖(Nz)(l2)− (Nz)(l1)‖2
H ≤ 3E‖[Sα(l2 − ti)− Sα(l1 − ti)][y(t−i ) + z(t−i ) + Ii(y(t−i ) + z(t−i ))]‖

2
H

+3E‖
∫ t

ti

[Tα(l2 − s)− Tα(l1 − s)][ f (s, ys + zs, y(a1(s)) + z(a1(s)), . . . ,

y(am(s)) + z(am(s)))]ds‖2
H + 3E‖

∫ t

ti

[Tα(l2 − s)− Tα(l1 − s)]

×[σ(s, ys + zs, y(a1(s)) + z(a1(s)), . . . , y(am(s)) + z(am(s)))]dw(s)‖2
H,

≤ 3[M2 + r]E‖[Sα(l2 − ti)− Sα(l1 − ti)]‖2
H + 3M3E‖

∫ t

ti

[Tα(l2 − s)− Tα(l1 − s)]‖2
H

+3M4E‖
∫ t

ti

[Tα(l2 − s)− Tα(l1 − s)]‖2
H.

Since Tα(t) and Sα(t) are strongly continuous its implies that liml2→l1 ‖[Sα(l2 − ti) − Sα(l1 − ti)]‖2
H = 0

and liml2→l1 ‖[Tα(l2 − ti) − Tα(l1 − ti)]‖2
H = 0 This implies that N is equi-continuous on all subintervals

(ti, ti+1], i = 1, 2, . . . , p. Thus by Arzela -Ascoli theorem, it follows that N is a compact operator. Hence N
is completely continuous operator. Therefore, by Schauder fixed point theorem, the operator N has a fixed
point, which in turns implies that (1.1)-(1.3) has at least one solution on [0, T]. This completes the proof of the
theorem.

4 Example
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Example 4.1. Consider the following nonlocal impulsive fractional partial differential equation of the form

∂q

∂tq u(t, x) =
∂2

∂y2 u(t, x) +
1

25

∫ t

−∞
H(t, x, s− t)Q1(u(s, x), u(a1(s), . . . , u(am(s)))ds

+

[
1

25

∫ t

−∞
V(t, x, s− t)Q2(u(s, x), u(a1(s), . . . , u(am(s)))ds

]
dw(t)

dt
, (4.5)

u(t, 0) = u(t, π) = 0, t ≥ 0, (4.6)

u(t, x) +
m

∑
k=1

cku(x, tk) = φ(t, x), t ∈ (−∞, 0], x ∈ [0, π], (4.7)

∆u(ti)(x) =
1
9

∫ ti

−∞
qi(ti − s)u(s, x)ds, x ∈ [0, π], (4.8)

where ∂q

∂tq is Caputo’s fractional derivative of order 0 < q < 1, 0 < t1 < t2 < · · · < tn ≤ T are prefixed numbers,
φ ∈ Bh. Let H = L2[0, π] and define the operator A : D(A) ⊂ H → H by Aω = ω′′ with the domain D(A) :=
{ω ∈ X : ω, ω′are absolutely continuous, ω′′ ∈H, ω(0) = 0 = ω(π)}. Then

Aω = ∑∞
n=1 n2(ω, ωn)ωn, ω ∈ D(A), where ωn(x) =

√
2
π sin(nx), n ∈ N is the orthogonal set of eigenvectors

of A. It is well known that A is the infinitesimal generator of an analytic semigroup (T(t))t≥0 in H and is given by

T(t)ω =
∞

∑
n=1

e−n2t(ω, ωn)ωn, for all ω ∈H, and every t > 0.

The subordination principle of solution operator (Theorem 3.1 in [3]) implies that A is the infinitesimal generator
of a solution operator {Sα(t)}t≥0. Since Sα(t) is strongly continuous on [0, ∞), by uniformly bounded theorem, there
exists a constant M > 0, such that ‖Sα(t)‖L(H) ≤ M, for t ∈ [0, T]. Let h(s) = e2s, s < 0 then l =

∫ 0
−∞ h(s)ds = 1

2
and define

‖φ‖Bh =
∫ 0

−∞
h(s) sup

θ∈[s,0]
‖φ(θ)‖L2 ds.

Hence for (t, φ) ∈ [0, T]×Bh, where φ(θ)(x) = φ(θ, x), (θ, x) ∈ (−∞, 0]× [0, π]. Set u(t)(x) = u(t, x),

f (t, φ, u(a1(t)), . . . , u(am(t))))(x) =
1

25

∫ 0

−∞
H(t, x, θ)Q1(φ(θ, u(a1(t)), . . . , u(am(t)))(x))dθ,

σ(t, φ, u(a1(t)), . . . , u(am(t))))(x) =
1

25

∫ 0

−∞
V(t, x, θ)Q2(φ(θ, u(a1(t)), . . . , u(am(t)))(x))dθ,

Ii(φ)(x) =
1
9

∫ 0

−∞
qi(−θ)φ(θ)(x)dθ,

g(x) =
m

∑
k=1

cku(x, tk).

Then with these settings the equations (4.5)-(4.8) can be written in the abstract form of equations (1.1)-(1.3). Further
we have here L f =

1
25 , Lσ = 1

25 , L = 1
9 , T = 1, l = 1

2 , M̃T = 1, M̃S = 1
5 and m = 2. In this formulation of the problem

we can verify the assumptions of Theorem (3.2). We get the value of condition in Theorem (3.2) as Θ = .73 < 1. This
implies that there exists a unique mild solution u on [0, 1].

Example 4.2. Here we consider the following non-trivial problem

∂q

∂tq u(t, x) =
∂2

∂y2 u(t, x) +
e−t

25 + et

∫ t

−∞
H(t, x, s− t)[Q1(u(s, x), u(a1(s), . . . , u(am(s))) +

t
7
]ds

+
e−t

25 + et

∫ t

−∞
V(t, x, s− t)[Q2(u(s, x), u(a1(s), . . . , u(am(s))) +

t
7
]dw(s) (4.9)

u(t, x) = u(t, π) = 0, t ≥ 0, (4.10)

u(t, x) +
m

∑
k=1

cku(x, tk) = φ(t, x), t ∈ (−∞, 0], x ∈ [0, π], (4.11)

∆u|
t= 1

2
− = sin(

1
9
‖u(1

2

−
, x)‖), 0 ≤ t ≤ 1, 0 ≤ x ≤ π, (4.12)



Mohd Nadeem et al. / Mild solutions for... 287

where q ∈ (0, 1). In the perspective of Example 1 we set

f (t, φ, u(a1(t)), . . . , u(am(t))))(x) =
e−t

25 + et

∫ 0

−∞
H(t, x, θ)[Q1(φ(θ, u(a1(t)), . . . , u(am(t)))(x)) +

t
7
]dθ,

σ(t, φ, u(a1(t)), . . . , u(am(t))))(x) =
e−t

25 + et

∫ 0

−∞
V(t, x, θ)[Q2(φ(θ, u(a1(t)), . . . , u(am(t)))(x)) +

t
7
]dθ.

Then with these settings the equations (4.9)-(4.12) can be written in the abstract form of equations (1.1)-(1.3). Hence
the our problem (4.9)-(4.12) have a unique mild solution on [0, 1].
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Abstract

The main aim of the present paper is to establish a curious summation formula involving recurrence rela-
tion of Gamma function .
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1 Introduction

Generalized Gaussian Hypergeometric function of one variable is defined by

AFB

 a1, a2, · · · , aA ;
z

b1, b2, · · · , bB ;

 =
∞

∑
k=0

(a1)k(a2)k · · · (aA)kzk

(b1)k(b2)k · · · (bB)kk!
(1)

.
where the parameters b1, b2, · · · , bB are neither zero nor negative integers and A, B are non-negative inte-

gers and | z |= 1
Contiguous Relation is defined by
[ Andrews p.363(9.16), E. D. p.51(10)]

(a − b) 2F1

[
a, b ;
c ;

z
]

= a 2F1

[
a + 1, b ;

c ;
z
]
− b 2F1

[
a, b + 1 ;
c ;

z
]

(2)

Gauss second summation theorem is defined by [Prudnikov., 491(7.3.7.5)]

2F1

[
a, b ;
a+b+1

2 ;
1
2

]
=

Γ( a+b+1
2 ) Γ( 1

2 )

Γ( a+1
2 ) Γ( b+1

2 )
(3)

=
2(b−1) Γ( b

2 ) Γ( a+b+1
2 )

Γ(b) Γ( a+1
2 )

(4)

In a monograph of Prudnikov et al., a summation theorem is given in the form [Prudnikov.,
p.491(7.3.7.8)]

2F1

[
a, b ;
a+b−1

2 ;
1
2

]
=
√

π

[
Γ( a+b+1

2 )

Γ( a+1
2 ) Γ( b+1

2 )
+

2 Γ( a+b−1
2 )

Γ(a) Γ(b)

]
(5)
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Now using Legendre’s duplication formula and Recurrence relation for Gamma function,
the above theorem can be written in the form

2F1

[
a, b ;
a+b−1

2 ;
1
2

]
=

2(b−1) Γ( a+b−1
2 )

Γ(b)

[
Γ( b

2 )

Γ( a−1
2 )

+
2(a−b+1) Γ( a

2 ) Γ( a+1
2 )

{Γ(a)}2 +
Γ( b+2

2 )

Γ( a+1
2 )

]
(6)

Recurrence relation is defined by

Γ(ζ + 1) = ζ Γ(ζ) (7)

2 Main summation formula

2F1

[
a, b ;
a+b+48

2 ;
1
2

]
=

2b Γ( a+b+48
2 )

(a − b) Γ(b)
[ 23

∏
Λ=1

{
a − b − 2Λ

}][ 23
∏

Ψ=1

{
a − b + 2Ψ

}]
[

Γ( b
2 )

Γ( a
2 )

{
8388608(−216862434431944426122117120000 + a23 + 559843369263277204857421824000b

−569545783776841112218710835200b2 + 350200961782994226978068889600b3

−130274290623536732525341704192b4 + 38258159328821814810743144448b5

−7392547502167306440045232128b6 + 1278328901424788437956820992b7

−147385136152123509508145152b8 + 16541594137308004947263488b9

−1217098252828610199584768b10 + 93319246373147360817152b11 − 4520782665435130478592b12

+242909449904204187648b13 − 7797274383016572928b14 + 295577121333620992b15

−6177274611310592b16 + 163279973416448b17 − 2112944531328b18 + 37538840592b19

−268641472b20 + 2948968b21 − 8648b22 + 47b23 + 23a22(−24 + 47b) + 253a21(568− 752b + 705b2)

+1771a20(−13248 + 28952b − 10152b2 + 6063b3) + 253a19(10651312− 18378880b + 18307440b2

−2910240b3 + 1242915b4) + 4807a18(−48160896 + 111412560b − 59317760b2 + 36701360b3

−3314440b4 + 1077193b5) + 437a17(35335680512− 68886941952b + 71068775952b2 − 18381075840b3

+8004372600b4 − 465347376b5 + 119568423b6) + 7429a16(−110280732672 + 264410732032b

−172039726464b2 + 108639162192b3 − 16625231040b4 + 5446950696b5 − 220741704b6

+45987855b7) + 14858a15(2365174520192− 4965191440384b + 5236842909696b2

−1725798706176b3 + 758786681184b4 − 76810158336b5 + 19719592224b6 − 588644544b7 + 101173281b8)

+874a14(−1409491500899328 + 3463171135496576b − 2549281676298240b2 + 1628606520320000b3

−326241761038080b4 + 106997067614688b5 − 7699470635520b6 + 1590811880160b7 − 36422381160b8

+5227286185b9) + 46a13(772492387032024064− 1706132584134203392b + 1825151909639889024b2

−700251511732561920b3 + 308859506811100160b4 − 41720602570934784b5 + 10644260621618400b6

−572668731075840b7 + 96968519441640b8 − 1756368158160b9 + 212227819111b10)

+598a12(−1415643061687443456 + 3539464620490595328b − 2837813317389384704b2

+1823283877135639168b3 − 433637769393797120b4 + 141648230090454016b5

−13801291695856896b6 + 2815337632560096b7 − 117555258659520b8 + 16518224344600b9

−242546078984b10 + 24805848987b11) + 2a11(8336146548751502379008
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−19110879531730263293952b + 20623641739160852121600b2 − 8803708000865147375616b3

+3877040498846657697152b4 − 630933569726210070528b5 + 159290392776689860608b6

−11738492743825376256b7 + 1950421219324385808b8 − 65053869300351360b9

+7649418238997392b10 − 92873098607328b11 + 8061900920775b12)

+22a10(−12318426342334540333056 + 31189294080015037855744b − 26643664822555271921664b2

+17140623788483946063872b3 − 4605072082300887901184b4 + 1492188460507590418560b5

−177180979433782351872b6 + 35548416593321988096b7 − 2052494989469688192b8

+281304925678327408b9 − 7668336833158144b10 + 758463638626512b11 − 7739424883944b12

+570534526701b13) + 22a9(164573150471956455718912− 388241091264007637073920b

+420943316891085447997440b2 − 194683884826863646556160b3 + 85278443565011756866560b4

−15861465348367839070208b5 + 3948145039255526734976b6 − 357922456741054965760b7

+58142553453809144320b8 − 2703140922913516800b9 + 308127143096167824b10

−6994146932156800b11 + 583323319956520b12 − 5071418015120b13 + 316963625945b14)

+22a8(−1794419261680900851892224 + 4584366935603738318766080b

−4114251545048432952852480b2 + 2640794540104311940581376b3 − 778226828495277913989120b4

+249266337772945624175616b5 − 34151179297906370239488b6 + 6714896930011659811968b7

−480769634811446323200b8 + 64026820139834140160b9 − 2449850955905578368b10

+233377227411710928b11 − 4479970542016320b12 + 315039984628920b13 − 2360832524280b14

+124599494337b15) + a7(347649718060675616799195136− 838882082577028634028015616b

+910822905671321377263845376b2 − 448673507687430886271483904b3

+194828024586480427411873792b4 − 40139945352469260322013184b5

+9816269459458694551068672b6 − 1035093445173598250778624b7 + 163773463835797810765056b8

−9507758473057537904640b9 + 1046292644614417620992b10 − 33543815778321598464b11

+2675398056697299648b12 − 44004970534863360b13 + 2602500541819200b14 − 16977685938048b15

+751616304549b16) + a6(−2436468094409369161115369472 + 6263040594757311926167928832b

−5848486988767053581851295744b2 + 3733541278446785126654017536b3

−1184188234508519054509670400b4 + 373651019226936518470082560b5

−57174017531600230727811072b6 + 10975982455244081771618304b7

−920520158677719502915584b8 + 118626675019529327475968b9 − 5703526377919620050944b10

+520823675966042701824b11 − 14201827298789125632b12 + 947443730648350656b13

−13503082015288320b14 + 668046217895616b15 − 3826410277704b16 + 140676848445b17)

+a5(13311549776672286362560364544− 32711559967534938612352155648b

+35464011035200609536911081472b2 − 18392078988954334205143154688b3

+7891021782941046181484429312b4 − 1764877986073715914181836800b5

+422468597935738118375137280b6 − 50111992196873469323575296b7

+7690160291401572696950784b8 − 526300747131570952679424b9 + 55643641282334619534592b10

−2254723506020816523264b11 + 171002161902726342656b12 − 4017063029686619136b13

+223281440905959744b14 − 2784340493839872b15 + 114245678291448b16 − 578784747888b17
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+17417133617b18) + a4(−55053024365598449590377381888 + 142044977238750609063203045376b

−137077990719062800861023436800b2 + 86760711724153184015648555008b3

−29240401716693618871160012800b4 + 9055639018840596931534258176b5

−1515481756258497614495416320b6 + 282841276651081614820990976b7

−26859572569417039346319360b8 + 3332660266936043603056640b9

−190033682028660149368832b10 + 16535976570423823189248b11 − 573130879234289725440b12

+36015944570559027200b13 − 737043756023662080b14 + 33885424088126016b15

−372890329765440b16 + 12527300511720b17 − 56488000920b18 + 1362649145b19)

+a3(165020589921079405558156492800− 411610098505191809379748282368b

+444320342901862871586922561536b2 − 240640522263922110933453766656b3

+101643072715132417602424406016b4 − 24347580368876167133346660352b5

+5679836270384155287099801600b6 − 741920115370433100621545472b7

+109848794149157432560799744b8 − 8566222273855029320908800b9

+864659016160210118774784b10 − 41800643016639985786880b11 + 2991812117724256942336b12

−89845526485916487680b13 + 4650290892979978240b14 − 83728552007841792b15

+3147554863570800b16 − 30798996193920b17 + 831387500720b18 − 3354213280b19 + 62891499b20)

+a2(−334579316086154168723570688000 + 864548080425026367554322432000b

−858014569647562727164653600768b2 + 536543437730683821982167859200b3

−190477895841886852481443430400b4 + 57637354507041387641790529536b5

−10406128775890004696560041984b6 + 1877582322927794908763521024b7

−197661445831681191815577600b8 + 23453086420144706587299840b9

−1533547764773194725654528b10 + 126112680824475795320832b11 − 5247383586349278087168b12

+307487912205751326976b13 − 8093782952810557440b14 + 341481867848146944b15

−5458828464945024b16 + 164912278071984b17 − 1444736263680b18 + 30474254800b19

−110443608b20 + 1533939b21) + a(404913773986418277702696960000

−1022531955622549936145222860800b + 1095505011472615290568578170880b2

−616231254291188275591639990272b3 + 255052972994161204371394658304b4

−64865795499271462272381222912b5 + 14657673560084855811375890432b6

−2080501687036857250211692544b7 + 294962572320681686052175872b8

−25677211257278696652472320b9 + 2451531478102328114786304b10

−136847793704700345286656b11 + 9138388985836193208320b12 − 331765554383021232128b13

+15765373619992310016b14 − 367721195189587968b15 + 12439930291235328b16

−178105159009536b17 + 4212252152528b18 − 33249138560b19 + 524821176b20 − 1712304b21

+16215b22))
}
−

Γ( b+1
2 )

Γ( a+1
2 )

{
8388608(−216862434431944426122117120000 + 47a23

+404913773986418277702696960000b − 334579316086154168723570688000b2

+165020589921079405558156492800b3 − 55053024365598449590377381888b4

+13311549776672286362560364544b5 − 2436468094409369161115369472b6
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+347649718060675616799195136b7 − 39477223756979818741628928b8

+3620609310383042025816064b9 − 271005379531359887327232b10 + 16672293097503004758016b11

−846554550889091186688b12 + 35534649803473106944b13 − 1231895571786012672b14

+35141763021012736b15 − 819275563020288b16 + 15441692383744b17 − 231509427072b18

+2694781936b19 − 23462208b20 + 143704b21 − 552b22 + b23 + 1081a22(−8 + 15b)

+11891a21(248− 144b + 129b2) + 11891a20(−22592 + 44136b − 9288b2 + 5289b3)

+11891a19(3156912− 2796160b + 2562800b2 − 282080b3 + 114595b4) + 20539a18(−102874752

+205085552b − 70341120b2 + 40478480b3 − 2750280b4 + 848003b5) + 20539a17(7949752832

−8671559424b + 8029226256b2 − 1499537280b3 + 609927480b4 − 28179792b5 + 6849255b6)

+349163a16(−17691664384 + 35627859456b − 15634040448b2 + 9014571600b3 − 1067954880b4

+327198696b5 − 10958808b6 + 2152623b7) + 41078a15(7195509064064− 8951779424256b

+8313011048448b2 − 2038282097664b3 + 824904427872b4 − 67781793024b5 + 16262871072b6

−413303616b7 + 66731313b8) + 2162a14(−3606509890386944 + 7292032201661568b

−3743655389829120b2 + 2150920857067520b3 − 340908305283840b4 + 103275412074912b5

−6245643855360b6 + 1203746781600b7 − 24023272680b8 + 3225346795b9)

+2162a13(112354047134229504− 153453077882988544b + 142223826182123648b2

−41556672750192640b3 + 16658623760665600b4 − 1858031003555328b5 + 438225592344288b6

−20353825409280b7 + 3205772276520b8 − 51605548720b9 + 5805624231b10)

+1222a12(−3699494816231694336 + 7478223392664642560b − 4294094587847199744b2

+2448291422032943488b3 − 469010539471595520b4 + 139936302702722048b5

−11621789933542656b6 + 2189360111863584b7 − 80654134144320b8 + 10501729164520b9

−139334981544b10 + 13194600525b11) + 94a11(992757940139865540608− 1455827592603195162624b

+1341624264090168035328b2 − 444687691666382827520b3 + 175914644366210884992b4

−23986420276817197056b5 + 5540677403894071296b6 − 356849104024697856b7

+54620202160187664b8 − 1636928005398400b9 + 177512766487056b10 − 1976023374624b11

+157807422279b12) + 1034a10(−1177077613954168471552 + 2370920191588325062656b

−1483121629374462984192b2 + 836227288356102629376b3 − 183784992290773838848b4

+53813966423921295488b5 − 5515982957369071616b6 + 1011888437731545088b7

−52124488423522944b8 + 6555896661620592b9 − 163156102833152b10 + 14795779959376b11

−140273264248b12 + 9441469709b13) + 1034a9(15997673246912964165632

−24832892898722143764480b + 22681901760294687221760b2 − 8284547653631556403200b3

+3223075693361744296960b4 − 508994919856451598336b5 + 114725991314825268352b6

−9195124248604968960b7 + 1362272768932641280b8 − 57513636657734400b9 + 5985211184645264b10

−125829534430080b11 + 9553092996200b12 − 78136301040b13 + 4418421785b14)

+94a8(−1567926980341739462852608 + 3137899705539166872895488b

−2102781338634906295910400b2 + 1168604193076142899582976b3 − 285740133717202546237440b4

+81810215865974177627136b5 − 9792767645507654286336b6 + 1742270891870189476224b7

−112520552828210841600b8 + 13607831659402140160b9 − 480371167748224896b10
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+41498323815412464b11 − 747851539131840b12 + 47452679726760b13 − 338650650360b14

+15991836267b15) + 47a7(27198487264357200807591936− 44265993341209728727908352b

+39948560062293508697096192b2 − 15785534369583682991947776b3

+6017899503214502442999808b4 − 1066212599933478070714368b5 + 233531541600937910034432b6

−22023264790927622356992b7 + 3143143243835245018368b8 − 167538171240493813760b9

+16639684362831568896b10 − 499510329524484096b11 + 35820678814275264b12

−560484289989120b13 + 29582331558720b14 − 186086822016b15 + 7269016485b16)

+47a6(−157288244726963966809473024 + 311865394895422464071827456b

−221406995231702227586383872b2 + 120847580220939474193612800b3

−32244292686351013074370560b4 + 8988693573100811029258240b5

−1216468458119153845272576b6 + 208856797009759458533376b7 − 15985658394764683941888b8

+1848067890715352939776b9 − 82935777607302377472b10 + 6778314586242121728b11

−175599413491966464b12 + 10417786991371200b13 − 143177390115840b14 + 6233908537536b15

−34891279128b16 + 1111731933b17) + 47a5(814003389974932230015811584

−1380123308495137495157047296b + 1226326691639178460463628288b2

−518033624869705683688226816b3 + 192673170613629721947537408b4

−37550595448376934344294400b5 + 7950021685679500392980480b6 − 854041390478069368553472b7

+116677860234144760252416b8 − 7424515694980690628608b9 + 698471194280148706560b10

−26848237009625960448b11 + 1802247693491308544b12 − 40832930175808512b13

+1989690150962496b14 − 24281815586304b15 + 860965887672b16 − 4326740496b17 + 110171633b18)

+47a4(−2771793417522058138837057536 + 5426658999875770305774354432b

−4052721188125252180456243200b2 + 2162618568407072714945200128b3

−622136206738162103641702400b4 + 167894080488107365563498496b5

−25195494351245086266163200b6 + 4145277118861285689614336b7 − 364276387806300300165120b8

+39917569328303375554560b9 − 2155565655545096464384b10 + 164980446759432242432b11

−5517348640372142080b12 + 302288027942778880b13 − 6066708492495360b14 + 239873457638976b15

−2627847689280b16 + 74423634600b17 − 338989640b18 + 6690585b19)

+47a3(7451084293255196318682316800− 13111303282791239906205106176b

+11415817824057102595365273600b2 − 5120011111998342785818165248b3

+1845972589875599659907416064b4 − 391320829552219876705173504b5

+79437048477591172907532288b6 − 9546244844413423112159232b7

+1236116593240316227506176b8 − 91128626940234047324160b9 + 8023270709503123689472b10

−374625872377240313856b11 + 23198377841002387712b12 − 685352543397826560b13

+30285151037440000b14 − 545572705880064b15 + 17171922040944b16 − 170904896640b17

+3753690160b18 − 15665760b19 + 228459b20) + 47a2(−12117995399507257706781081600

+23308617265374793416352727040b − 18255629141437504833290502144b2

+9453624317060912161423884288b3 − 2916552994022612784277094400b4

+754553426280864032700235776b5 − 124435893378022416635133952b6
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+19379210758964284622635008b7 − 1925819872150330318356480b8 + 197037297268167656509440b9

−12471502682898212388864b10 + 877601776134504345600b11 − 36106646038273447936b12

+1786318890285848832b13 − 47405791172014080b14 + 1655510892601344b15 − 27193258040448b16

+660788406192b17 − 6066818560b18 + 98548560b19 − 382536b20 + 3795b21)

+47a(11911561048154834145902592000− 21755999055798934811600486400b

+18394640009043114203283456000b2 − 8757661670323229986803154944b3

+3022233558271289554536235008b4 − 695990637607126353454301184b5

+133256182867176849492934656b6 − 17848554948447417745276928b7

+2145873884750686021550080b8 − 181729872506556766289920b9 + 14599244037453847506944b10

−813228916243840991232b11 + 45034039213901617152b12 − 1669831890854752256b13

+64400246221787392b14 − 1569634349387776b15 + 41793772941824b16 − 640501992192b17

+11394897360b18 − 98933120b19 + 1090936b20 − 4048b21 + 23b22))
}]

(8)

3 Derivation of the summation Formula

Putting c = a+b+48
2 and z = 1

2 in equation (2), we get

(a − b) 2F1

[
a, b ;
a+b+48

2 ;
1
2

]
= a 2F1

[
a + 1, b ;
a+b+48

2 ;
1
2

]
− b 2F1

[
a, b + 1 ;
a+b+48

2 ;
1
2

]
Now involving the derived formula [Salahuddin et. al. p.12-41(8)], the summation formula is obtained.
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Abstract

In this paper, we study three-dimensional Kudryashov-Sinelshchikov (K-S) equation, which describes
long nonlinear pressure waves in a liquid containing gas bubbles. Firstly, We find the symmetry groups
of the K-S equation. Secondly, using the symmetry groups, exact solutions which are invariant under a three-
dimensional subalgebra of the symmetry Lie algebra are derived. Finally, by adding Bluman-Anco homotopy
formula to the direct method local conservation laws of the K-S equation are obtained.

