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The Natural Lift of the Fixed Centrode of a Non-null Curve in
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Abstract

In this study, we dealt with the natural lift curves of the fixed centrode of a non-null curve.Furthermore,
some interesting result about the original curve were obtained, depending on the assumption that the natural
lift curves should be the integral curve of the geodesic spray on the tangent bundle T

(
S2

1
)

and T
(

H2
0
)

.
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1 Introduction

Thorpe gave the concepts of the natural lift curve and geodesic spray in [12]. Thorpe provied the natural
lift α of the curve α is an integral curve of the geodesic spray iff α is an geodesic on M. Çalışkan at al. studied
the natural lift curves of the spherical indicatries of tangent, principal normal, binormal vectors and fixed
centrode of a curve in [11]. They gave some interesting results about the original curve, depending on the
assumption that the natural lift curve should be the integral curve of the geodesic spray on the tangent bundle
T
(
S2). Some properties of M-vector field Z defined on a hypersurface M of M were studied by Agashe in

[1]. M-integral curve of Z and M-geodesic spray are defined by Çalışkan and Sivridağ. They gave the main
theorem: The natural lift α of the curve α (in M) is an M-integral curve of the geodesic spray Z iff α is an
M-geodesic in [5]. Bilici et al. have proposed the natural lift curves and the geodesic sprays for the spherical
indicatrices of the the involute evolute curve couple in Euclidean 3-space. They gave some interesting results
about the evolute curve, depending on the assumption that the natural lift curve of the spherical indicatrices of
the involute should be the integral curve on the tangent bundle T

(
S2) in [3]. Then Bilici applied this problem

to involutes of a timelike curve in Minkowski 3-space (see [4]). Ergün and Çalışkan defined the concepts of
the natural lift curve and geodesic spray in Minkowski 3-space in [7]. The anologue of the theorem of Thorpe
was given in Minkowski 3-space by Ergün and Çalışkan in [7]. Çalışkan and Ergün defined M-vector field
Z, M-geodesic spray, M-integral curve of Z, M-geodesic in [6].The anologue of the theorem of Sivridağ and
Çalışkan was given in Minkowski 3-space by Ergün and Çalışkan in [5]. Walrave characterized the curve with
constant curvature in Minkowski 3-space in [12]. In differential geometry, especially the theory of space curve,
the Darboux vector is the areal velocity vector of the Frenet frame of a spacere curve. It is named after Gaston
Darboux who discovered it. In term of the Frenet-Serret apparatus, the darboux vector W can be expressed as
W = τT + κB, details are given in Lambert et al. in [8].

In this study,we studied the fixed centrode curve of a curve and characterized the curve if the natural lift
of the fixed centrode curve is an integral curve of the geodesic sprays.

∗Corresponding author.
E-mail address: mustafacaliskan@gazi.edu.tr (Mustafa Çalışkan), eergun@omu.edu.tr (Evren Ergün).
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Let Minkowski 3-space R3
1 be the vector space R3 equipped with the Lorentzian inner product g given by

g (X, X) = −x2
1 + x2

2 + x2
3

where X = (x1, x2, x3) ∈ R3 . A vector X = (x1, x2, x3) ∈ R3 is said to be timelike if g (X, X) < 0, spacelike
if g (X, X) > 0 and lightlike (or null) if g (X, X) = 0. Similarly, an arbitrary curve α = α (t) in R3

1 where t is
a pseudo-arclength parameter, can locally be timelike, spacelike or null (lightlike), if all of its velocity vectors
·
α (t) are respectively timelike, spacelike or null (lightlike), for every t ∈ I ⊂ R. A lightlike vector X is said to
be positive (resp. negative) if and only if x1 > 0 (resp.x1 < 0) and a timelike vector X is said to be positive
(resp. negative) if and only if x1 > 0 (resp. x1 < 0). The norm of a vector X is defined by ‖X‖IL =

√
|g (X, X)|,

[9].
The Lorentzian sphere and hyperbolic sphere of radius 1 in R3

1 are given by

S2
1 =

{
X = (x1, x2, x3) ∈ R3

1 : g (X, X) = 1
}

and

H2
0 =

{
X = (x1, x2, x3) ∈ R3

1 : g (X, X) = −1
}

respectively,[8].The vectors X = (x1, x2, x3), Y = (y1, y2, y3) ∈ R3
1 are orthogonal if and only if g (X, X) = 0,

[9].
Now let X and Y be two vectors in R3

1 , then the Lorentzian cross product is given by

X×Y = (x3y2 − x2y3, x1y3 − x3y1, x1y2 − x2y1) , [2].

We denote by {T (t) , N (t) , B (t)} the moving Frenet frame along the curve α. Then T, N and B are the tangent,
the principal normal and the binormal vector of the curve α, respectively.

Let α be a unit speed timelike space curve with curvature κ and torsion τ. Let Frenet vector fields of α be
{T, N, B}. In this trihedron, T is timelike vector field, N and B are spacelike vector fields.For this vectors, we
can write

T × N = B, N × B = −T, B× T = N,

where × is the Lorentzian cross product, [2]. in space R3
1 Then, Frenet formulas are given by

·
T = κN,

·
N = κT + τB,

·
B = −τN, [13].

The Frenet instantaneous rotation vector for the timelike curve is given by W = τT + κB.
Let α be a unit speed spacelike space curve with a spacelike binormal. In this trihedron, we assume that T

and B are spacelike vector fields and N is a timelike vector field In this situation,.

T × N = B, N × B = T, B× T = −N,

Then, Frenet formulas are given by

·
T = κN,

·
N = κT + τB,

·
B = τN, [13].

The Frenet instantaneous rotation vector for the spacelike space curve with a spacelike binormal is given by
W = τT − κB.

Lemma 1.1. Let Xand Y be nonzero Lorentz orthogonal vectors in R3
1. If X is timelike, then Y is spacelike, [10].

Lemma 1.2. Let X and Y be pozitive (negative ) timelike vectors in R3
1. Then

g (X, Y) ≤ ‖X‖ ‖Y‖

whit equality if and only if X and Y are linearly dependent, [10].
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Lemma 1.3. i) Let X and Y be pozitive (negative ) timelike vectors in R3
1. By the Lemma 2, there is unique nonnegative

real number ϕ (X, Y) such that
g (X, Y) = ‖X‖ ‖Y‖ cosh ϕ (X, Y)

the Lorentzian timelike angle between X and Y is defined to be ϕ (X, Y).
ii) Let X and Y be spacelike vektors in R3

1 that span a spacelike vector subspace. Then we have

|g (X, Y)| ≤ ‖X‖ ‖Y‖ .

Hence, there is a unique real number ϕ (X, Y) between 0 and π such that

g (X, Y) = ‖X‖ ‖Y‖ cos ϕ (X, Y)

the Lorentzian spacelike angle between X and Y is defined to be ϕ (X, Y).
iii) Let X and Y be spacelike vectors in R3

1 that span a timelike vector subspace. Then we have

g (X, Y) > ‖X‖ ‖Y‖ .

Hence, there is a unique pozitive real number ϕ (X, Y) between 0 and π such that

|g (X, Y)| = ‖X‖ ‖Y‖ cosh ϕ (X, Y)

the Lorentzian timelike angle between X and Y is defined to be ϕ (X, Y).
iv) Let X be a spacelike vector and Y be a pozitive timelike vector in R3

1. Then there is a unique nonnegative reel
number ϕ (X, Y) such that

|g (X, Y)| = ‖X‖ ‖Y‖ sinh ϕ (X, Y)

the Lorentzian timelike angle between X and Y is defined to be ϕ (X, Y) , [10].

Theorem 1.1. Let α be a unit speed timelike space curve.Then we have

1. κ = 0 if and only if α is a part of a timelike straight line;

2. τ = 0 if and only if α is a planar timelike curve;

3. τ = 0 and κ =constant > 0 if and only if α is a part of a orthogonal hyperbola;

4. κ =constant > 0, τ =constant 6= 0 and |τ| > κ if and only if α is a part of a timelike circular helix,

α (s) =
1
K

(√
τ2Ks, κ cos

(√
Ks
)

, κ sin
(√

Ks
))

with K = τ2 − κ2;

5. κ =constant > 0, τ =constant 6= 0 and |τ| < κ if and only if α is a timelike hyperbolic helix,

α (s) =
1
K

(
κ sinh

(√
Ks
)

,
√

τ2Ks, κ cosh
(√

Ks
))

with K = κ2 − τ2;

6. κ =constant > 0, τ =constant 6= 0 and |τ| = κ if and only if α can be parameterized by

α (s) =
1
6

(
κ2s3 + 6s, 3κs2, κτs3

)
[13].

Theorem 1.2. Let α be a unit speed spacelike space curve with a spacelike binormal. Then we have

1. τ = 0 and κ =constant > 0 if and only if α is a part of a orthogonal hyperbola;
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2. κ =constant > 0, τ =constant 6= 0 if and only if α is a part of a spacelike hyperbolic helix,

α (s) =
1
K

(
, κ cosh

(√
Ks
)

,
√

τ2Ks, κ sinh
(√

Ks
))

with K = κ2 + τ2, [13].

Theorem 1.3. Let α be a unit speed spacelike space curve with a timelike binormal. Then we have

1. τ = 0 and κ =constant > 0 if and only if α is a part of a circle;

2. κ =constant > 0, τ =constant 6= 0 and |τ| > κ if and only if α is a part of a spacelike hyperbolic helix,

α (s) =
1
K

(
κ sinh

(√
Ks
)

,
√

τ2Ks, κ cosh
(√

Ks
))

with K = τ2 − κ2;

3. κ =constant > 0, τ =constant 6= 0 and |τ| < κ if and only if α is a part of a spacelike circular helix,

α (s) =
1
K

(√
τ2Ks, κ cos

(√
Ks
)

, κ sin
(√

Ks
))

with K = κ2 − τ2;

4. κ =constant > 0, τ =constant 6= 0 and |τ| = κ if and only if α can be parameterized by

α (s) =
1
6

(
κτs3,−κ2s3 + 6s, 3κs2

)
[13].

2 The Natural Lift of the Fixed Centrode of a Non-null Curve in
Minkowski 3-Space

Definition 2.1. Let M be a hypersurface in R3
1 and let α : I −→ M be a parametrized curve. α is called an integral

curve of X if

d
dt

(α (t)) = X (α (t)) (for all t ∈ I)

where X is a smooth tangent vector field on M, [9]. We have

TM =
P∈M

TP M = χ (M)

where TP M is the tangent space of M at P and χ (M) is the space of vector fields of M.

Definition 2.2. For any parametrized curve α : I −→ M , α : I −→ TM given by

α (t) =
(

α (t) ,
·
α (t)

)
=
·
α (t) |α(t)

is called the natural lift of α on TM.Thus, we can write

dα

dt
=

d
dt

( ·
α (t) |α(t)

)
= D ·

α(t)

·
α (t)

where D is the Levi-Civita connection on R3
1 ,[7].

Definition 2.3. A X ∈ χ (TM) is called a geodesic spray if for V ∈ TM X (V) = +εg (S (V) , V) N ,where
ε = g (N, N),[7].
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Theorem 2.1. The natural lift α of the curve α is an integral curve of geodesic spray X if and only if α is a geodesic on
M,[7].

Definition 2.4. (Unit Vector C of Direction W for Non-null Curves):

1. For the curve α with a timelike tanget, θ being a Lorentzian timelike angle between the spacelike binormal unit
−B and the Frenet instantaneous rotation vector W.

(i)If |κ| > |τ|, then W is a spacelike vector. In this situation, from Lemma 1.3 iii) we can write

κ = ‖W‖ cosh θ

τ = ‖W‖ sinh θ

‖W‖2 = g (W, W) = κ2 − τ2 and C = W
‖W‖ = sinh θT + cosh θB, where C is unit vector of direction

W.
(ii)If |κ| < |τ|, then W is a timelike vector. In this situation, from Lemma 1.3 iv) we can write

κ = ‖W‖ sinh θ

τ = ‖W‖ cosh θ

‖W‖2 = −g (W, W) = −
(
κ2 − τ2) and C = cosh θT + sinh θB.

2. For the curve α with a timelike principal normal, θ being an angle between the B and the W, if B and W spacelike
vectors that span a spacelike vektor subspace then by the Lemma 3 ii) we can write

κ = ‖W‖ cos θ

τ = ‖W‖ sin θ

‖W‖2 = g (W, W) = κ2 + τ2 and C = sin θT − cos θB.

3. For the curve α with a timelike binormal, θ being a Lorentzian timelike angle between the −B and the W.
(i)If |κ| < |τ|, then W is a spacelike vector. In this situation, from Lemma 3 iv) we can write

κ = ‖W‖ sinh θ

τ = ‖W‖ cosh θ

‖W‖2 = g (W, W) = τ2 − κ2 and C = − cosh θT + sinh θB.
(ii)If |κ| > |τ|, then W is a timelike vector. In this situation, from Lemma 3 i) we have

κ = ‖W‖ cosh θ

τ = ‖W‖ sinh θ

‖W‖2 = −g (W, W) = −
(
τ2 − κ2) and C = − sinh θT + cosh θB.

Let D,
−
D and

=
D be connections in R3

1, S2
1 and H2

0 respectively and ξ be a unit normal vector field of S2
1

and H2
0 . Then Gauss Equations are given by the followings

DXY =
−
DXY + εg (S (X) , Y) ξ,

DXY =
=
DXY + εg (S (X) , Y) ξ,

where ε = g (ξ, ξ) and S is the shape operator of S2
1 and H2

0 .
Let αC be the fixed centrode of the motion described by the curve α. Then the curve is given by αC = C (s)

and C = W
‖W‖ ,where W being the Darboux vector.
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We have investigate how α must be curve satifying the condition that αC is an integral curve of the geodesic
spray, where αC is the natural lift of the curve αC.

(i) Let α be a unit speed timelike space curve.
(a) Let W is a spacelike vector. If αC is an integral curve of the geodesic spray, then by means of Theorem

2.1
D .

αC

.
αC = 0

that is

D .
αC

.
αC = D .

αC

.
αC + εg

(
S
( .
αC
)

,
.

αC
)

ξ

D .
αC

.
αC = εg

(
S
( .
αC
)

,
.

αC
)

C

where ε = g (ξ, ξ) and ξ = C. Since T, N, B are linearly independent, we have
·
θ = 0 or τ = κ = 0.

Corollary 2.1. If the natural lift αC of αC is an integral curve of the geodesic spray on the tangent bundle T
(
S2

1
)

then
α is a part of a timelike hyperbolic helix,

α (s) =
1
K

(
κ sinh

(√
Ks
)

,
√

τ2Ks, κ cosh
(√

Ks
))

with K = κ2 − τ2.

(b) Let W is a timelike vector. If αC is an integral curve of the geodesic spray, then by means of Theorem
2.1

=
D .

αC

.
αC = 0

that is

D .
αCF

.
αC =

=
D .

αC

.
αC + εg

(
S
( .
αC
)

,
.

αC
)

ξ

D .
αC

.
αC = εg

(
S
( .
αC
)

,
.

αC
)

C

where ε = g (ξ, ξ) and ξ = C. Since T, N, B are linearly independent, we have
·
θ = 0 or τ = κ = 0.

Corollary 2.2. If the natural lift αC of αC is an integral curve of the geodesic spray on the tangent bundle T
(

H2
0
)

then
α is a part of a timelike circular helix,

α (s) =
1
K

(√
τ2Ks, κ cos

(√
Ks
)

, κ sin
(√

Ks
))

with K = τ2 − κ2.

(ii) Let α be a unit speed spacelike space curve with a spacelike binormal.
W is a spacelike vector. If αC is an integral curve of the geodesic spray, then by means of Theorem 2.1

D .
αC

.
αC = 0

that is

D .
αCF

.
αC = D .

αC

.
αC + εg

(
S
( .
αC
)

,
.

αC
)

ξ

D .
αC

.
αC = εg

(
S
( .
αC
)

,
.

αC
)

C

where ε = g (ξ, ξ) and ξ = C. Because T, N, B are linearly independent, we have
·
θ = 0 or τ = κ = 0.
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Corollary 2.3. If the natural lift αC of αC is an integral curve of the geodesic spray on the tangent bundle T
(
S2

1
)

then
α is a part of a spacelike hyperbolic helix,

α (s) =
1
K

(
κ cosh

(√
Ks
)

,
√

τ2Ks, κ sinh
(√

Ks
))

with K = κ2 + τ2.

(iii) Let α be a unit speed spacelike space curve with a timelike binormal.
(a) Let W is a spacelike vector. If αC is an integral curve of the geodesic spray, then by means of Theorem

2.1

D .
αC

.
αC = 0

that is

D .
αCF

.
αC = D .

αC

.
αC + εg

(
S
( .
αC
)

,
.

αC
)

ξ

D .
αC

.
αC = εg

(
S
( .
αC
)

,
.

αC
)

C

where ε = g (ξ, ξ) and ξ = C. Because T, N, B are linearly independent, we have
·
θ = 0 or τ = κ = 0.

Corollary 2.4. If the natural lift αC of αC is an integral curve of the geodesic spray on the tangent bundle T
(
S2

1
)

then
α is a part of a spacelike hyperbolic helix,

α (s) =
1
K

(
κ sinh

(√
Ks
)

,
√

τ2Ks, κ cosh
(√

Ks
))

with K = τ2 − κ2.

(b) Let W is a timelike vector.If αC is an integral curve of the geodesic spray, then by means of Theorem 2.1

=
D .

αC

.
αC = 0

that is

D .
αCF

.
αC =

=
D .

αC

.
αC + εg

(
S
( .
αC
)

,
.

αC
)

ξ

D .
αC

.
αC = εg

(
S
( .
αC
)

,
.

αC
)

C

where ε = g (ξ, ξ) and ξ = C. Since T, N, B are linearly independent, we have
·
θ = 0 or τ = κ = 0.

Corollary 2.5. If the natural lift αC of αC is an integral curve of the geodesic spray on the tangent bundle T
(

H2
0
)

then
α is a part of a spacelike circular helix,

α (s) =
1
K

(√
τ2Ks, κ cos

(√
Ks
)

, κ sin
(√

Ks
))

with K = κ2 − τ2.
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Example 2.1. Let α (s) =
(

cosh
(

s√
2

)
, s√

2
, sinh

(
s√
2

))
be a unit speed spacelike hyperbolic helix with

T (s) =

(
1√
2

sinh
(

s√
2

)
,

1√
2

,
1√
2

cosh
(

s√
2

))
,

N (s) =

(
cosh

(
s√
2

)
, 0, sinh

(
s√
2

))
,

B (s) =

(
− 1√

2
sinh

(
s√
2

)
,

1√
2

,− 1√
2

cosh
(

s√
2

))
,

C (s) =

(
sinh

(
s√
2

)
, 0, cosh

(
s√
2

))
,

αT (s) =

(
1√
2

sinh
(

s√
2

)
,

1√
2

,
1√
2

cosh
(

s√
2

))
,

αB (s) =

(
− 1√

2
sinh

(
s√
2

)
,

1√
2

,− 1√
2

cosh
(

s√
2

))
,

αC (s) =

(
sinh

(
s√
2

)
, 0, cosh

(
s√
2

))
,

Tangent indicatrix of α.
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Principal normal indicatrix of α.

Binormal indicatrix of α.



Çalışkan and Ergün / The Natural Lift of the Fixed... 347

Fixed cenroid of α.

Fixed cenroid of α and its natural lift curve.
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Abstract

In this paper, we obtain the general solution and the generalized Ulam-Hyers stability of the 2-variable
k-AC mixed type functional equation

f (x + ky, z + kw) + f (x− ky, z− kw)

= k2[ f (x + y, z + w) + f (x− y, z− w)] + 2(1− k2) f (x, z).

for any k ∈ Z− {0,±1} in α-Šerstnev Menger Probabilistic normed spaces.

Keywords: Generalized Hyers-Ulam-Rassias stability, k-AC mixed type functional equation, α-Šerstnev Menger
Probabilistic normed spaces.

2010 MSC: 39B55, 39B52, 39B82. c©2012 MJM. All rights reserved.

1 Introduction

Menger introduced probabilistic metric space in 1942 [16]. A probabilistic normed space (PN space) is a
natural generalization of an ordinary normed linear space. Such spaces were first introduced by Šerstnev in
1963, (see, [28]). Alsina et al. generalized the definition of PN space [1]. This definition became the standard
one and has been adopted by all researchers, who after them have investigated the properties of PN spaces.
In this article, we adopt the new definition of α-Šerstnev PN spaces (or generalized Šerstnev PN spaces) given
in the paper [14] by Lafuerza-Guillén and Rodrı́guez.

The problem of Ulam-Hyers stability for functional equations concerns deriving conditions under which,
given an approximate solution of a functional equation, one may find an exact solution that is near it in some
sense. The problem was first stated by Ulam [30] in 1940 for the case of group homomorphisms, and solved by
Hyers [9] in the setting of Banach spaces. Hyers result has since then seen many significant generalizations,
both in terms of the control condition used to define the concept of approximate solution ([2, 7, 22]) and in
terms of the methods used for the proof ([4, 6, 8, 10, 29]). Many interesting results concerning this problem
can be found, for example, in [11–13, 15, 17–20, 23, 24].

The stability of generalized mixed type functional equation of the form

f (x + ky) + f (x− ky) = k2[ f (x + y) + f (x− y)] + 2(1− k2) f (x) (1.1)

∗Corresponding author.
E-mail address: shckravi@yahoo.co.in (K. Ravi), rjamche31@gmail.com (R. Jamuna), matina@stats.ucl.ac.uk (Matina J. Rassias),
zhangyanhui@th.btbu.edu.cn (Yanhui Zhang), rskishorekumar@yahoo.co.in (R. Kishore Kumar).
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for fixed integers k and k 6= 0,±1 in quasi-Banach spaces was introduced by M. Eshaghi Gordji and H. Khodaie
[5]. The mixed type functional equation (1.1) is having the property additive, quadratic and cubic.

J.H. Bae and W.G. Park proved the general solution and investigated the generalized Hyers-Ulam stability
of the 2-variable quadratic functional equation

f (x + y, z + w) + f (x− y, z− w) = 2 f (x, z) + 2(y, w). (1.2)

The functional equation (1.2) has solution

f (x, y) = ax2 + bxy + cy2 (1.3)

The general solution and generalized Hyers-Ulam stability of a 3-variable quadratic functional equation

f (x + y, z + w, u + v) + f (x− y, z− w, u− v) = 2 f (x, z, u) + 2(y, w, v) (1.4)

was discussed by K. Ravi and M. Arun Kumar [25]. The solution of (1.4) is of the form

f (x, y, z) = ax2 + by2 + cz2 + dxy + eyz + f zx (1.5)

Very recently, M. Aruk Kumar et al., introduced and investigated the solution and generalized Ulam-Hyers
stability of a 2-varibale AC-mixed type functional equation

f (2x + y, 2z + w)− f (2x− y, 2z− w) = 4[ f (x + y, z + w)− f (x− y, z− w)]− 6 f (y, w) (1.6)

having solutions
f (x, y) = ax + by (1.7)

and
f (x, y) = ax3 + bx2y + cxy2 + dy3 (1.8)

in Banach spaces [3] and Quasi-Beta normed space [21].
Following the same approach, in this paper, we investigate the general solution and establish that

generalized Ulam-Hyers stability of the 2-variable k-AC mixed type functional equation

f (x + ky, z + kw) + f (x− ky, z− kw)

= k2[ f (x + y, z + w) + f (x− y, z− w)] + 2(1− k2) f (x, z) (1.9)

having solutions
f (x, y) = ax + by (1.10)

and
f (x, y) = ax3 + bx2y + cxy2 + dy3 (1.11)

for fixed integers k with k 6= 0,±1 in α-Šestnev (or generalized Šerstnev) Menger Probabilistic normed spaces.
∆+ is the space of distribution functions that is, the space of all mappings F : R ∪ {−∞, ∞} → [0, 1] that is

non-decreasing, left-continuous on R and such that F(0) = 0 and F(+∞) = 1. D+ is a subset of ∆+ consisting
of all functions F for which lim

x→+∞
F(x) = 1. The space ∆+ is partially ordered by the usual point-wise ordering

of functions. The maximal element for ∆+ in this order is the distribution function ε0 given by

ε0(t) =

{
0, if t ≤ 0

1, if t > 0

Definition 1.1. [26, 27] A triangle function is a mapping τ : ∆+ × ∆+ → ∆+ such that, for all F, G, H, K in ∆+,

(1) τ(F, ε0) = F,

(2) τ(F, G) = τ(G, F),

(3) τ(F, G) ≤ τ(H, K) whenever F ≤ H, G ≤ K,

(4) τ(τ(F, G), H) = τ(F, τ(G, H)).
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Moreover, a triangle function is continuous if it is continuous in the metric space (∆+, ds).
Typical continuous triangle functions are

τT(F, G)(x) := sup
s+t=x

T(F(s), G(t)) (1.12)

and
τT∗(F, G)(x) := inf

s+t=x
T∗(F(s), G(t)) (1.13)

for all F, G ∈ ∆+ and all x ∈ R. Here, T is a continuous t-norm and T∗ is the corresponding continuous t-conorm, i.e.,
both are continuous binary operations on [0, 1] that are commutative, associative, and non decreasing in each variable;
T has 1 as identity and T∗ has 0 as identity. Also T∗(x, y) = 1− T(1− x, 1− y).

Definition 1.2 (PN spaces redefined [1]). A PN space is a quadruple (V, ν, τ, τ∗), where V is a real vector space, τ

and τ∗ are continuous triangle functions such that τ ≤ τ∗, and the mapping ν : V → ∆+ satisfies, for all p and q in V,
the conditions:

(N1) νp = ε0 if, and only if, p = θ (θ is the null vector in V);

(N2) ∀ p ∈ V, ν−p = νp;

(N3) νp+q ≥ τ(νp, νq);

(N4) ∀ α ∈ [0, 1], νp ≤ τ∗(ναp, ν(1−α)p).

A PN space is called a Šerstnev-space if it satisfies (N1), (N3) and the following condition:

(Š) ναp(x) = νp

(
x
|α|

)
(1.14)

holds for every α 6= 0 ∈ R and x > 0.
If τ = τT and τ∗ = τT∗ for some continuous t-norm T and its t-conorm T∗, then the PN space (V, ν, τT , τT∗) is

called Menger PN space (briefly, MPN space), and is denoted by (V, ν, T).
Let φ : [0,+∞] → [0,+∞] be a non-decreasing, left-continuous function with φ(0) = 0, φ(+∞) = +∞ and

φ(x) > 0 for x > 0. Let φ̂ be the (unique) quasi-inverse of φ which is left-continuous. φ̂ is defined by φ̂(0) = 0,
φ̂(+∞) = +∞ and φ̂(t) = sup{u : φ(u) < t} for all 0 < t < +∞. It follows that φ̂(φ(x)) ≤ x and φ(φ̂(y)) ≤ y for
all x and y.

Definition 1.3. [14] A quadruple (V, ν, τ, τ∗) satisfy the

(φ− Š) νλp(x) = νp

(
φ̂

(
φ(x)
|λ|

))
(1.15)

for all x ∈ R+, p ∈ V and λ ∈ R\{0} is called a φ-Šerstnev PN space (generalized Šerstnev space).
If φ(x) = x1/α for a fixed positive real number α, the condition (φ− Š) takes the form

(α− Š) νλp(x) = νp

(
x
|λ|α

)
(1.16)

for every p ∈ V, for every x > 0 and λ ∈ R\{0}.
PN spaces satisfying the condition (α− Š) are called α-Šerstnev PN spaces.

Definition 1.4. Let (V, ν, τ) be a PN space and {xn} be a sequence in V. Then {xn} is said to be convergent if there
exists x ∈ V such that

lim
n→∞

νxn−x(t) = 1 (1.17)

for all t > 0. In this case x is called the limit of {xn}.

Definition 1.5. The sequence {xn} in (V, ν, τ) is called a Cauchy sequence if, for every ε > 0 and δ > 0, there exists
a positive integer n0 such that ν(xn − xm)(δ) > 1− ε for all m, n ≥ n0. Clearly, every convergent sequence in a PN-
space is Cauchy. If every Cauchy sequence is convergent in a PN-space (V, ν, τ), then (V, ν, τ) is called a probabilistic
Banach space (PB-space).
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2 General Solution

Through out this section let U and V be real vector spaces and we present the solution of (1.9) using Lemma
2.1, 2.2, 2.3.

Lemma 2.1. If f : U2 → V is a mapping satisfying (1.9) and let g : U2 → V be a mapping given by

g(x, x) = f (2x, 2x)− 8 f (x, x) (2.1)

for all x ∈ U then
g(2x, 2x) = 2g(x, x) (2.2)

for all x ∈ U such that g is additive.

Proof. Letting (x, y, z, w) by (0, 0, 0, 0) in (1.9), we get

f (0, 0) = 0 (2.3)

Setting (x, y, z, w) by (y, x, w, z) in (1.9), we obtain

f (y + kx, w + kz) + f (y− kx, w− kz)

= k2[ f (x + y, w + z) + f (y− x, w− z)] + 2(1− k2) f (z, x) (2.4)

for all x, y, z, w ∈ U.
Replacing (x, y, z, w) by (x,−y, z,−w) in (2.4), we get

f (−y + kx,−w + kz) + f (−y− kz,−w− kz)

= k2[ f (x− y), (w− z)) + f (−y− x,−w− z)] + 2(1− k2) f (z, x) (2.5)

for all x, y, z, w ∈ U.
From (2.4) and (2.5) we arrive at

f (y + kx, w + kz) + f (y− kx, w− kz) + f (−y + kx,−w + kz)

+ f (−y− kx,−w− kz) = k2[ f (x + y, w + z) + f (y− x, w− z)

+ f (x− y, z− w) + f (−y− x,−w− z)] + 4(1− k2) f (z, x) (2.6)

Now, letting (x, y, z, w) by (0, y, 0, y) in (2.6), we obtain

2[k2 − 1][ f (y, y) + f (−y,−y)] = 0

which implies

f (y, y) = − f (−y,−y) (2.7)

for all y ∈ U.
Replacing (x, y, z, w) by (x, x, x, x) in (1.9), we get

f ((1 + k)x, (1 + k)x) + f ((1− k)x, (1− k)x)

= k2 f (2x, 2x) + 2(1− k2) f (x, x) (2.8)

for all x ∈ U. Now, replacing x by 2x in (2.8), we have

f (2(1 + k)x, 2(1 + k)x) + f (2(1− k)x, 2(1− k)x)

= k2 f (4x, 4x) + 2(1− k2) f (2x, 2x) (2.9)

for all x ∈ U. Again replacing (x, y, z, w) by (2x, x, 2x, x) in (1.9), we obtain

f ((2 + k)x, (2 + k)x) + f ((2− k)x, (2− k)x)

= k2 f (3x, 3x) + k2 f (x, x) + 2(1− k2) f (2x, 2x) (2.10)
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for all x ∈ U.
Replacing (x, y, z, w) by (x, 2x, x, 2x) in (1.9), we get

f ((1 + 2k)x, (1 + 2k)x) + f ((1− 2k)x, (1− 2k)x)

= k2 f (3x, 3x)− k2 f (x, x) + 2(1− k2) f (x, x) (2.11)

for all x ∈ U. Replacing (x, y, z, w) by (x, 3x, x, 3x) in (1.9), we obtain

f ((1 + 3k)x, (1 + 3k)x) + f ((1− 3k)x, (1− 3k)x)

= k2 f (4x, 4x)− k2 f (2x, 2x) + 2(1− k2) f (x, x) (2.12)

for all x ∈ U. We substitute (x, y, z, w) by ((1 + k)x, x, (1 + k)x, x) in (1.9) and then (x, y, z, w) by ((1 −
k)x, x, (1− k)x, x) in (1.9) to obtain

f ((1 + 2k)x, (1 + 2k)x) + f (x, x) = k2 f ((2 + k)x, (2 + k)x)

+ k2 f (kx, kx) + 2(1− k2) f ((1 + k)x, (1 + k)x) (2.13)

and

f ((1− 2k)x, (1− 2k)x) + f (x, x) = k2 f ((2− k)x, (2− k)x)

− k2 f (kx, kx) + 2(1− k2) f ((1− k)x, (1− k)x) (2.14)

for all x ∈ U. Then, by adding (2.13) to (2.14), we have

f ((1 + 2k)x, (1 + 2k)x) + f ((1− 2k)x, (1− 2k)x) + 2 f (x, x)

= k2 f ((2 + k)x, (2 + k)x) + k2 f ((2− k)x, (2− k)x)

+ 2(1− k2)[ f ((1 + k)x, (1 + k)x) + f ((1− k)x, (1− k)x)] (2.15)

for all x ∈ U. Now, substitute (x, y, z, w) by ((1 + 2k)x, x, (1 + 2k)x, x) in (1.9) and (x, y, z, w) by ((1 −
2k)x, x, (1− 2k)x, x) in (1.9) to obtain

f ((1 + 3k)x, (1 + 3k)x) + f ((1 + k)x, (1 + k)x)

= k2 f (2(1 + k)x, 2(1 + k)x) + k2 f (2kx, 2kx)

+ 2(1− k2) f ((1 + 2k)x, (1 + 2k)x) (2.16)

and

f ((1− 3k)x, (1− 3k)x) + f ((1− k)x, (1− k)x)

= k2 f (2(1− k)x, 2(1− k)x)− k2 f (2kx, 2kx)

+ 2(1− k2) f ((1− 2k)x, (1− 2k)x) (2.17)

for all x ∈ U. Now, adding (2.16) to (2.17), we have,

f ((1 + 3k)x, (1 + 3k)x) + f ((1− 3k)x, (1− 3k)x) + f ((1 + k)x, (1 + k)x)

+ f ((1− k)x, (1− k)x) = k2 f (2(1 + k)x, 2(1 + k)x)

+ k2 f (2(1− k)x, 2(1− k)x)

+ 2(1− k2)[ f ((1 + 2k)x, (1 + 2k)x) + f ((1− 2k)x, (1− 2k)x)] (2.18)

for all x ∈ U. From (2.8), (2.10), (2.11) and (2.15), we arrive at

f (3x, 3x) = 4 f (2x, 2x)− 5 f (x, x) (2.19)

for all x ∈ U. From (2.9), (2.11), (2.8), (2.12) and (2.18), we have

f (4x, 4x) = 2 f (2x, 2x) + 2 f (3x, 3x)− 6 f (x, x) (2.20)



354 K. Ravi et al. / On the Probabilistic Stability ...

for all x ∈ U. Using (2.19) in (2.20), we obtain

f (4x, 4x) = 10 f (2x, 2x)− 16 f (x, x) (2.21)

for all x ∈ U. From (2.21), we establish

f (4x, 4x)− 8 f (2x, 2x) = 2 f (2x, 2x)− 16 f (x, x) (2.22)

for all x ∈ U. Using (2.1) in (2.22), we get our desired result.