Keywords: Three-dimensional Kudryashov-Sinelshchikov equation, Lie symmetry analysis, Invariant solution,
Conservation laws.
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1 Introduction

A liquid with gas bubbles has many applications in nature, technology and medicine. An extended
equation for the description of nonlinear waves in a liquid with gas bubbles was introduced in [1]. Extended
models of nonlinear waves in bubbly liquid were considered in [2]. In this study we consider the following
equation

utx + u2
x + uuxx − λuxxx + uxxxx +

1
2
(uyy + uzz) = 0, (1.1)

where λ is parameter. This equation was introduced by Kudryashov-Sinelshchikov in [3]. This nonlinear
equation is for a description of long nonlinear pressure waves. By using Painlevé test, it is shown that the K-S
equation is not Painlevé integrable. Bifurcations and phase portraits for the equation were discussed in [4].

To find solutions to nonlinear partial differential equations, the study of their symmetry groups is one
of the powerful methods in the theory of nonlinear partial differential equations. Then, the corresponding
symmetry groups will be used in construction of exact solutions and mapping solutions to other solutions.

In the study of partial differential equations, the concept of a conservation law plays a very important role
in the analyze of essential properties of the solutions, particularly, investigation of existence, uniqueness and
stability of the solutions.

This work is organized as follows. In Section 2, we present group classification of the K-S equation. Section
3 is devoted to reductions to ordinary differential equations and exact solutions. In Section 4, the conservation
laws associated to the equation are obtained via direct method. The conclusions are presented in Section 5.

∗Corresponding author.
E-mail address: r.dastranj@kiau.ac.ir (Reza Dastranj), m nadjafikhah@iust.ac.ir (Mehdi Nadjafikhah),
toomanian@tabrizu.ac.ir(Megerdich Toomanian).
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2 Group classification of the K-S equation

In this section we completely classify the Lie point symmetries of the K-S equation in terms of λ. For the
non-extended transformations group of equation (1.1) the infinitesimal generator X is given by

X = ξt(t, x, y, z, u)∂t + ξx(t, x, y, z, u)∂x + ξy(t, x, y, z, u)∂y + ξz(t, x, y, z, u)∂z + η(t, x, y, z, u)∂u. (2.2)

The fourth prolongation of X is

X(4) = X + η
(1)
i ∂ui + · · ·+ η

(4)
i1i2i3i4

∂ui1i2i3i4 , (2.3)

where

η
(1)
i = Diη − (Diξ j)uj, i, j = 1, ..., 4 (2.4)

and for l = 1, 2, · · · , k with k ≥ 2, il = 1, 2, · · · , 4

η
(k)
i1i2···ik

= Dik η
(k−1)
i1i2···ik−1

− (Dik ξ j)ui1i2···ik−1 j, (2.5)

where Di is the total derivative operator defined by

Di = ∂xi + ui∂u + uij∂uj + ..., i = 1, ..., 4 (2.6)

with summation over a repeated index.
The vector field X generates a one parameter symmetry group of K-S equation if and only if

(
X(4)[utx + u2

x + uuxx − λuxxx + uxxxx +
1
2
(uyy + uzz)]

)∣∣∣
(1.1)

=(
ηuxx + 2uxη

(1)
x + η

(2)
tx + uη

(2)
xx +

1
2
(η

(2)
yy + η

(2)
zz )− λη

(3)
xxx + η

(4)
xxxx

)∣∣∣
(1.1)

= 0. (2.7)

For more details see [5], [6].
Calculating the needed terms in (2.7) and spliting with respect to partial derivatives with respect to t, x, y,

and z and various power of u, we can find the determining equations for the symmetry group of the equation
(1.1). We study two cases: λ = 0, λ 6= 0.

Case A. λ 6= 0

Here, we find the following determining equations:

ξt
t = ξt

x = ξt
y = ξt

z = ξt
u = ξx

x = ξx
yy = ξx

zy = ξx
zz = ξx

u = ξ
y
x = ξ

y
y = ξ

y
zz = ξ

y
u = 0,

ξz
x = ξz

z = ξz
u = ηx = ηyy = ηzy = ηzz = ηu = 0, ξx

t = η, ξ
y
t = −ξx

y, ξz
t = −ξx

z , ξz
y = −ξ

y
z . (2.8)

So we have

ξt = c1, ξx = − f
′
1(t)y − f

′
2(t)z + f3(t), ξy = f1(t) + c2z,

ξz = f2(t)− c2y, η = − f
′′
1 (t)y − f

′′
2 (t)z + f

′
3(t), (2.9)

with f1(t), f2(t), f3(t) arbitrary functions and c1, c2 arbitrary constants. Thus the K-S equation admits an
infinite-dimensional symmetry Lie algebra spanned by

X1 = ∂t, X2 = −y∂z + z∂y, X∞ = f
′
3(t)∂u + f3(t)∂x,

X∞ = −y f
′′
1 (t)∂u − y f

′
1(t)∂x + f1(t)∂y, X∞ = −z f

′′
2 (t)∂u − z f

′
2(t)∂x + f2(t)∂z, (2.10)

where f1(t), f2(t), f3(t) are arbitrary functions.
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Case B. λ = 0

Here, we find the following determining equations:

ξt
x = ξt

y = ξt
z = ξt

u = ξx
yy = ξx

zy = ξx
zz = ξx

u = 0,

ξ
y
x = ξ

y
zz = ξ

y
u = ξz

x = ξz
u = ηx = ηtu = ηyy = ηyu = ηzy = ηzz = ηzu = ηuu = 0,

ξt
t = −3

2
ηu, ξx

t = −ηuu + η, ξx
x = −1

2
ηu, ξ

y
t = −ξx

y, ξ
y
y = ξz

z = −ηu, ξz
t = −ξx

z , ξz
y = −ξ

y
z . (2.11)

So we have

ξt = c1t + c2, ξx =
c1

3
x − f

′
1(t)y − f

′
2(t)z + f3(t), ξy =

2c1

3
y + c3z + f1(t),

ξz = −c3y +
2c1

3
z + f2(t), η = − f

′′
1 (t)y − f

′′
2 (t)z − 2c1

3
u + f

′
3(t), (2.12)

with f1(t), f2(t), f3(t) arbitrary functions and c1, c2, c3 arbitrary constants. Thus the K-S equation admits an
infinite-dimensional symmetry Lie algebra spanned by

X1 = ∂t, X∞ = −z f
′′
2 (t)∂u − z f

′
2(t)∂x + f2(t)∂z, X∞ = u∂u − 3t

2
∂t − x

2
∂x − y∂y − z∂z,

X2 = −y∂z + z∂y, X∞ = f
′
3(t)∂u + f3(t)∂x, X∞ = −y f

′′
1 (t)∂u − y f

′
1(t)∂x + f1(t)∂y, (2.13)

where f1(t), f2(t), f3(t) are arbitrary functions.

3 Invariant solutions

Here, we use the results of the group classification in the previous section for the construction of exact
solutions of the K-S equation. We search for solutions invariant under a three-dimensional subalgebra of the
Lie algebra (2.13). Then equation (1.1) is reduced to a fourth-order ordinary differential equation. Solving this
equation we find exact solution for the K-S equation[6, 7, 8, 9]. We choose the following three vector fields:

X1 = 2y∂u + 2ty∂x − t2∂y, X2 = 2z∂u + 2tz∂x − t2∂z,

X3 = u∂u − 3t
2

∂t − x
2

∂x − y∂y − z∂z. (3.14)

These vector fields generate a three-dimensional subalgebra of the symmetry Lie algebra (2.13). We construct
an exact solution of equation (1) which is invariant under these three vector fields: X1(I) = X2(I) = X3(I) = 0.
From X1(I) = 0, we obtain four invariants J1 = t, J2 = z, J3 = u − x/t, J4 = y2 + tx. Now, we rewrite X2 and
X3 in terms of J1,J2,J3 and J4:

X2 = −J2
1 ∂J2 + 2J2

1 J2∂J4, X3 = −3
2

J1∂J1 − J2∂J2 + J3∂J3 − 2J4∂J4. (3.15)

Since the common solution I(t, x, y, z, u) is defined as a function of the invariants J1,J2,J3 and J4 of X1, it must
be a solution to the differential equations

X2(I) = −J2
1

∂I
∂J2

+ 2J2
1 J2

∂I
∂J4

= 0, X3(I) = −3
2

J1
∂I
∂J1

− J2
∂I
∂J2

− J3
∂I
∂J3

− 2J4
∂I
∂J4

= 0. (3.16)

The equation X2(I) = 0 gives the three invariants K1 = J1, K2 = J3, K3 = J4 + J2
2 . Again we express these

invariants as new variables. Writing X3 in terms of K1, K2, and K3, we obtain

X3 = −3
2

K1∂K1 + K2∂K2 − 2K3∂K3. (3.17)

From X3(I) = 0 two invariants I1 = K2/3
1 K2, I2 = K−4/3

1 K3 are found.
The invariant solution is given by I1 = Φ(I2), where Φ is a function to be determined [7], [8]. Thus

t
2
3 (u − x

t
) = Φ(

y2 + tx + z2

t
4
3

). (3.18)
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From (3.18) we have
u = t

−2
3 Φ(δ) +

x
t

, (3.19)

where δ =
y2 + tx + z2

t4/3 . Substituting u in the K-S equation (with λ = 0) we obtain

Φ
′′′′

+ Φ
′′
(Φ +

2
3

δ) + Φ
′2 + 3Φ

′
= 0. (3.20)

A solution which arises from the above equation is

Φ = −3δ = −3(
y2 + tx + z2

t
4
3

). (3.21)

Therefore the exact solution

u =
−3(y2 + z2 + 2

3 tx)
t2 , (3.22)

for the K-S equation is obtained.

4 Conservation laws

There are many methods to investigate conservation laws, such as Noether’s method, the direct method,
etc. Here, we present the direct method [10, 11, 12, 13].

Consider a differential equation P{x; u} of order k with n independent variables x = (x1, . . . , xn) and one
dependent variable u, given by

P[u] = P(x, u, ∂u, . . . , ∂ku) = 0. (4.23)

A multiplier Λ(x, u, ∂u, . . . , ∂lu) provides a conservation law Λ[u]P[u] = Diφ
i[u] = 0 for the differential

equation P{x; u} if and only if

EU

(
Λ(x, U, ∂U, . . . , ∂lU)P(x, U, ∂U, . . . , ∂kU)

)
≡ 0, (4.24)

for arbitrary functions U(x), where EU is the Euler operator with respect to U defined as

EU = ∂U − Di∂U + . . . + (−1)sDi1 . . . Dis ∂Ui1 ...is . (4.25)

Since the K-S equation is of Cauchy-Kovalevskaya form with respect to x, y, and z, it follows that multipliers
providing local conservation laws for equation (1.1) are in the form Λ = ξ(t, x, y, z, U, ∂tU, . . . , ∂l

tU),l =
1, 2, . . . and we can obtain all of its nontrivial local conservation laws from multipliers. Consequently, Λ =
ξ(t, x, y, z, U, ∂tU, . . . , ∂l

tU) is a conservation law multiplier for the equation(1.1) if and only if

EU

[
ξ
(
t, x, y, z, U, ∂tU, . . . , ∂l

tU
)(

Utx + U2
x + UUxx − λUxxx + Uxxxx +

1
2
(Uyy + Uzz)

)]
≡ 0 (4.26)

for an arbitrary function U(t, x, y, z).
We look for all multipliers in the form Λ = ξ(t, x, y, z, U, ∂Ut, ∂Utt, ∂Uttt, ∂Utttt) for the equation(1). Thus,

the Euler operator is taken to be

EU = ∂U − Di∂Ui + . . . + (−1)4Di1 . . . Di4 ∂Ui1 ...i4 , (4.27)

and the determining equations become

EU [ξ(t, x, y, z, U, ∂Ut, . . . , ∂Utttt)(Utx + U2
x + UUxx − λUxxx + Uxxxx +

1
2
(Uyy + Uzz))] ≡ 0 (4.28)

where U(t, x, y, z) is arbitrary function. Equation (4.28) split with respect to Ux, Utx, . . . , Uxxxx to provide the
over-determined equations:

ξyyyy = −(2ξzyyz + ξzzzz), ξyxy = −ξzxz, ξtx = −
ξyy + ξzz

2
, ξxx = ξU = ξUt = ξUtt = ξUttt = ξUtttt = 0.

(4.29)



300 Reza Dastranj et al. / Invariant solutions and conservation laws...

Solving the equations (4.29), we find the infinite set of local multipliers

ξ = ( f1(t, z − iy) + f2(t, z + iy))x + f3(t, z − iy) + f4(t, z + iy)−

2
∫ y ∫ b

(D1( f1)(t,−2ib + iy + z) + D1( f2)(t, 2ia − 2ib + iy + z))dadb, (4.30)

where f1, f2, f3 and f4 are arbitrary functions. We study two cases: f1(r, s) = f2(r, s) = f3(r, s) = f4(r, s) = r + s
and f1(r, s) = f2(r, s) = f3(r, s) = f4(r, s) = exp(r + s).

Case A

By setting f1(r, s) = f2(r, s) = f3(r, s) = f4(r, s) = r + s into (4.30), we have ξ = 2(t + z)(x + 1)− 2y2. Applying
Bluman-Anco homotopy formula [10, 11, 12], we find conserved components Φt, Φx, Φy, and Φz with respect to
multiplier ξ:

Φt = 2
[
(t + z)(x + 1)− y2

]
ux,

Φx = 3
[
(t + z)(x + 1)− y2

]
uux −

[
(t + z)u + ((t + z)(x + 1)− y2)ux

]
u − 2

[
x + 1

]
u −

2
[
(t + z)(x + 1)− y2

]
λuxx + 2

[
(t + z)(x + 1)− y2

]
uxxx + 2

[
t + z

]
λux − 2

[
t + z

]
uxx,

Φy = 2
[
y
]
u +

[
(t + z)(x + 1)− y2

]
uy,

Φz = −
[

x + 1
]
u +

[
(t + z)(x + 1)− y2

]
uz. (4.31)

So we obtain the following local conservation law of the K-S equation:

Dt

(
2[(t + z)(x + 1)− y2]ux

)
+ Dx

(
3[(t + z)(x + 1)− y2]uux − 2[(t + z)(x + 1)− y2]λuxx −

[(t + z)u + ((t + z)(x + 1)− y2)ux]u − 2[x + 1]u + 2[(t + z)(x + 1)− y2]uxxx +

2[t + z]λux − 2[t + z]uxx

)
+ Dy

(
2[y]u + [(t + z)(x + 1)− y2]uy

)
+

Dz

(
− [x + 1]u + [(t + z)(x + 1)− y2]uz

)
= 0. (4.32)

Case B

By setting f1(r, s) = f2(r, s) = f3(r, s) = f4(r, s) = exp(r + s) into (4.30), we have:

ξ = (x − iy +
1
2
) exp(t + z − iy) + (x + iy + 1) exp(t + z + iy), (4.33)
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Applying Bluman-Anco homotopy formula, we find conserved components Φt, Φx, Φy, and Φz with respect to
multiplier ξ:

Φt =
[
(x − iy +

1
2
) exp(t + z − iy) + (x + iy + 1) exp(t + z + iy)

]
ux,

Φx =
[
(x − iy +

1
2
) exp(t + z − iy) + (x + iy + 1) exp(t + z + iy)

]
uux −

1
2

[
exp(t + z − iy) + exp(t + z + iy)

]
u2 + λ

[
exp(t + z − iy) + exp(t + z + iy)

]
ux −[

(x − iy +
1
2
) exp(t + z − iy) + (x + iy + 1) exp(t + z + iy)

]
u −[

(λx − λiy +
λ

2
+ 1) exp(t + z − iy) + (λx + λiy + λ + 1) exp(t + z + iy)

]
uxx +[

(x − iy +
1
2
) exp(t + z − iy) + (x + iy + 1) exp(t + z + iy)

]
uxxx,

Φy =
i
2

[
(x − iy +

3
2
) exp(t + z − iy)− (x + iy + 2) exp(t + z + iy)

]
u +

1
2

[
(x − iy +

1
2
) exp(t + z − iy) + (x + iy + 1) exp(t + z + iy)

]
uy,

Φz = −1
2

[
(x − iy +

1
2
) exp(t + z − iy) + (x + iy + 1) exp(t + z + iy)

]
u +

1
2

[
(x − iy +

1
2
) exp(t + z − iy) + (x + iy + 1) exp(t + z + iy)

]
uz. (4.34)

So we find the following local conservation law of the equation (1.1):

DtΦt + DxΦx + DyΦy + DzΦz = 0. (4.35)

5 Conclusions

In the present paper, we investigated the Lie point symmetries, exact solutions and conservation laws of
the K-S equation. We derived exact solutions which are invariant under a three-dimensional subalgebra of
the symmetry Lie algebra. We obtained the conservation laws of the K-S equation by adding Bluman-Anco
homotopy formula to the direct method.
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Semi-invariant submanifold of a trans Sasakian manifold has been studies. In the present paper we study
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1 Introduction

The study of geometry of semi invariant submanifold of a Sasakian manifold has been studied by Bejancu [1]
and Bejancu and Papaghuic [4]. After that a number of authors have studied these submanifolds ([3],[5],[12]).
Latter on, Oubina [8] introduced a new class of almost contact Riemannian manifold known as trans Sasakian
manifold. Upadhyay and Dube [13] have studied almost contact hyperbolic ( f , g, η, ξ)-structure. Shahid
studied on semi invariant submanifolds of a nearly Sasakian manifold [14]. Matsumoto, Shahid, and Mihai
[10] have also worked on semi invariant submanifolds of certain almost contact manifolds. Joshi and Dube
[15] studied on Semi-invariant submanifold of an almost r-contact hyperbolic metric manifold. Gill and Dube
have worked on CR submanifolds of trans-hyperbolic Sasakian manifolds [7].

2 Preliminaries

Nearly trans hyperbolic Sasakian Manifolds: Let M̄ be an n dimensional almost hyperbolic contact metric
manifold with the almost hyperbolic contact metric structure (φ, ξ, η, g) where a tensor φ of type (1, 1), a
vector field ξ, called structure vector field and η, the dual 1-form of is a 1-form ξ satisfying the following

φ2X = X − η(X)ξ, g(X, ξ) = η(X), (2.1)

φ(ξ) = 0, η ◦ φ = 0, η(ξ) = −1 (2.2)

g(φX, φY) = −g(X, Y)− η(X)η(Y) (2.3)

for any X,Y tangents to M̄ [6]. In this case

g(φX, Y) = −g(X, φY) (2.4)

∗Corresponding author.
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304 Shamsur Rahman et al. / On semi-invariant submanifolds...

An almost hyperbolic contact metric structure (φ, ξ, η, g) on M̄ is called trans-hyperbolic Sasakian [7] if and
only if

(∇̄Xφ)Y = α[g(X, Y)ξ − η(Y)φX] + β[g(φX, Y)ξ − η(Y)φX] (2.5)

for all X,Y tangents to M̄ and α, β are functions on M̄. On a trans-hyperbolic Sasakian manifold M, we have

∇̄Xξ = −α(φX) + β[X − η(X)ξ] (2.6)

a Riemannian metric g and Riemannian connection ∇̄. Further, an almost contact metric manifold M̄ on
(φ, ξ, η, g) is called nearly trans-hyperbolic Sasakian if [9]

(∇̄Xφ)Y + (∇̄Yφ)X = α[2g(X, Y)ξ − η(Y)φX − η(X)φY]− β[η(X)φY + η(Y)φX] (2.7)

Semi-invariant submanifolds: Let M be a submanifold of a Riemannian manifold M̄ endowed with a
Riemannian metric g. Then Gauss and Wiengarten formulae are given respectively by

∇̄XY = ∇XY + h(X, Y) (X, YεTM) (2.8)

∇̄X N = −AN X +∇⊥X N (NεT⊥M) (2.9)

where ∇̄, ∇ and ∇⊥ are respectively the Riemannian, induced Riemannian and induced normal connections
in M̄, M and the normal bundle of T⊥M of M respectively, and h is the second fundamental form related to A
by

g(h(X, Y), N) = g(AN X, Y) (2.10)

Moreover, if φ is a (1, 1) tensor field on M̄, for XεTM and NεT⊥M we have

(∇̄Xφ)Y = ((∇XP)Y − AFYX − th(X, Y)) + ((∇X F)Y + h(X, PY)− f h(X, Y)) (2.11)

(∇̄Xφ)N = ((∇Xt)Y − A f N X − PAN X)) + ((∇X f )N + h(X, tN)− FAN X)) (2.12)

where

φX ≡ PX + FX (PXεTM, FXεT⊥M) (2.13)

φN ≡ tN + f N (tNεTM, f NεT⊥M) (2.14)

(∇XP)Y ≡ ∇XPY − P∇XY, (∇X F)Y ≡ ∇⊥X FY − F∇XY

(∇Xt)N ≡ ∇XtN − t∇⊥X N, (∇X f )N ≡ ∇⊥X f N − f∇⊥X N

The submanifold M is known to be totally geodesic in M̄ if h = 0, minimal in M̄ if H = trace(h)/dim(M) = 0,
and totally umbilical in M̄ if h(X, Y) = g(X, Y)H.

For a distribution D on M, M is said to be D-totally geodesic if for all X, YεD we have h(X, Y) = 0. If for
all X, YεD we have h(X, Y) = g(X, Y)K for some normal vector K, then M is called D-totally umbilical. For
two distributions D and ε defined on M, M is said to be (D, ε)-mixed totally geodesic if for all XεD and Yεε

we have h(X, Y) = 0.
Let D and ε be two distributions defined on a manifold M. We say that D is ε -parallel if for all Xεε and

YεD we have ∇XYεD. If D is D-parallel then it is called autoparallel. D is called X-parallel for some XεTM
if for all YεD we have ∇XYεD. D is said to be parallel if for all XεTM and YεD,∇XYεD.

If a distribution D on M is autoparallel, then it is clearly integrable, and by Gauss formula D is totally
geodesic in M. If D is parallel then the orthogonal complementary distribution D⊥ is also parallel, which
implies that D is parallel if and only if D⊥ is parallel. In this case M is locally the product of the leaves of D
and D⊥.

Let M be a submanifold of an almost contact metric manifold. If ξεTM then we write TM = {ξ} ⊕ {ξ}⊥,
where (ξ) is the distribution spanned by ξ and {ξ}⊥ is the complementary orthogonal distribution of {ξ} in
M. Then one gets

Pξ = 0 = Fξ, ηoP = 0 = ηoF, (2.15)

P2 + tF = −I + η ⊗ ξ, FP + f F = 0, (2.16)

f 2 + Ft = −I, t f + Pt = 0 (2.17)
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A submanifold M of an almost contact metric manifold M̄ with ξεTM is called a semi-invariant submanifold
(Bejancu, [1]) of M̄ if there exists two differentiable distributions D1 and D0 on M such that

(1) TM = D1 ⊕ D0 ⊕ {ξ},

(2) the distribution D1 is invariant by φ, that is, φ(D1) = D1 and

(3) the distribution D0 is anti-invariant by φ, that is, φ(D0) ⊆ T⊥M.