Lemma 2.2. If f : U2 → V be a mapping satisfying (1.9) and let h : U2 → V be a mapping given by

h(x, x) = f (2x, 2x)− 2 f (x, x) (2.23)

for all x ∈ U then

h(2x, 2x) = 8h(x, x) (2.24)

for all x ∈ U such that h is cubic.

Proof. Proceeding as in Lemma 2.1, it follows from (2.21)

f (4x, 4x)− 2 f (2x, 2x) = 8 f (2x, 2x)− 16 f (x, x) (2.25)

for all x ∈ U. Using (2.23) in (2.25), we arrive at our desired result.

Remark 2.1. If f : U2 → V be a mapping satisfying (1.9) let g, h : U2 → V be mappings defined by (2.1) and (2.23)
then

f (x, x) =
1
6
(h(x, x)− g(x, x)) (2.26)

for all x ∈ U.

Lemma 2.3. If f : U2 → V is a mapping satisfying (1.9) and let t : U → V be a mapping given by

t(x) = f (x, x) (2.27)

for all x ∈ U, then t satisfies

t(x + ky) + t(x− ky) = k2[t(x + y) + t(x− y)] + 2(1− k2)t(x) (2.28)

for all x, y ∈ U.

Proof. From (1.9) and (2.27), we get

t(x + ky) + t(x− ky) = f (x + ky, x + ky)− f (x− ky, x− ky)

= k2[ f (x + y, x + y) + f (x− y, x− y)] + 2(1− k2) f (x, x)

= k2[t(x + y) + t(x− y)] + 2(1− k2)t(x)

for all x, y ∈ U.

3 Stability Results : Direct Method

In this section, we investigate the generalized Ulam-Hyers stability problem of (1.9) using direct method.
Let U be a real linear space and (Y, ν, τT) be a α-Šerstnev MPB space. Now, we define a difference operator
∆ f : U4 → Y by

∆ f (x, y, z, w) = f (x + ky, z + kw) + f (x− ky, z− kw)− k2 f (x + y, z + w)

− k2 f (x− y, z− w)− 2(1− k2) f (x, z) (3.1)

∀ x, y, z, w ∈ U, where f : U2 → Y is a mapping.
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Theorem 3.1. Let f : U2 → Y be a mapping for which there exist a function ξ : U4 → D+ with the condition

lim
m→∞

τT

[
ξ(2mx,2my,2mz,2mw)(2

mαt), ξ(2mx,2my,2mz,2mw)(2
(m−3)α−1t)

]
= 1 (3.2)

such that the functional inequality

ν∆ f (x,y,z,w)(t) ≥ ξx,y,z,w(t) (3.3)

for all x, y, z, w ∈ U, t > 0 and α > 0. Then there exists a unique 2-variable additive mapping A(x, x) : U2 → Y
satisfying (1.9) and

ν f (2x,2x)−8 f (x,x)−A(x,x)(t) ≥ Φ̃ (3.4)

where

A(x, x) = lim
n→∞

f (2(n+1)x, 2(n+1)x)− 8 f (2nx, 2nx)
2n (3.5)

Φ̃ = limn→∞ Φn = 1

Φn = τT

[
τ̃T(2n−1x)(t), Φn−1

]
, for n > 1

(3.6)

Φ1 = τ̃T(x)(t) (3.7)

and

τ̃T(x)(t) = τT

(
τT

(
τT

(
τT

(
ξ(x,2x,x,2x)

(
k2αt
242α

)
,

ξ((1−2k)x,x,(1−2k)x,x)

(
k2α|k2 − 1|αt

24

))
, τT

(
ξ((1+2k)x,x,(1+2k)x,x)

(
k2α|k2 − 1|αt

24

)
,

ξ(x,x,x,x)

(
k2α|k2 − 1|αt

24

)))
, τT

(
ξ(2x,2x,2x,2x)

(
|k2 − 1|αt

23

)
,

ξ(x,3x,x,3x)

(
k2α|k2 − 1|αt

23

)
, τT

(
τT

(
τT

(
ξ(x,x,x,x)

(
k2αt

2422α

)
,

ξ((1−k)x,x,(1−k)x,x)

(
k2α|k2 − 1|αt

242α

))
, τT

(
ξ((1+k)x,x,(1+k)x,x)

(
k2α|k2 − 1|αt

242α

)
ξ(x,2x,x,2x)

(
k2α|k2 − 1|αt

242α

)))
, ξ(2x,x,2x,x)

(
|k2 − 1|αt

242α

)))
, (3.8)

for all x ∈ U, t > 0 and α > 0.

Proof. Letting (x, y, z, w) by (x, x, x, x) in (3.3), we obtain

ν f ((1+k)x,(1+k)x)+ f ((1−k)x,(1−k)x)−k2 f (2x,2x)−2(1−k2) f (x,x)(t)

≥ ξ(x,x,x,x)(t), ∀ x ∈ U, t > 0. (3.9)

It follows from (3.9) that

ν f (2(1+k)x,2(1+k)x)+ f (2(1−k)x,2(1−k)x)−k2 f (4x,4x)−2(1−k2) f (2x,2x)(t)

≥ ξ(2x,2x,2x,2x)(t), ∀ x ∈ U, t > 0. (3.10)

Replacing (x, y, z, w) by (2x, x, 2x, x) in (3.3), respectively, we have

ν f ((2+k)x,(2+k)x)+ f ((2−k)x,(2−k)x)−k2 f (3x,3x)−k2 f (x,x)−2(1−k2) f (2x,2x)(t)

≥ ξ(2x,x,2x,x)(t), ∀ x ∈ U, t > 0. (3.11)
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Setting (x, y, z, w) by (x, 2x, x, 2x) in (3.3) gives

ν f ((1+2k)x,(1+2k)x)+ f ((1−2k)x,(1−2k)x)−k2 f (3x,3x)−k2 f (x,x)−2(1−k2) f (x,x)(t)

≥ ξ(x,2x,x,2x)(t), ∀ x ∈ U, t > 0. (3.12)

Replacing (x, y, z, w) by (x, 3x, x, 3x) in (3.3), we obtain

ν f ((1+3k)x,(1+3k)x)+ f ((1−3k)x,(1−3k)x)−k2 f (4x,4x)+k2 f (2x,2x)−2(1−k2) f (x,x)(t)

≥ ξ(x,3x,x,3x)(t), ∀ x ∈ U, t > 0. (3.13)

Replacing (x, y, z, w) by ((1 + k)x, x, (1 + k)x, x) in (3.3), respectively, we get

ν f ((1+2k)x,(1+2k)x)+ f (x,x)−k2 f ((2+k)x,(2+k)x)−k2 f (kx,kx)−2(1−k2) f ((1+k)x,(1+k)x)(t)

≥ ξ((1+k)x,x,(1+k)x,x)(t), ∀ x ∈ U, t > 0. (3.14)

Replacing (x, y, z, w) by ((1− k)x, x, (1− k)x, x) in (3.3), respectively, one gets

ν f ((1−2k)x,(1−2k)x)+ f (x,x)−k2 f ((2−k)x,(2−k)x)+k2 f (kx,kx)−2(1−k2) f ((1−k)x,(1−k)x)(t)

≥ ξ((1−k)x,x,(1−k)x,x)(t), ∀ x ∈ U, t > 0. (3.15)

Replacing (x, y, z, w) by ((1 + 2k)x, x, (1 + 2k)x, x) in (3.3), respectively, we obtain

ν f ((1+3k)x,(1+3k)x)+ f ((1+k)x,(1+k)x)−k2 f (2(1+k)x,2(1+k)x)−k2 f (2kx,2kx)−2(1−k2) f ((1+2k)x,(1+2k)x)(t)

≥ ξ((1+2k)x,x,(1+2k)x,x)(t), ∀ x ∈ U, t > 0. (3.16)

Replacing (x, y, z, w) by ((1− 2k)x, x, (1− 2k)x, x) in (3.3), respectively, we have

ν f ((1−3k)x,(1−3k)x)+ f ((1−k)x,(1−k)x)−k2 f (2(1−k)x,2(1−k)x)+k2 f (2kx,2kx)−2(1−k2) f ((1−2k)x,(1−2k)x)(t)

≥ ξ((1−2k)x,x,(1−2k)x,x)(t), ∀ x ∈ U, t > 0. (3.17)

Thus it follows from (3.9), (3.11), (3.12), (3.14) and (3.15) that

ν f (3x,3x)−4 f (2x,2x)+5 f (x,x)(t)

≥ τT

(
τT

(
τT

(
ξ(x,x,x,x)

(
k2αt
232α

)
, ξ((1−k)x,x,(1−k)x,x)

(
k2α|k2 − 1|αt

23

))
,

τT

(
ξ((1+k)x,x,(1+k)x,x)

(
k2α|k2 − 1|αt

23

)
, ξ(x,2x,x,2x)

(
k2α|k2 − 1|αt

23

)))
ξ(2x,x,2x,x)

(
|k2 − 1|αt

2

))
, ∀ x ∈ U, t > 0 and α > 0. (3.18)

Also, from (3.9), (3.10), (3.12), (3.13) (3.16) and (3.17), we have

ν f (4x,4x)−2 f (3x,3x)−2 f (2x,2x)+6 f (x,x)(t)

≥ τT

(
τT

(
τT

(
ξ(x,2x,x,2x)

(
k2αt
232α

)
, , ξ((1−2k)x,x,(1−2k)x,x)

(
k2α|k2 − 1|αt

23

))
,

τT

(
ξ((1+2k)x,x,(1+2k)x,x)

(
k2α|k2 − 1|αt

23

)
, ξ(x,x,x,x)

(
k2α|k2 − 1|αt

23

)))
τT

(
ξ(2x,2x,2x,2x)

(
|k2 − 1|αt

22

)
, ξ(x,3x,x,3x)

(
k2α|k2 − 1|αt

22

))
, (3.19)

for all x ∈ U, t > 0 and α > 0.
Finally, by using (3.18) and (3.19), we obtain

ν f (4x,4x)−10 f (2x,2x)+16 f (x,x)(t) ≥ τ̃T(x)(t) (3.20)
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where,

τ̃T(x)(t)

= τT

(
τT

(
τT

(
τT

(
ξ(x,2x,x,2x)

(
k2αt
242α

)
, ξ((1−2k)x,x,(1−2k)x,x)

(
k2α|k2 − 1|αt

24

))
,

τT

(
ξ((1+2k)x,x,(1+2k)x,x)

(
k2α|k2 − 1|αt

24

)
, ξ(x,x,x,x)

(
k2α|k2 − 1|αt

24

)))
,

τT

(
ξ(2x,2x,2x,2x)

(
|k2 − 1|αt

23

)
, ξ(x,3x,x,3x)

(
k2α|k2 − 1|αt

23

))
,

τT

(
τT

(
τT

(
ξ(x,x,x,x)

(
k2αt

2422α

)
, ξ((1−k)x,x,(1−k)x,x)

(
k2α|k2 − 1|αt

2422α

))
,

τT

(
ξ((1+k)x,x,(1+k)x,x)

(
k2α|k2 − 1|αt

242α

)
, ξ(x,2x,x,2x)

(
k2α|k2 − 1|αt

242α

))
,

ξ(2x,x,2x,x)

(
|k2 − 1|αt

222α

)))
, ∀ x ∈ U, t > 0 and α > 0. (3.21)

Let g : U2 → Y be a function defined by

g(x, x) = f (2x, 2x)− 8 f (2x, 2x) for all x ∈ U. (3.22)

From (3.20), we conclude that

ν g(2x,2x)
2 −g(x,x)

(t) ≥ τ̃T(x)(2
αt) ≥ τ̃T(x)(t), ∀ x ∈ U, t > 0 and α > 0 (3.23)

which implies that

ν g(2`+1x,2`+1x)
2`+1 − g(2`x,2`x)

2`

(t) ≥ τ̃T(2`x)(2
(`+1)αt) (3.24)

for all x ∈ U, t > 0, α > 0 and ` ∈ N. From the inequalities (3.23) and (3.24) we use iterative methods and
induction on n and apply defined sequence in (3.6) and (3.7) to prove our next relation

ν g(2n x,2n x)
2n −g(x,x)

(t) ≥ τT

[
τ̃T(2n−1x)(t), Φn−1

]
∀ x ∈ U, t > 0 and α > 0. (3.25)

So

ν g(2m+n x,2m+n x)
2m+n − g(2m x,2m x)

2m
(t) ≥ τT

[
τ̃T(2(m+n)−1x)(2

mαt), Φ(m+n)−1

]
(3.26)

for all non negative integers m and n and for all x ∈ U, t > 0. By assumptions (3.26) shows that the sequence{
g(2nx,2nx)

2n

}
is a Cauchy sequence in Y for all x ∈ U. Since Y is a α-S̆erstnev MPB, it follows that the sequence{

g(2nx,2nx)
2n

}
converges for all x ∈ U. Therefore, one can define the function A(x, x) : U2 → Y by

A(x, x) = lim
n→∞

g(2nx, 2nx)
2n for all x ∈ U. (3.27)

Now, if we replace (x, y, z, w) by (2nx, 2ny, 2nz, 2nw) in (3.3), respectively, then it follows that

ν∆g(2n x,2ny,2nz,2nw)
2n

(t) = ν∆ f (2n+1x,2n+1y,2n+1z,2n+1w)
2n −8 ∆ f (2n x,2ny,2nz,2nw)

2n
(t)

≥ τT

[
ν∆ f (2n+1x,2n+1y,2n+1z,2n+1w)(2

nα−1t), ν∆ f (2nx,2ny,2nz,2nw)(2
(n−3)α−1t)

]
≥ τT

[
ξ2n+1x,2n+1y,2n+1z,2n+1w(2

nα−1t), ξ2nx,2ny,2nz,2nw(2(n−3)α−1t)
]

(3.28)

for all x, y, z, w ∈ U, t > 0 and α > 0. By letting n → ∞ in (3.28), we have ν∆A(x,y,z,w)(t) = 1 for all t > 0
and so ∆A(x, y, z, w) = 0. Hence A satisfies (1.9) for all x, y, z, w ∈ U. To prove (3.4), if we take the limit as
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n → ∞ in (3.25), then we can get (3.4). Finally, to prove the uniqueness of the additive function A subject to
(3.4), assume that there exists another 2-variable additive mapping A′ which satisfies (3.4) and (1.9), then

νA(x,x)−A′(x,x)(t) = ν A(2n x,2n x)
2n − A′(2n x,2n x)

2n
(t)

= νA(2nx,2nx)−A′(2nx,2nx)(2
nαt)

≥ νA(2nx,2nx)−g(2nx,2nx)+g(2nx,2nx)−A′(2nx,2nx)(2
nαt)

≥ lim
n→∞

τT

[
τT

[
τ̃T(22n−1x)(2

nα−1t), Φn−1

]
, τT

[
τ̃T(22n−1x)(2

nα−1t), Φn−1

]
(3.29)

which tends to 1 as n → ∞ for all x ∈ U. So we can conclude that A = A′. This completes the proof of the
theorem.