For XεTM we can write

X = D1X + D0X + η(X)ξ (2.18)

where D1 and D0 are the projection operators of TM on D1 and D0, respectively. A semi-invariant
submanifold of an almost contact metric manifold becomes an invariant submanifold ([2], [11]) (resp.
anti-invariant submanifold ([2], [11]) if D0 = {0} (resp. D1 = {0}).

3 The Nijenhuis tensor

A hyperbolic contact metric manifold is said to be normal ([6]) if the torsion tensor N1 vanishes:

N1 ≡ [φ, φ] + dη ⊗ ξ = 0 (3.19)

where [φ, φ] is the Nijenhuis tensor of φ and d denotes the exterior derivatives operatoer. In this section we
obtain expression for Nijenhuis tensor [φ, φ] of the structure tensor field φ given by

[φ, φ](X, Y) = ((∇̄φXφ)Y − (∇̄φYφ)X)− φ((∇̄Xφ)Y − (∇̄Yφ)X) (3.20)

in a nearly trans hyperbolic Sasakian manifold. First, we need the following lemma.

Lemma 3.1. In an almost hyperbolic contact metric manifold we have

(∇̄Yφ)φX = −φ(∇̄Yφ)X − ((∇̄Yη)X)ξ − η(X)∇̄Yξ (3.21)

Proof. For X, YεTM̄, we have

(∇̄Yφ)φX = −φ2∇̄YX − φ(∇̄Yφ)X + ∇̄YX − ((∇̄Yη)X)ξ − η(∇̄YX)ξ − η(X)∇̄Yξ

= −∇̄YX + η(∇̄YX)ξ − φ(∇̄Yφ)X + ∇̄YX − ((∇̄Yη)X)ξ − η(∇̄YX)ξ − η(X)∇̄Yξ

which gives the equation (3.21).

Now, we prove the following theorem

Theorem 3.1. In a nearly trans-hyperbolic Sasakian manifold the Nijenhuis tensor [φ, φ] of φ is given by

[φ, φ](X, Y) = 4φ(∇̄Yφ)X + 2dη(X, Y)ξ + η(X)∇̄Yξ − η(Y)∇̄Xξ (3.22)

+4αg(φX, Y)ξ + (α + β)η(Y)φ2X + 3(α + β)η(X)φ2Y

Proof. Using Lemma 3.1 and ηoφ = 0 in (2.7) we get

(∇̄φXφ)Y = φ(∇̄Yφ)X + ((∇̄Yη)X)ξ + η(X)∇̄Yξ + 2αg(φX, Y)ξ − (α + β)η(Y)φ2X (3.23)
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Thus

[φ, φ](X, Y) = ((∇̄φXφ)Y − (∇̄φYφ)X)− φ((∇̄Xφ)Y − (∇̄Yφ)X)

= 2φ(∇̄Yφ)X − 2φ(∇̄Xφ)Y + [((∇̄Xη)Y)ξ − ((∇̄Yη)X)ξ] + η(X)∇̄Yξ

−η(Y)∇̄Xξ + 4αg(φX, Y)ξ − (α + β)[η(Y)φ2X − η(X)φ2Y]

= 4φ(∇̄Yφ)X − 2φ[α(2g(X, Y)ξ

−η(Y)φX − η(X)φY − β(η(X)φY + η(Y)φX)]

+2dη(X, Y)ξ + η(X)∇̄Yξ − η(Y)∇̄Xξ

+4αg(φX, Y)ξ − (α + β)[η(Y)φ2X − η(X)φ2Y]

= 4φ(∇̄Yφ)X + 2αη(Y)φ2X + 2αη(X)φ2Y − β[η(X)φY + η(Y)φX]

+2dη(X, Y)ξ + η(X)∇̄Yξ − η(Y)∇̄Xξ

+4αg(φX, Y)ξ − (α + β)[η(Y)φ2X − η(X)φ2Y]

= 4φ(∇̄Yφ)X + 2(α + β)η(Y)φ2X + 2(α + β)η(X)φ2Y + 2dη(X, Y)ξ

+η(X)∇̄Yξ − η(Y)∇̄Xξ + 4αg(φX, Y)ξ

−(α + β)η(Y)φ2X + (α + β)η(X)φ2Y]

[φ, φ](X, Y) = 4φ(∇̄Yφ)X + 2dη(X, Y)ξ + η(X)∇̄Yξ − η(Y)∇̄Xξ

+4αg(φX, Y)ξ + (α + β)η(Y)φ2X + 3(α + β)η(X)φ2Y

which implies the equation (3.22). From Equation (3.22), we get

η(N1(X, Y)) = 3dη(X, Y)− 4αg(X, φY) (3.24)

In particular, if X and Y are perpendicular to ξ, then (3.22) gives

[φ, φ](X, Y) = 4φ(∇̄Yφ)X − 2(η[X, Y])ξ (3.25)

4 Some basic results

Let M be a submanifold of a nearly trans-hyperbolic Sasakian manifold. Using (2.11), (2.13) in (2.7) for
X, YεTM, we get

(∇XP)Y + (∇YP)X − AFYX − AFXY − 2th(X, Y) + (∇X F)Y (4.26)

+(∇Y F)X + h(X, PY) + h(Y, PX)− 2 f h(X, Y)

= α[2g(X, Y)ξ − η(Y)PX − η(Y)FX − η(X)PY − η(X)FY]

−β[η(X)PY + η(X)FY + η(Y)PX + η(Y)FX]

Consequently, we have

Proposition 4.1. Let M be a submanifold of a nearly trans-hyperbolic Sasakian manifold. Then for all X, YεTM we
have

(∇XP)Y + (∇YP)X − AFYX − AFXY − 2th(X, Y) (4.27)

= 2αg(X, Y)ξ − (α + β)(η(Y)PX + η(X)PY)

and

(∇X F)Y + (∇Y F)X + h(X, PY) + h(Y, PX)− 2 f h(X, Y) (4.28)

= −(α + β)[η(X)FY + η(Y)FX]

for all X, YεTM.
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Now we state the following proposition.

Proposition 4.2. Let M be a submanifold of a nearly trans-hyperbolic Sasakian manifold. Then

∇̄XφY + ∇̄YφX − φ[X, Y] = 2((∇XP)Y − AFYX − th(X, Y)) (4.29)

+2((∇X F)Y + h(X, PY)− f h(X, Y)) + 2αg(X, Y)ξ)

−(α + β)(η(Y)PX + η(X)PY)− (α + β)(η(Y)FX + η(X)FY)

Consequently,

P[X, Y] = AFYX + AFXY + 2th(X, Y)− 2αg(X, Y)ξ (4.30)

−(α + β)(η(Y)PX + η(X)PY −∇XPY −∇YPX + 2P∇XY

F[X, Y] = −∇⊥X FY −∇⊥Y FY − h(X, PY)− h(Y, PY) + 2 f h(X, Y) (4.31)

−(α + β)(η(Y)FX + η(X)FY) + 2F∇XY

The proof is straightforward and hence omitted.

Proposition 4.3. Let M be a semi invariant submanifold of a nearly trans-hyperbolic Sasakian manifold. Then
(P, ξ, η, g) is a nearly trans-hyperbolic Sasakian structure on the distribution D1 ⊕ {ξ} if th(X, Y) = 0 for all
X, YεD1 ⊕ {ξ}.

Proof. From D1 ⊕ {ξ} = ker(F) and (2.16) we have P2 = I − η ⊗ ξ on D1 ⊕ {ξ}. We also get Pξ = 0, η(ξ) =
2, η ◦ P = 0.Using D1 ⊕ {ξ} = ker(F) and th(X, Y) = 0 in 4.27 we get

(∇XP)Y + (∇YP)X = 2αg(X, Y)ξ − (α + β)(η(Y)PX + η(X)PY), (4.32)

for all X, Y εD1 ⊕ {ξ}.

This completes the proof.

Theorem 4.2. Let M be a semi invariant submanifold of a nearly trans-hyperbolic Sasakian manifold. We have (i) if
D0 ⊕ {ξ} is autoparallel then

AFXY + AFYX + 2th(X, Y) = 0, ∀X, YεD0 ⊕ {ξ} (4.33)

(ii) if D1 ⊕ {ξ} is autoparallel then

h(X, PY) + h(PX, Y) = 2 f h(X, Y) ∀X, YεD1 ⊕ {ξ}. (4.34)

Proof. In view of (4.27) and autoparallelness of D0⊕{ξ}we get (1), while in view of (4.28) and appropriateness
of D1 ⊕ {ξ} we get (ii). In view of Proposition 4.3 and Theorem 4.2(ii), we get

Theorem 4.3. Let M be a submanifold of a nearly trans-hyperbolic Sasakian manifold with ξεTM. If M is invariant
then M is nearly trans-hyperbolic Sasakian. Moreover

h(X, PY) + h(PX, Y)− 2 f h(X, Y) = 0, X, YεTM.

5 Integrability Conditions

Integrability of the distribution D1 ⊕ {ξ}: We begin with a lemma

Lemma 5.2. Let M be a semi-invariant submanifold of a nearly trans-hyperbolic Sasakian manifold. For X, YεD1⊕{ξ}
we get

F[X, Y] = −h(X, PY)− h(PX, Y) + 2F∇XY + 2 f h(X, Y) (5.35)

or equivalently

−h(X, PX) + F∇XX + f h(X, X) = 0 (5.36)



308 Shamsur Rahman et al. / On semi-invariant submanifolds...

Proof. Equation (5.1) follows from D1 ⊕ {ξ} = ker(F) and (4.6). Equivalence of (5.1) and (5.2) is obvious. In
view of (5.1) and D1 ⊕ {ξ} = ker(F) we can state the following theorem.

Theorem 5.4. The distribution D1 ⊕ {ξ} on a semi-invariant submanifold of a nearly trans-hyperbolic Sasakian
manifold is integrable if and only if

h(X, PY) + h(PX, Y) = 2(F∇XY + f h(X, Y)) (5.37)

Now, we need the following

Definition 5.1. ([16]) Let M be a Riemannian manifold with the Riemannian connection ∇ . A distribution D on M
will be called nearly autoparallel if for all X, YεD we have (∇XY +∇YX)εD or equivalently ∇XXεD.

Thus, we have the following flow chart ([16]):
Parallel ⇒ Autoparallel ⇒ Nearly autoparallel,
Parallel ⇒ Integrable,
Autoparallel ⇒ Integrable, and
Nearly autoparallel + Integrable ⇒ Autoparallel.

Theorem 5.5. Let M be a semi-invariant submanifold of a nearly trans-hyperbolic Sasakian manifold. Then the
following four statements

(a) the distribution D1 ⊕ {ξ} is autoparallel,
(b) h(X, PY) + h(PX, Y) = 2 f h(X, Y), X, YεD1 ⊕ {ξ},
(c) h(X, PX) = f h(X, X), XεD1 ⊕ {ξ},
(d) the distribution D1 ⊕ {ξ} is nearly autoparallel,
are related by (a) ⇒ (b) ⇔ (c) ⇒ (d). In particular, if D1 ⊕ {ξ} is integrable then the above four statements are

equivalent.

The proof is similar to that Theorem 4.4 of [16].
Let X, YεD1 ⊕ {ξ}. Using (2.1) and (2.13) in (3.19) and we get

N(1)(X, Y) = [φX, φY]− P[φX, Y]− F[φX, Y]− P[X, φY] (5.38)

−F[X, φY] + [X, Y] + η([X, Y])ξ + 2dη ⊗ ξ

On the other hand from equation (3.23) we have

(∇̄φXφ)Y = φ(∇̄Yφ)X + ((∇̄Yη)X)ξ + η(X)∇̄Yξ + 2αg(φX, Y)ξ − (α + β)η(Y)φ2X

which implies that

(∇̄φXφ)Y − (∇̄φYφ)X = φ((∇̄Yφ)X − (∇̄Xφ)Y) + 2dη(X, Y)ξ + η(X)U1∇Yξ (5.39)

+η(X)U0∇Yξ + η(X)h(Y, ξ)− η(Y)U1∇Xξ − η(Y)U0∇Xξ

−η(Y)h(X, ξ)− (α + β)(η(Y)φ2X − η(X)φ2Y)

Next we easily can get

φ(∇̄Yφ)X = φ(∇̄YφX)− φ2(∇̄YX) (5.40)

= φ(∇YφX + h(Y, φX))− (∇̄YX + η∇̄YX)ξ

so that

φ((∇̄Yφ)X − (∇̄Xφ)Y) = (∇YφX −∇XφY) + [X, Y]− η([X, Y])ξ (5.41)

+F(∇YφX −∇XφY) + φ(h(Y, φX)− h(X, φY))

In view of (5.39) and (5.41) we get

N(1)(X, Y) = 4dη ⊗ ξ + 2[X, Y]− 2η([X, Y])ξ + 2P[∇YφX −∇XφY] (5.42)

+2F[∇YφX −∇XφY] + 2φ(h(Y, φX)− h(X, φY)) + η(X)U1∇Yξ

+η(X)U0∇Yξ + η(X)h(Y, ξ)− η(Y)U1∇Xξ − η(Y)U0∇Xξ

−η(Y)h(X, ξ)− (α + β)(η(Y)φ2X − η(X)φ2Y)
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Theorem 5.6. The distribution D1 ⊕ {ξ} is integrable on a semi-invariant submanifold M of a nearly trans-hyperbolic
Sasakian manifold if and only if for all X, YεD1 ⊕ {ξ}

N1(X, Y)εD1 ⊕ (ξ) (5.43)

2(h(Y, φX)− h(X, φY)) = −η(X)(φU0∇Yξ + f h(Y, ξ)) + η(Y)(φU0∇Xξ + f h(X, ξ)) (5.44)

Proof. Let X, YεD1 ⊕ {ξ}. If D1 ⊕ {ξ} is integrable, then (5.43) is true and from (5.42) we get

0 = 2F(∇YφX −∇XφY) + 2φ(h(Y, φX)− h(X, φY) + η(X)U0∇Yξ

+η(X)h(Y, ξ)− η(Y)U0∇Xξ − η(Y)h(X, ξ)

Applying φ to the above equation, we get

0 = −2U0(∇YφX −∇XφY) + 2(h(Y, φX)− h(X, φY) + η(X)φU0∇Yξ

+η(X)th(Y, ξ) + η(X) f h(Y, ξ)− η(Y)φU0∇Xξ − η(Y)th(X, ξ)− η(Y) f h(X, ξ)

Hence taking the normal part we get (5.44).
Conversely, let (5.43) and (5.44) be true. Using (5.44) in (5.42) we get

0 = 2U0[X, Y] + 2F(∇YφX −∇XφY) + 2φ(h(Y, φX)− h(X, φY) + η(X)U0∇Yξ

+η(X)h(Y, ξ)− η(Y)U0∇Xξ − η(Y)h(X, ξ)

Applying φ to the above equation and using (5.44) we get φU0[X, Y] = 0, from which we get U0[X, Y] = 0,
and hence D1 ⊕ {ξ} is integrable.

If M̄ is a trans-hyperbolic Sasakian manifold then for all XεD1 ⊕ {ξ} it is known that h(X, ξ) = 0 and
U0∇Xξ = 0. Hence in view of the previous theorem we have

Corollary 5.1. . If M is a semi-invariant submanifold of a trans-hyperbolic Sasakian manifold, then the distribution
D1 ⊕ {ξ} is integrable if and only if for all X, YεD1 ⊕ {ξ}

h(X, φY) = h(Y, φX)

Integrability of the distribution D0 ⊕ {ξ}:

Lemma 5.3. Let M be a semi-invariant submanifold of a nearly trans-hyperbolic Sasakian manifold. Then

3(AFXY − AFYX) = P[X, Y], X, YεD0 ⊕ (ξ) (5.45)

Proof. Let X, YεD0 ⊕ {ξ} and ZεTM. We have

−AφXZ +∇⊥Z φX = ∇̄ZφX = (∇̄Zφ)X + φ(∇̄ZX)

= −(∇̄Xφ)Z− η(X)φZ− η(Z)φX + φ∇ZX + φh(Z, X)

so that

φh(Z, X) = −AφXZ +∇⊥Z φX + (∇̄Xφ)Z + η(X)φZ + η(Z)φX − φ∇ZX

and hence we have

g(φh(Z, X), Y) = −g(AφXY, Z)− g((∇̄Xφ)Y, Z)

On the other hand

g(φh(Z, X), Y) = −g(h(Z, X), φY) = −g(AφYX, Z)

Thus from the above two relations we get

g(AφYX, Z) = g(AφXY, Z) + g((∇̄Xφ)Y, Z) (5.46)
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For X, YεD0 ⊕ {ξ} we calculate (∇̄Xφ)Y as follows. In view of

∇̄XφY − ∇̄YφX = AφXY − AφYX +∇⊥XφY −∇⊥Y φX

and

∇̄XφY − ∇̄YφX = (∇̄Xφ)Y − (∇̄Yφ)X + φ[X, Y]

we have

(∇̄Xφ)Y − (∇̄Yφ)X = AφXY − AφYX +∇⊥XφY −∇⊥Y φX − φ[X, Y]

which gives

(∇̄Xφ)Y = 1/2(AφXY − AφYX +∇⊥XφY −∇⊥Y φX

−φ[X, Y]− η(Y)φX − η(X)φY)

Using this equation in the equation (5.46) we get (5.45).
In view of D0 ⊕ {ξ} = ker(P), this lemma leads to the following

Theorem 5.7. Let M be a semi-invariant submanifold of a nearly trans-hyperbolic Sasakian manifold. Then the
distribution D0 ⊕ {ξ} is integrable if and only if

AFXY = AFYX f orallX, YεD0 ⊕ {ξ}

Integrability of the distribution D0: We calculate the torsion tensor N1(Y, X) for Y, XεD0. It can be verified
that

φ((∇̄Xφ)Y − (∇̄Yφ)X) = −[X, Y] + η([X, Y])ξ + φ(AφXY − AφYX) + φ(∇⊥XφY −∇⊥Y φX) (5.47)

(∇̄φXφ)Y − (∇̄φYφ)X = [X, Y]− φ(AφXY − AφYX)− φ(∇⊥XφY −∇⊥Y φX (5.48)

Using (5.13), (5.14) and (5.11) we get for Y, XεD0

N1(Y, X) = −2[X, Y] + 2/3φP[X, Y] + 2φ(∇⊥XφY −∇⊥Y φX) (5.49)

Theorem 5.8. The distribution D0 is integrable on a semi-invariant submanifold M of a nearly trans-hyperbolic
Sasakian manifold if and only if

N(1)(Y, X)εD0 ⊕ D̄1 X, YεD0 (5.50)

AFXY = AFYX X, YεD0 (5.51)

Proof. If D0 is integrable, then in view of (5.48) and (5.49), the relation (5.50) and (5.51) follow easily.
Conversely, let X, YεD0 and let the relation (5.50) and (5.51) be true. Then in view (5.48), we get P[X, Y] = 0
and in view of (5.49), we get

0 = g(ξ, N1(Y, X)) = g(ξ, 2[Y, X]).

Thus [X, Y]εD0.

Non-integrability of the distribution D1:

Theorem 5.9. Let M be a semi-invariant submanifold of a nearly trans-hyperbolic Sasakian manifold with α 6= 0. Then
the non-zero invariant distribution D1 is not integrable.

Proof. If D1 is integrable then for X, YεD1 it follows that dη(X, Y) = 0 and [φ, φ](X, Y)εD1. Therefore, for
XεD1 in view of (3.24), we get

0 = η([φ, φ](X, PX) + 2dη(X, PX)ξ)

= η(N1(X, PX) = 4αg(φX, PX) = 4αg(PX, PX),

which is a contradiction.
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Super Edge-antimagic Graceful labeling of Graphs
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Abstract

For a graph G = (V,E), a bijection g from V (G) ∪ E(G) into {1, 2, . . . , |V (G)| + |E(G)|} is called
(a, d)-edge-antimagic graceful labeling of G if the edge-weights w(xy) = |g(x) + g(y) − g(xy)|, xy ∈ E(G),
form an arithmetic progression starting from a and having a common difference d. An (a, d)-edge-antimagic
graceful labeling is called super (a, d)-edge-antimagic graceful if g(V (G)) = {1, 2, . . . , |V (G)|}. Note that the
notion of super (a, d)-edge-antimagic graceful graphs is a generalization of the article “G. Marimuthu and M.
Balakrishnan, Super edge magic graceful graphs, Inf.Sci.,287( 2014)140–151”, since super
(a, 0)-edge-antimagic graceful graph is a super edge magic graceful graph.We study super
(a, d)-edge-antimagic graceful properties of certain classes of graphs, including complete graphs and
complete bipartite graphs.

Keywords: Edge-antimagic graceful labeling, Super edge-antimagic graceful labeling.
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1 Introduction

We consider finite undirected nontrivial graphs without loops and multiple edges. We denote by V (G)
and E(G) the set of vertices and the set of edges of a graph G, respectively. Let |V (G)| = p and |E(G)| = q

be the number of vertices and the number of edges of G respectively. General references for graph-theoretic
notions are [2, 24].

A labeling of a graph is any map that carries some set of graph elements to numbers. Kotzig and Rosa [15,
16] introduced the concept of edge-magic labeling. For more information on edge-magic and super edge-
magic labelings, please see [10].

Hartsfield and Ringel [11] introduced the concept of an antimagic labeling and they defined an antimagic
labeling of a (p, q) graph G as a bijection f from E(G) to the set {1, 2, . . . , q} such that the sums of label of the
edges incident with each vertex v ∈ V (G) are distinct. (a, d)-edge-antimagic total labeling was introduced by
Simanjuntak, Bertault and Miller in [22]. This labeling is the extension of the notions of edge-magic labeling,
see [15, 16].

For a graph G = (V,E), a bijection g from V (G) ∪ E(G) into {1, 2, . . . , |V (G)| + |E(G)|} is called a (a, d)-
edge-antimagic total labeling of G if the edge-weights w(xy) = g(x) + g(y) + g(xy), xy ∈ E(G), form an
arithmetic progression starting from a and having a common difference d. The (a, 0)-edge-antimagic total
labelings are usually called edge-magic in the literature (see [8, 9, 15, 16]). An (a, d)-edge antimagic total
labeling is called super if the smallest possible labels appear on the vertices.

All cycles and paths have a (a, d)-edge antimagic total labeling for some values of a and d, see [22]. In [1],
Baca et al. proved the (a, d)-edge-antimagic properties of certain classes of graphs. Ivanco and Luckanicova
[13] described some constructions of super edge-magic total (super (a, 0)-edge-antimagic total) labelings for

∗Corresponding author.
E-mail address: yellowmuthu@yahoo.com (G. Marimuthu), krishnaswetha82@gmail.com(P. Krishnaveni).
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disconnected graphs, namely, nCk ∪ mPk and K1,m ∪ K1,n. Super (a, d)-edge-antimagic labelings for Pn ∪
Pn+1, nP2 ∪ Pn and nP2 ∪ Pn+2 have been described by Sudarsana et al. in [23].

In [7], Dafik et al. proved super edge-antimagicness of a disjoint unionof m copies of Cn. For most recent
research in the subject, refer to [3, 14, 17, 19, 20, 21].
We look at a computer network as a connected undirected graph. A network designer may want to know
which edges in the network are most important. If these edges are removed from the network, there will be a
great decrease in its performance. Such edges are called the most vital edges in a network [5, 6, 12]. However,
they are only concerned with the effect of the maximum flow or the shortest path in the network. We can
consider the effect of a minimum spanning tree in the network. Suppose that G = (V,E) is a weighted graph
with a weight w(e) assigned to every edge e in G. In the weighted graph G, the weight of a spanning tree
T,w(T ) is defined to be

∑
w(e) for all e ∈ E(T ). A spanning tree T in G is called a minimum spanning tree if

w(T ) ≤ w(T ′) for all spanning trees T ′ in G. Let g(G) denote the weight of a minimum spanning tree of G if G

is connected; otherwise, g(G) = ∞. An edge e is called a most vital edge (MVE) in G if g(G−e) ≥ g(G−e′) for
every edge e′ of G. We have a question : Is there any possibility to label the vertices and edges of a network G

in such a way that every spanning tree of G is minimum and every edge is a most vital edge in G? The answer
is ‘yes’.

To solve this problem Marimuthu and Balakrishnan [18] introduced an edge magic graceful labeling of a
graph.

They presented some properties of super edge magic graceful graphs and proved some classes of graphs
are super edge magic graceful.

A (p, q) graph G is called edge magic graceful if there exists a bijection g : V (G)∪E(G) → {1, 2, . . . , p + q}
such that |g(x) + g(y)− g(xy)| = k, a constant for any edge xy of G. G is said to be super edge magic graceful
if g(V (G)) = {1, 2, . . . , p}.

An (a, d)-edge-antimagic graceful labeling is defined as a bijective mapping from V (G) ∪ E(G) into the
set {1, 2, 3, . . . , p + q} so that the set of edge-weights of all edges in G is equal to
{a, a + d, a + 2d, . . . , a + (q − 1)d}, for two integers a ≥ 0 and d ≥ 0.

An (a, d)-edge-antimagic graceful labeling g is called super (a, d)-edge-antimagic graceful if
g(V (G)) = {1, 2, . . . , p} and g(E(G)) = {p + 1, p + 2, . . . , p + q}. A graph G is called (a, d)-edge-antimagic
graceful or super (a, d)-edge-antimagic graceful if there exists an (a, d)-edge-antimagic graceful or a super
(a, d)-edge-antimagic graceful labeling of G.

Note that the notion of super (a, d)-edge-antimagic graceful graphs is a generalization of the article ‘G.
Marimuthu and M. Balakrishnan, Super edge magic graceful graphs, Inf.Sci.,287( 2014)140–151”, since super
(a, 0)-edge-antimagic graceful graph is a super edge magic graceful graph.

In this paper, we study super (a, d)-edge-antimagic graceful properties of certain classes of graphs,
including complete graphs and complete bipartite graphs.

2 Complete graphs

Theorem 2.1. If the complete graph Kn, n ≥ 3, is super (a, d)-edge-antimagic graceful, then d ≤ 1.

Proof. Assume that a one-to-one mapping f : V (Kn) ∪ E(Kn) → {1, 2, . . . , |V (Kn)| + |E(Kn)|} is a super
(a, d)-edge-antimagic graceful labeling of complete graph Kn, where the set of edge-weights of all edges in
Kn is equal to {a, a + d, . . . , a + (|E(Kn)| − 1)d}.

The maximum edge-weight a + (|E(Kn)| − 1)d is no more than
∣∣∣1 + (n− 1)−

(
n2+n

2 − 1
) ∣∣∣.

Thus, a + (|E(Kn)| − 1)d ≤ n2−n−2
2 .

a +
(

n2 − n− 2
2

)
d ≤ n2 − n− 2

2
(2.1)
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The minimum edge-weight is |1 + n− (n + 1)| = 0.

Therefore,
a = 0 (2.2)

From (1) and (2) we get 0 + d
(

n2−n−2
2

)
≤ n2−n−2

2 . Hence d ≤ 1.

Theorem 2.2. Every complete graph Kn, n ≥ 3 is super (a, 1)-edge-antimagic graceful.

Proof. For n ≥ 3, let Kn be the complete graph with V (Kn) = {xi : 1 ≤ i ≤ n} and

E(Kn) =
n−1⋃
i=1

{xixi+j : 1 ≤ j ≤ n − i}. Construct the one-to-one mapping

f : V (Kn) ∪ E(Kn) →
{

1, 2, . . . , n2

2 + n
2

}
as follows:

If 1 ≤ i ≤ n, then f(xi) = i. If 1 ≤ j ≤ n− 1 and 1 ≤ i ≤ n− j,

then f(xixi+j) = nj + i +
j∑

k=1

(1− k). It is a routine procedure to verify that the set of edge-weights consists of

the consecutive integers
{

0, 1, 2, . . . , n(n−1)
2 − 1

}
which implies that f is a super (0, 1)-edge-antimagic graceful

labeling of Kn.

An example to illustrate Theorem 2.2 is given in Fig. 1

s

s

s

s

51 2

34 7

6
10

8 9

Fig. 1 A (0, 1)-super edge-antimagic graceful completegraph.

3 Complete bipartite graphs

Let Kn,n be the complete bipartite graph with V (Kn,n) = {xi : 1 ≤ i ≤ n} ∪ {yj : 1 ≤ j ≤ n} and E(Kn,n) =
{xiyj : 1 ≤ i ≤ n and 1 ≤ j ≤ n}.

Our first result in this section provides an upper bound for the parameter d for a super (a, d)-edge-
antimagic graceful labeling of the complete bipartite graph Kn,n.

Theorem 3.1. If a complete bipartite graph Kn,n n ≥ 2, is super (a, d)-edge-antimagic graceful, then d = 1.

Proof. Let Kn,n, n ≥ 2 be a super (a, d)-edge-antimagic graceful graph with a super (a, d)-edge-antimagic
graceful lableing g : V (Kn,n) ∪ E(Kn,n) → {1, 2, . . . , 2n + n2} and W = {w(xy) : xy ∈ E(Kn,n)} = {a, a +
d, a + 2d, . . . , a + (n2 − 1)d} be the set of edge-weights.

The sum of all vertex labels and edge labels used to calculate the edge-weight is equal to∣∣∣∣∣∣n
n∑

i=1

g(xi) + n
n∑

j=1

g(yj)−
n∑

i=1

n∑
j=1

g(xiyj)

∣∣∣∣∣∣ =
n4 − n2

2
(3.3)

The sum of edge-weights in the set W is

∑
xy∈E(Kn,n)

w(xy) =
n2

2
(2a + d(n2 − 1)) (3.4)

The minimum edge-weight a = |1 + 2n− (2n + 1)| = 0. Therefore a = 0.
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Combining (3) and (4) we get, n4−n2

2 = n2

2 (2a + d(n2 − 1)).

Hence d = 1 for n ≥ 2.

Theorem 3.2. Every complete bipartite graph Kn,n, n ≥ 2 is super (a, 1)-edge-antimagic graceful.

Proof. Define the bijective function g : V (Kn,n) ∪ E(Kn,n) → {1, 2, . . . , |V (Kn,n)| +|E(Kn,n)|} of Kn,n in the
following way:

g(xi) = i for 1 ≤ i ≤ n

g(yj) = n + j for 1 ≤ j ≤ n

g(xiyj) = (j − i + 2)n + i− 1 +
j−i∑
k=0

(1− k) for 1 ≤ i ≤ n and i ≤ j ≤ n

g(xiyj) =
n2 + n

2
+ (i− j + 1)n + j − 1 +

i−j∑
k=0

(1− k) for 1 ≤ j ≤ n− 1

and j + 1 ≤ i ≤ n.

Let A = (aij) be a square matrix, where aij = g(xi) + g(yj), 1 ≤ i ≤ n and 1 ≤ j ≤ n.

The matrix A is formed from the edge-weights of Kn,n under the vertex labeling:

A =



n + 2 n + 3 n + 4 n + 5 . . . 2n 2n + 1
n + 3 n + 4 n + 5 n + 6 . . . 2n + 1 2n + 2
n + 4 n + 5 n + 6 n + 7 . . . 2n + 2 2n + 3
n + 5 n + 6 n + 7 n + 8 . . . 2n + 3 2n + 4
...
2n 2n + 1 2n + 2 2n + 3 . . . 3n− 2 3n− 1
2n + 1 2n + 2 2n + 3 2n + 4 . . . 3n− 1 3n


It is not difficult to see that the labels of the edges xiyj form the square matrix B = (bij), where bij = g(xiyj),
for 1 ≤ i ≤ n, 1 ≤ j ≤ n and t = n2+5n

2 , r = n2 + 2n :

B =



2n + 1 3n + 1 4n 5n− 2 . . . t− 2 t
n2+5n

2 + 1 2n + 2 3n + 2 4n + 1 . . . t− 4 t− 1
n2+7n

2
n2+5n

2 + 2 2n + 3 3n + 3 . . . t− 7 t− 3
n2+9n

2 − 2 n2+7n
2 + 1 n2+5n

2 + 3 2n + 4 . . . t− 11 t− 6
...
r − 2 r − 4 r − 7 r − 11 . . . 3n− 1 4n− 1
r r − 1 r − 3 r − 6 . . . n + t− 1 3n


The vertex labeling and the edge labeling of Kn,n combine to give a total labeling where the edge-weights of
edges xiyj , 1 ≤ i ≤ n and 1 ≤ j ≤ n are given by the square matrix C = (cij) which is |A−B|.

We are setting p = n2+n
2 and q = n2.

C =



n− 1 2n− 2 3n− 4 4n− 7 . . . p− 2 p− 1
n2+3n−4

2 n− 2 2n− 3 3n− 5 . . . p− 5 p− 3
n2+5n−8

2
n2+3n−6

2 n− 3 2n− 4 . . . p− 9 p− 6
n2+7n−14

2
n2+5n−10

2
n2+3n−8

2 n− 4 . . . p− 14 p− 10
...

q − 2 q − 5 q − 9 q − 14 . . . 1 n

q − 1 q − 3 q − 6 q − 10 . . . n2+n
2 0


We can see that the matrix C is formed from consecutive integers 0, 1, 2, . . . , n2 − 1. This implies that the
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labeling g : V (Kn,n) ∪ E(Kn,n) → {1, 2, . . . , n2 + 2n} is super (0, 1)-edge-antimagic graceful.

Figure 2 illustrates the proof of the above theorem.

t

t

t

t

t

t

1

4

13

7

2

5

12

11

14

15

10 8

3

6

9

Fig. 2 A (0,1)- super edge-antimagic graceful completebipartite graph.

4 Conclusion

In the foregoing sections we studied super (a, d)-edge-antimagic graceful labeling for complete graphs and
complete bipartite graphs. We have shown a bound for the feasible values of the parameter d and observed
that for every super (a, d)-edge-antimagic graceful graph,d < 2.There are many research avenues on super
(a, d)-edge-antimagic gracefullness of graphs.

If a graph G is super (a, d)-edge-antimagic graceful,is the disjoint union of multiple copies of the graph G
super (a, d)-edge-antimagic graceful as well?An example of super (a, d)-edge-antimagic graceful disconnected
graph is given in Figure 3.
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Figure 3. A super edge-antimagic gracefulness of disconnected graph.

To find the solution for the above question, We propose the following open problem.

Open Problem 4.1. Discuss the super (a, d)-edge-antimagic gracefulness of disconnected graphs.
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Abstract

In this paper we establish a result that every quasi-weak commutative Boolean-like near-ring can be
imbedded into a quasi-weak commutative Boolean-like commutative semi-ring with identity. Key words:
Quasi-weak commutative near-ring, Boolean-like near-ring.
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1 Introduction

The concept of Boolean-like ring was coined by A.L.Foster[1]. Foster proved that if R is a Boolean ring
with identity then ab(1-a)(1-b) = 0 for all a,b ε R. He generalized the concept of Boolean ring as Boolean-like
ring as a ring R with identity satisfying (i) ab(1-a)(1-b) = 0 and (ii) 2a = 0 for all a,bε R. He also observed that
the equation ab(1-a)(1-b) = 0 can be re-written as (ab)2 - ab2 a2b +ab =0. He re-defined a Boolean-like ring as
a commutative ring with identity satisfying (i) (ab)2 - ab2 a2b +ab =0 and (ii) 2a = 0 for all a,b ε R. In 1962
Adil Yaqub [8] proved that the condition ‘commutativity ’is not necessary in the definition of Boolean-like
rings. He proved that any ring R with the conditions (i) (ab)2 - ab2 a2b +ab =0 and (ii) 2a = 0 for all a,b ε R is
necessarily commutative.

Ketsela Hailu and others [4] have constructed the Boolean-like semi-ring of fractions of a weak
commutative Boolean-like semi-ring. We have coined and studied the concept of quasi-weak commutative
near-ring in [2]. In this paper we define Boolean-like near ring (right) and prove that every quasi-weak
commutative. Boolean-like near ring can be imbedded into a quasi weak commutative semi ring with
identity.

2 Preliminaries

In this section we recal some definitions and results which we use in the sequal.

∗Corresponding author.
E-mail address: ggrmoorthy@gmail.com (G. Gopalakrishnamoorthy), amrishhanda83@gmail.com(S.Geetha).
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2.1. Definition

A non empty set R together with two binary operations + and · satisfying the following axioms is called a
right near-ring
(i) (R,+) is a group
(ii) · is associative
(iii) · is right distributive w.r.to +
(ie) (a+b) c = a · c + b · c ∀ a,b,c ε R

2.2. Note

In a right near-ring R, 0 a = 0 ∀ a ε R.
If (R,+) is an abelian group, then (R,+, · ) is called a semi-ring.

2.3. Definition

A right near-ring (R,+, · ) is called a Boolean-like near ring if
(i) 2a = 0 ∀ a ε R and
(ii) (a+b-ab)ab = ab ∀ a,b ε R

2.4.Remark

If (R,+, · ) is a Boolean-like near ring,then (R,+) is always an abelian group for 2x = 0 ∀ x ε R implies x = -x ∀ x
ε R. We know, a group in which every element is its own inverse is always commutative.

2.5. Definition [5]

A right near ring R is said to be weak commutative if xyz = xzy ∀ x,y,z ε R

2.6. Definition [8]

A right near ring R is said to be pseudo commutative if xyz = zyx ∀ x,y,z ε R

2.7. Definition [2]

A right near ring R is said to be quasi-weak commutative if xyz = yxz ∀ x,y,z ε R

2.8. Definition

Let R be a right near ring. A subset B R is said to be multiplicatively closed if a,b ε B implies ab ε B.

3.Main results

3.1. Lemma

In a Boolean-like near ring (right) R a · 0 = 0 ∀ a ε R
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Proof:

Since R is Boolean-like near ring, (a+b-ab)ab = ab ∀ a,b ε R
Taking a=0, we get
(0 + b - 0b) 0b = 0b
(ie) b · 0 = 0
Thus a· 0 = 0 ∀ a ε R.

3.2. Lemma

Let R be a quasi-weak commutative right near ring R. Then (ab)n = anbn ∀ a,b ε R and for all n ≥1.

Proof:

Let a,b ε R.
Then (ab)2 = (ab) (ab) = a (bab)

= a (abb) ( quasi weak)
(ab)2 = a2b2

Assume (ab)m = am bm

Now (ab)(m+1) = (ab)m ab
= am bm ab

= am (abmb)
= am+1bm+1

Thus (ab)m = am bm ∀ a,b ε R and for all integer m≥ 1.

3.3 lemma

Let R be a quasi-weak commutative Boolean like near-ring.Then
a2b + ab2 = ab +(ab)2 ∀ a,b ε R.

Proof:

a2b + ab2 = aab + abb
= aab + bab
= (a + b)ab
= (a + b ab + ab)ab
= (a + b ab)ab + (ab)2

a2b + ab2 = ab + (ab)2 ( R is Boolean-like near-ring )

3.4 Lemma

In a quasi-weak commutative Boolean like near ring (R,+, .),
(a + a2)( b + b2)c = 0 ∀ a,b,c ε R.

Proof:

(a + a2)( b + b2)c ={a(b + b2) + a2(b + b2)} c
= a( b + b2 )c + a2( b + b2)c
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= ( b + b2 )ac + ( b + b2) a2c ( R is quasi-weak commutative )
= {(b + b2)a + (b + b2)a2} c
={ba + b2a + ba2 + b2a2}c
={ba + ba + (ba)2 + b2a2} (using Lemma 3.3)
= {ba + ba + b2a2 + b2a2} (using Lemma 3.2)
={2ba + 2b2a2}
= 0 ( R is Boolean-like near-ring).

3.5 Lemma

In a quasi-weak commutative Boolean like near ring R, (a - a2 ) ( b - b2 )c = 0 ∀ a,b,c ε R.

Proof:

(a - a2)( b - b2)c ={a(b− b2)− a2(b− b2)} c
= a( b - b2 )c - a2( b - b2)c
= ( b - b2 )ac - ( b - b2) a2c ( quasi-weak commutative )
= {(b− b2)a− (b− b2)a2} c
={ba− b2a− ba2 − b2a2}c
={ba− ba− (ba)2 − b2a2}
= {ba− ba− b2a2 − b2a2} (using Lemma 3.3)
= 0

3.6 Lemma

Let R be a quasi commutative Boolean like near-ring.Let S be a commutative subset of R which is
multiplicatively closed.Define a relation N on R× S by (r1 ,s1) ∼ (r2 ,s2)if and only if there exists an element s
ε S such that (r1s2 - r2s1)s = 0.Then N is an equivalence relation.

Proof:

(i) Let (r,s) ε R× S. Since rs-rs = 0,
we get (rs-rs )t=0 for all t ε S.
Hence ∼ is reflexive.

(ii) Let (r1,s1)∼(r2,s2).Then there exists an element sεS such that
(r1,s1-r2,s1)s=0. So (r2,s1-r1,s2)s = 0.

This proves ∼ is symmetric.
(iii) Let (r1,s1)∼(r2,s2) and (r2,s2)∼(r3,s3).

Then there exists p,qε S such that
(r1s2-r2s1)p=0 and (r2s3-r3s2)q = 0.
So s3(r1s2-r2s1)p=0=s1(r2s3-r3s2)q (By Lemma 3.1)
=⇒ (r1s2-r2s1)s3p=0=(r2s3-r3s2)s1q(R is quasi-weak commutative)
=⇒ (r1s2- r2s1)s3pq=0=p(r2s3-r3s2)s1q
=⇒(r1s2-r2s1)s3pq=0=(r2s3-r3s2)ps1q(R is quasi-weak commutative)
=⇒(r1s2-r2s1)s3pq=0=(r2s3-r3s2)s1pq(R is quasi-weak commutative)
=⇒ (r1s2s3-r2s1s3)pq=0=(r2s3s1-r3s2s1)pq
=⇒ (r1s2s3- r2s1s3 +r2s3s1-r3s2s1) pq = 0.
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=⇒ (r1s3 s2-r2s1s3+r2s1s3-r3s1s2)pq=0.(S is commutative)
=⇒ (r1s3-r3s1)s2pq=0
=⇒ (r1s3-r3s1)r=0 where r = s2 pqε S.
This implies (r1,s1)∼(r3,s3).
Hence ∼ is transitive.
Hence the Lemma.

3.6 Remark

We denote the equivalence class containing ( r,s)ε R × S by r
s and the set of all equivalence classes by S−1R.

3.8 Lemma

Let R be a quasi weak commutative Boolean like near-ring. Let S be a commutative subset of R which is also
multiplicatively closed. If 0/∈ S and R has no zero divisors,then
(r1,s1)∼ (r2,s2) if and only if r1s2=r2s1.

Proof:

Assume (r1,s1)∼ (r2,s2).Then there exists an element sεS such that (r1s2-r2s1)s=0.
Since 0/∈S and R has zero divisors,we get(r1s2-r2s1)= 0.
(i.e) r1s2 = r2s1

Conversely assume r1s2 = r2s1.
Then r1s2 - r2s1 = 0 and so (r1s2-r2s1) s = 0 for all sεS.
Hence (r1s1) /∈ (r2s2).

3.9 Lemma:

Let R be a quasi weak commutative Boolean like near-ring. Let S be a commutative subset of R,which is also
multiplicatively closed.
Then (i) r

s = rt
st = tr

st = tr
ts for all rεR and for all s,tεS.

(ii) rs
s = rs′

s′ for all rεR and for all s,s′ ε S.
(iii) s

s = s′
s′ for all s,s’ ε S.

(iv) If 0εS,then S−1R contains exactly one element.

Proof:

The proof of (i),(ii) and (iii) are routine.
(iv) Since 0εS , (r1s2 - r2s1)0 = 0 ∀ r1

s1
, r2
s2

ε S−1R.
and so r1

s1
= r2

s2
.

Then S−1R contains exactly one-element.

3.10 Theorem:

Let R be a quasi weak commutative Boolean like near ring.Let S be a commutative subset of R which is also
multiplicatively closed. Define binary operation + and on S−1R as follows :
r1
s1

+ r2
s2

= r1s2+r2s1
s1s2

and
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r1
s1
· r2

s2
= r1r2

s1s2

Then S−1R is a commutative Boolean like semi-ring with identity.

Proof:

Let us first prove that + and · are well defined. Let r1
s1

= r′1
r′1

and r2
s2

= r′2
r′2

Then there exists t1, t2εS such that
(r1s′1-r′1s1)t=0 . . . . . . . . .(1)
and (r2s′2-r′2s2)t=0 . . . . . . . . .(2)
Now[(r1s2+r2s1)s′1s′2-(r′1s′2+r′2s′1)s1s2]t1t2

=[r1s2s′1s′2+r2s1s′1s′2-r′1 s′2s1s2-r′2s′1s1s2] t1t2

=[r1s′1s2s′2-r′1s1s2s′2+r2s′2s1s′1-r′2s2s1s′1]t1t2

=[(r1s′1-r′1s1)s2s′2+(r2s′2-r′2s2)s1s′1]t1t2

=(r1s′1-r′1s1)t1s2s′2t2+(r2s′2-r′2s2)t2s1s′1t1

=0 · s2s′2t2 + 0 · s1s′1t1

=0
Hence r1s2+r2s1

s1s2
= r′1s′2+r′2s′1

s′1s′2

(i.e) r1
s1

+ r2
s2

= r′1
s′1

+ r′2
s′2

Hence + is well defined.
From (1) we get
(r1s′1-r′1s1)t1t2r2s′2=0
t1t2(r1s′1-r′1s1)r2s′2=0 (quasi weak commutative)
t1t2(r1s′1r2-r′1s1r2)s′2=0
(r1s′1r2-r′1s1r2)s′2t1t2=0 (S is commutative subset)
(r1s′1r2s′2-r′1s1r2s′2)t1t2=0
(r1r2s′1s′2-r′1r2s1s′2)t1t2=0
r1r2s′1s′2t1t2-r′1r2s1s′2t1t2=0 . . . . . . . . .(3)
From (2) we get
(r2s′2-r′2s2)t2t1r′1s1=0
(r2s′2-r′2s2)t1t2r′1s1=0 (S is commutative subset)
t1t2(r2s′2-r′2s2)r′1s1=0 (quasi weak commutative)
t1t2(r2s′2r′1-r′2s2r′1)s1=0
(r2s′2r′1-r′2s2r′1)t1t2s1=0 (quasi weak commutative)
(r2s′2r′1-r′2s2r′1)s1t1t2=0 (S is commutative subset)
(r2s′2r′1s1-r′2s2r′1s1)t1t2=0
(r2r′1s′2s1-r′2r′1s2s1)t1t2=0 (quasi weak commutative)
(r′1r2s′2s1-r′1r′2s2s1)t1t2=0 (quasi weak commutative)
r′1r2s1s′2t1t2-r′1r′2s1s2t1t2=0(S is commutative subset). . . . . . . . .(4)
(3) + (4) gives
r1r2s′1s′2t1t2-r′1r′2s1s2t1t2=0
(r1r2s′1s′2-r′1r′2s1s2)t1t2=0

This means r1r2
s1s2

= r′1r′2
s′1s′2

Hence is well-defined.
We note that r1

s1
+ r2

s2
= r1s2+r2s1

s1s2
= (r1+r3)s

s2

= r1+r2
s (by lemma 3.9). . . . . . . . .(5)

Claim:1(S−1R,+)is an abelian group.
Let r1

s1
, r2
s2

, r3
s3

ε S−1R.
Then
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r1
s1

+( r2
s2

+ r3
s3

)= r1
s1

+( r2s3+r3s2
s2s3

)

= r1s2s3+(r2s3+r3s2)s1
s1s2s3

= r1s2s3+r2s3s1+r3s2s1
s1s2s3

Also ( r1
s1

+ r2
s2

)+ r3
s3

=( r1s2+r2s1
s1s2

)+ r3
s3

= (r1s2+r2s1)s3+r3s1s2
s1s2s3

= r1s2s3+r2s3s1+r3s1s2
s1s2s3

r1
s1

+( r2
s2

+ r3
s3

)=( r1
s1

+ r2
s2

)+ r3
s3

So + is associative.
For any r

s ε R,we have
r
s + 0

s = r+0
s = r

s
Also 0

s + r
s = 0+r

s = r
s

Hence 0
s is the additive identity of r

s εS−1R for all r ε R
Clearly + is commutative.
Thus (R,+) is an abelian group.
Claim:2 · is associative.
Now r1

s1
· ( r2

s2
· r3

s3
)= r1

s1
·( r2r3

s2s3
)= r1(r2r3)

s1(s2s3)

= (r1r2)r3
(s1s2)s3

=( r1
s1
· r2

s2
)· r3

s3

So · is associative.
Claim:3 · is right distributive with respect to +.
Let r1

s1
, r2
s2

, r3
s3

ε S−1R.
Now ( r1

s1
+ r2

s2
)· r3

s3
=( r1s2+r2s1

s1s2
)· r3

s3

= r1s2r3+r2s1r3
s1s2s3

= s2r1r3+s1r2r3
s1s2s3

(quasi weak commutative)
= s2r1r3

s1s2s3
+ s1r2r3

s1s2s3
(using (5))

= s2r1r3
s2s1s3

+ s1r2r3
s1s2s3

= r1r3
s1s3

+ r2r3
s2s3

= r1
s1
· r3

s3
+ r2

s2
· r3

s3

This proves right - distributive law.
Claim:4 S−1R is a Boolean-like ring.
It is already proved in claim 1 that
2( r

s )= 0 for all r
s εS−1R

Let a = r1
s1

and b = r2
s2

be any two elements of S−1R Let t ε S be any element.
Now by Lemma 3.5
(a - a2)(b - b2) t = 0
⇒ ( r1

s1
- r2

1
s2

1
)( r2

s2
- r2

2
s2

2
)t = 0

[ r1
s1

( r2
s2

- r2
2

s2
2
)- r2

1
s2

1
( r2

s2
- r2

2
s2

2
)]t = 0

r1
s1

( r2
s2

- r2
2

s2
2
)t- r2

1
s2

1
( r2

s2

r2
2

s2
2
)t = 0

( r2
s2

- r2
2

s2
2
) r1

s1
t-( r2

s2
- r2

2
s2

2
) r2

1
s2

1
t=0(quasi weak commutative)

[( r2
s2

- r2
2

s2
2
) r1

s1
-( r2

s2
- r2

2
s2

2
) r2

1
s2

1
]t=0

[( r2s2−r2
2

s2
2

) r1
s1

-( r2s2−r2
2

s2
2

) r2
1

s2
1
]t=0

[( r2s2−r2
2

s2
2

) r1s1
s2

1
-( r2s2−r2

2
s2

2
) r2

1
s2

1
]t=0 (using Lemma 3.9)

[( r2s2r1s1−r2
2r1s1

s2
2s2

1
)- r2s2r2

1−r2
2r2

1
s2

2s2
1

]t=0
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[( r2r1s2s1−r2
2r1s1

s2
2s2

1
)- s2r2r2

1−r2
2r2

1
s2

2s2
1

]t=0(quasi weak commutative)

[( r2r1s2s1
s2

2s2
1

- r2
2r1s1
s2

2s2
1

- s2r2r2
1

s2
2s2

1
+ r2

2r2
1

s2
2s2

1
]t=0

[ r2r1
s2s1

- r2
2

s2
2

r1
s1

- r2
s2

r2
1

s2
1
+ r2

2r2
1

s2
2s2

1
]t=0

[ba− b2a− ba2 + b2a2]t=0
⇒ba = b2a - ba2 + b2a2

= b2a + ba2 - (ba)2 (using Lemma 3.2 )
ba = ba(b+a-ba)

This proves S−1R is Boolean-like near ring.
Claim :5 multiplication in S−1R is commutative
Let r1

s1
, r2
s2

be any two elements of S−1R.
Then r1

s1
· r2

s2
= r1r2

s1s2
= r1r2s

s1s2s ∀ sεS r2r1s
s1s2s (quasi weak commutative)

= r2r1s
s2s1s (S is commutative subset)

= r2
s2

r1
s1

(using Lemma 3.9)
Hence multiplication in S−1R is commutative.
Claim:6 Existence of multiplicative identity in S−1R
Let r

s S −1R be any element.
Then r

s ·
s
s = rs

ss = r
s

Also s
s ·

r
s = sr

ss = r
s

Hence s
s ε S−1 R is the multiplicative identity of S −1R

Thus S−1R is a commutative Boolean-like near-ring with identity.