Theorem 3.2. Let f : U2 → Y be a mapping for which there exist a function ξ : U4 → D+ with the condition

lim
m→∞

τT

[
ξ(2mx,2my,2mz,2mw)(2

3mαt), ξ(2mx,2my,2mz,2mw)(2
(3m−1)α−1t),

]
(3.30)

such that the functional inequality (3.3) is satisfied for all x, y, z, w ∈ U, t > 0 and α > 0. Then there exists a unique
2-variable cubic mapping c(x, x) : U2 → Y satisfying (1.9) and

ν f (2x,2x)−2 f (x,x)−c(x,x)(t) ≥ Ψ̃ (3.31)

where

c(x, x) = lim
n→∞

f (2(n+1)x, 2(n+1)x)− 2 f (2nx, 2nx)
23n (3.32)

Ψ̃ = limn→∞ Ψn = 1

Ψn = τT

[
τ̃T(2n−1x)(2

2nαt), Ψn−1

] (3.33)

Ψ1 = τ̃T(x)(2
2αt), ∀ x ∈ U, t > 0, α > 0, (3.34)

where τ̃T(x)(t) is defined as in Theorem 3.1.

Proof. By the similar approach as in the proof of Theorem 3.1, we can obtain

ν f (4x,4x)−10 f (2x,2x)+16 f (x,x)(t) ≥ τ̃T(x)(t), ∀ x ∈ U, t > 0.

Let h : U2 → Y be a function defined by

h(x, x) = f (2x, 2x)− 2 f (x, x), for all x ∈ U (3.35)

Thus from (3.20), we have

ν h(2x,2x)
23 −h(x,x)

(t) ≥ τ̃T(x)(2
3αt) ≥ τT(x)(2

2αt), ∀ x ∈ U, t > 0, α > 0 (3.36)

which implies that

ν h(2`+1x,2`+1x)

23(`+1) − h(2`x,2`x)
23`

(t) ≥ τT(2`x)(2
3(`+1)αt) (3.37)

for all x ∈ U, t > 0, α > 0 and ` ∈N. Thus it follows from (3.37) and (N3)

ν h(2n x,2n x)
23n −h(x,x)

(t) ≥ τT

[
τ̃T(2n−1x)(2

2nαt), Φn−1

]
, ∀ x ∈ U; t > 0, α > 0. (3.38)

In order to prove the convergence of the sequence
{

h(2nx,2nx)
23n

}
if we replace x with 2mx in (3.38), then we get

ν h(2n+m x,2n+m x)

23(n+m)
− h(2m x,2m x)

23m
(t) ≥ τT

[
τT(2n+m−1x)(2

(2n+3m)αt), Φn+m

]
(3.39)
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for all non-negative integers m and n and ∀ x ∈ U, t > 0, α > 0.
Since the right hand side of the inequality tends to 1 as m and n tend to infinity, by assumptions, the

sequence
{

h(2nx,2nx)
23n

}
is a Cauchy sequence in Y for all x ∈ U. Since Y is a α-S̆erstnev MPB, one can define the

function c(x, x) : U2 → Y by

c(x, x) = lim
n→∞

h(2nx, 2nx)
23n for all x ∈ U. (3.40)

Now, if we replace (x, y, z, w) by (2nx, 2ny, 2nz, 2nw) in (3.3), respectively, then it follows that

ν∆h(2n x,2ny,2nz,2nw)

23n
(t) = ν∆ f (2n+1x,2n+1y,2n+1z,2n+1w)

23n −2 ∆ f (2n x,2ny,2nz,2nw)

23n
(t)

≥ τT

[
ν∆ f (2n+1x,2n+1y,2n+1z,2n+1w)(2

3nα−1t), ν∆ f (2nx,2ny,2nz,2nw)(2
(3n−2)α−1t)

]
≥ τT

[
ξ(2n+1x,2n+1y,2n+1z,2n+1w)(2

3nα−1t), ξ(2nx,2ny,2nz,2nw)(2
(3n−1)α−1t)

]
(3.41)

for all x, y, z, w ∈ U, t > 0 and α > 0. By letting n → ∞ in (3.41), we find that ν∆c(x,y,z,w)(t) = 1 for all t > 0,
which implies ∆c(x, y, z, w) = 0 and so c satisfies (1.9) for all x, y, z, w ∈ U. To prove (3.31), if we take the
limit as n → ∞ in (3.38), then we get (3.31). The rest of the proof is similar to the proof of Theorem 3.1. This
completes the proof.

Theorem 3.3. Let ξ : U2 → D+ be a function with the conditions given in (3.2) and (3.30) and f : U2 → Y be a
function which satisfies (3.3) for all x, y, z, w ∈ U and t > 0. Then there exists a unique 2-variable additive mapping
A : U2 → Y and a unique 2-variable cubic mapping C : U2 → Y satisfying (1.9) such that

ν f (x,x)−A(x,x)−C(x,x)(t) ≥

lim
n→∞

τT

[
τT

(
τ̃T(2n−1x)(3

α2α−1t), Φn−1

)
, τT

(
τ̃T(2n−1x)(2

(2n+1)α−13αt), Ψn−1

)]
(3.42)

for all x ∈ U, t > 0 and α > 0, where Φn, τ̃T(x)(t) is defined as in Theorem 3.1 and Ψn is defined as in Theorem 3.2.

Proof. By Theorems 3.1 and 3.2, there exist a unique 2-variable additive function A0 : U2 → Y and a unique
2-variable cubic function C0 : U2 → Y such that

ν f (2x,2x)−8 f (x,x)−A0(x,x)(t) ≥ Φ̃ (3.43)

and

ν f (2x,2x)−2 f (x,x)−C0(x,x)(t) ≥ Ψ̃, ∀ x ∈ U, t > 0. (3.44)

Thus it follows from (3.43) and (3.44) that

ν f (x,x)+ 1
6 A0(x,x)− 1

6 C0(x,x)(t)

≥ τT

[
ν f (2x,2x)−8 f (x,x)−A0(x,x)(3

α2α−1t), ν f (2x,2x)−2 f (x,x)−C0(x,x)(3
α2α−1t)

]
(3.45)

for all x ∈ U, t > 0 and α > 0. Thus we obtain (3.42) by letting A(x, x) = − 1
6 A0(x, x) and C(x, x) = 1

6 C0(x, x)
for all x ∈ U. This completes the proof of the stability of the functional equation (1.9) in α-Šerstnev MPN
spaces.
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Abstract

In this paper, we investigate some properties of harmonic univalent functions of complex order using
multiplier transformation.Such as Coefficient bounds, extreme points, distortion bounds, convolution
conditions and convex combination are determined for functions in this family. Further, we obtain the
closure property of this class under integral operator. Consequently, many of our results are either extensions
or new approaches to those corresponding to previously known results.
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1 Introduction

A continuous function f = u + iv is a complex- valued harmonic function in a complex domain Ω if both
u and v are real and harmonic in Ω. In any simply-connected domain D ⊂ Ω, we can write f = h + g, where
h and g are analytic in D. We call h the analytic part and g the co-analytic part of f . A necessary and sufficient
condition for f to be locally univalent and orientation preserving in D is that |h′(z)| > |g′(z)| in D. See Clunie
and Sheil-Small [3].

Denote by SH the family of functions f = h + g which are harmonic, univalent and orientation preserving
in the open unit disc U = {z : |z| < 1} so that f is normalized by f (0) = h(0) = fz(0)− 1 = 0. Thus, for
f = h + g ∈ SH, the functions h and g analytic U can be expressed in the following forms:

h(z) = z +
∞

∑
k=2

akzk, g(z) =
∞

∑
k=1

bkzk (|b1| < 1),

and f (z) is then given by

f (z) = z +
∞

∑
k=2

akzk +
∞

∑
k=1

bkzk (|b1| < 1). (1.1)

We note that the family SH of orientation preserving, normalized harmonic univalent functions reduces
to the well known class S of normalized univalent functions if the co-analytic part of f is identically zero, i.e.
g ≡ 0.

Also, we denote by TSH the subfamily of SH consisting of harmonic functions of the form f = h + g such
that h and g are of the form

h(z) = z−
∞

∑
k=2
|ak|zk, g(z) =

∞

∑
k=1
|bk|zk. (1.2)

∗Corresponding author.
E-mail address: kvijaya@vit.ac.in (K. Vijaya), kthilagavathi@vit.ac.in(K. Thilagavathi) and nmagi2000@yahoo.co.in (N. Magesh)
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In [3] Clunie and Sheil-Small, investigated the class SH as well as its geometric subclasses and its
properties. Since then, there have been several studies related to the class SH and its subclasses. In particular,
Avci and Zlotkiewicz [2], Silverman [9], Jahangiri [5, 6] and others have investigated various subclasses of
SH and its properties. Furthermore, Yalçin and Öztürk [11] and Murugusundaramoorthy[7] have considered
a class TS∗H(γ) of harmonic starlike functions of complex order based on a corresponding study of Nasr and
Aouf [8] for analytic case. (see [4, 13]).

For f ∈ S the differential operator Dn(n ∈ N0) of f was introduced by salagean for f = h + g
Jagangiri et al[] defined the modified salagean operator of f as

Dn f (z) = Dnh(z) + (−1)nDng(z) (1.3)

Dnh(z) = z +
∞

∑
k=2

knakzk, Dng(z) =
∞

∑
k=1

knbkzk. (1.4)

Next,for functions f ∈ A Cho and Srivastava defined Multiplier transformation.For f = h + g given by (1) we
define the modified Multiplier transformation of f.

I0
γ f (z) = D0 f (z) = h(z) + g(z) (1.5)

I1
γ f (z) =

γD0 f (z) + D1 f (z)
γ + 1

(1.6)

In
γ f (z) = I1

γ(In−1
γ f (z)), (n ∈ N0) (1.7)

In
γ f (z) = z +

∞

∑
k=2

(
k + γ

1 + γ
)nakzk + (−1)n

∞

∑
k=1

(
k− γ

1 + γ
)nbkzk (1.8)

Also if f is given by (1) then we have

In
γ f (z) = f ∗̃ (φ1(z) + φ2(z))∗̃......∗̃(φ1(z) + φ2(z))︸ ︷︷ ︸

n−times

= h ∗ (φ1(z) ∗ ...(φ1(z)︸ ︷︷ ︸
n−times

+g + (φ2(z) ∗ ...(φ2(z)))︸ ︷︷ ︸
n−times

(1.9)

Where ∗ denotes the usual Hadamard product or convolution of power series and

φ1(z) =
(1 + γ)z− γz2

(1 + γ)(1− z)2 , φ2(z) =
(γ− 1)z− γz2

(1 + γ)(1− z)2 (1.10)

By specializing the parameters γ and n we obtain the following operators studied by various authors for
f ∈ A

(i)In
0 f (z) = Dn f (z) (ii)In

λ f (z) (iii)In
1 = In f (z) (1.11)

Motivated by the earlier works of [4, 7, 11–13] now we define the class of harmonic convex functions of
complex order in the following definition.

Definition 1.1. For 0 ≤ γ < 1, 0 ≤ λ ≤ γ
(1+γ)

or λ ≥ 1
1+γ and b ∈ C \ {0}, let SCH(b, γ, λ, n) denote the family

of harmonic functions f ∈ SH of the form (1.1) which satisfy the condition

<
(

1 +
1
b

(
F (z)
G(z) − 1

))
≥ γ, (1.12)

where

F (z) = λ(z3(In
γh(z))

′′′ − z3(In
γ g(z))′′′) + (2λ + 1)z2(In

γ(h(z))
′′

+ (1− 4λ)z2(In
γ g(z))′′ + z(In

γh(z))
′
+ (1− 2λ)z(In

γ g(z))′

and
G(z) = λ(z2(In

γ(h(z))
′′
+ z2(In

γ g(z))′′) + z(In
γh(z))

′
+ (2λ− 1)z(In

γ g(z))′

for z ∈ U . Further, we define the subclass TSCH(b, γ, λ, n) of SCH(b, γ, λ, n) consisting of functions f = h + ḡ of the
form (1.2).
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We observe that for b = 1 the class was introduced and studied by first author with Öztürk [12], the class
SCH(1, γ, 0, 0) = SCH(γ) is given in [5, 6] and SCH(1, 0, 0, 0) = SCH see [2].

In this paper, we investigate coefficient conditions, extreme points and distortion bounds for functions
in the families TSCH(b, γ, λ, n). We also examine their convolution and convex combination properties and
neighborhood result. Further, we obtain the closure property of this class under integral operator. We remark
that the results so obtained for these general families can be viewed as extensions and generalizations for
various subclasses of SH as listed previously in this section.

2 Main results

3 Coefficient inequalities

Our first theorem gives a sufficient condition for functions in SCH(b, γ, λ, n).

Theorem 3.1. Let f = h + ḡ be so that h and g are given by (1.1). If

∞

∑
k=1

( k+γ
1+γ )

nk(kλ− λ + 1)[(k− 1) + |b|(1− γ)]

(1− γ)|b| |ak|+

∞

∑
k=1

( k−γ
1+γ )

nk(kλ + λ− 1)[(k + 1)− |b|(1− γ)]

(1− γ)|b| |bk| ≤ 2, (3.13)

where a1 = 1, 0 ≤ γ < 1, 0 ≤ λ ≤ γ
1+γ or λ ≥ 1

1+γ . Then f ∈ SCH(b, γ, λ, n) and f is sense preserving, univalent
harmonic in U .

Proof. We show that f ∈ SCH(b, γ, λ, n). We only need to show that if (3.13) holds then the condition (1.12) is
satisfied. In view of (1.1) the condition (1.12) takes the form

<

 (1− γ) +
∞
∑

k=2

( k+γ
1+γ )

nk(kλ−λ+1)[(k−1)+b(1−γ)]

b |ak| z
k

z −
∞
∑

k=1

( k−γ
1+γ )

nk(kλ+λ−1)[(k+1)−b(1−γ)]

b |bk| z
k

z

1 +
∞
∑

k=2
( k+γ

1+γ )
nk(kλ− λ + 1)|ak| z

k

z +
∞
∑

k=1
( k−γ

1+γ )
nk(kλ + λ− 1)|bk| z

k

z

 = <1 + A(z)
1 + B(z)

.

Setting
1 + A(z)
1 + B(z)

=
1 + ω(z)
1−ω(z)

,

we will have < 1+A(z)
1+B(z) > 0 if |ω(z)| < 1,

ω(z) =
A(z)− B(z)

2 + A(z) + B(z)

=

−γ +
∞
∑

k=2
( k+γ

1+γ )
nk(kλ− λ + 1)

[
[(k−1)+b(1−γ)]

b − 1
]
|ak|zk−1

−
∞
∑

k=1
( k−γ

1+γ )
nk(kλ + λ− 1)

[
[(k+1)−b(1−γ)

b + 1
]
|bk| z

k

z

2− γ +
∞
∑

k=2
( k+γ

1+γ )
nk(kλ− λ + 1)

[
[(k−1)+b(1−γ)]

b + 1
]
|ak|zk−1

−
∞
∑

k=1
( k−γ

1+γ )
nk(kλ + λ− 1)

[
[(k+1)−b(1−γ)

b − 1
]
|bk| z

k

z

This last expression is bounded above by 1 if and only if

∞

∑
k=2

k( k+γ
1+γ )

n(kλ− λ + 1)[(k− 1) + |b|(1− γ)]

|b| |ak|

+
∞

∑
k=1

k( k+γ
1+γ )

n(kλ + λ− 1)[(k + 1)− |b|(1− γ)]

|b| |bk| ≤ (1− γ).