3.11 Theorem

S−1R is quasi-weak commutative near-ring.
Proof:
Let a = r1

s1
, b = r2

s2
, c = r3

s3
be any three elements of S −1R

Now abc = r1
s1
· r2

s2
· r3

s3
= r1r2r3

s1s2s3

= r2r1r3
s1s2s3

(R is quasi-weak commutative)
= r2r1r3

s2s1s3
(S is commutative)

= r2
s2

r1
s1

r3
s3

Then abc = bac ∀a,b,c ε S −1R.
This proves S−1R is quasi-weak commutative near-ring.

3.12 Theorem

Let R be a quasi-weak commutative Boolean-like near ring.Let S be a commutative subset of R which is
multiplicatively closed. Let 0 6= s εS. Define a map fs : R→ S −1 R as fs(r)= rs

s ∀ rε R. Then fs is a near-ring
monomorphism.
Proof:
Let r1,r2 ε R.
Then fs (r1+r2)= (r1+r2)s

s = r1s+r2s
s

= r1s
s + r2s

s (By (5) of Theorem 3.11)
= f(r1) + f(r2)

Also fs (r1 · r2 ) = (r1r2)s
s

= r1r2s2

s2

= r1r2ss
s2



326 G.Gopalakrishnamoorthy et al. / On Quasi-weak Commutative...

= r1(sr2s)
s2

= r1s
s · r2s

s (quasi weak commutative)
=fs(r1)·fs(r2)

Also fs(r1) = fs(r2)⇒ r1s
s = r2s

s
⇒ r1s

s - r2s
s =0

⇒ (r1s−r2s)
s =0

⇒ (r1−r2)s
s =0

⇒( r1
s - r2

s )=0
⇒ r1

s = r2
s

Hence fs is a monomorphism

3.13 Theorem

Let R be a quasi-weak commutative Boolean-like near-ring. Then R be embedded into a quasi-weak
commutative. Boolean like commutative semi ring with identity.
Proof:
Follows from Theorem 3.11 and 3.12.
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Abstract

A right near-ring N is called weak Commutative,( Definition 9.4 Pilz [9] ) if xyz = xzy for every x,y,z ε N.

A right near-ring N is called pseudo commutative ( Definition 2.1, S.Uma and others [10] ) if xyz = zyx for

all x,y,z ε N. A right near-ring N is called quasi weak commutative near-ring if xyz = yxz for every x,y,z ε N

[4]. In [4], we have obtained some interesting results of quasi-weak commutative near-rings. In this paper we

obtain some more results of quasi weak commutative near-rings.

Keywords: Quasi-weak commutative near-ring, Boolean-like near-ring.
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1 Introduction

Through out this paper, N denotes a right near-ring ( N,+,.) with atleast two elements.For any non-empty

subset A of N,we denote A - {0} = A*.The following definitions and results are well known.

Definition:1.1

An element a ε N is said to be

1.Idempotent if a2 = a.

2.Nilpotent, if there exists a positive integer k such that ak = 0.

Result: 1.2 (Theorem 1.62 Pilz [9])

Each near-ring N is isomorphic to a subdirect product of subdirectly irreducible near-rings.

Definition: 1.3

A near-ring N is said to be zero symmetric if ab = 0 implies ba = 0,where a,b ε N.

Result: 1.4
∗Corresponding author.
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If N is zero symmetric, then

Every left ideal A of N is an N-subgroup of N.

Every ideal I of N satisfies the condition NIN ⊆ I. (i.e) every ideal is an N-subgroup. N* I* N* ⊆ I*.

Result: 1.5

Let N be a near-ring. Then the following are true.

If A is an ideal of N and B is any subset of N,then ( A:B ) = {nε N such that nB ⊆ A} is always a left ideal.

If A is an ideal of N and B is an N-subgroup,then (A : B) is an ideal.

In particular if A and B are ideals of a zero-symmetric near-ring, then

( A : B) is an ideal.

Result: 1.6

1. Let N be a regular near-ring, a ε N and a = axa,then ax,xa are idempotents and so the set of idempotent

elements of N is non-empty.

2. axN = aN and Nxa = Na.

3. N is S and S’near-rings.

Result: 1.7 (Lemma 4 Dheena [1] )

Let N be a zero-symmetric reduced near-ring. For any a,b ε N and for any idempotent element e ε N, abe =

aeb.

Result: 1.8 ( Gratzer [6] and Fain [3] )

A near-ring N is sub-directly irreducible if and only if the intersection of all non-zero ideals of N is not zero.

Result: 1.9 (Gratzer [6] )

Each simple near-ring is sub directly irreducible.

Result: 1.10 ( Pilz [9] )

A non-zero symmetric near-ring N has IFP if and only if (O : S ) is an ideal for any subset S of N.

Result: 1.11 ( Oswald [8] )

An N-subgroup A of N is essential if A∩ B = {0} ,where B is any N subgroup of N,implies B = {0}.

Definition: 1.12

A near-ring N is said to be reduced if N has no non-zero nilpotent elements.

Definition: 1.13

A near-ring N is said to be an integral near-ring,if N has no non-zero divisors.

Lemma: 1.14

Let N be a near-ring.If for all a ε N,a2 = 0 ⇒a = 0,then N has no non-zero nilpotent elements.

Definition: 1.15
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Let N be a near-ring. N is said to satisfy intersection of factors property (IFP) if ab = o anb = 0 for all n ε N,

where a,b ε N.

Definition: 1.16

1. An ideal I of N is called a prime ideal if for all ideals A,B of N, AB is subset of I ⇒ A is subset of I or B is

subset of I.

2. I is called a semi-prime ideal if for all ideals A of N, A2 is subset of I implies A is subset of I.

3. I is called a completely semi-prime-ideal,if for any x ε N, x2 ε I ⇒ x ε I.

4. A completely prime ideal,if for any x,y ε N, xy ε I ⇒ x ε I or y ε I.

5. N is said to have strong IFP,if for all ideals I of N, ab ε I implies anb ε I for all n ε N.

Result: 1.17 (Proposition 2.4[10])

Let N be a Pseudo commutative near-ring. Then every idempotent element is central.

Result: 1.18[4]

Let N be a regular quasi weak commutative near-ring. Then

1. A =
√

A , for every N sub-group A of N

2. N is reduced

3. N has (*IFP)

Result: 1.19[4]

Let N be a regular quasi weak commutative near-ring. Then every N sub group is an ideal N = Na = Na2 =

aN = aNa for all a ε N

Result: 1.20[4]

Let N be a quasi weak commutative near-ring. For every ideal I of N, (I:S) is an ideal of N where S is any

subset of N.

Result: 1.21[4]

Every quasi weak commutative near-ring N is isomorphic to a sub-direct product of Sub-directly irreducible

quasi weak commutative near-rings.

2. Main Results:

Lemma: 2.1

Let N be a regular quasi weak commutative near-ring.

Then

(i) P∩Q = PQ for any two N-subgroups P,Q of N.

(ii) P = P2 for every N-sub group(ideal) P of N.

(iii) If P is a proper N-subgroup of N,then each element of P is a zero divisor.

(iv) Na Nb = Na ∩ Nb = Nab for all a,b ε N.

(v) Every N-subgroup of N is essential if N is integral.

Proof:
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(i) Let P and Q be two N-subgroups of N.

Then by Result1.19[4] they are ideals.

Hence PQ ⊂ P and PQ ⊆ Q.So PQ ⊆ P∩Q.

Let a ε P ∩ Q.Since N is regular,there exists b ε N such that

a = aba = (ab) a ε (PN)Q ⊆ PQ.

Hence P∩Q = PQ.This completes (i).

(ii) Taking Q = P in (i) we get P = P2.

(iii) Let P be a proper N-subgroup of N.

Let 0 6= a ε P.Now by(ii) Na = ( Na )2 = NaNa.

Therefore for every n ε N,there exists x,y ε N such that na = xaya.

Hence ( n-xay )a = 0.If a is not a zero divisor,then n-xay = 0.

(i.e) n = xay ε NPN ⊆P.

Hence N = P, contradicting P is a proper ideal of N.So a is a zero divisor of N. This proves (iii).

(iv) Since Na and Nb are N-subgroups,

Na ∩ Nb = Na Nb. ( by(i) )

Since Na ⊆ N, Na ∩ N = Na = Na∩ Na =Na Na

⊆ Na N = Na N.

and Na is an ideal implies Na N = ( Na )N ⊆ Na

= Na ∩ N.

Therefore Na = Na ∩ N = Na N.

This implies that Nab = ( Na )b = ( Na N )b = Na Nb = Na ∩ Nb.

This proves (iv).

(v) Let P be a non-zero N-subgroup of N.

Suppose there exists an N-subgroup Q of N such that P∩Q = {0}.

Then by (i) PQ = {0} and since N is an integral near-ring Q = {0}.

This proves (v).

Theorem:2.2

Let N be a regular quasi weak commutative near-ring and P be a proper N-subgroup of N.Then the

following are equivalent

(i) P is a prime ideal.

(ii) P is a completely prime ideal.

(iii) P is a primary ideal.

(iv) P is a maximal ideal.

Proof:

(i)⇒ (ii)

Let P be a proper N-subgroup of N.

Assume P is prime.Let ab ε P.

By Lemma 2.1(iv)

Na Nb = Nab ⊆ NP ⊆ P.

Also by Result1.19[4],Na and Nb are ideals of N.

Since P is prime, Na Nb ⊆ P implies Na ⊆ P (or) Nb ⊆ P.

Since N is regular,there exists x,y ε N such that a = axa and b = byb.
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If Na ⊆ P,then a = axa ε Na⊆P or if Nb ⊆ P,then b = byb ε Nb ⊆ P.

(i.e) aεP or bεP and hence P is completely prime.

(ii) ⇒ (i) is obvious.

(ii)⇒ (iii)

Let a,bε N.By Lemma 2.1(iv) Nab = Na∩ Nb.

Since Na ∩ Nb = Nb ∩ Na, Nab = Nba for all a,b ε N.

Hence for all a,b,c ε N.

Nabc = Nacb = Nbca = Nbac = Ncab = Ncba.

Suppose abc ε P and ab /∈ P,by (ii) cεP.

Again suppose abc ε P and ac /∈ P.

Since N is regular,acb ε Nacb ⊆ NP ⊆ P.

Thus acb = (ac)b εP implies bεP (by(ii)).

Continuing in the sameway, we can easily prove that if abcεP and if the product of any two of a,b,c doesnot

belong to P,then the third belongs to P:

This proves (iii).

(iii)⇒ (i)

Let abεP and a /∈ P.

Since N is regular a = axa for some xε N.

We shall first prove that xa /∈ P.

Suppose xa ε P, then a = axa = a(xa) ε NP ⊆ P,which is a contradiction.

Therefore xa /∈ P.

Also x(ab) ε NP ⊆P.Thus xab ε P and xa /∈ P.

As P is a primary ideal of N,bk εP for some integer k.Now bk εP

implies bε
√

P P.But by Result1.18[4]
√

P = P.So bε P.

This proves (ii).

(i) ⇒ (iv)

Let J be an ideal of N such that P ⊆ J ⊆ N.

Suppose P = J,there is nothing to prove.

So,assume P ⊂ J.We shall prove that J = N.

Let a ε J\ P.Since N is regular there exists x ε N such that a = axa.

Then a = (xa)a = xa2 (quasi weak commutative).

So, for all n ε N, na = nxa2 and this implies ( n - nxa ) a = 0.

Since N has I ⊂ P,we get n - nxa ) ya = 0 for all y ε N.

Consequently, N( n-nxa ) Na = N0 ={0}.

If b = ( n-nxa ) then Na Nb = Nab = {0} ⊆ P.

Since P is a prime ideal and Na and Nb are ideals in N, Na ⊆ P or Nb ⊂P.

If Na ⊆ P, then a = axa ε P which is a contradiction.

Hence Nb ⊆ P ⊆ J.

Since N is regular,there exists y ε N such that b = byb, (i.e) b = (by)b ε Nb⊆ J.

(i.e) b = n-nxa ε J.Since a ε J, nxa ε nJ ⊆ J. (By Lemma 1.4)

Therefore nε J.Hence J = N.So P is maximal.

(v) ⇒ (i) is obvious.
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This completes the proof of the theorem.

Theorem:2.3

Any quasi-weak commutative near-ring N with left identity is commutative.

Proof:

Let a,b ε N and e ε N be the identity.

Then ab = abe = bae ( quasi weak commutative ).

= ba

Hence N is commutative.

Theorem : 2.4

Let N be a subdirectly irreducible quasi weak commutative near-ring.

Then either N is simple with each non-zero idempotent element is an identity or the intersection of the

non-zero ideals of N has no non-zero idempotents.

Proof:

Let N be a subdirectly irreducible quasi weak commutative near-ring.

Suppose that N is simple.

Let e ε N be a non-zero idempotent element.

Then by Result1.8[4] N has IFP.By Theorem1.20 [4], (0:e) is an ideal.

Since e /∈ (0:e) and N is simple, we get (0:e) = {0}.

Hence ( ene - en )e = ene2 - ene = ene - ene = 0 for all nε N.

This implies ( ene - en ) ε (0: e) = {0}.

Hence ene - en = 0.

(i.e) ene = en · · · · · · (1)

Also since N is quasi weak commutative,

ene = nee = ne2 = ne · · · · · · (2)

(1) and (2) gives ne = en · · · · · · (3)

Also ( ne - n )e = ne2 - ne = ne - ne = 0 for all n ε N.

This implies ne - n = 0 · · · · · · (4)

(3) and (4) gives

ne = en = n. Hence e is an identity of N.

Suppose N is not simple.

Let I be the intersection of non-zero ideals of N.Since N is subdirectly irreducible, we have I 6= {0}.

Suppose that I contains a non-zero idempotent e.

We claim that e is a right identity.

If not,there exists nεN such that ne 6= n.

Hence ne - n 6= 0.Since ( ne - n )e = 0.

We have ne - n ε (0:e) and hence (0:e) is a non-zero ideal of N.

Therefore I ⊆ (0:e).Hence eεI ⊆ (0:e)

(i.e) e ε (0:e).This contradiction leads to conclude that e is a right identity of N. Hence for all nεN, n = ne ε NI

⊆ I.

This implies that I = N,again a contradiction.Hence the intersection of the non-zero ideals of N has no

non-zero idempotents.

This proves the theorem.
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Theorem:2.5

Let N be a regular quasi weak commutative near-ring.

Then the following are equivalent

(i) N is subdirectly irreducible.

(ii) Non-zero idempotents of N are not zero divisors.

(iii) N is simple.

Proof:

(i) ⇒ (ii)

Let J be the set of all non-zero idempotents in N which are zero divisor too.We shall prove that J is empty.If J

is not empty, let I = ∩ {(0 : e)/eεJ}.

Since N is sub-directly irreducible, I 6= 0 by Result1.8([6],[3])

Let 0 6= a εI.

Since N is regular,there exists an element bεN such that a = aba · · · · · · (1)

Also ab,ba are idempotents.Since 0 6= a εI, ae = 0 for all e εJ · · · · · · (2)

Then ( ae )b = 0.

Since N is zero symmetric b( ae ) = 0.

(i.e) ( ba )e = 0.Hence ba is a zero divisor and so ba εJ.

So by (2) a(ba) = 0.

This is a contradiction as a 6= 0.Hence J is empty.

(ii) ⇒ (iii)

Let I be a non-zero ideal of N and 0 6= x εI.

Since N is regular,there exists yεN such that x = xyx · · · · · · (3)

Also yx is an idempotent element of N.

Therefore for every nεN, nx = nxyx.

(i.e) ( n-nxy )x = 0.Since N has IFP, ( n-nyx )yx = 0.By (ii) n-nxy = 0

(i.e) for every nεN, n = nxy ε NIN ⊂ I.

Thus N ⊆ I.This proves that N has no non-trivial ideal of N.

So N is Simple.

(iv) ⇒ (i)

This follows from the Result 1.9.

Corollary:2.6

Let N be a regular quasi weak commutative near-ring.Then N is subdirectly irreducible if and only if N is a

field.

Proof: By theorem 2.4 and 2.5 every non-zero idempotent is an identity.

Since N is regular,

a = aba for some b ε N · · · · · · (1)

a = ( ba )a

That is inverse exists for every a ε N.

Hence N is a field.The converse is obvious.

Theorem:2.7

Let N be a regular quasi weak commutative near-ring.Then N is isomorphic to a subdirect product of fields.

Proof:
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By Result1.21[4] N is isomorphic to a subdirect product of subdirectly irreducible quasi weak commutative

near-rings Nk’s, each Nk is regular and quasi weak commutative. Then the proof follows from the above

corollary.

Corollary:2.8

Let N be a regular quasi weak commutative near-ring.Then N has no non-zero zero divisors if and only if N

is a field.

Proof:

Follows from the theorem.
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Abstract

A mathematical model for electrically conducting flow of Herschel-Bulkley fluid through a uniform tube
of multiple stenoses has been studied. Analytical solutions of resistance to the flow and wall shear stress have
been calculated. It is found that the resistance to the flow increases with the heights of the stenoses, power
law index, volumetric flow rate, radius of the plug core-region and yield stress, but decreases with induced
magnetic field and shear stress. It is also observed that the wall shear stress is increasing with the heights of
the stenoses and radius of the plug core-region.

Keywords: Multiple stenoses, Herschel-Bulkley fluid, Magnetic field.
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1 Introduction

Diseases in the blood vessels and in the heart, such as heart attacks and strokes, are the major mortality
worldwide. The underlying cause for these events is the formation of lesions, known as atherosclerosis. These
lesions and plaques can grow and occlude the artery and hence prevent blood supply to the distal bed. Plaques
with calcium in them can also rupture and initiate formation of blood clots (thrombus). The clots can form as
emboli and occlude the smaller vessels that can also result in interruption of blood supply to the distal bed.
Plaques formed in coronary arteries can lead to heart attacks and clots in the risk factors for the presence of
atherosclerotic lesions.

Hence the formation of stenosis/ atherosclerosis is found to be largely responsible for the cause of several
vascular diseases. Thus a proper knowledge of the flow characteristics of blood in such blood vessels may
lead to better understanding of the development of these diseases. This in turn may help in proper diagnosis
of such diseases and design and development of improvised artificial organs.

In view of this, a number of researchers have studied different aspects of blood flow analysis in arteries.
Young [1], Lee and Fung [2],Padmanabhan [3] have studied the flow of blood in stenosed artery by considering
blood as a Newtonian fluid. Blood behaves cerebral circulation can result in a stroke. There are number of
differently when flowing in large vessels, in which Newtonian behavior is expected and in small vessels
where non-Newtonian effects appear Buchanan et al.[4], Mandal[5],Ismail et al. [6], Radhakrishnamacharya
[7]. In small vessels blood behaves like a Herschel-Bulkley fluid rather than Power law and Bingham fluids

∗Corresponding author.
E-mail address: kaipa maruthi@yahoo.com(K. Maruthi Prasad),bhuvanarachamall@gmail.com(R.Bhuvanavijaya),uma140276@gmail.com
(C.Uma Devi).
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Chaturani and Samy [8]. But the blood can be regarded as magnetic fluid in which red blood cells are magnetic
in nature. Liquid carries in the blood contain magnetic suspension of the particle Tzirtzilakis [9].

The MHD principles may be used to de accelerate the flow of blood in a human arterial system and is useful
in the treatment of certain cardiovascular disorders and in the diseases which accelerate blood circulation like
hemorrhage and hypertension etc. Das and Saha [10].

The effect of magnetic field on blood flow has been analyzed by treating blood as an electrically conductive
fluid Chen [11]. Ogulua and Abbey [12] studied the effects of heat and magnetic field on blood through
constricted artery. Shaw et al. [13] have shown the influence of the externally imposed body acceleration
on the flow of blood through an asymmetric stenosed artery by considering blood as Casson fluid. Bali and
Awasti [14] Studied the effect of an externally applied uniform magnetic field on the multi-stenosed artery.
Sankar and Lee [15] have shown the effect of magnetic field in the pulsatile flow of blood through narrow
arteries treating blood as Casson fluid. Recently Lokendra Pramar et al. [16] studied the role of magnetic field
intensity through overlapping stenosis. Bhargva et al. [17] Showed that the magnetic field can be used as a
flow control mechanism in medical applications.

With this motivation, a mathematical model on the effect of magnetic field on Herschel-Bulkley fluid
through a uniform tube with two stenoses is developed. Expressions for the velocity, resistance to the flow
and wall shear stress have been calculated by assuming that the stenosis to be mild. The effects of various
parameters on these variables have been investigated

2 Mathematical Formulation

Consider the steady flow of an electrically conducting Herschel Bulkley fluid through a tube of uniform cross
section with two stenoses. Assuming that the flow is axi-symmetric and the stenosis over a length of the artery
have been developed in axi-symmetric manner. Let the length of the tube is L, the magnitude of the distance
along the artery over which the stenosis is spread out be Li, the locations of the stenosis be indicated by di and
the maximum heights of the stenosis δi (where i=1,2). Here we consider the transverse magnetic field since
the bio-magnetic fluid (blood) is subjected to a magnetic field. The schematic diagram is shown in Figure -1.
The cylindrical polar coordinates (z,r,θ) is chosen so that the z -axis coincides with the axis of the tube

The radius of the cylindrical tube is given as

h =
R
(
z
)

R0
=



1 0 ≤ z ≤ d1

1− δ1
2
(
1 + Cos 2π

L1

(
z− d1 − L1

2
))

d1 ≤ z ≤ d1 + L1

1 d1 + L1 ≤ z ≤ d2

1− δ2
2
(
1 + Cos 2π

L2

(
z− d2 − L2

2
))

d2 ≤ z ≤ d2 + L2

1 d2 + L2 ≤ z ≤ L

(2.1)

Where R(z) is the radius of the tube with stenosis ,R0(z) is the radius of the tube without stenosis, ro is the
radius of the plug flow region.
The basic momentum equation governing the flow is (Rekha Bali et al. [13])

− ∂p
∂z

+
1
r

∂

∂r
(
rτrz

)
+ µ0M

(∂H
∂z
)
= 0 (2.2)

Where τrz is the shear stress for Herschel Bulkley fluid, is given by

τrz =
(−∂u

∂r
)n

+ τ0, if τrz ≥ τ0 (2.3)

∂u
∂r

= 0, i f τrz < τ0 (2.4)

where r, z denote the radial and axial coordinates respectively, µ0 magnetic permeability, M magnetization,
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H magnetic field intensity, p pressure,u is the velocity of the fluid, τrz stress,τ0 yield stress.

When τrz < τ0 i.e. the shear stress is less than yield stress, there is a core region which flows as a plug
(FIG.1), and Eq. (2.4) corresponds to vanishing velocity gradient in that region. However the fluid behavior
is indicated whenever τrz > τ0.
The boundary conditions are

τrz is f inite at r = 0 (2.5)

u = 0, at r = h
(
z
)

(2.6)

Introducing the following non-dimensional quantities

z =
z
L

, δ =
δ

R0
, R
(
z
)
=

R
(
z
)

R0
, P =

P
µUL/R2

0
, τ0 =

τ0

µ
(
U/R0

) , τrz =
τrz

µ
(
U/R0

) , Q =
Q(

πR2
0U
) , H =

H
H0

(2.1)

Where H0 is external transerverse uniform constant magnetic field.
Using the non-dimensional scheme the governing equations from (2.1)-(2.6) can be written as

The radius of the cylindrical tube is given as

h =
R
(
z
)

R0
=



1 0 ≤ z ≤ d1

1− δ1
2
(
1 + Cos 2π

L1

(
z− d1 − L1

2
))

d1 ≤ z ≤ d1 + L1

1 d1 + L1 ≤ z ≤ d2

1− δ2
2
(
1 + Cos 2π

L2

(
z− d2 − L2

2
))

d2 ≤ z ≤ d2 + L2

1 d2 + L2 ≤ z ≤ L

(2.7)

− ∂p
∂z

+
1
r

∂

∂r
(
rτrz

)
+ µ0M

(∂H
∂z
)
= 0 (2.8)

Where

τrz =
(−∂u

∂r
)n

+ τ0, i f τrz ≥ τ0

∂u
∂r

= 0, i f τrz < τ0 (2.9)

The following restrictions for mild stenoses (MARUTHI PRASAD et al. [7]), are supposed to be satisfied.

δi � min(R0, Rout)

δi � Li,

where Rout=R(z) at z = L
Here Li,δi (i=1, 2) are the lengths and maximum heights of the two stenoses. (The suffixes 1 and 2 refer to the
first and second stenosis respectively).
The boundary conditions (2.5) and (2.6) becomes

τrzis f initeatr = 0 (2.10)

u = 0, atr = h(z) (2.11)
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3 Solution

The solution of equation (2.8) under the boundary conditions (2.10) and (2.11), the velocity is obtained as

U =
hk+1(p− F

)k

2k
(
k + 1

) {(
1− 2τ0

h
(

p− f
) )k+1 −

( r
h
− 2τ0

h
(

p− f
) )k+1}, f or r0 ≤ r ≤ h (3.1)

Where ∂p
∂z = P, f1

(
∂H
∂z
)
= F, k = 1

n Using the boundary condition (2.9), the upper limit of the plug flow
region (i.e. the region 0 ≤ r ≤ r0 ) for which τrz < τ0 is obtained as

r0 =
2τ0(

P− F
) (3.2)

Using the condition that τrz = τh, at r=h ,

r0

h
=

τ0

τh
= τ, f or 0 < τ < 1 (3.3)

Taking r=r0 in Eq. (3.1), the plug core velocity

up =
hk+1(P− F

)k

2k
(
k + 1

) (
1− r0

h
)k+1, f or 0 ≤ r ≤ r0 (3.4)

The volume flow rate is defined by

Q = 2[
∫ r0

0
uprdr +

∫ h

r0

urdr] (3.5)

On integrating,

Q = A
((

k + 2
)(

k + 3
)(

1− r0

h
)k+1 − 2

(
k + 3

)(
1− r0

h
)k+2

+ 2
(
1− r0

h
)k+3) (3.6)

where A =
h

(
k+3
)(

P−F
)k

2k
(

k+1
)(

k+2
)(

k+3
)

FromEq.(3.6), P− F =
2Q

1
k [
(
k + 1

)(
k + 2

)(
k + 3

)
]

1
k

h1+ 3
k
{(

k + 2
)(

k + 3
)(

1− r0
h
)k+1 − 2

(
k + 3

)(
1− r0

h
)k+2

+ 2(1− r0
h )

k+3
} 1

k
(3.7)

dp
dz

=
2Q

1
k [
(
k + 1

)(
k + 2

)(
k + 3

)
]

1
k

h1+ 3
k
{(

k + 2
)(

k + 3
)(

1− r0
h
)k+1 − 2

(
k + 3

)(
1− r0

h
)k+2

+ 2(1− r0
h )

k+3
} 1

k
+ F (3.8)

When k=1,H=0 and τ0 → 0 Eq. (3.8) reduces to the results of YOUNG [1] .
The pressure drop ∆p across the stenosis between z=0 to z=1 is obtained by integrating Eq. (3.8), as

∆p =
∫ 1

0

( 2Q
1
k [
(
k + 1

)(
k + 2

)(
k + 3

)
]

1
k

h1+ 3
k
{(

k + 2
)(

k + 3
)(

1− r0
h
)k+1 − 2

(
k + 3

)(
1− r0

h
)k+2

+ 2(1− r0
h )

k+3
} 1

k
+ F

)
dz (3.9)

The resistance to the flow,λ, is defined by

λ =
∆p
Q

=
1
Q

∫ 1

0

( 2Q
1
k [
(
k + 1

)(
k + 2

)(
k + 3

)
]

1
k

h1+ 3
k
{(

k + 2
)(

k + 3
)(

1− r0
h
)k+1 − 2

(
k + 3

)(
1− r0

h
)k+2

+ 2(1− r0
h )

k+3
} 1

k
+ F

)
dz (3.10)

the pressure drop in the absence of stenosis (h=1) is denoted by ∆PN , is obtained from Eq. (3.9).

∆PN =
∫ 1

0

( 2Q
1
k [
(
k + 1

)(
k + 2

)(
k + 3

)
]

1
k{(

k + 2
)(

k + 3
)(

1− r0
)k+1 − 2

(
k + 3

)(
1− r0

)k+2
+ 2(1− r0)k+3

} 1
k
+ F

)
dz (3.11)
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The resistance to the flow in the absence of stenosis is denoted by λN is obtained from Eq. (3.10) as

λN =
∆PN

Q
=

1
Q

∫ 1

0

( 2Q
1
k [
(
k + 1

)(
k + 2

)(
k + 3

)
]

1
k{(

k + 2
)(

k + 3
)(

1− r0
)k+1 − 2

(
k + 3

)(
1− r0

)k+2
+ 2(1− r0)k+3

} 1
k
+ F

)
dz (3.12)

The normalized resistance to the flow denoted by

λ =
λ

λN
(3.13)

And the wall shear stress
τh =

h
2

dp
dz

(3.14)

4 Results

The expressions for velocity (u), core velocity(up), volumetric flow rate (Q) ,resistance to the flow (λ) and
wall shear stress(τh)are given by the equations (3.1,3.4,3.6,3.13,3.14). The effects of various parameters on the
resistance to the flow ((λ)) , wall shear stress (τh) have been computed numerically by using mathematica 8.1
and results are shown graphically in Fig.2-14, by taking d1=0.2,d2=0.6,L1=L2=0.2,L=1.

It is observed that the resistance to the flow increases with the heights of the stenosis (δ1,δ2) (fig.2-10).It can
be seen from the fig 2-3 that, the resistance to the flow increases with the power law index (k=1/n) along with
the heights of the primary and secondary stenosis (δ1,δ2).It is interesting to note that the increase in resistance
is significant only when the height of the second stenosis exceeds the value 0.02.

From, Fig.7 & 8 it is observed that the resistance to the flow increases with volumetric flow rate (Q), radius
of plug core region (r0) (Fig.9 & 10) and yield stress (τ0) (Fig.11).

It is interesting to observed that the resistance to the flow decreases with the increase of the magnetic
field (H) (Figs.4 & 5), and it is also seen that resistance to the flow is more in non-Newtonian fluid than the
Newtonian fluid (Fig.6).

The effects various parameters on shear stress are shown in (Figs. 12-14). It is noted that the wall shear
stress is increasing with the heights of the stenoses and the radius of the plug-core region.

5 Conclusion

A mathematical model for electrically conducting flow of Herschel-Bulkley fluid through a uniform tube of
multiple stenoses has been studied. It is observed that the resistance to the flow increases with the heights
of the stenoses, power law index, volumetric flow rate, radius of the plug core-region and yield stress, but
decreases with induced magnetic field and shear stress. It is also observed that the wall shear stress is
increasing with the heights of the stenoses and radius of the plug core-region.

Figure 1: Schematic diagram of multiple stenosed artery
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Figure 2: Variation of impedance λ with δ2 for different k (d1=0.2,d2=0.6,H=0.2,L1=L2=0.2,L=1,Q=0.1,δ1=0.0,r0=0.2)

Figure 3: Variation of impedance λ with δ2 for different k (d1=0.2,d2=0.6,H=0.2,L1=L2=0.2,L=1,Q=0.1,δ1=0.01,r0=0.2)

Figure 4: Variation of impedance λ with δ2 for different H (d1=0.2,d2=0.6,H=0.2,L1=L2=0.2,L=1,Q=0.1,k=2,δ1=0.0,r0=0.2)
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Figure 5: Variation of impedance λ with δ2 for different H (d1=0.2,d2=0.6,H=0.2,L1=L2=0.2,L=1,Q=0.1,k=2,δ1=0.01,r0=0.2)

Figure 6: Comparison of magnetic field effect on Newtonian and non-Newtonian fluids.
(d1=0.2,d2=0.6,L1=L2=0.2,L=1,Q=0.1,H=0.2,δ1=0.01)

Figure 7: Variation of impedance λ with δ2 for different Q (d1=0.2,d2=0.6,H=0.2,L1=L2=0.2,L=1,k=2,r0=0.2,δ1=0.0)
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Figure 8: Variation of impedance λ with δ2 for different Q (d1=0.2,d2=0.6,H=0.2,L1=L2=0.2,L=1,k=2,r0=0.2,δ1=0.01)

Figure 9: Variation of impedance λ with δ2 for different r0 (d1=0.2,d2=0.6,H=0.2,L1=L2=0.2,L=1,k=2,δ1=0.0,Q=0.1)

Figure 10: Variation of impedance λ with δ2 for different r0 (d1=0.2,d2=0.6,H=0.2,L1=L2=0.2,L=1,k=2,δ1=0.01,Q=0.1)
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Figure 11: Variation of impedance λ with δ2 for different τ0 (d1=0.2,d2=0.6,H=0.2,L1=L2=0.2,L=1,k=2,δ1=0.0,Q=0.1,τh=1)

Figure 12: Variation of impedance λ with δ1 for different τh (d1=0.2,d2=0.6,H=0.2,L1=L2=0.2,L=1,k=2,δ2=0.0,Q=0.1,τ0=1)

Figure 13: Variation of wall shear stress τh with δ1 for different δ2 (r0=0.02,k=2,Q=0.01)
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Figure 14: Variation of wall shear stress τh with r0 for different δ1 (δ2=0.1,k=2,Q=0.01)
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Abstract

In this article, Hermite-Hadamard Inequalities for L(j)-convex functions are analyzed. S(j)-convex
functions which is founded upon B−1−convexity concept, are defined and for this functions,
Hermite-Hadamard Inequalities are investigated. On some special domains, concrete form of inequalities are
denoted.
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1 Introduction

Integral inequalities have played an important role in the development of all branches of mathematics.
Also, Hermite-Hadamard inequalities are one of the integral inequalities. Recently, Hermite-Hadamard
inequalities and their applications have attracted considerable interest. Hence the Hermite-Hadamard
inequalities have been studied for varied families of functions which are obtained by many authors. (e.g. [1],
[5], [6], etc.)

In this paper, we examine Hermite-Hadamard Type Inequalities for L(j)-convex functions. L(j)-convex
functions are founded upon the B-convexity concept in Rn

+ [2] (Section 3). In section 4, S(j)-convex functions
which is related to B−1−convexity concept are defined. After, for this family of functions, Hermite-Hadamard
Type Inequalities are analyzed (Section 5). Additionally, different examples about both cases are discussed and
studied.

2 L(j)-convex Functions

The sets which are given the following forms, are discussed to define the L(j)-convex functions [2]. For all
z ∈ Rn

++

N0 (z) =
{
x ∈ Rn

++ : 0 < xi ≤ zi, i = 1, n
}

Nj (z) =
{
x ∈ Rn

++ : zj ≤ xj and xizj ≤ zixj ,∀i = 1, n
}
, j = 1, n.

N0 (z) is closed, convex and radiant set, Nj (z)
(
j = 1, n

)
are closed, convex and co-radiant sets [4].

Using these sets, (n+ 1) relations are defined as follows ([2]): for x, y ∈ Rn
++

x≺0y ⇔ x ∈ N0 (y)
x≺jy ⇔ y ∈ Nj (x) , j = 1, n.

∗Corresponding author.
E-mail address: ilknuryesilce@gmail.com (Ilknur Yesilce), gabiladilov@gmail.com(Gabil Adilov).
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≺j , j = 0, n are partial order relation on Rn
++ (see [4]).

We can write Minkowski functions according to Nj (y)
(
y ∈ Rn

++ , j = 0, n
)

sets and ≺j order relations.
For y ∈ Rn

++, N0 (y) is radiant set and ≺0 is coordinate-wise order relation hence Minkowski gauge is

µN0(y) (x) := inf {α > 0 : x ∈ αN0 (y)} = inf {α > 0 : x≺0αy} .

Let us show this function with l0,y , namely

l0,y (x) := µN0(y) (x) , x ∈ Rn
++.

For j = 1, n and y ∈ Rn
++, the sets Nj (y) are co-radiant, thus Minkowski co-gauges are defined by

υNj(y) (x) := sup {α : x ∈ αNj (y)} = sup
{
α : αy≺jx

}
we denote these functions with lj,y , namely

lj,y (x) := υNj(y) (x) , x ∈ Rn
++.

Remark 2.1. Let y ∈ Rn
++ and j = 1, n. Then the sets Nj (y) coincides with the intersection of the cone

Vj (y) =
{
x ∈ Rn

+ :
xi

yi
≤ xj

yj

(
i = 1, n

)}
and the half-space

Hj (y) = {x ∈ Rn : xj ≥ yj} .

Using the cone Vj (y), lj,y can be shown another form. If x ∈ Vj (y), then

lj,y (x) = sup
{
α : αy≺jx

}
= sup {α : αyj ≤ xj} =

xj

yj
.

If x /∈ Vj (y), then for all α > 0 the inequality αy≺jx does not hold therefore lj,y (x) = 0. Consequently,

lj,y (x) =

{
xj

yj
, x ∈ Vj (y)

0 , x /∈ Vj (y)
.

For j = 0, n, let us analyze the convexity with respect to the family of functions L(j) =
{
lj,y : y ∈ Rn

++

}
.

Definition 2.1. Let j = 0, n. A function f : Rn
++ → R+∞ = R ∪ {+∞} is an IPH(j) function if f is positively

homogeneous of degree one and increasing according to order relation ≺j .

Theorem 2.1. For all j = 0, n and y ∈ Rn
++, lj,y functions are IPH(j) functions.

Proof. For j = 0

l0,y (λx) = inf {α > 0 : λx ∈ αN0 (y)} = inf {α > 0 : λx≺0αy}

= inf
{
α > 0 : x≺0

α

λ
y
}

= λ inf {α′ > 0 : x≺0α
′y} = λl0,y (x) .

For j = 1, n

lj,y (λx) = sup {α : λx ∈ αNj (y)} = sup
{
α : αy≺jλx

}
= sup

{
α :

α

λ
y≺jx

}
= λ sup

{
α′ : α′y≺jx

}
= λlj,y (x) .

Namely, lj,y
(
j = 0, n

)
are positively homogeneous of degree one.

Now, let us prove that the functions lj,y
(
j = 0, n

)
are increasing. Let j = 0. If x1≺0x2, then

{α > 0 : x2≺0αy} ⊂ {α > 0 : x1≺0αy} and hence l0,y (x1) ≤ l0,y (x2). For j = 1, n, if x1≺jx2, then{
α > 0 : αy≺jx1

}
⊂
{
α > 0 : αy≺jx2

}
and thus lj,y (x1) ≤ lj,y (x2).

Following theorem can be proved using Corollary 2.6 in [2].

Theorem 2.2. The function f : Rn
++ → R+∞ is L(j)-convex function

(
j = 0, n

)
if and only if f is IPH(j) function.

Moreover, some important properties of IPH(j) functions are given, in [2].
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3 Hermite-Hadamard Type Inequalities for L(j)-convex Functions

We begin with the following theorem which has an important role in Hermite-Hadamard Type Inequalities
for L(j)-convex functions [2].

Theorem 3.3. For j = 1, n and p : Rn
++ → R+∞, the following statements are equivalent:

(i) p is an IPH(j) function.
(ii) p (x) ≥ λp (y) for all ∀x, y ∈ Rn

++ and λ > 0 such that λy≺jx.
(iii) p (x) ≥ lj,y (x) p (y) for all ∀x, y ∈ Rn

++.

We can obtain Hermite-Hadamard Type Inequalities for L(j)-convex functions as a corollary of the above
theorem.

Corollary 3.1. Let D ⊂ Rn
++, p : D → R+∞ be a L(j)-convex function and integrable function on D. Then, for all

y ∈ D, we have

p (y)
∫

D

lj,y (x) dx ≤
∫

D

p (x) dx. (3.1)

Let us investigate Hermite-Hadamard Type Inequalities via Q(D) sets given in [6].
Let D ⊂ Rn

++ be bounded and hold condition of cl (intD) = D. We denote by Q(D) the sets of all x∗ ∈ D
such that

1
A (D)

∫
D

lj,x∗ (x) dx = 1 (3.2)

where A (D) =
∫

D
dx

Theorem 3.4. Let p be L(j)-convex function defined on D and integrable on D. If Q(D) is nonempty, then one has the
inequality:

sup
x∗∈Q(D)

p (x∗) ≤ 1
A (D)

∫
D

p (x) dx (3.3)

Proof. If p (x∗) = +∞, then by using p (x) ≥ lj,y (x) p (y), it can be shown that p cannot be integrable. It
conflicts integrable of p. So p (x∗) < +∞. From Theorem 3.3 (iii), for all x ∈ D

p (x) ≥ lj,x∗ (x) p (x∗) .

Since x∗ ∈ Q (D), by (3.2)

p (x∗) = p (x∗)
1

A (D)

∫
D

lj,x∗ (x) dx

=
1

A (D)

∫
D

p (x∗) lj,x∗ (x) dx ≤ 1
A (D)

∫
D

p (x) dx.

Remark 3.2. As it is clear that, for each x∗ ∈ Q (D), inequality

p (x∗) ≤ 1
A (D)

∫
D

p (x) dx (3.4)

is hold. If we get p (x) = lj,x∗ (x), (3.4) is an equality.

Let p be a L(j)-convex function defined onD ⊂ Rn
++ and be integrable onD. For all x, y ∈ D, the inequality

p (x) ≥ lj,y (x) p (y)

is hold. Hence,
p (y) ≤ ϕj,x (y) p (x) (3.5)

where

ϕj,x (y) =
1

lj,y (x)
=

{
yj

xj
, x ∈ Vj (y)

∞, x /∈ Vj (y)
=

{
yj

xj
, y /∈ intVj (x)

∞, y ∈ intVj (x)
.

The following theorem can be proved, using the inequality (3.5).
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Theorem 3.5. Let D ⊂ Rn
++, p : D → R+∞ be an integrable, L(j)-convex function and D ∩ intVj (y) = ∅. Then, the

following inequality holds: ∫
D

p (x) dx ≤ p (y)
∫

D

ϕj,y (x) dx (3.6)

for all y ∈ D.

Examples:
On some special domains of R2

++, Hermite-Hadamard Type Inequalities for L(j)-convex functions have
been implied with concrete form.

Firstly, for D ⊂ R2
++ and every y ∈ D, let us derive computation formula of the integral

∫
D
lj,y (x) dx.

Let D ⊂ R2
++ and y = (y1, y2) ∈ D. Then, on R2

++

V1 (y) =
{
x ∈ R2

++ :
x2

y2
≤ x1

y1

}
, V2 (y) =

{
x ∈ R2

++ :
x1

y1
≤ x2

y2

}
and

l1,y (x) =

{
x1
y1
, x ∈ V1 (y)

0, x /∈ V1 (y)
, l2,y (x) =

{
x2
y2
, x ∈ V2 (y)

0, x /∈ V2 (y)
.

Let V c
j (y) (j = 1, 2) be the complement of Vj (y) (j = 1, 2). Therefore, with the above assumptions, we can

separate the region D into two regions: Dj (y) = D
⋂
Vj (y) and D \Dj (y) = D

⋂
V c

j (y). Thus, we have∫
D

lj,y (x) dx =
∫

Dj(y)

lj,y (x) dx+
∫

D\Dj(y)

lj,y (x) dx

=
∫

Dj(y)

xj

yj
dx+

∫
D\Dj(y)

0dx =
1
yj

∫
Dj(y)

xjdx.

Example 3.1. Consider the triangle D defined as

D =
{
(x1, x2) ∈ R2

++ : 0 < x1 ≤ a, 0 < x2 ≤ vx1

}
.

For y ∈ D, Dj (y) would be as follows:

D1 (y) =
{
x ∈ D : 0 < x1 ≤ a, 0 < x2 ≤

y2
y1
x1

}
D2 (y) =

{
x ∈ D : 0 < x1 ≤ a,

y2
y1
x1 < x2 ≤ vx1

}
.

For j = 1; we deduce that:∫
D

l1,y (x) dx =
1
y1

∫
D1(y)

x1dx =
1
y1

∫ a

0

∫ y2x1
y1

0

x1dx2dx1 =
y2
y2
1

a3

3
.

Hence, for the given region D, the inequality (3.1) will be as follows:

p (y1, y2) ≤
3y2

1

a3y2

∫
D

p (x1, x2) dx1dx2.

For j = 2; we have ∫
D

l2,y (x)dx =
1
y2

∫
D2(y)

x2dx =
1
y2

∫ a

0

∫ vx1

y2x1
y1

x2dx2dx1

=
1

2y2

∫ a

0

[
v2 −

(
y2
y1

)2
]
x2

1dx1 =
v2y2

1 − y2
2

2y2y2
1

a3

3
.

Then, for the same region D, the inequality (3.1) is as follows:

p (y1, y2) ≤
6y2

1y2
a3 (v2y2

1 − y2
2)

∫
D

p (x1, x2) dx1dx2.
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Let’s derive the set Q(D) for the given triangular domain D. Since A (D) = va2

2 , y∗ ∈ D is element of Q(D) if and
only if, for j = 1;

2
va2

y∗2

(y∗1)2
a3

3
= 1 ⇔ y∗2 =

3v (y∗1)2

2a

for j = 2;

2
va2

(
v2 (y∗1)2 − (y∗2)2

)
a3

6 (y∗1)2 y∗2
= 1 ⇔ y∗1 =

(
a (y∗2)2

av2 − 3y∗2v

) 1
2

.

Figure 1. In case of j = 1, the set Q(D) for triangular domain D

Example 3.2. Let the triangular region D be as follows:

D =
{

(x1, x2) ∈ R2
++ :

x1

a
+
x2

b
≤ 1
}
.

In this region, for y ∈ D, the sets Dj (y) (j = 1, 2) are as following forms:

D1 (y) =
{
x ∈ D : 0 < x2 ≤

aby2
ay2 + by1

,
y1
y2
x2 ≤ x1 ≤ a− a

b
x2

}
D2 (y) =

{
x ∈ D : 0 < x1 ≤

aby1
ay2 + by1

,
y2
y1
x1 ≤ x2 ≤ b− b

a
x1

}
.

If j = 1, then we have

∫
D

l1,y (x) dx =
1
y1

∫
D1(y)

x1dx =
1
y1

∫ aby2
ay2+by1

0

∫ a− ax2
b

y1x2
y2

x1dx1dx2

=
1

2y1

∫ aby2
ay2+by1

0

[(
a− a

b

)2

−
(
y1
y2

)2
]
x2

2dx2 =
a3by2

[
(ab− a)2 y2

2 − b2y2
1

]
6y1 (ay2 + by1)

3 .
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For j = 2; we get

∫
D

l2,y (x) dx =
1
y2

∫
D2(y)

x2dx =
1
y2

∫ aby1
ay2+by1

0

∫ b− bx1
a

y2x1
y1

x2dx2dx1

=
1

2y2

∫ aby1
ay2+by1

0

[(
b− b

a

)2

−
(
y2
y1

)2
]
x2

1dx1 =
b3ay1

[
(ba− b)2 y2

1 − a2y2
2

]
6y2 (ay2 + by1)

3 .