Thilagavathi et al. / Harmonic convex functions of complex order... 365

Or, equivalently

∞

∑
k=1

k( k+γ
1+γ )

n(kλ− λ + 1)[(k− 1) + |b|(1− γ)]

(1− γ)|b| |ak|

+
∞

∑
k=1

k( k−γ
1+γ )

n(kλ + λ− 1)[(k + 1)− |b|(1− γ)]

(1− γ)|b| |bk| ≤ 2

If z1 6= z2, then for λ ≥ 1
1+γ or 0 ≤ λ ≤ γ

1+γ

∣∣∣∣ f (z1)− f (z2)

h(z1)− h(z2)

∣∣∣∣ ≥ 1−
∣∣∣∣ g(z1)− g(z2)

h(z1)− h(z2)

∣∣∣∣ = 1−

∣∣∣∣∣∣∣∣
∞
∑

k=1
bk(zk

1 − zk
2)

(z1 − z2) +
∞
∑

k=2
ak(zk

1 − zk
2)

∣∣∣∣∣∣∣∣
≥ 1−

∞
∑

k=1
k|bk|

1−
∞
∑

k=2
k|ak|

≥ 1−

∞
∑

k=1

k( k−γ
1+γ )

n(kλ+λ−1)[(k+1)−|b|(1−γ)]

(1−γ)|b| |bk|

1−
∞
∑

k=2

k( k+γ
1+γ )

n(kλ−λ+1)[(k−1)+|b|(1−γ)]

(1−γ)|b| |ak|

≥ 0,

which proves univalence. Note that f is sense preserving in U , for 0 ≤ λ ≤ γ
1+γ or λ ≥ 1

1+γ . This is because

|h′ (z)| ≥ 1−
∞

∑
k=2

k|ak||z|k−1 > 1−
∞

∑
k=2

k|ak|

≥ 1−
∞

∑
k=2

k( k+γ
1+γ )

n(kλ− λ + 1)[(k− 1) + |b|(1− γ)]

(1− γ)|b| |ak|

≥
∞

∑
k=1

k( k−γ
1+γ )

n(kλ + λ− 1)[(k + 1)− |b|(1− γ)]

(1− γ)|b| |bk|

>
∞

∑
k=1

k( k+γ
1+γ )

n(kλ + λ− 1)[(k + 1)− |b|(1− γ)]

(1− γ)|b| |bk||z|k−1

≥
∞

∑
k=1

k(
k + γ

1 + γ
)n|bk||z|k−1 ≥ |g′ (z)|.

The function

f (z) = z +
∞

∑
k=2

(1− γ)|b|
k( k+γ

1+γ )
n(kλ− λ + 1)[(k− 1) + |b|(1− γ)]

xkzk

+
∞

∑
k=1

(1− γ)|b|
k( k−γ

1+γ )
n(kλ + λ− 1)[(k + 1)− |b|(1− γ)]

ykzk, (3.14)

where
∞
∑

k=2
|xk|+

∞
∑

k=1
|yk| = 1, show that the coefficient bound given by (3.13) is sharp. The functions of the form (3.14) are

in SCH(b, γ, λ, n) because

∞

∑
k=1

 k( k+γ
1+γ )

n(kλ− λ + 1)[(k− 1) + |b|(1− γ)]

(1− γ)|b| |ak|+
k( k−γ

1+γ )
n(kλ + λ− 1)[(k + 1)− |b|(1− γ)]

(1− γ)|b| |bk|


= 1 +

∞

∑
k=2
|xk|+

∞

∑
k=1
|yk| = 2.

Theorem 3.2. Let f = h + ḡ be so that h and g are given by (1.2). Then f ∈ TSCH(b, γ, λ, n) if and only if

∞

∑
k=1

k( k+γ
1+γ )

n(kλ− λ + 1)[(k− 1) + |b|(1− γ)]

(1− γ)|b| |ak|

+
∞

∑
k=1

k( k−γ
1+γ )

n(kλ + λ− 1)[(k + 1)− |b|(1− γ)]

(1− γ)|b| |bk| ≤ 2, (3.15)

where a1 = 1, 0 ≤ γ < 1, 0 ≤ λ ≤ γ
1+γ or λ ≥ 1

1+γ and b ∈ C \ {0} .
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Proof. The ’if part’ follows from Theorem 3.1 upon noting that the functions
TSCH(b, γ, λ, n) ⊂ SCH(b, γ, λ, n). For the ’only if’ part, we show that f ∈ TSCH(b, γ, λ, n). Then for
z = reiθ in U we obtain

<
(

1 +
1
b

(
F (z)
G(z) − 1

)
− γ

)

= <


(1− γ)z−

∞
∑

k=2

k( k+γ
1+γ )

n(kλ−λ+1)[(k−1)+b(1−γ)]

b |ak|zk −
∞
∑

k=1

k( k−γ
1+γ )

n(kλ+λ−1)[(k+1)−b(1−γ)]

b |bk|zk

z−
∞
∑

k=2
k( k+γ

1+γ )
n(kλ− λ + 1)|ak|zk +

∞
∑

k=1
k( k−γ

1+γ )
n(kλ + λ− 1)|bk|zk



≥
(1− γ)−

∞
∑

k=2

k( k+γ
1+γ )

n(kλ−λ+1)[(k−1)+b(1−γ)]

b |ak|rk−1 −
∞
∑

k=1

k( k−γ
1+γ )

n(kλ+λ−1)[(k+1)−b(1−γ)]

b |bk|rk−1

z−
∞
∑

k=2
k( k+γ

1+γ )
n(kλ− λ + 1)|ak|rk−1 +

∞
∑

k=1
k( k−γ

1+γ )
n(kλ + λ− 1)|bk|rk−1

> 0,

The above inequality must hold for all z ∈ U . In particular, letting z = r → 1− yields the required condition.

As special cases of Theorem 3.2, we obtain the following two corollaries.

Corollary 3.1. Let f = h + ḡ ∈ TSCH(b, γ, 0, n) if and only if

∞

∑
k=1

n( k+γ
1+γ )

n[(k− 1) + |b|(1− γ)]

(1− γ)|b| |ak|+
∞

∑
k=1

n( k−γ
1+γ )

n[(k + 1)− |b|(1− γ)]

(1− γ)|b| |bk| ≤ 2.

Corollary 3.2. Let f = h + ḡ ∈ TSCH(b, γ, 1, n) if and only if

∞

∑
k=1

n2( k+γ
1+γ )

n[(k− 1) + |b|(1− γ)]

(1− γ)|b| |ak|+
∞

∑
k=1

n2( k−γ
1+γ )

n[(k + 1)− |b|(1− γ)]

(1− γ)|b| |bk| ≤ 2.

4 Extreme points and Distortion bounds

In this section, our first theorem gives the extreme points of the closed convex hulls of TSCH(b, γ, λ, n).

Theorem 4.3. Let f = h + ḡ ∈ TSCH(b, γ, λ, n) if and only if f can be expressed as

f (z) =
∞

∑
k=1

(Xkhk(z) + Ykgk(z)), z ∈ U , (4.16)

where h1(z) = z,

hk(z) = z− (1− γ)|b|
k( k+γ

1+γ )
n(kλ− λ + 1)[(k− 1) + |b|(1− γ)]

zk (k = 2, 3, ...)

and

gk(z) = z +
(1− γ)|b|

k( k−γ
1+γ )

n(kλ + λ− 1)[(k + 1)− |b|(1− γ)]
zk (k = 1, 2, 3, ...),

∞

∑
k=1

(Xk + Yk) = 1, Xk ≥ 0, Yk ≥ 0.

In particular, the extreme points of TSCH(b, γ, λ, n) are {hk} and {gk}.

Proof. For functions f of the form (4.16), we have

f (z) =
∞

∑
k=1

(Xkhk(z) + Ykgk(z))

=
∞

∑
k=1

(Xk + Yk) z−
∞

∑
k=2

(1− γ)|b|
k( k+γ

1+γ )
n(kλ− λ + 1)[(k− 1) + |b|(1− γ)]

Xkzk

+
∞

∑
k=1

(1− γ)|b|
k( k−γ

1+γ )
n(kλ + λ− 1)[(k + 1)− |b|(1− γ)]

Ykzk.
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Then

∞

∑
k=2

k( k+γ
1+γ )

n(kλ− λ + 1)[(k− 1) + |b|(1− γ)]

(1− γ)|b|

 (1− γ)|b|
k( k+γ

1+γ )
n(kλ− λ + 1)[(k− 1) + |b|(1− γ)]

Xk

+
∞

∑
k=1

k( k−γ
1+γ )

n(kλ + λ− 1)[(k + 1)− |b|(1− γ)]

(1− γ)|b|

 (1− γ)|b|
k( k−γ

1+γ )
n(kλ + λ− 1)[(k + 1)− |b|(1− γ)]

Yk

=
∞

∑
k=2

Xk +
∞

∑
k=1

Yk = 1− X1 ≤ 1

and so f ∈ clcoTSCH(b, γ, λ).
Conversely, suppose that f ∈ clcoTSCH(b, γ, λ, n). Letting

X1 = 1−
∞

∑
k=2

Xk −
∞

∑
k=1

Yk

where

Xk =
k( k+γ

1+γ )
n(kλ− λ + 1)[(k− 1) + |b|(1− γ)]

(1− γ)|b| |ak|, k = 2, 3, . . . ,

and

Yk =
k( k−γ

1+γ )
n(kλ + λ− 1)[(k + 1)− |b|(1− γ)]

(1− γ)|b| |bk|, k = 1, 2, . . . ,

we obtain the require representation, since

f (z) = z−
∞

∑
k=2
|ak|zk +

∞

∑
k=1
|bk|zk

= z−
∞

∑
k=2

(1− γ)|b|Xk

k( k+γ
1+γ )

n(kλ− λ + 1)[(k− 1) + |b|(1− γ)]
zk

+
∞

∑
k=1

(1− γ)|b|Yk

k( k−γ
1+γ )

n(kλ + λ− 1)[(k + 1)− |b|(1− γ)]
zk

= z−
∞

∑
k=2

(z− hk(z))Xk −
∞

∑
k=1

(z− gk(z))Yk

=

(
1−

∞

∑
k=2

Xk −
∞

∑
k=1

Yk

)
z +

∞

∑
k=2

hk(z)Xk +
∞

∑
k=1

gk(z)Yk

=
∞

∑
k=1

(Xkhk(z) + Ykgk(z)).

The following theorem gives the distortion bounds for functions in TSCH(b, γ, λ, n) which yields a
covering result for this family.

Theorem 4.4. Let f ∈ TSCH(b, γ, λ, n) then

| f (z)| ≤ (1 + |b1|)r + r2

(
(1− γ)|b|

2(λ + 1)[1 + b(1− γ)]
−

(2λ− 1)( 2+γ
1+γ )

n[2− b(1− γ)]

2(λ + 1)[1 + b(1− γ)]
|b1|
)

and

| f (z)| ≥ (1− |b1|)r− r2

(
(1− γ)|b|

2(λ + 1)[1 + b(1− γ)]
−

(2λ− 1)( 2+γ
1+γ )

n[2− b(1− γ)]

2(λ + 1)[1 + b(1− γ)]
|b1|
)

.
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Proof. Let f ∈ TSCH(b, γ, λ, n), Taking the absolute value of f and then by Theorem3.14, we obtain

| f (z)| ≤ (1 + |b1|)r +
∞

∑
k=2

(|ak|+ |bk|)rk

≤ (1 + |b1|)r + r2
∞

∑
k=2

(|ak|+ |bk|)

≤ (1 + |b1|)r +
(1− γ)|b|

2(λ + 1)[1 + b(1− γ)]

 ∞

∑
k=2

k( k+γ
1+γ )

n(kλ− λ + 1)[(k− 1) + |b|(1− γ)]

(1− γ)|b| |ak|

+
k( k−γ

1+γ )
n(kλ + λ− 1)[(k + 1)− |b|(1− γ)]

(1− γ)|b| |bk|

 r2

≤ (1 + |b1|)r +
(1− γ)|b|

2(λ + 1)[1 + b(1− γ)]

(
1−

(2λ− 1)( 2+γ
1+γ )

n[2− b(1− γ)]

(1− γ)|b| |b1|
)

r2

= (1 + |b1|)r +
(

(1− γ)|b|
2(λ + 1)[1 + b(1− γ)]

−
(2λ− 1)( 2+γ

1+γ )
n[2− b(1− γ)]

2(λ + 1)[1 + b(1− γ)]
|b1|
)

r2.

Similarly,

| f (z)| ≥ (1− |b1|)r−
∞

∑
k=2

(|ak|+ |bk|)rk

≥ (1− |b1|)r− r2
∞

∑
k=2

(|ak|+ |bk|)

≤ (1− |b1|)r−
(1− γ)|b|

2(λ + 1)[1 + b(1− γ)]

 ∞

∑
k=2

k( k+γ
1+γ )

n(kλ− λ + 1)[(k− 1) + |b|(1− γ)]

(1− γ)|b| |ak|

+
k( k−γ

1+γ )
n(kλ + λ− 1)[(k + 1)− |b|(1− γ)]

(1− γ)|b| |bk|

 r2

≥ (1− |b1|)r−
(1− γ)|b|

2(λ + 1)[1 + b(1− γ)]

(
1−

(2λ− 1)( 2+γ
1+γ )

n[2− b(1− γ)]

(1− γ)|b| |b1|
)

r2

= (1− |b1|)r−
(

(1− γ)|b|
2(λ + 1)[1 + b(1− γ)]

−
(2λ− 1)( 2+γ

1+γ )
n[2− b(1− γ)]

2(λ + 1)[1 + b(1− γ)]
|b1|
)

r2.

The upper and lower bounds given in Theorem 4.4 are respectively attained for the following functions.

f (z) = z + |b1|z̄ +
1

Γ(2)

(
(1− γ)|b|

2(λ + 1)[1 + b(1− γ)]
−

(2λ− 1)( 2+γ
1+γ )

n[2− b(1− γ)]

2(λ + 1)[1 + b(1− γ)]
|b1|
)

z̄2

and

f (z) = (1− |b1|)z−
1

Γ(2)

(
(1− γ)|b|

2(λ + 1)[1 + b(1− γ)]
−

(2λ− 1)( 2+γ
1+γ )

n[2− b(1− γ)]

2(λ + 1)[1 + b(1− γ)]
|b1|
)

z2,

The following covering result follows from the left hand inequality in Theorem 4.4.

Corollary 4.3. If f ∈ TSCH(b, γ, λ, n), then{
ω : |ω| < 1− (1− γ)|b|

2(λ + 1)[1 + b(1− γ)]
−
[

1− (2λ− 1)[2− b(1− γ)]

2(λ + 1)[1 + b(1− γ)]

]
|b1|
}

.
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5 Convolution and Convex Combinations

In this section we show that the class TSCH(b, γ, λ, n) is closed under convolution and convex combinations.

Now we need the following definition of convolution of two harmonic functions. For f (z) = z−
∞
∑

k=2
|ak|zk +

∞
∑

k=1
|bk|zk and F(z) = z−

∞
∑

k=2
|Ak|zk +

∞
∑

k=1
|Bk|zk, we define the convolution of two harmonic functions f and F

as

( f ∗ F)(z) = f (z) ∗ F(z) = z−
∞

∑
k=2
|ak||Ak|zk +

∞

∑
k=1
|bk||Bk|zk. (5.17)

Using the definition, we show that the class TSCH(b, γ, λ, n) is closed under convolution.

Theorem 5.5. For 0 ≤ δ < γ < 1, let f ∈ TSCH(b, γ, λ, n) and F ∈ TSCH(b, δ, λ, n). Then
f ∗ F ∈ TSCH(b, γ, λ, n) ⊂ TSCH(b, δ, λ, n).

Proof. Let f (z) = z −
∞
∑

k=2
|ak|zk +

∞
∑

k=1
|bk|zk and F(z) = z −

∞
∑

k=2
|Ak|zk +

∞
∑

k=1
|Bk|zk be in TSCH(b, δ, λ). Then

the convolution f ∗ F is given by (5.17). From the assertion that f ∗ F ∈ TSCH(b, δ, λ), we note that |Ak| ≤ 1
and |Bk| ≤ 1. In view of Theorem 3.2 and the inequality 0 ≤ δ ≤ γ < 1, we have

∞

∑
k=2

k( k+γ
1+γ )

n(kλ− λ + 1)[(k− 1) + |b|(1− δ)]

(1− δ)|b| |ak||Ak|

+
∞

∑
k=1

k( k−γ
1+γ )

n(kλ + λ− 1)[(k + 1)− |b|(1− δ)]

(1− δ)|b| |bk||Bk|

≤
∞

∑
k=2

k( k+γ
1+γ )

n(kλ− λ + 1)[(k− 1) + |b|(1− δ)]

(1− δ)|b| |ak|

+
∞

∑
k=1

k( k−γ
1+γ )

n(kλ + λ− 1)[(k + 1)− |b|(1− δ)]

(1− δ)|b| |bk|

≤
∞

∑
k=2

k( k+γ
1+γ )

n(kλ− λ + 1)[(k− 1) + |b|(1− γ)]

(1− γ)|b| |ak|

+
∞

∑
k=1

k( k−γ
1+γ )

n(kλ + λ− 1)[(k + 1)− |b|(1− γ)]

(1− γ)|b| |bk|

≤ 1.

by Theorem 3.2, f ∈ TSCH(b, γ, λ). By the same token, we then conclude that f ∗ F ∈ TSCH(b, γ, λ, n)
⊂ TSCH(b, δ, λ, n).