Thereby, in D, to j = 1; the inequality is

p (y1, y2) ≤
6y1 (ay2 + by1)

3

a3by2

[
(ab− a)2 y2

2 − b2y2
1

] ∫
D

p (x1, x2) dx1dx2

for j = 2; the inequality (3.1) is

p (y1, y2) ≤
6y2 (ay2 + by1)

3

b3ay1

[
(ba− b)2 y2

1 − a2y2
2

] ∫
D

p (x1, x2) dx1dx2.

Let us construct Q(D) for the given region D. Since A (D) = ab
2 , if we get j = 1, then we obtain

y∗ ∈ Q (D) ⇔
a2y∗2

[
(ab− a)2 (y∗2)2 − b2 (y∗1)2

]
3y∗1 (ay∗2 + by∗1)3

= 1

also, if we get j = 2, then we have

y∗ ∈ Q (D) ⇔
b2y∗1

[
(ba− b)2 (y∗1)2 − a2 (y∗2)2

]
3y∗2 (ay∗2 + by∗1)3

= 1.

Example 3.3. Now, let us get a rectangular region D which is defined as follows:

D =
{
(x1, x2) ∈ R2

++ : x1 ≤ a , x2 ≤ b
}
.

In this type region, it can be two cases: For y ∈ D
1) y2

y1
≤ b

a

2) y2
y1
≥ b

a

1) Let y2
y1
≤ b

a . Under this condition, the sets Dj (y) will be:

D1 (y) =
{
x ∈ D : 0 < x1 ≤ a, 0 < x2 ≤ y2

y1
x1

}
D2 (y) =

{
x ∈ D : 0 < x1 ≤ a, y2

y1
x1 < x2 ≤ b

}
.

Hence, for j = 1; we have∫
D

l1,y (x) dx =
∫

D1(y)

l1,y (x) dx =
1
y1

∫
D1(y)

x1dx

=
1
y1

∫ a

0

∫ y2x1
y1

0

x1dx2dx1 =
1
y1

∫ a

0

(
y2
y1

)
x2

1dx1 =
a3y2
3y2

1

for j = 2; we obtain ∫
D

l2,y (x) dx =
1
y2

∫
D2(y)

x2dx =
1
y2

∫ a

0

∫ b

y2x1
y1

x2dx2dx1

=
1

2y2

∫ a

0

[
b2 −

(
y2
y1

)2

x2
1

]
dx1 =

3y2
1b

2a− y2
2a

3

6y2
1y2

.
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By taking into account these, (3.1) becomes following inequalities: for j = 1;

p (y1, y2) ≤
3y2

1

a3y2

∫
D

p (x1, x2) dx1dx2

for j = 2;

p (y1, y2) ≤
6y2

1y2
3y2

1b
2a− y2

2a
3

∫
D

p (x1, x2) dx1dx2.

Let us derive the set Q(D). Since A (D) = ab, then while j = 1;

y∗ ∈ Q (D) ⇔ y∗2 =
3b (y∗1)2

a2

while j = 2;

y∗ ∈ Q (D) ⇔ y∗1 =

(
(y∗2)2 a4b

3b3a2 − 6y∗2

) 1
2

.

2) Now, let us consider the second case. Namely, let y2
y1
≥ b

a . Therefore, we have that

D1 (y) =
{
x ∈ D : y1

y2
x2 ≤ x1 ≤ a, 0 < x2 ≤ b

}
D2 (y) =

{
x ∈ D : 0 < x1 ≤ y1

y2
x2, 0 < x2 ≤ b

}
.

To j = 1; we have ∫
D

l1,y (x) dx =
1
y1

∫
D1(y)

x1dx =
1
y1

∫ b

0

∫ a

y1x2
y2

x1dx1dx2

=
1

2y1

∫ b

0

(
a2 −

(
y1
y2

)2

x2
2

)
dx2 =

3y2
2a

2b− b3y2
1

6y1y2
2

.

Thereby, in this case, the inequality (3.1) is

p (y1, y2) ≤
6y1y2

2

3y2
2a

2b− b3y2
1

∫
D

p (x1, x2) dx1dx2.

In case j = 2, we get ∫
D

l2,y (x) dx =
∫

D2(y)

l2,y (x) dx =
1
y2

∫
D2(y)

x2dx

=
1
y2

∫ b

0

∫ y1x2
y2

0

x2dx1dx2 =
1
y2

∫ b

0

y1
y2
x2

2dx2 =
b3y1
3y2

2

.

Thus, the inequality (3.1) will be as follows:

p (y1, y2) ≤
3y2

2

b3y1

∫
D

p (x1, x2) dx1dx2.

By taking into account both cases, Q(D) becomes as follows: for j = 1;

Q (D) =

{
y∗ ∈ D :

y∗2
y∗1
≤ b

a
, y∗2 =

3b (y∗1)2

a2

}⋃
y∗ ∈ D :

y∗2
y∗1
≥ b

a
, y∗2 =

(
b2 (y∗1)2

3a2 − 6y∗1a

) 1
2


for j = 2;

Q (D) =

y∗ ∈ D :
y∗2
y∗1
≤ b

a
, y∗1 =

(
(y∗2)2 a4b

3b3a2 − 6y∗2

) 1
2

⋃{
y∗ ∈ D :

y∗2
y∗1
≥ b

a
, y∗1 =

3a (y∗2)2

b2

}
.
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Example 3.4. We shall now consider the case where the set D is part of the disk defined as

D =
{
(x1, x2) ∈ R2

++ : x2
1 + x2

2 ≤ r2
}
.

For y ∈ D, the set D1 (y) is combination of

D∗
1 (y) =

{
x ∈ D : 0 < x1 ≤

ry1√
y2
1 + y2

2

, 0 < x2 ≤
y2
y1
x1

}

and

D∗∗
1 (y) =

{
x ∈ D :

ry1√
y2
1 + y2

2

≤ x1 ≤ r , 0 < x2 ≤
√
r2 − x2

1

}
.

Namely, D1 (y) = D∗
1 (y)

⋃
D∗∗

1 (y). The set D2 (y) will be as follows:

D2 (y) =

{
x ∈ D : 0 < x1 ≤

ry1√
y2
1 + y2

2

,
y2
y1
x1 ≤ x2 ≤

√
r2 − x2

1

}
.

To j = 1; we have∫
D

l1,y (x) dx =
1
y1

∫
D1(y)

x1dx =
1
y1

∫
D∗

1 (y)

x1dx+
1
y1

∫
D∗∗

1 (y)

x1dx

=
1
y1

∫ ry1√
y2
1+y2

2

0

∫ y2
y1

x1

0

x1dx2dx1 +
1
y1

∫ r

ry1√
y2
1+y2

2

∫ √r2−x2
1

0

x1dx2dx1

=
1
y1

∫ ry1√
y2
1+y2

2

0

(
y2
y1
x2

1

)
dx1 +

1
y1

∫ r

ry1√
y2
1+y2

2

x1

√
r2 − x2

1dx1 =
r3y2

3y1
√
y2
1 + y2

2

.

In this case, for the given region D, the inequality (3.1) will be following form:

p (y1, y2) ≤
3y1
√
y2
1 + y2

2

r3y2

∫
D

p (x1, x2) dx1dx2.

To j = 2; we obtain that∫
D

l2,y (x) dx =
1
y2

∫
D2(y)

x2dx =
1
y2

∫ ry1√
y2
1+y2

2

0

∫ √r2−x2
1

y2
y1

x1

x2dx2dx1

=
1

2y2

∫ ry1√
y2
1+y2

2

0

(
r2 −

(
1 +

y2
2

y2
1

)
x2

1

)
dx1 =

r3y1

3y2
√
y2
1 + y2

2

and by using the equality above, the inequality (3.1) will be as follows:

p (y1, y2) ≤
3y2
√
y2
1 + y2

2

r3y1

∫
D

p (x1, x2) dx1dx2.

Since A (D) = πr2

4 , let us give the conditions for becoming elements of the set Q(D). For j = 1; we have

y∗ ∈ Q (D) ⇔ 4r (y∗2)2

3π (y∗1)2
(
(y∗1)2 + (y∗2)2

) 1
2

= 1.

For j = 2; we get

y∗ ∈ Q (D) ⇔ 4r (y∗1)2

3π (y∗2)2
(
(y∗1)2 + (y∗2)2

) 1
2

= 1.

Remark 3.3. From Theorem 3.5, the right hand side of Hermite-Hadamard Inequalities can be also analyzed for concrete
domains. But, in this case, D ∩ intVj (y) = ∅ is required because of integrability of the function ϕj,y on D.
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Example 3.5. As in the Example 3.1, we discuss the triangle

D =
{
(x1, x2) ∈ R2

++ : 0 < x1 ≤ a, 0 < x2 ≤ vx1

}
.

If j = 1, then D ∩ intV1 (y) 6= ∅ for ∀y ∈ R2
++. Thus, from Theorem 3.5, the right hand side of Hermite-Hadamard

Inequalities for L(1)-convex functions is not obtained.
Let j = 2. It is obvious that D ∩ intV2 (y) = ∅ ⇔ y2 ≥ vy1. From Theorem 3.5, we have∫

D

p (x1, x2) dx1dx2 ≤ p (y1, y2)
∫

D

x2

y2
dx1dx2.

Since ∫
D

x2

y2
dx1dx2 =

1
y2

∫ a

0

∫ vx1

0

x2dx2dx1 =
v2

2y2

∫ a

0

x2
1dx1 =

a3v2

6y2
.

for all y ∈ D which satisfy the condition y2 ≥ vy1 (namely, y on the long side of the triangle) and all p that are
L(2)-convex, integrable on D, the inequality∫

D

p (x1, x2) dx1dx2 ≤
v2a3

6y2
p (y1, y2)

is hold, or since A(D) is area of triangular domain, we obtain the inequality

1
A(D)

∫
D

p (x1, x2) dx1dx2 ≤
va

3y2
p (y1, y2) .

4 S(j)-convex Functions

Firstly, let us recall the definition of B−1−convex set [3]:

Definition 4.2. A subset M of Rn
++ is B−1−convex if for all x1, x2 ∈M and all t ∈ [1,∞) one has tx1 ∧ x2 ∈M .

Here, ∧ is the greatest lower bound of x1, x2, that is,

x1 ∧ x2 = (min {x1,1, x2,1} , ...,min {x1,n, x2,n}) .

For every z ∈ Rn
++, Rn

++ can be written as the combination of (n + 1)-parts which are given with the
following forms:

M0 (z) =
{
x ∈ Rn

++ : zi ≤ xi, i = 1, n
}

Mj (z) =
{
x ∈ Rn

++ : xj ≤ zj and xjzi ≤ zjxi,∀i = 1, n
}
.

The sets Mj (z)
(
j = 0, n

)
are closed and convex sets. The following theorem gives construction of the sets

Mj (z)
(
j = 0, n

)
.

Theorem 4.6. M0 (z) is co-radiant, B−1−convex set and Mj (z)
(
j = 1, n

)
are radiant, B−1−convex sets.

Proof. Let us show that M0 (z) is co-radiant, namely x ∈ M0 (z) , λ ≥ 1 ⇒ λx ∈ M0 (z). Since x ∈ M0 (z),
then zi ≤ xi

(
i = 1, n

)
. λ ≥ 1, so zi ≤ xi ≤ λxi

(
i = 1, n

)
. Consequently, we have λx ∈M0 (z).

Now, let us prove that M0 (z) is B−1−convex. Let x, y ∈ M0 (z), t ∈ [1,∞). Hence, for ∀i = 1, n, we have
zi ≤ xi and zi ≤ yi. By using these inequalities; since zi ≤ xi ≤ txi and zi ≤ yi, we obtain zi ≤ txi∧yi, i = 1, n.
We have shown that tx ∧ y ∈M0 (z).

And now, we have to see thatMj (z)
(
j = 1, n

)
are radiant. Let x ∈Mj (z) and 0 < λ ≤ 1. Since x ∈Mj (z),

we have xj ≤ zj and xjzi ≤ zjxi, i = 1, n. 0 < λ ≤ 1 so that λxj ≤ xj ≤ zj then λxj ≤ zj . Also, λ > 0, hence
we can derive λxjzi ≤ zjλxi, i = 1, n. By taking into account both cases, λx ∈Mj (z).

Finally, let us show that Mj (z) are B−1−convex. Let x, y ∈Mj (z), t ∈ [1,∞).

x ∈Mj (z) ⇔ xj ≤ zj and xjzi ≤ zjxi, i = 1, n
y ∈Mj (z) ⇔ yj ≤ zj and yjzi ≤ zjyi, i = 1, n.

There are two possible cases: for t ∈ [1,∞)
I) it can be txj ≤ zj . In this case, from yj ≤ zj , we obtain txj ∧ yj ≤ zj .
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II) let txj > zj . Again, since yj ≤ zj , we have txj ∧ yj ≤ zj . Hence, we deduce that txj ∧ yj ≤ zj .
In second part, for z ∈ Rn

++

(txj ∧ yj) zi = txjzi ∧ yjzi ≤ txizj ∧ yizj = (txi ∧ yi) zj .

Thus, we have shown that tx ∧ y ∈Mj (z).

The (n+ 1)-relations according to Mj (z)
(
j = 0, n

)
can be given by

x 40 y ⇔ y ∈M0 (x)
x 4j y ⇔ x ∈Mj (y) , j = 1, n.

Let us see that 4j ,
(
j = 0, n

)
are partial order relations.

Theorem 4.7. 4j ,
(
j = 0, n

)
are partial order relations.

Proof. Let j = 0. 40 is coordinate-wise order relation, namely,

x 40 y ⇔ y − x ∈ Rn
++.

So that 40 is a partial order relation.
Let j = 1, n.
Firstly, we show that 4j

(
j = 1, n

)
are reflexivity. For all x ∈ Rn

++ and all j = 1, n, then xj ≤ xj . Also, for
all i = 1, n, we have xjxi ≤ xjxi. Consequently, x 4j x.

Let us show that 4j

(
j = 1, n

)
are antisymmetric: Let x, z ∈ Rn

++, x 4j z and z 4j x. We deduce that

x 4j z ⇔ xj ≤ zj and xjzi ≤ zjxi , i = 1, n
z 4j x ⇔ zj ≤ xj and zjxi ≤ xjzi , i = 1, n.

From the first part, for j = 1, n, we get xj = zj .
By using this equality and the second part, for all i = 1, n, since

xjzi ≤ zjxi ⇒ zi ≤ xi

zjxi ≤ xjzi ⇒ xi ≤ zi

thus, it is xi = zi.
Accordingly, we obtain x = z.
Now, we have to prove that 4j

(
j = 1, n

)
are transitive. Let x, y, z ∈ Rn

++ x 4j y and y 4j z. Hence, we
have that

x 4j y ⇔ xj ≤ yj and xjyi ≤ yjxi , i = 1, n
y 4j z ⇔ yj ≤ zj and yjzi ≤ zjyi , i = 1, n.

Since xj ≤ yj ≤ zj , then we obtain
xj ≤ zj . (4.7)

Taking into account that the above inequalities hold, we have that

xjyi ≤ yjxi ⇒ xjyi (yjzi) ≤ yjxi (yjzi) ≤ yjxi (zjyi)

xjzi (yiyj) ≤ xizj (yjyi)

xjzi ≤ zjxi. (4.8)

From (4.7) and (4.8), we have x 4j z. The theorem is proved.

Now, we can write Minkowski functions according to Mj (z)
(
z ∈ Rn

++, j = 0, n
)

sets and 4j partial order
relations. For z ∈ Rn

++, since that M0 (z) is co-radiant;

υM0(z) (x) := sup {α : x ∈ αM0 (z)} = sup {α : αz 40 x}

then, we denote this function with s0,z ,

s0,z (x) := υM0(z) (x) , x ∈ Rn
++.
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For z ∈ Rn
++ and j = 1, n; by taking into account that Mj (z) are radiant sets; Minkowski gauge of Mj (z) are

µMj(z) (x) := inf {α > 0 : x ∈ αMj (z)} = inf {α > 0 : x 4j αz} .

Let us denote this function with the following notation

sj,z (x) := µMj(z) (x) , x ∈ Rn
++.

The sets Mj (z)
(
j = 1, n, z ∈ Rn

++

)
can be written as the intersection of the cone

Uj (z) =
{
x ∈ Rn

++ :
xj

zj
≤ xi

zi
i = 1, n

}
and the half-space

Hj (z) = {x ∈ Rn : xj ≤ zj} .

The functions sj,z can be denoted the following form, if we use the cone Uj (z).

sj,z (x) =

{
xj

zj
, x ∈ Uj (z)

∞ , x /∈ Uj (z).
(4.9)

Let us analyze convexity with respect to the family of functions S(j) = {sj,z : z ∈ Rn
++}, j = 0, n.

Definition 4.3. Let j = 0, n. A function f : Rn
++ → R+∞ is an IPH[j] function if f is positively homogeneous of

degree one and increasing according to order relation 4j .

Theorem 4.8. ∀j = 0, n and ∀z ∈ Rn
++, sj,z are IPH[j] functions.

Proof. Let us show that sj,z are positively homogeneous of degree one.
For j = 0, we have that

s0,z (λx) = sup {α : λx ∈ αM0 (z)} = sup {α : αz 40 λx}
= sup

{
α : αzi ≤ λxi, i = 1, n

}
= sup

{
λα′ : α′zi ≤ xi, i = 1, n

}
= λ sup {α′ : α′z 40 x} = λs0,z (x) .

For j = 1, n, we get

sj,z (λx) = inf {α > 0 : λx ∈ αMj (z)} = inf {α > 0 : λx 4j αz}
= λ inf {α′ > 0 : x 4j α

′z} = λsj,z (x) .

Let us prove that sj,z are increasing according to 4j

(
j = 0, n

)
.

Let j = 0 and x1 40 x2. Then, we have {α : αz 40 x1} ⊂ {α : αz 40 x2}. From properties of supremum,
we obtain that s0,z (x1) ≤ s0,z (x2).

Let j = 1, n and x1 4j x2. Hence, we have {α > 0 : x2 4j αz} ⊂ {α > 0 : x1 4j αz}. Consequently, we
obtain sj,z (x1) ≤ sj,z (x2).

Now, let us give the following theorem which can be easily proved via Corollary 2.6 in [2].

Theorem 4.9. For j = 0, n, f : Rn
++ → R+∞ is S(j)-convex function if and only if f is IPH[j] function.

The following theorem implies some properties of IPH[j] functions.

Theorem 4.10. Let j = 1, n and f : Rn
++ → R+∞ be an IPH[j] function. Then following statements are hold:

(i) f (x) ≥ 0 for all x ∈ Rn
++.

(ii) If f (x∗) = +∞ where x∗ ∈ Rn
++ then f (x) = +∞ on the set{

x ∈ Rn
++ : ∃λ > 0 such that λx∗ 4j x

}
.

(iii) If f (x∗) = 0 where x∗ ∈ Rn
++ then for all x ∈

{
x ∈ Rn

++ : ∃λ > 0 , x 4j λx
∗}, f (x) = 0.

Proof. (i) Let x ∈ Rn
++. Because 1

2x 4j x, we have 1
2f (x) = f

(
x
2

)
≤ f (x). Therefore f (x) ≥ 0.

(ii) Let x ∈ Rn
++ be a point such that there exists λ > 0 with the property λx∗ 4j x. Then f (x) ≥ f (λx∗) =

λf (x∗) = +∞.
(iii) Let x ∈ Rn

++ and let there be λ > 0 such that x 4j λx
∗. Thus, we have that 0 ≤ f (x) ≤ f (λx∗) =

λf (x∗) = 0.
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5 Hermite-Hadamard Type Inequalities for S(j)-convex Functions

Let us prove the following theorem which has an important role in Hermite-Hadamard Type Inequalities for
S(j)-convex functions.

Theorem 5.11. For j = 1, n and p : Rn
++ → R+∞, the following statements are equivalent:

(i) p is an IPH[j] function.
(ii) For all x, z ∈ Rn

++ and λ > 0 such that x 4j λz, we have p (x) ≤ λp (z).
(iii) For all x, z ∈ Rn

++, we have p (x) ≤ sj,z (x) p (z).

Proof. i⇒ ii) Since p is an IPH[j] function, for all λ > 0, we get x 4j λz. Hence p (x) ≤ p (λz) = λp (z).
ii⇒ i) The monotonicity of p follows from (ii) with λ = 1. We now show that p is positively homogeneous.

Let x = λz with λ > 0. Then by (ii), we have p (x) = p (λz) ≤ λp (z). Because z = λ−1x, we conclude that
p (z) ≤ λ−1p (x). Thus p (λz) = λp (z).

ii ⇒ iii) If p (z) = 0, we have 0 ≤ p (x) ≤ sj,z (x) p (z) = 0 for all x. Let p (z) > 0 and λ > 0 be a
number such that x 4j λz. Applying (ii), we conclude that p(x)

p(z) ≤ λ. It follows from the definition of sj,z that

sj,z (x) = inf {λ > 0 : x 4j λz}, therefore p(x)
p(z) ≤ sj,z (x).

iii⇒ ii) follows directly from the definition of sj,z .

If we use the above theorem, then we can deduce the Hermite-Hadamard Type Inequalities for S(j)-convex
functions.

Corollary 5.2. Let p : D → R+∞, D ⊂ Rn
++ be a S(j)-convex function and integrable function onD whereD ⊂ Uj(z).

Then, for all z ∈ D, the following inequality holds:∫
D

p (x) dx ≤ p (z)
∫

D

sj,z (x) dx. (5.10)

Proof. It is proven from Theorem 5.11 (iii) and (4.9).

Let’s analyze the inequality (5.10) via sets Q(D).
Let D ⊂ Rn

++ be bounded and satisfy condition cl (intD) = D. Q(D) consist of all point x∗ ∈ D such that

1
A (D)

∫
D

sj,x∗ (x) dx = 1,

here A (D) =
∫

D
dx.

We can give a theorem about the set Q(D) and Hermite-Hadamard Type Inequalities of S(j)-convex
functions.

Theorem 5.12. Let p be a S(j)-convex function defined and integrable on D. If Q(D) 6= ∅, then one has the inequality:

1
A (D)

∫
D

p (x) dx ≤ inf
x∗∈Q(D)

p (x∗)

Proof. If p (x∗) = 0, from p (x) ≤ sj,x∗ (x) p (x∗) we have p (x) = 0. Thus, let p (x∗) > 0. For all x ∈ D,

p (x) ≤ sj,x∗ (x) p (x∗)

is hold. Because x∗ ∈ Q (D), we have

p (x∗) = p (x∗)
1

A (D)

∫
D

sj,x∗ (x) dx

=
1

A (D)

∫
D

p (x∗) sj,x∗ (x) dx ≥ 1
A (D)

∫
D

p (x) dx.



358 Ilknur Yesilce et al. / Hermite-Hadamard Inequalities...

For every x∗ ∈ Q (D), the inequality

1
A (D)

∫
D

p (x) dx ≤ p (x∗) (5.11)

is hold. If we take p (x) = sj,x∗ (x), the inequality (5.11) will be turn equality.
Let p be a S(j)-convex function defined and integrable on D which is closed, bounded and connected set.

For all x, z ∈ D, we have
p (x) ≤ sj,z (x) p (z) .

Hence, below inequality is obtained:
p (x)ψj,x (z) ≤ p (z)

where

ψj,x (z) =
1

sj,z (x)
=

{
zj

xj
, x ∈ Uj (z)

0, x /∈ Uj (z)
=

{
zj

xj
, z /∈ intUj (x)

0, z ∈ intUj (x)
(5.12)

In this case, we can write second part of the Hermite-Hadamard Type Inequality for S(j)-convex functions.

Theorem 5.13. Let D ⊂ Rn
++, p : D → R+∞ be S(j)-convex and integrable on D. Then, for all z ∈ D, we have the

inequality:

p (z)
∫

D

ψj,z (x) dx ≤
∫

D

p (x) dx (5.13)

Examples:
On the same domains in previous section, Hermite-Hadamard Inequalities for S(j)-convex functions can

be also considered. For example, let us discuss triangular domain in Example 3.1.

Example 5.6. Let
D =

{
(x1, x2) ∈ R2

++ : 0 < x1 ≤ a, 0 < x2 ≤ vx1

}
.

D ⊂ Uj(z) is necessary in order to the inequality (5.10) can be written on this region.
When j = 1, for all z ∈ R2

++ it is D 6⊂ U1(z). Hence, from Corollary 5.2, for S(1)-convex functions, the right part
of Hermite-Hadamard Inequalities can not computed on this domain.