Next, we show that the class TSCH(b, γ, λ, n) is closed under convex combination of its members.

Theorem 5.6. The class TSCH(b, γ, λ, n) is closed under convex combinations.

Proof. For i=1,2,3,.... Suppose that fi(z) ∈ TSCH(b, γ, λ, n) where fi given by

fi(z) = z−
∞

∑
k=2
|ai,k|zk +

∞

∑
k=1
|bi,k|zk.

For
∞
∑

i=1
ti = 1, 0 ≤ ti ≤ 1, the convex combinations of fi may be written as

∞

∑
i=1

ti fi(z) = z−
∞

∑
k=2

(
∞

∑
i=1

ti|ai,k|
)

zk +
∞

∑
k=1

(
∞

∑
i=1

ti|bi,k|
)

zk.
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Since,

∞

∑
k=2

k( k+γ
1+γ )

n(kλ− λ + 1)[(k− 1) + |b|(1− γ)]

(1− γ)|b| |ai,k|

+
∞

∑
k=1

k( k−γ
1+γ )

n(kλ + λ− 1)[(k + 1)− |b|(1− γ)]

(1− γ)|b| |bi,k| ≤ 1.

from the above equation we obtain

∞

∑
k=2

k( k+γ
1+γ )

n(kλ− λ + 1)[(k− 1) + |b|(1− γ)]

(1− γ)|b|
∞

∑
i=1

ti|ai,k|

+
∞

∑
k=1

k( k−γ
1+γ )

n(kλ + λ− 1)[(k + 1)− |b|(1− γ)]

(1− γ)|b|
∞

∑
i=1

ti|bi,k|

=
∞

∑
i=1

ti

 ∞

∑
k=2

k( k+γ
1+γ )

n(kλ− λ + 1)[(k− 1) + |b|(1− γ)]

(1− γ)|b| |ai,k|

+
∞

∑
k=1

k( k−γ
1+γ )

n(kλ + λ− 1)[(k + 1)− |b|(1− γ)]

(1− γ)|b| |bi,k|


≤

∞

∑
i=1

ti = 1

This is the condition required by (3.14) and so
∞
∑

i=1
ti fi(z) ∈ TSCH(b, γ, λ, n).

6 Class Preserving Integral Operator

In this section, we consider the closure property of the class TSCH(b, γ, λ, n) under the Bernardi integral
operator Lc[ f (z)] which is defined by

Lc[ f (z)] =
c + 1

zc

z∫
0

ξc−1 f (ξ)dξ (c > −1).

Theorem 6.7. Let f (z) ∈ TSCH(b, γ, λ, n), then Lc[ f (z)] ∈ TSCH(b, γ, λ, n).

Proof. From the representation of Lc[ f (z)], if follows that

Lc[ f (z)] =
c + 1

zc

z∫
0

ξc−1h(ξ)dξ +
c + 1

zc

z∫
0

ξc−1g(ξ)dξ

=
c + 1

zc

z∫
0

ξc−1

(
ξ −

∞

∑
k=2
|ak|ξk

)
dξ +

c + 1
zc

z∫
0

ξc−1

(
∞

∑
k=1
|bk|ξk

)
dξ

= z−
∞

∑
k=2

Akzk +
∞

∑
k=1

Bkzk,
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where Ak =
c+1
c+k |ak| and Bk =

c+1
c+k |bk|. Hence

∞

∑
k=2

k( k+γ
1+γ )

n(kλ− λ + 1)[(k− 1) + |b|(1− γ)]

(1− γ)|b|

(
c + 1
c + k

|ak|
)

+
∞

∑
k=1

k( k−γ
1+γ )

n|kλ + λ− 1|[(k + 1)− |b|(1− γ)]

(1− γ)|b|

(
c + 1
c + k

|bk|
)

≤
∞

∑
k=2

k( k+γ
1+γ )

n(kλ− λ + 1)[(k− 1) + |b|(1− γ)]

(1− γ)|b| |ak|

+
∞

∑
k=1

k( k−γ
1+γ )

n|kλ + λ− 1|[(k + 1)− |b|(1− γ)]

(1− γ)|b| |bk| ≤ 1,

since f ∈ TSCH(b, γ, λ), therefore by Theorem 3.2, Lc[ f (z)] ∈ TSCH(b, γ, λ).

Remark 6.1. Specializing the parameter, the result discussed in this paper leads many subclasses discussed in [4, 5, 7,
11–13].
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Abstract

In this paper, we study the existence of solutions for q-functional integral equations in Banach space C[0, T].
The existence and uniqueness of solutions for the problems are proved by means of the Banach contraction
principle.
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1 Introduction

The quantum calculus or q-difference calculus is an old subject that was first developed by Jackson ([12],[13]),
while basic definitions and properties can be found in [15]. Studies on q-difference equations appeared already
at the beginning of the last century in intensive works especially by F H Jackson [14], R D Carmichael [6], T E
Mason [19], C R Adams [1], W J Trjitzinsky [21] and other authors [5].
Recently, q-calculus has served as abridge between mathematics and physics. It has a lot of applications in
mathematics and physics([7]-[9],[17],[22]).

In this paper, we are concerned with the q-functional integral equations

x(t) = g(t) +
∫ t

0
f1 (t, s, x(φ(s))) dqs, t ∈ [0, T] (1.1)

and

x(t) = g(t) + f2 (t,
∫ t

0
g(s, x(φ(s))) dqs), t ∈ [0, T] (1.2)

where φ is deviated function. The existence of continuous solutions of the q-functional integral equation (1.1) in
the Banach space C[0, T] will be proved. The monotonicity of the solution of the equation (1.1) will be studied.
The existence of continuous solutions of the q-functional integral equation (1.2) in Banach space C[0, T] will
be proved.

2 preliminaries

Here, we give the definition of q-derivative and q-integral and some of their properties which is referred
to ([2],[15]).

∗Corresponding author.
E-mail address: amasayed@gmail.com (A. M. A. El-Sayed), fatmagaafar2@yahoo.com(Fatma. M. Gaafar), ragab 537@yahoo.com (R. O.
Abd-El-Rahman), m.elhadad88@yahoo.com(M. M. El-Haddad).
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Let q ∈ (0, 1) and define

[n]q =
qn − 1
q− 1

= 1 + q + q2 + · · ·+ qn−1, n ∈ R

which is called The q- analogue of n.

Definition 2.1. The q-derivative of a real valued function f is defined by

Dq f (t) =
dq f (t)

dqt
=

f (qt) − f (t)
qt − t

, Dq f (0) = lim
t→0

Dq f (t)

Note that lim
q→1

Dq f (t) = f ′(t) if f (t) is differentiable.

The higher order q-derivative are defined as

D0
q f (t) = f (t), Dn

q f (t) = DqDn−1
q f (t), n ∈ N.

Definition 2.2. Suppose 0 < a < b. The definite q-integral is defined as

Iq f (x) =
∫ b

0
f (x) dqx = (1− q)b

∞

∑
j=0

qj f (qjb).

and ∫ b

a
f (x) dqx =

∫ b

0
f (x) dqx −

∫ a

0
f (x) dqx.

Similarly, we have
I0
q f (t) = f (t), In

q f (t) = Iq In−1
q f (t), n ∈ N.

Theorem 2.1 (see [15]). (Fundamental Theorem of q-Calculus)
If F(x) is an antiderivative of f (x), and F(x) is continuous at x = 0, then∫ b

a
f (x)dqx = F(b) − F(a), 0 ≤ a < b ≤ ∞.

Theorem 2.2. (see [4],[15]) For any function f one has

Dq Iq f (x) = f (x). (2.3)

Theorem 2.3. (see [2]) Let f be a function defined on [a, b], 0 ≤ a ≤ b, and c is a fixed point in [a, b]. Assume that
there exists, 0 ≤ γ < 1 such that xγ f (x) is continuous on [a, b]. Let

F(x) =
∫ x

c
f (t) dqt, x ∈ [a, b].

Then F(x) is a continuous function on [a, b].

Lemma 2.1. If

F(t) =
∫ t

0
f (s) dqs, for t ∈ [a, b],

is continuous, then for every ε > 0 ∃ δ > 0, such that t2, t2 ∈ [0, T], | t2 − t1 |< δ, then

|F(t2) − F(t1)| < ε

i.e.,

|
∫ t2

0
f (s) dqs −

∫ t1

0
f (s) dqs| < ε.

Lemma 2.2. (see [18])
(1) If f and g are q-integrable on [a, b], α ∈ R, c ∈ [a, b], then

(i)
∫ b

a [ f (x) + g(x)] dqx =
∫ b

a f (x) dqx +
∫ b

a g(x) dqx,

(ii)
∫ b

a α f (x) dqx = α
∫ b

a f (x) dqx,
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(iii)
∫ b

a f (x) dqx =
∫ c

a f (x) dqx +
∫ b

c f (x) dqx.

(2) If | f | is q-integrable on the interval [0, x], then∣∣∣∣ ∫ x

0
f (x) dqx

∣∣∣∣ ≤ ∫ x

0
| f (x)| dqx.

.
(3) If f and g are q-integrable on [0, x], f (x) ≤ g(x), for all x ∈ [0, x], then∫ x

0
f (x) dqx ≤

∫ x

0
g(x) dqx.

3 Main results

Let X be the class of all continuous functions, x ∈ C[0, T] with the norm

‖x‖ = sup
t∈[0,T]

| x(t) | .

First, we study the existence and uniqueness of the solution of the q-functional integral equation (1.1) and
then we proved the monotonicity for the solution.

Consider the q-functional integral equation (1.1) under the following assumptions

(i) g : [0, T] → R is continuous.

(ii) f1 : [0, T]× [0, T]× R→ R is continuous.

(iii) f1 satisfies the Lipschitz condition

| f1(t, s, x)− f1(t, s, y)| ≤ k(t, s) |x− y|.

(iv)

sup
t

∫ t

0
k(t, s) dqs ≤ K

Now for the existence of a unique continuous solution of the q-functional integral equation (1.1) we have the
following theorem.

Theorem 3.4. Let the assumptions (i)-(iv) be satisfied. If K < 1, then the q-functional integral equation (1.1) has a
unique solution x ∈ C[0, T].

Proof. Define the operator F associated with the q-functional integral equation (1.1) by

Fx(t) = g(t) +
∫ t

0
f1(t, s, x(φ(s))) dqs.

To show that F : C[0, T] → C[0, T], let x ∈ C[0, T], t1, t2 ∈ [0, T], then

|Fx(t2)− Fx(t1)| = |g(t2)− g(t1) +
∫ t2

0
f1(t2, s, x(φ(s)))dqs −

∫ t1

0
f1(t1, s, x(φ(s)))dqs|

≤ |g(t2)− g(t1)| + |
∫ t2

0
f1(t2, s, x(φ(s))) dqs −

∫ t1

0
f1(t1, s, x(φ(s))) dqs|

≤ |g(t2)− g(t1)| + |
∫ t2

0
f1(t2, s, x(φ(s))) dqs −

∫ t2

0
f1(t1, s, x(φ(s))) dqs|

+ |
∫ t2

0
f1(t1, s, x(φ(s)))dqs −

∫ t1

0
f1(t1, s, x(φ(s)))dqs|

≤ |g(t2)− g(t1)| +
∫ t2

0
| f1(t2, s, x(φ(s))) − f1(t1, s, x(φ(s))) | dqs

+ |
∫ t2

0
f1(t1, s, x(φ(s)))dqs −

∫ t1

0
f1(t1, s, x(φ(s)))dqs |
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applying Theorem (2.3) and Lemma (2.1), then we deduce that

F : C[0, T] → C[0, T].

Let x, y ∈ C[0, T], we have

|Fx(t)− Fy(t)| = |g(t) +
∫ t

0
f1(t, s, x(φ(s))) dqs − g(t) −

∫ t

0
f1(t, s, y(φ(s))) dqs|

= |
∫ t

0
f1(t, s, x(φ(s))) dqs −

∫ t

0
f1(t, s, y(φ(s))) dqs|

≤
∫ t

0
| f1(t, s, x(φ(s))) − f1(t, s, y(φ(s)))| dqs

≤
∫ t

0
k(t, s) |x(φ(s)) − y(φ(s))| dqs

≤ ‖x− y‖
∫ t

0
k(t, s) dqs

≤ K ‖x − y‖.

This means that F is contraction.
Applying Banach contraction principle ([10],[16]), then we deduce that there exists a unique solution x ∈ C[0, T] of
the q-functional integral equation (1.1).

The following theorem prove the monotonicity for the solution of the q-functional integral equation (1.1).

Theorem 3.5. Let the assumptions (i)-(iv) of Theorem (3.1) be satisfied. If f1(t, s, x(φ(s))) and g(t) are monotonic
nonincreasing(nondecreasing) in t for each t ∈ [0, T], then the q-integral equation (1.1) has a unique monotonic
nonincreasing(nondecreasing) solution x ∈ C[0, T].

Proof. Let f , g be monotonic nonincreasing functions in t ∈ [0, T], then
for t2 > t1

x(t2) = g(t2) +
∫ t2

0
f1(t2, s, x(φ(s))) dqs

≤ g(t1) +
∫ t1

0
f1(t1, s, x(φ(s))) dqs

= x(t1).

Hence,
x(t2) ≤ x(t1).

Also, If f1, g are monotonic nondecreasing functions in t ∈ [0, T], then
for t2 > t1

x(t2) = g(t2) +
∫ t2

0
f1(t2, s, x(φ(s))) dqs

≥ g(t1) +
∫ t1

0
f1(t1, s, x(φ(s))) dqs

= x(t1).
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Hence

x(t2) ≥ x(t1).

Now, we study the existence and uniqueness of the solution of the q-functional integral equation

x(t) = g(t) + f2 (t,
∫ t

0
g(s, x(φ(s))) dqs), t ∈ [0, T]

Consider the q-functional integral equation (1.2) under the following assumptions

(i) g : [0, T] → R is continuous.

(ii) f2 : [0, T]× R→ R is continuous.

(iii) f2 satisfies the Lipschitz condition

| f2(t, x(t))− f2(t, y(t))| ≤ k |x(t)− y(t)|.

(iv) g satisfies the Lipschitz condition

|g(s, x(t))− g(s, y(t))| ≤ l |x(t)− y(t)|.

For the existence of a unique continuous solution of the q-functional integral equation (1.2), we have the
following theorem.

Theorem 3.6. Let the assumptions (i)-(iv) be satisfied. If klT < 1, then the q-functional integral equation (1.2) has
a unique solution x ∈ C[0, T].

Proof. Define the operator F associated with the q-functional integral equation (1.2) by

Fx(t) = g(t) + f2(t,
∫ t

0
g(s, x(φ(s))) dqs).

To show that F : C[0, T] → C[0, T], let x ∈ C[0, T], t1, t2 ∈ [0, T], then

|Fx(t2)− Fx(t1)| = |(g(t2)− g(t1)) + ( f2(t2,
∫ t2

0
g(s, x(φ(s)))dqs)− f2(t1,

∫ t1

0
g(s, x(φ(s)))dqs))|

≤ | g(t2)− g(t1) | + | f2(t2,
∫ t2

0
g(s, x(φ(s)))dqs)− f2(t1,

∫ t1

0
g(s, x(φ(s)))dqs)|

≤ | g(t2)− g(t1) | + | f2(t2,
∫ t2

0
g(s, x(φ(s)))dqs)− f2(t1,

∫ t2

0
g(s, x(φ(s)))dqs)|

+ | f2(t1,
∫ t2

0
g(s, x(φ(s)))dqs)− f2(t1,

∫ t1

0
g(s, x(φ(s)))dqs)|

≤ | g(t2)− g(t1) | + | f2(t2,
∫ t2

0
g(s, x(φ(s)))dqs)− f2(t1,

∫ t2

0
g(s, x(φ(s)))dqs)|

+ |
∫ t2

0
g(s, x(φ(s)))dqs −

∫ t1

0
g(s, x(φ(s)))dqs|

applying Theorem (2.3) and Lemma (2.1), then we deduce that

F : C[0, T] → C[0, T].
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Let x, y ∈ C[0, T], we have

|Fx(t)− Fy(t)| = | g(t) + f2(t,
∫ t

0
g(s, x(φ(s))) dqs) − g(t) − f2(t,

∫ t

0
g(s, y(φ(s))) dqs) |

= | f2(t,
∫ t

0
g(s, x(φ(s))) dqs) − f2(t,

∫ t

0
g(s, y(φ(s))) dqs) |

≤ k |
∫ t

0
g(s, x(φ(s))) dqs −

∫ t

0
g(s, y(φ(s))) dqs |

≤ k
∫ t

0
| g(s, x(φ(s))) − g(s, y(φ(s))) | dqs

≤ kl
∫ t

0
| x(φ(s)) − y(φ(s)) | dqs

≤ klT ‖x − y‖.

This means that F ([10]) is contraction .
Then F has a fixed point x ∈ C[0, T] which proves that there exists a unique solution of the q-functional
integral equation (1.2).
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Abstract

Eigenvalue of a graph is the eigenvalue of its adjacency matrix. A graph G is reciprocal if the reciprocal
of each of its eigenvalue is also an eigenvalue of G. The Wiener index W(G) of a graph G is defined by
W(G) = 1

2 ∑
d∈D

d where D is the distance matrix of G. In this paper some new classes of reciprocal graphs

and an upperbound for their energy are discussed. Pairs of equienergetic reciprocal graphs on every n ≡
0 mod (12) and n ≡ 0 mod (16) are constructed. The Wiener indices of some classes of reciprocal graphs are
also obtained.

Keywords: Eigenvalue, Energy, Reciprocal graphs, splitting graph, Wiener index.
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1 Introduction

Let G be a graph of order n and size m with the vertex set V(G) labelled as {v1, v2, . . . , vn}. The set of
eigenvalues {λ1, λ2, . . . , λn} of an adjacency matrix A of G is called its spectrum and is denoted by spec(G).
Non-isomorphic graphs with the same spectrum are called cospectral. Studies on graphs with a specific
pattern in their spectrum have been of interest. Gutman and Cvetkovic studied the spectral structure of
graphs having a maximal eigenvalue not greater than 2 in [5] and Balinska et.al have studied graphs with
integral spectra in [2]. In [12] some new constructions of integral graphs are provided. Dias in [6] has
identified graphs with complementary pairs of eigenvalues( eigenvalues λ1 and λ2 with λ1 + λ2 = −1). A
graph G is reciprocal [20] if the reciprocal of each of its eigenvalue is also an eigenvalue of G. The first
reference of a reciprocal graph appeared in the work of J.R. Dias in [6, 7] and the chemical molecules of
Dendralene and Radialene have been discussed there in. In [20] some classes of reciprocal graphs have been
identified. In [3] reciprocal graphs are also referred to as graphs with property R.

The energy of a graph G [1], denoted by E(G) is the sum of the absolute values of its eigenvalues.
Non-cospectral graphs with the same energy are called equienergetic. In [8, 9, 15] some bounds on energy are
described. In [1] and [22, 23] a pair of equienergetic graphs are constructed for every n ≡ 0 (mod 4) and
n ≡ 0 (mod 5) and in [10] we have extended it for n = 6, 14, 18 and n ≥ 20. In [17] a pair of equienergetic
graphs within the family of iterated line graphs of regular graphs and in [11] a pair of equienergetic graphs
obtained from the cross product of graphs are described. In [13] a pair of equienergetic self-complementary
graphs on n vertices is constructed for every n = 4k and n = 24t + 1, k ≥ 2, t ≥ 3. A plethora of papers have
been appeared dealing with this parameter in recent years.

The distance matrix of a connected graph G, denoted by D(G) is defined as
D(G) =

[
d(vi, vj)

]
where d(vi, vj) is the distance between vi and vj. The Wiener index W(G) is defined by

∗Corresponding author.
E-mail address: indulalgopal@gmail.com (G. Indulal) and vambat@gmail.com (A.Vijayakumar).
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W(G) = 1
2 ∑

d∈D
d. The chemical applications of this index are well established in [16, 18].

In this paper, we construct some new classes of reciprocal graphs and an upperbound for their energy
is obtained. Pairs of equienergetic reciprocal graphs on n ≡ 0 mod (12) and n ≡ 0 mod (16) are constructed.
The Wiener indices of some classes of reciprocal graphs are also obtained. These results are not found so far
in literature.

2 Some new classes of reciprocal graphs

If A and B are two matrices then A⊗ B denote the tensor product of A and B. We use the following properties
of block matrices[4].

Lemma 2.1. Let M, N, P and Q be matrices with M invertible. Let S =

[
M N
P Q

]
. Then |S| = |M|

∣∣Q− PM−1N
∣∣.

Moreover if M and P commutes then |S| = |MQ− PN| where the symbol |.| denotes the determinant.

We consider the following operations on G.

Operation 1. Attach a pendant vertex to each vertex of G. The resultant graph is called the pendant join graph of
G.[Also referred to as G corona K1 in [3].]

Operation 2. [19] Introduce n isolated vertices ui, i = 1 to n and join ui to the neighbors of vi. The resultant graph is
called the splitting graph of G.

Operation 3. In addition to G introduce two sets of n isolated vertices U = {ui} and W = {wi} corresponding to
V = {vi}, i = 1 to n. Join ui and wi to the neighbors of vi and then wi to the vertices in U corresponding to the
neighbors of vi in G for each i = 1 to n. The resultant graph is called the double splitting graph of G.

Operation 4. In addition to G introduce two more copies of G on U = {ui} and W = {wi} corresponding to
V = {vi}, i = 1 to n. Join ui to the neighbors of vi and then wi to ui for each i = 1 to n. The resultant graph is called
the composition graph of G.

Operation 5. In addition to G introduce two more copies of G on U = {ui} and W = {wi} corresponding to V = {vi},
i = 1 to n. Join wi to the neighbors of vi and vertices in U corresponding to the neighbors of vi in G for each i = 1 to n.

Lemma 2.2. Let G be a graph on n vertices with spec(G) = {λ1, . . . , λn} and Hi be the graph obtained from
Operation i, i = 1 to 5. Then

spec(H1) =

λi ±
√

λ2
i + 4

2


n

i=1

spec(H2) =

{(
1±
√

5
2

)
λi

}n

i=1

spec(H3) =
{
−λi,

(
1±
√

2
)

λi

}n

i=1

spec(H4) =

{
λi, λi ±

√
λ2

i + 1
}n

i=1

spec(H5) =
{

λi,
(

1±
√

2
)

λi

}n

i=1

Proof. The proof follows from Table 1 which gives the adjacency matrix of His for i = 1 to 5 and its spectrum,
obtained using Lemma 2.1 and the spectrum of tensor product of matrices.

Table 1
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Graph Adjacency matrix Spectrum

H1

[
A I
I 0

] {
λi±
√

λ2
i +4

2

}n

i=1

H2

[
A A
A 0

]
= A⊗

[
1 1
1 0

] {(
1±
√

5
2

)
λi

}n

i=1

H3

 A A A
A 0 A
A A 0

 = A⊗

 1 1 1
1 0 1
1 1 0

 {
−λi,

(
1±
√

2
)

λi

}n

i=1

H4

 A A 0
A A I
0 I A

 {
λi, λi ±

√
λ2

i + 1
}n

i=1

H5

 A 0 A
0 A A
A A A

 = A⊗

 1 0 1
0 1 1
1 1 1

 {
λi,
(

1±
√

2
)

λi

}n

i=1

Note: H3 = H5 when G is bipartite.

Theorem 2.1. The pendant join graph of a graph G is reciprocal if and only if G is bipartite.

Proof. Let G be a bipartite graph and H, its pendant join graph. Then, corresponding to a non-zero eigenvalue
λ of G, −λ is also an eigenvalue of G [4].
By Lemma 2.2, spec(H) = { λ±

√
λ2+4
2 , λ ∈ spec(G)}. Let α = λ+

√
λ2+4
2 be an eigenvalue of H. Then

1
α
=

2

λ +
√

λ2 + 4

=
2
(

λ−
√

λ2 + 4
)

(
λ +
√

λ2 + 4
) (

λ−
√

λ2 + 4
)

=
2
(

λ−
√

λ2 + 4
)

−4

=
(−λ) +

√
(−λ)2 + 4

2

is an eigenvalue of H as −λ is an eigenvalue of G. Similarly for α = λ−
√

λ2+4
2 also. The eigenvalues of H

corresponding to the zero eigenvalues of G if any, are 1 and −1 which are self reciprocal. Therefore H is a
reciprocal graph.
The converse can be proved by retracing the argument.

Note 1. This theorem enlarges the classes of reciprocal graphs mentioned in [20]. The claim in [20] that the pendant join
graph of Cn is reciprocal for every n is not correct as Cn is not bipartite for odd n.

Definition 2.1. A graph G is partially reciprocal if −1
λ ∈ spec(G) for every λ ∈ spec(G).

Examples:-

• Pendant join graph of any graph.

• Splitting graph of any reciprocal graph.

Theorem 2.2. The splitting graph of G is reciprocal if and only if G is partially reciprocal.

Proof. Let G be partially reciprocal and H be its splitting graph. Let α ∈ spec(H). Then by Lemma 3, α =(
1±
√

5
2

)
λ, λ ∈ spec(G). Without loss of generality, take α =

(
1+
√

5
2

)
λ. Then 1

α =
(

1−
√

5
2

)
−1
λ . Thus 1

α ∈
spec(H) as G is partially reciprocal and hence H is reciprocal.
Conversely assume that H is reciprocal. Then by the structure of spec(H) as given by Lemma 2.2, G is partially
reciprocal.
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Theorem 2.3. Let G be a reciprocal graph. Then the double splitting graph and the composition graph of G are reciprocal
if and only if G is bipartite.

Proof. Let G be a bipartite reciprocal graph. Then λ ∈ spec(G) ⇒ −λ, 1
λ , −1

λ ∈ spec(G). Let H and H′

respectively denote the double splitting graph and composition graph of G. Then using Lemma 2.2 and Table
2 it follows that H and H′ are reciprocal.

Table 2

Spec(H) 1
spec(H)

Spec(H′) 1
spec(H′){

−λ,
(

1±
√

2
)

λ
} {

− 1
λ ,
(

1±
√

2
)
−1
λ

} {
λ, λ±

√
λ2 + 1

} {
1
λ ,−λ±

√
(−λ)2 + 1

}
Converse also follows.

Illustration: The following graphs are reciprocal when G = P4.

3 An upperbound for the energy of reciprocal graphs

The following bounds on the energy of a graph are known.

1. [15]
√

2m + n(n− 1) |det A|
2
n E(G)

√
2mn

2. [8] E(G) 2m
n +

√
(n− 1)

(
2m− 4 m2

n2

)
3. [9] E(G) 4m

n +

√
(n− 2)

(
2m− 8 m2

n2

)
, if G is bipartite.

In this section we derive a better upperbound for the energy of a reciprocal graph and prove that the bound
is best possible. A graph of order n and size m is referred to as an (n, m) graph.

Theorem 3.4. Let G be an (n, m) reciprocal graph. Then E(G) ≤
√

n(2m+n)
2 and the bound is best possible for G = tK2

and tP4.

Proof. Let G be an (n, m) reciprocal graph with spec(G) = {λ1, . . . , λn}.
Therefore

n
∑

i=1
|λi| =

n
∑

i=1

1
|λi |

= E and
n
∑

i=1
λ2

i =
n
∑

i=1

1
λ2

i
= 2m.
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Now we have [21]the following inequality for real sequences ai, bi and ci, 1 ≤ i ≤ n

n

∑
i=1

aici

n

∑
i=1

bici ≤
1
2


n

∑
i=1

aibi +

(
n

∑
i=1

a2
i

)1/2( n

∑
i=1

b2
i

)1/2


n

∑
i=1

c2
i

Taking ai = |λi| , bi =
1
|λi |

and ci = 1 ∀i = 1, 2, . . . , n,

we have [E(G)]2 ≤ 1
2 [n + 2m] n and hence E(G) ≤

√
n(2m+n)

2 .
When G = tK2, n = 2t, m = t, E(G) = 2t and when G = tP4, n = 4t, m = 3t,
E(G) = 2t

√
5.

4 Equienergetic reciprocal graphs

In this section we prove the existence of a pair of equienergetic reciprocal graphs on every n = 12p and
n = 16p, p ≥ 3.

Theorem 4.5. Let G be Kp and F1 be the graph obtained by applying Operations 3, 1 and 2 on G and F2, the graph
obtained by applying Operations 5, 1 and 2 on G successively. Then F1 and F2 are reciprocal and equienergetic on 12p
vertices.

Proof. Let G = Kp. We have spec(Kp) =

(
p− 1 −1

1 p− 1

)
.

Let G3 be the graph obtained by applying Operation 3 on G. Then by Lemma 2.2,

spec(G3) =

(
−(p− 1) 1

(
1±
√

2
)
(p− 1) −

(
1±
√

2
)

1 p− 1 each once each p− 1 times

)
.

Now, let G31 be the graph obtained by applying Operation 1 on G3. Then by Lemma 2.2 spec(G31)

=



p−1±
√
(p−1)2+4
2

−1±
√

5
2

(1+
√

2)(p−1)±
√
{(1+

√
2)(p−1)}2

+4
2

each once each p− 1 times each once

(1−
√

2)(p−1)±
√
{(1−

√
2)(p−1)}2

+4
2

(1+
√

2)±
√
{(1+

√
2)}2

+4
2

(1−
√

2)±
√
{(1−

√
2)}2

+4
2

each once each p− 1 times each p− 1 times


Then

E(G31) =

√
(p− 1)2 + 4 +

√
5 (p− 1) +

√{(
1 +
√

2
)
(p− 1)

}2
+ 4

+

√{(
1−
√

2
)
(p− 1)

}2
+ 4 + (p− 1)

[√(
1 +
√

2
)2

+ 4 +

√(
1−
√

2
)2

+ 4

]

=

√
(p− 1)2 + 4 +

√
5 (p− 1) + (p− 1)

√
14 + 2

√
41

+

√
6 (p− 1)2 + 8 + 2

√
(p− 1)4 + 24 (p− 1)2 + 16

Now, let F1 be the graph obtained by applying Operation 2 on G31. Then by Lemma 2.2,
E(F1) =

√
5E(G31). Let G51 be the graph obtained by applying Operations 5 and 1 on G successively and F2

be that obtained by applying Operation 2 on G51. Then we have
E(F2) =

√
5E(G51) =

√
5E(G31) = E(F1). Also by Theorem 2, F1 and F2 are reciprocal. Thus the theorem

follows.

Lemma 4.3. Let G be a non-bipartite graph on p vertices with spec(G) = {λ1, . . . , λp} and an adjacency matrix A.
Then the spectra of graphs whose adjacency matrices are
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F′ =


A A A A
A A 0 A
A 0 A A
A A A 0

 and H′ =


0 A A A
A 0 A A
A A A A
A A A 0

 are

{
λi,−λi,

(
3±
√

13
2

)
λi

}p

i=1
and

{
−λi,−λi,

(
3±
√

13
2

)
λi

}p

i=1
respectively .

Theorem 4.6. Let G be Kp. Let T1 and T2 be the graphs obtained by applying Operations 1 and 2 successively on graphs
associated with F′ and H′ respectively. Then T1 and T2 are reciprocal and equienergetic on 16p vertices.

Proof. Let the graph associated with F′ be also denoted by F′ and F′1, the graph obtained by applying
Operation 1 on F′. Then by a similar computation as in Theorem 5,

E(F′1) = 2
√
(p− 1)2 + 4 + 2

√
5 (p− 1) +

√√√√(11 + 3
√

13
2

)
(p− 1)2 + 4

+

√√√√(11− 3
√

13
2

)
(p− 1)2 + 4 + (p− 1)


√√√√(11 + 3

√
13

2

)
+ 4 +

√√√√(11− 3
√

13
2

)
+ 4


and E(T1) =

√
5E(F′1) =

√
5E(H′1) = E(T2), by Lemma 2.2. Also by Theorem 2, T1 and T2 are reciprocal.

Hence the theorem.

5 Wiener index of some reciprocal graphs

In this section we derive the Wiener indices of some classes of reciprocal graphs described in the earlier
section. We shall denote by D(G) = D, the distance matrix of G and di, the sum of entries in the ith row of D.
The following theorem generalizes the results in [14].

Theorem 5.7. Let G be a graph with Wiener index W(G). Let H be the pendant join graph of G. Then W(H) =

4W(G) + n(2n− 1).

Proof. We have, W(G) = 1
2

n
∑

i=1
di.