Let j = 2. This is obvious that D ⊂ U2(z) ⇔ z2 ≥ vz1. From (5.10), we obtain∫
D

p (x1, x2) dx1dx2 ≤ p (z1, z2)
∫

D

x2

z2
dx1dx2.

When the right integral is calculated, for all z ∈ D satisfying the condition z2 ≥ vz1 (thus, z is on the hypotenuse of the
triangle) and for all p that is S(2)-convex, integrable on D, we have

1
A (D)

∫
D

p (x1, x2) dx1dx2 ≤
va

3z2
p (z1, z2)

where A(D) is area of the triangular domain.
For the same domain, if we apply the Theorem 5.13, then we can estimate the left part of Hermite-Hadamard

Inequality.
Let j = 1. From (5.13), we have

p (z1, z2)
∫

D

ψ1,z (x1, x2) dx1dx2 ≤
∫

D

p (x1, x2) dx1dx2

and from (5.12), we obtain ∫
D

ψ1,z (x1, x2) dx1dx2 =
a3z2
3z2

1

.

Thereby, the inequality is

p (z1, z2)
a3z2
3z2

1

≤
∫

D

p (x1, x2) dx1dx2.

Let j = 2. The left part of the Hermite-Hadamard Inequality is

p (z1, z2)
∫

D

ψ2,z (x1, x2) dx1dx2 ≤
∫

D

p (x1, x2) dx1dx2.
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Since, with a simple calculation, we obtain∫
D

ψ2,z (x1, x2) dx1dx2 =
a3
(
z2
1v

2 − z2
2

)
6z2

1z2

and from above inequality, we have

p (z1, z2)
a3
(
z2
1v

2 − z2
2

)
6z2

1z2
≤
∫

D

p (x1, x2) dx1dx2.
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Abstract

By making use of the operator Bc
ν defined by the generalized Bessel functions of the first kind, the au-

thors introduce and investigate several new subclasses of starlike, convex, close-to-convex and quasi-convex
functions. The authors establish inclusion relationships associated with the aforementioned operator. Some
interesting corollaries and consequences of the main inclusion relationships are also considered.
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1 Introduction, Definitions and Preliminaries

Let
U = {z : z ∈ C and |z| < 1}

be the unit disk in the complex z-plane. Also let A be the class of functions f of the form:

f(z) = z +
∞∑

n=1

an+1z
n+1, (1.1)

which are analytic in U and satisfy the following normalization condition:

f(0) = f ′(0)− 1 = 0.

Let S denote the subclass ofA consisting of all functions which are univalent in U. We denote by S∗(α), K(α),
C(β, α) and C∗(β, α) the familiar subclasses of A consisting of functions which are, respectively, starlike of
order α in U, convex of order α in U, close-to-convex of order β and type α in U and quasi-convex of order β

and type α in U. Thus, by definition, we have (for details, see [4, 6, 7, 11])

S∗(α) :=
{

f : f ∈ A and <
(

zf ′(z)
f(z)

)
> α (0 5 α < 1; z ∈ U)

}
,

K(α) :=
{

f : f ∈ A and <
(

1 +
zf ′′(z)
f ′(z)

)
> α (0 5 α < 1; z ∈ U)

}
,

∗Corresponding author.
E-mail address: harimsri@math.uvic.ca (H. M. Srivastava), selvaa1826@gmail.com(K. A. Selvakumaran), sunil a purohit@yahoo.com(S. D.
Purohit).
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C(β, α) :=
{

f : f ∈ A, g ∈ S∗(α) and <
(

zf ′(z)
g(z)

)
> β (0 5 α, β < 1; z ∈ U)

}
and

C∗(β, α) :=

{
f : f ∈ A, g ∈ K(α) and <

((
zf ′(z)

)′
g′(z)

)
> β (0 5 α, β < 1; z ∈ U

}
.

It is easily observed from the above definitions that

f(z) ∈ K(α) ⇐⇒ zf ′(z) ∈ S∗(α)

and
f(z) ∈ C∗(β, α) ⇐⇒ zf ′(z) ∈ C(β, α).

For f ∈ A given by (1.1) and g(z) given by g(z) = z+
∑∞

n=1 bn+1z
n+1, the Hadamard product (or convolution)

of f and g is defined by

(f ∗ g)(z) := z +
∞∑

n=1

an+1bn+1z
n+1 =: (g ∗ f)(z) (z ∈ U).

The generalized Bessel function of the first kind of order p is defined as a particular solution of the follow-
ing second-order differential equation (see, for details, [1]):

z2w′′(z) + bzw′(z) + [cz2 − p2 + (1− b)p]w(z) = 0 (b, c, p ∈ C) (1.2)

and has the familiar representation given by

ωp,b,c(z) =
∞∑

n=0

(−c)n

n! · Γ(p + n + b+1
2 )

(
z

2

)2n+p

(z ∈ C). (1.3)

The series in (1.3) permits a unified study of the Bessel, the modified Bessel and the spherical Bessel functions.
The following cases are worthy of note here.

1. Taking b = c = 1 in (1.3), we obtain the familiar Bessel function of the first kind of order p defined by
(see [1, 8, 12])

Jp(z) =
∞∑

n=0

(−1)n

n! · Γ(p + n + 1)

(
z

2

)2n+p

(z ∈ C). (1.4)

2. Putting b = 1 and c = −1 in (1.3), we get the modified Bessel function of the first kind of order p defined
by (see [1, 12])

Ip(z) =
∞∑

n=0

1
n! · Γ(p + n + 1)

(
z

2

)2n+p

(z ∈ C). (1.5)

3. Letting b = 2 and c = 1 in (1.3), we have the spherical Bessel function of the first kind of order p defined
by (see [1])

jp(z) =
√

π

2

∞∑
n=0

(−1)n

n! · Γ(p + n + 3/2)

(
z

2

)2n+p

(z ∈ C). (1.6)

Recently, Deniz et al. [3] considered the function ϕp,b,c(z) defined, in terms of the generalized Bessel func-
tion ωp,b,c(z), by

ϕp,b,c(z) = 2p Γ
(

p +
b + 1

2

)
z1−p/2 ωp,b,c(

√
z)

= z +
∞∑

n=1

(−c)n

4n · (ν)n

zn+1

n!

(
ν = p +

b + 1
2

6∈ Z−0 := {0,−1,−2, · · · }
)

, (1.7)

where (λ)n denotes the Pochhammer symbol (or the shifted factorial) defined by

(λ)0 = 1 and (λ)n = λ(λ + 1)(λ + 2) · · · (λ + n− 1) (n ∈ N := {1, 2, 3, · · · )}.
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Subsequently, by using the function ϕp,b,c(z), Deniz [2] introduced the operator Bc
ν as follows:

Bc
νf(z) = ϕp,b,c(z) ∗ f(z) = z +

∞∑
n=1

(−c)nan+1

4n · (ν)n

zn+1

n!
(z ∈ C). (1.8)

It is easy to verify from (1.8) that

z
(
Bc

ν+1f(z)
)′ = νBc

νf(z)− (ν − 1)Bc
ν+1f(z), (1.9)

where
ν = p +

b + 1
2

6∈ Z−0 .

In fact, the operator Bc
ν given by (1.8) provides an elementary transform of the generalized hypergeometric

function, that is, we have
Bc

νf(z) = z 0F1

(
; ν;− c

4
z
)
∗ f(z)

and
ϕν,c

(
− c

4
z
)

= z 0F1( ; ν; z).

In the present article, we investigate various inclusion relationships for each of the following subclasses
of the normalized analytic function class A, which are defined by means of the generalized Bessel function of
the first kind (see also [9] and [10] for inclusion relationships for various other function classes). Indeed, for
c ∈ C, ν ∈ R \ Z−0 and 0 5 α < 1, we write

S∗ν,c(α) := {f : f ∈ A and Bc
νf(z) ∈ S∗(α) (z ∈ U)} ,

Kν,c(α) := {f : f ∈ A and Bc
νf(z) ∈ K(α) (z ∈ U)} ,

Cν,c(β, α) := {f : f ∈ A and Bc
νf(z) ∈ C(β, α) (z ∈ U)}

and

C∗ν,c(β, α) := {f : f ∈ A and Bc
νf(z) ∈ C∗(β, α) (z ∈ U)} .

We also note that

f(z) ∈ Kν,c(α) ⇐⇒ zf ′(z) ∈ S∗ν,c(α) (1.10)

and

f(z) ∈ C∗ν,c(β, α) ⇐⇒ zf ′(z) ∈ Cν,c(β, α). (1.11)

In our investigation of the inclusion relationships involving the function classes S∗ν,c(α), Kν,c(α), Cν,c(β, α)
and C∗ν,c(β, α) given by the above definitions, we shall make use of the following Miller-Mocanu lemma.

Lemma 1.1. (see Miller and Mocanu [5]) Let Θ(u, v) be a complex-valued function, such that

Θ : D → C (D ⊂ C× C),

C being the complex plane. Also let
u = u1 + iu2 and v = v1 + iv2.

Suppose that the function Θ(u, v) satisfies each of the following conditions:

(i) Θ(u, v) is continuous in D;

(ii) (1, 0) ∈ D and <
(
Θ(1, 0)

)
> 0;

(iii) <
(
Θ(iu2, v1)

)
5 0 for all (iu2, v1) ∈ D such that v1 5 − 1

2 (1 + u2
2).
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Let
φ(z) = 1 + p1z + p2z

2 + · · · (1.12)

be analytic (regular) in U such that

φ(z) 6≡ 1 and (φ(z), zφ′(z)) ∈ D (z ∈ U).

If

<
(

Θ
(
φ(z), zφ′(z)

))
> 0 (z ∈ U),

then
<
(
φ(z)

)
> 0 (z ∈ U).

2 Inclusion Relationships

Our first set of inclusion relationships is given by Theorem 2.1 below.

Theorem 2.1. Let f ∈ A, c ∈ C, ν ∈ R \ Z−0 and α + ν > 1 (0 5 α < 1). Then

f ∈ S∗ν,c(α) =⇒ f ∈ S∗ν+1,c(α)

or, equivalently,

S∗ν,c(α) ⊂ S∗ν+1,c(α).

Proof. Let f ∈ S∗ν,c(α) and set
z
(
Bc

ν+1f(z)
)′

Bc
ν+1f(z)

− α = (1− α)φ(z), (2.13)

where φ(z) is given by (1.12). From (1.9) we get

ν
Bc

νf(z)
Bc

ν+1f(z)
=

z
(
Bc

ν+1f(z)
)′

Bc
ν+1f(z)

+ (ν − 1). (2.14)

By combining (2.13) and (2.14), we obtain

Bc
νf(z)

Bc
ν+1f(z)

=
1
ν

[
(1− α)φ(z) + α + ν − 1

]
. (2.15)

Now, by applying the logarithmic differentiation on both sides of (2.15) and multiplying the resulting equation
by z, we have

z
(
Bc

νf(z)
)′

Bc
νf(z)

=
z
(
Bc

ν+1f(z)
)′

Bc
ν+1f(z)

+
(1− α)zφ′(z)

(1− α)φ(z) + α + ν − 1
,

which, in view of (2.13), yields

z
(
Bc

νf(z)
)′

Bc
νf(z)

− α = (1− α)φ(z) +
(1− α)zφ′(z)

(1− α)φ(z) + α + ν − 1
. (2.16)

Upon taking
u = φ(z) = u1 + iu2 and ν = zφ′(z) = v1 + iv2,

if we define the function Θ(u, v) by

Θ(u, v) = (1− α)u +
(1− α)v

(1− α)u + α + ν − 1
,

then we observe that Θ(u, v) is continuous in

D =
(

C
∖{α + ν − 1

α− 1

})
× C
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and (1, 0) ∈ D, with <
(
Θ(1, 0)

)
> 0. Also, for all (iu2, v1) ∈ D such that v1 5 − 1

2 (1 + u2
2), we have

<
(
Θ(iu2, v1)

)
= <

(
(1− α)v1

(1− α)iu2 + α + ν − 1

)
=

(1− α)(α + ν − 1)v1

(α + ν − 1)2 + (1− α)2u2
2

5
−1
2
· (1− α)(α + ν − 1)(1 + u2

2)
(α + ν − 1)2 + (1− α)2u2

2

< 0,

which shows that Θ(u, v) satisfies the hypotheses of the above Miller-Mocanu Lemma. Therefore, we have

<
(
φ(z)

)
> 0 (z ∈ U).

Thus, by making use of (2.13) and (2.16), we find that f ∈ S∗ν+1,c(α). This completes the proof of Theorem
2.1.

Theorem 2.2. Let f ∈ A, c ∈ C, ν ∈ R \ Z−0 and α + ν > 1 (0 5 α < 1). Then

f ∈ Kν,c(α) =⇒ f ∈ Kν+1,c(α)

or, equivalently,

Kν,c(α) ⊂ Kν+1,c(α).

Proof. Applying (1.10) and Theorem 2.1, we observe that

f ∈ Kν,c(α) ⇐⇒ Bc
νf(z) ∈ K(α)

⇐⇒ z (Bc
νf(z))′ ∈ S∗(α)

⇐⇒ Bc
ν (zf ′(z)) ∈ S∗(α)

⇐⇒ zf ′(z) ∈ S∗ν,c(α)

=⇒ zf ′(z) ∈ S∗ν+1,c(α)

⇐⇒ Bc
ν+1 (zf ′(z)) ∈ S∗(α)

⇐⇒ z
(
Bc

ν+1f(z)
)′ ∈ S∗(α)

⇐⇒ Bc
ν+1f(z) ∈ K(α)

⇐⇒ f ∈ Kν+1,c(α),

which evidently proves Theorem 2.2.

Theorem 2.3. Let f ∈ A, c ∈ C, ν ∈ R \ Z−0 and α + ν > 1 (0 5 α < 1). Then

f ∈ Cν,c(β, α) =⇒ f ∈ Cν+1,c(β, α) (0 5 β < 1)

or, equivalently,

Cν,c(β, α) ⊂ Cν+1,c(β, α).

Proof. Let f ∈ Cν,c(β, α). Then, in view of the definition of the class Cν,c(β, α), there exists a function g ∈
S∗ν,c(α) such that

<

(
z
(
Bc

νf(z)
)′

Bc
νg(z)

)
> β, (0 5 β < 1; z ∈ U).

We now let
z
(
Bc

ν+1f(z)
)′

Bc
ν+1g(z)

− β = (1− β)φ(z), (2.17)
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where the function φ(z) is given by (1.12). Now, making use of the identity (1.9), we also have

z
(
Bc

νf(z)
)′

Bc
νg(z)

=
Bc

ν

(
zf ′(z)

)
Bc

νg(z)

=
z

(
Bc

ν+1

(
zf ′(z)

))′
+ (ν − 1)Bc

ν+1

(
zf ′(z)

)
z
(
Bc

ν+1g(z)
)′ + (ν − 1)Bc

ν+1g(z)

=


z

(
Bc

ν+1

(
zf ′(z)

))′
Bc

ν+1g(z)
+ (ν − 1)

Bc
ν+1

(
zf ′(z)

)
Bc

ν+1g(z)

 ·

(
z
(
Bc

ν+1g(z)
)′

Bc
ν+1g(z)

+ ν − 1

)−1

. (2.18)

By Theorem 2.1, we know that
g ∈ S∗ν,c(α) =⇒ g ∈ S∗ν+1,c(α),

so that we can set
z
(
Bc

ν+1g(z)
)′

Bc
ν+1g(z)

= (1− α)q(z) + α, (2.19)

where
<
(
q(z)

)
> 0 (z ∈ U).

Upon substituting from (2.17) and (2.19) into (2.18), we have

z
(
Bc

νf(z)
)′

Bc
νg(z)

=

[
z

(
Bc

ν+1

(
zf ′(z)

))′]
·
[
Bc

ν+1g(z)
]−1 + (ν − 1)[(1− β)φ(z) + β]

(1− α)q(z) + α + ν − 1
. (2.20)

By logarithmically differentiating both sides of (2.17) with respect to z, we have

z

(
Bc

ν+1

(
zf ′(z)

))′
Bc

ν+1g(z)
= (1− β)zφ′(z) + [(1− α)q(z) + α] · [(1− β)φ(z) + β],

which, in conjunction with (2.20), yields

z
(
Bc

νf(z)
)′

Bc
νg(z)

− β = (1− β)φ(z) +
(1− β)zφ′(z)

(1− α)q(z) + α + ν − 1
. (2.21)

The remaining part of our proof of Theorem 2.3 is much akin to that of Theorem 2.1. Therefore, we choose
to omit the analogous details involved.

Theorem 2.4. Let f ∈ A, c ∈ C, ν ∈ R \ Z−0 and α + ν > 1 (0 5 α < 1). Then

f ∈ C∗ν,c(β, α) =⇒ f ∈ C∗ν+1,c(β, α)

or, equivalently,

C∗ν,c(β, α) ⊂ C∗ν+1,c(β, α).

Proof. Applying (1.11) and Theorem 2.3, we observe that

f ∈ C∗ν,c(α) ⇐⇒ Bc
νf(z) ∈ C∗(β, α)

⇐⇒ z (Bc
νf(z))′ ∈ C(β, α)

⇐⇒ Bc
ν (zf ′(z)) ∈ C(β, α)

⇐⇒ zf ′(z) ∈ Cν,c(β, α)

=⇒ zf ′(z) ∈ Cν+1,c(β, α)

⇐⇒ Bc
ν+1 (zf ′(z)) ∈ C(β, α)

⇐⇒ z
(
Bc

ν+1f(z)
)′ ∈ C(β, α)

⇐⇒ Bc
ν+1f(z) ∈ C∗(β, α)

⇐⇒ f ∈ C∗ν+1,c(β, α),

which evidently proves Theorem 2.4.
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3 Remarks and Observations

As already discussed in Section 1, the study of the generalized Bessel function of the first kind permits a uni-
fied study of the Bessel, the modified Bessel and the spherical Bessel functions. By specializing the parameters
in the operator Bc

ν , we obtain the following new operators associated with the Bessel, the modified Bessel and
the spherical Bessel functions (see, for details, [2]):

• Choosing b = c = 1 in (1.8), we obtain the operator Jp : A −→ A associated with the Bessel function,
which is defined by

Jpf(z) = ϕp,1,1(z) ∗ f(z) =
[
2pΓ(p + 1)z1−p/2 Jp(

√
z)
]
∗ f(z)

= z +
∞∑

n=1

(−1)nan+1

4n(p + 1)n

zn+1

n!
. (3.22)

• Taking b = 1 and c = −1 in (1.8), we obtain the operator Ip : A −→ A associated with the modified
Bessel function, which is defined by

Ipf(z) = ϕp,1,−1(z) ∗ f(z) =
[
2pΓ(p + 1)z1−p/2 Ip(

√
z)
]
∗ f(z)

= z +
∞∑

n=1

an+1

4n(p + 1)n

zn+1

n!
. (3.23)

• Letting b = 2 and c = 1 in (1.8), we obtain the operatorQp : A −→ A associated with the spherical Bessel
function, which is defined by

Qpf(z) = ϕp,2,1(z) ∗ f(z) =
[
π−1/22p+1/2Γ

(
p +

3
2

)
z1−p/2 jp(

√
z)
]
∗ f(z)

= z +
∞∑

n=1

(−1)nan+1

4n(p + 3/2)n

zn+1

n!
. (3.24)

Our main results (Theorems 2.1 to 2.4) can thus be applied with a view of deducing the following conse-
quences.

Corollary 3.1. Let f ∈ A, p ∈ R \ Z− and α + p > 0 (0 5 α < 1). Then

f ∈ S∗p+1,1(α) =⇒ f ∈ S∗p+2,1(α)

or, equivalently,

Jpf(z) ∈ S∗(α) =⇒ f(z) ∈ S∗p+n,1(α) (n ∈ N \ {1}).

Corollary 3.2. Let f ∈ A, p ∈ R \ Z− and α + p > 0 (0 5 α < 1). Then

f ∈ Kp+1,1(α) =⇒ f ∈ Kp+2,1(α)

or, equivalently,

Jpf(z) ∈ K(α) =⇒ f(z) ∈ Kp+n,1(α) (n ∈ N \ {1}).

Corollary 3.3. Let f ∈ A, p ∈ R \ Z− and α + p > 0 (0 5 α < 1). Then

f ∈ Cp+1,1(β, α) =⇒ f ∈ Cp+2,1(β, α) (0 5 β < 1)

or, equivalently,

Jpf(z) ∈ C(β, α) =⇒ f(z) ∈ Cp+n,1(β, α) (n ∈ N \ {1}).

Corollary 3.4. Let f ∈ A, p ∈ R \ Z− and α + p > 0 (0 5 α < 1). Then

f ∈ C∗p+1,1(β, α) =⇒ f ∈ C∗p+2,1(β, α) (0 5 β < 1)

or, equivalently,

Jpf(z) ∈ C∗(β, α) =⇒ f(z) ∈ C∗p+n,1(β, α) (n ∈ N \ {1}).

Finally, we remark that similar results can be obtained involving the operators Ip and Qp by specializing
the parameter in Theorems 2.1 to 2.4. Numerous other applications and consequences of our main results
(Theorems 2.1 to 2.4) and their aforementioned consequences (Corollaries 3.1 to 3.4) can indeed be derived
similarly.
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[1] Á. Baricz, Generalized Bessel Functions of the First Kind, Lecture Notes in Mathematics, Vol. 1994, Springer-
Verlag, Berlin, Heidelberg and New York, 2010.

[2] E. Deniz, Differential subordination and superordination results for an operator associated with the gen-
eralized Bessel function [arXiv:1204.0698v1 [math.CV] ].

[3] E. Deniz, H. Orhan and H. M. Srivastava, Some sufficient conditions for univalence of certain families of
integral operators involving generalized Bessel functions, Taiwanese J. Math. 15 (2011), 883–917.

[4] P. L. Duren, Univalent Functions, Grundlehren der Mathematischen Wissenschaften, Band 259, Springer-
Verlag, New York, Berlin, Heidelberg and Tokyo, 1983.

[5] S. S. Miller and P. T. Mocanu, Second-order differential inequalities in the complex plane, J. Math. Anal.
Appl. 65 (1978), 289–305.

[6] K. I. Noor, On quasiconvex functions and related topics, Internat. J. Math. Math. Sci. 10 (1987), 241–258.

[7] S. Owa, M. Nunokawa, H. Saitoh and H. M. Srivastava, Close-to-convexity, starlikeness, and convexity
of certain analytic functions, Appl. Math. Lett. 15 (2002), 63–69.

[8] J. K. Prajapat, Certain geometric properties of normalized Bessel functions, Appl. Math. Lett. 24 (2011),
2133–2139.

[9] H. M. Srivastava, M. K. Aouf and R. M. El-Ashwah, Some inclusion relationships associated with a certain
class of integral operators, Asian-European J. Math. 3 (2010), 667-684.

[10] H. M. Srivastava, S. M. Khairnar and M. More, Inclusion properties of a subclass of analytic functions
defined by an integral operator involving the Gauss hypergeometric function, Appl. Math. Comput. 218
(2011), 3810-3821.

[11] H. M. Srivastava and S. Owa (Editors), Current Topics in Analytic Function Theory, World Scientific Pub-
lishing Company, Singapore, New Jersey, London and Hong Kong, 1992.

[12] G. N. Watson, A Treatise on the Theory of Bessel Functions, Second edition, Cambridge University Press,
Cambridge, London and New York, 1944.

Received: January 23, 2015; Accepted: June 12, 2015

UNIVERSITY PRESS

Website: http://www.malayajournal.org/


	Introduction
	Construction of the mixed quadrature rule of precision seven
	Error analysis of the mixed quadrature rule
	Algorithm for adaptive quadrature routine
	Numerical verification
	Conclusion
	Introduction
	Main results
	Concluding Remarks
	Acknowledgment
	Introduction
	Main result
	Introduction
	General Solutions of (1.4), (1.5) and (1.6)
	Stability results of (1.2): Direct method
	Counter examples for non stable cases of (1.5)
	Stability results of (1.2) using various substitutions
	Stability results of (1.2): fixed point method
	Introduction
	Preliminaries
	-open sets
	Separation axioms
	Introduction
	Preliminaries
	Existence and uniqueness of solutions
	Example
	Introduction
	Main summation formula
	Derivation of the summation Formula 
	Introduction
	Group classification of the K-S equation
	Invariant solutions
	Conservation laws
	Conclusions
	Introduction
	Preliminaries
	The Nijenhuis tensor
	Some basic results
	Integrability Conditions
	Introduction
	Preliminaries
	Introduction
	Mathematical Formulation
	Solution
	Results
	Conclusion
	Introduction
	L(j)-convex Functions
	Hermite-Hadamard Type Inequalities for L(j)-convex Functions
	S(j)-convex Functions
	Hermite-Hadamard Type Inequalities for S(j)-convex Functions
	Introduction, Definitions and Preliminaries
	Inclusion Relationships
	Remarks and Observations