Let V(G) = {v1, v2, . . . , vn} and let U = {u1, u2, . . . , un} be the corresponding vertices used in the pendant
join of G. Then the distance matrix of H is as follows.



0 d(v1, v2) ... d(v1, vn) 1 1 + d(v1, v2) ... 1 + d(v1, vn)

... ... ... ... ... ... ... ...
d(vn, v1) ... ... 0 1 + d(vn, v1) ... ... 1

1 1 + d(v1, v2) ... 1 + d(v1, vn) 0 2 + d(v1, v2) ... 2 + d(v1, vn)

... ... ... ... ... ... ... ...
1 + d(vn, v1) ... ... ... 2 + d(vn, v1) ... ... 0



since d(vi, uj) = 1; if i = j

= 1 + d(vi, vj); i 6= jand

d(ui, uj) = d(ui, vi) + d(vi, vj) + d(vj, uj)

= 2 + d(vi, vj)
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The row sum matrix of H is



2d1 + n
...

2dn + n
2d1 + 3n− 2

...
2dn + 3n− 2


.

Then W(H) =
1
2

[
n

∑
i=1

(2di + n) +
n

∑
i=1

(2di + 3n− 2)

]
= 4W(G) + n(2n− 1). Hence the theorem.

The proof techniques of the following theorems are on similar lines.

Theorem 5.8. Let G be a triangle free (n, m) graph and H, its splitting graph. Then
W(H) = 4W(G) + 2(m + n).

Corollory 5.1. Let G be a triangle free (n, m) graph and F, the splitting graph of the pendant join graph of G. Then
W(F) = 2[8W(G) + 4n2 + (m + n)].

Theorem 5.9. Let G be a triangle free (n, m) graph and H, its double splitting graph. Then W(H) = 9W(G) + 4m +

6n.

Theorem 5.10. Let G be a triangle free (n, m) graph and H, its composition graph. Then
W(H) = 9W(G) + 2n2 + 4n.
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Abstract

The concept of natural density is generalized. It is proved that the new theory is consistent with the
existing theory in the literature. Many new results were obtained. A theorem analogous to the Riemann’s
theorem on rearrangement of non-absolutely convergent series is proved in the sense of generalized natural
density. Some more possible generalizations are suggested.
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1 Introduction

We know that the set of even natural numbers and the set of natural numbers have same cardinality. In
other words both the sets have equal number of elements and they have the same size. But intuitively we feel
that the set of natural numbers is one half of the set of integers. This intuition is made into a mathematical
concept called natural density [1]. In this paper we generalize this concept and derive some interesting results.
We also suggest some more possible generalizations. Now we give some preliminary concepts which are
available in the literature. As usual we use N to denote the set of natural numbers and |S| to denote the
cardinality of the set S.

Definition 1.1. Let A ⊆ N. Let A(n) = {1, 2, . . . , n} ∩ A for all n ∈ N. The upper density and the lower density
of A are defined as lim sup

n→∞

|A(n)|
n and lim inf

n→∞
|A(n)|

n respectively; they are denoted by d̄(A) and d(A) respectively. The

natural density d(A) of A is defined as lim
n→∞

|A(n)|
n if the limit exists.

A has natural density if and only if d(A) = d(A). We have some classical results:

• For any finite set A, d(A) = 0.

• for any k ∈N, d(kN) = 1
k where nN is the set of all positive multiples of k.

• the infinite set {n2 : n ∈N} has density 0.

Further for any subsets A and B of N, if d(A) and d(B) exist, then

• d(Ac) = 1− d(A).

• for any finite set F, d(A− F) = d(A).

• d(A ∪ B) = d(A) + d(B)− d(A ∩ B).

∗Corresponding author.
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• d(kA) = 1
k d(A), for k ∈N.

• d(A + c) = d(A) for all constant c ∈N where

A + c = {a + c/a ∈ A}.

• If
A =

∞
∪

n=0
{22n, 22n + 1, . . . , 22n+1 − 1},

then d(A) = 2
3 and d(A) = 1

3 ; this shows the existence of a set for which natural density does not exist.

In Section 2, we give a generalization of the concept of natural density and in Section 3, we prove a theorem
very similar to the Riemann’s theorem on rearrangement of nonabsolutely convergent series. This very
interesting theorem suggests us the generalization is a natural one and also that many classical theorems
may have similar interpretations.

2 Generalization of Natural Density

We observe that the expression |A(n)|
n is equal to |A∩Xn |

|Xn | where Xn is the set {1, 2, . . . , n} and that the sets
Xn form an increasing sequence of subsets of the natural numbers whose union is the whole set of natural
numbers. This motivates us the following definitions.

Definition 2.2. Let C = {Xn} be any sequence of subsets of N such that X1 ⊆ X2 ⊆ X3 ⊆ . . . and ∪Xn = N. Then
C is called a cover for N.

We simply write ‘cover’ instead of writing ‘cover for N’. We define the natural density in a generalized
form in the following definition.

Definition 2.3. The Upper density dC (A) and the lower density dC (A) of a subset A of N with respect to a cover C

are defined as

dC (A) = lim sup
n→∞

|A ∩ Xn|
|Xn|

and dC (A) = lim inf
n→∞

|A ∩ Xn|
|Xn|

.

The density dC (A) of A with respect to C is defined as

dC (A) = lim
n→∞

|A ∩ Xn|
|Xn|

provided the limit exists.

If Xn = {1, 2, . . . , n}, then we get the theory of natural density which is available in the literature. So the
concept of natural density becomes a particular case of the new concept and the new theory is consistent with
that available in the literature.

If C is any cover for N and if A and B are subsets of N such that dC (A) and dC (B) exist, then the following
results follow from the definition.

• dC (N) = 1.

• dC (Ac) = 1− dC (A) where Ac denote the complement of A in N.

• for any finite set F, dC (F) = 0.

• for any finite set F, dC (A− F) = dC (A).

• dC (A ∪ B) = dC (A) + dC (B)− dC (A ∩ B).

Example 2.1. Let A = 2N. Let Xn = {1, 2, . . . , n} and C be the cover {Xn}. Then dC (A) is the natural density,
which is equal to 1

2 . Let D be the cover {Xn} where

Xn = {1, 2, 3, . . . , 2n + 1, 2n + 3, . . . , 4n− 1}.

Then the sequence
(
|A∩Xn |
|Xn |

)
is, 1

3 , 2
6 , 3

9 , . . . which converge to 1
3 . That is, dD (A) = 1

3 .
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This example shows that the density of a set may vary as the cover varies. In Theorem 3.2, we prove that for
any real number α, 0 ≤ α ≤ 1, if A is an infinite set whose complement is also infinite, there is a cover C so
that dC (A) = α.

Let us consider another example.

Example 2.2. Let A = {1, 3, 5, . . . } and let C be the cover {Xn} where

Xn = {1, 2, 3, . . . , 2n, 2(n + 1), 2(n + 2), . . . , 4n}.

Then dC (A) is 1
3 and dC (2A) = 1

3 .

This example shows that, dC (kA) need not be equal to 1
k dC (A) in contrast with the classical result d(kA) =

1
k d(A). Also it is easy to verify that dC (A + 1) = 2

3 which shows that, dC (A) need not be equal to dC (A + 1)
in contrast with the classical result d(A + c) = d(A) for all constant c ∈N.

Theorem 2.1. Let A be a subset of N. Let m1 < m2 < m3 < . . . be an increasing sequence of natural numbers. Let
Xn = {1, 2, . . . , mn} and C = {Xn}. Then C is a cover of N and dC (A) = d(A) provided d(A) exists.

Proof. Let d(A) exist. Let an = |A∩{1,2,...,n}|
n and bn = |A∩{1,2,...,mn}|

mn
. Then d(A) = lim

n→∞
an which exists by our

assumption. As (bn) is a subsequence of (an), dC (A) = lim
n→∞

bn exists and is equal to d(A).

3 The Major Theorem

In this section, we prove a theorem which resembles the Riemann’s theorem on rearrangements of series.
First we recall Riemann’s theorem on rearrangement of Series: If Σan is a nonabsolutely convergent series
(Σan is convergent and Σ|an| is not convergent) of real numbers and −∞ ≤ α ≤ β ≤ ∞, then there exists a
rearrangement Σbn of Σan with partial sum sequence (tn) such that lim inf

n→∞
tn = α and lim sup

n→∞
tn = β.

We now state our main theorem.

Theorem 3.2. If A is an infinite subset of N whose complement is also an infinite set and α, β ∈ [0, 1] with α ≤ β,
then there exists a cover C such that dC (A) = α and dC (A) = β.

Proof. There exists a sequence of rational numbers in [0, 1] whose limit infimum is α limit supremum is β.
Indeed if, p1, p2, . . . and q1, q2, . . . are sequences of rational numbers in [0, 1] converging to α and β

respectively, then the sequence p1, q1, p2, q2, . . . has the required property.
Let a and b be two rational numbers in [0, 1]. Let a representation m

n for a be given. Then we claim that
there exists a representation m′

n′ for b such that m ≤ m′ and n < n′. If b = p
q is any representation of b, and if

m′ = pmn and n′ = qmn, then b = m′
n′ is a required representation of b, if at least one of m and n is different

from 1. If m = n = 1, then 2p
2q will be a representation of b with the required property.

We claim that there exists a sequence
m1

n1
,

m2

n2
,

m3

n3
, . . .

of rational numbers such that

m1 ≤ m2 ≤ m3 ≤ . . . , n1 < n2 < n3 < . . . ,

and mi ≤ ni for all i, so that

lim inf
k→∞

mk
nk

= α and lim sup
k→∞

mk
nk

= β.

To prove this claim let α1, α2, α3, . . . be a sequence of rational numbers in [0, 1] such that lim inf
n→∞

αn = α and

lim sup
n→∞

αn = β. Taking α1 and α2 as a and b with the representation α1 = m1
n1

in our first claim, we get a

representation α2 = m2
n2

such that m1 ≤ m2 and n1 < n2. Taking α2 and α3 as a and b with the representation
α2 = m2

n2
in the same claim we get a representation α3 = m3

n3
such that m2 ≤ m3 and n2 < n3. Continuing in

this way, we get a sequence with the required properties.
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Let B = N− A. Since A and B are infinite subset of N, we can write the elements of the sets as infinite
sequences:

A : a1 < a2 < a3 < . . . , and B : b1 < b2 < b3 < . . . .

Let
Xk = {a1, a2, a3, . . . , amk , b1, b2, . . . , bnk−mk}

for k = 1, 2, 3, . . . . Then C = {Xk} is a cover with dC (A) = α and dC (A) = β.

Corollary 3.1. If A an infinite subset of N whose complement is also an infinite set and if α ∈ [0, 1], then there exists
a cover C such that dC (A) = α.

Conclusion

The theory developed here can be viewed as way to find the density of a set after assigning some weights to
the natural numbers. If for some k and ` in N, there is an n such that k ∈ Xn and ` /∈ Xn, we may consider the
weight of k is larger (or equal) than the weight of `.

Moreover, in the existing literature our intuition that the set of positive even integers is half of the set
of positive integers, is given a mathematical meaning. In the new theory the intuition by which the theory
started fails. This is not an odd one in mathematics.

We started topology generalizing the concept of metric spaces. In the metric space R, with usual topology
the sequence

1,
1
2

,
1
3

, . . .

converges to 0 and only to 0. But the same sequence on R with the topology τ = {R, ∅, {0}} converges to
all real numbers other than 0 and it does not converge to 0, breaking our intuition that the sequence tends
to 0. Likewise our theory also breaks some intuitions. Through this happens, the theory developed in this
work has many similarities with the theory available in the literature of other branches of mathematics like
Riemann’s theorem on rearrangement of non-absolutely converging series. Some other types of densities and
many open problems were discussed in [2, 3] and some of them can be studied in this new context.

We have discussed a generalization of the concept of natural density by replacing |A∩{1,2,3,...,n}|
n by |A∩Xn |

|Xn |

where {Xn} is a sequence of subsets of N satisfying certain properties. Replacing |A∩{1,2,3,...,n}|
n by µ(A∩Xn)

µ(Xn)

where A and Xn are subsets of a measure space (X, µ), we can further generalize the concept of natural
density to a very large setup. For example one may take X = R, the Lebesgue measure on R as µ, and {Xn}
as an increasing sequence of sets with finite measure whose union is R, and obtain new results like the set of
positive real numbers is one half of the set of all real numbers and so on.
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Abstract

In this paper, we shall study a nonlinear fractional differential equation with nonlocal integral boundary
conditions. We have used fixed point theorems and Laray-Schauder nonlinear alternative to study the
existence and uniqueness of solutions to the given equation. In the last, we have given examples to illustrate
the applications of the abstract results.
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1 Introduction

Fractional differential equations are the generalization of ordinary differential equations to arbitrary non
integer orders. The fact, that the fractional derivative(integral) is an operator which includes integer order
derivatives(integrals) as special cases, is the reason why in present fractional differential equations becomes
very popular and many applications are available. The fractional differential equations are of great importance
because these are more precise in the modeling of many phenomenon, for instance, the nonlinear oscillations
of earthquake can be described by the fractional differential equations. These differential equations are also
very important to describe the memory and hereditary properties of various materials and phenomenon,
this characteristic of fractional differential equations makes the fractional-order models more realistic and
practical than the classical integer-order models. Recent work on fractional differential equations shows an
overwhelming interest in this direction, for instance see [1–12] and the references cited therein. There have
been many good books and monographs available on this field see [13–17].

On the other hand, the differential equations with a deviating argument are generalization of differential
equations in which we permit the unknown function and its derivative to appear under different values of
the argument. It is very important and significant branch of nonlinear analysis with numerous applications
to physics, mechanics, control theory, biology, ecology, economics, theory of nuclear reactors, engineering,
natural sciences and many other areas of science and technology. For a good introduction see [8, 18–21] and
references cited therein.

The boundary value problem of fractional differential equations have been one of the hottest problems.
Many problems related to blood flow, chemical engineering, thermo-elasticity, underground water flow,
population dynamics, and so on can be reduced to nonlocal integral boundary problems. As a matter of fact,
there are many papers dealing with the investigations on boundary value problems for some kinds of
fractional differential equation with specific configurations covering theoretical as well as application aspects

∗Corresponding author.
E-mail address: rrenu94@gmail.com (Renu Chaudhary), dwij.iitk@gmail.com(Dwijendra N Pandey)



Chaudhary and Pandey / Existence results for nonlinear ... 393

of the subject. In this consequence, Bai and Lu [12] studied the existence of positive solutions for the
fractional boundary value problem using Krasnoselskii’s fixed point theorem and the Leggett-William’s fixed
point theorem. They established the criteria on the existence of at least one or three positive solutions for the
boundary value problem. Later on, Kaufmann and Mboumi[4] discussed the existence of positive solutions
for the fractional boundary value problem and provide sufficient conditions for the existence of at least one
and at least three positive solutions to the nonlinear fractional boundary value problem. In [23] Ahmad et. al
investigated a boundary value problem of Riemann-Liouville fractional integro-differential equations with
fractional nonlocal integral boundary conditions using Krasnoselskii’s fixed point theorem. In [7] Yan et. al
studied the boundary value problems for fractional differential equations subject to nonlocal boundary
condition using Banach’s fixed point theorem and Schaefer’s fixed point theorem. In [11] Zhong et. al
investigated nonlocal and multiple-point boundary value problem for fractional differential equations and
establish the conditions for the uniqueness of solutions as well as the existence of at least one solution. In [9]
Murad et. al investigated the existence and uniqueness of solutions to the nonlinear fractional differential
equation of an arbitrary order with integral boundary condition using Schauder fixed point theorem and the
Banach contraction principle. In [1] Ahmad et. al discussed a new class of fractional boundary value
problems and establish the results using Banach and Krasnoselskii’s fixed point theorem. Authors in [1] also
studied Riemann-Liouville fractional nonlocal integral boundary value problems in [2] by means of classical
fixed point theorems. In [10] Ntouyas et. al. studied the boundary value problems for nonlinear fractional
differential equations and inclusions with nonlocal and fractional integral boundary conditions and obtained
some new existence and uniqueness results by using fixed point theorems. In [6] Nyamoradi et. al
investigate the existence of solutions for the multipoint boundary value problem of a fractional order
differential inclusion on an infinite interval using suitable fixed point theorems. In [3] Ahmad et. al
investigate the existence of solutions for higher order fractional differential inclusions with fractional integral
boundary conditions involving nonintersecting finite many strips of arbitrary length using some standard
fixed point theorems for multivalued maps. Akiladevi et.al [5] discuss the existence and uniqueness of
solutions to the nonlinear neutral fractional boundary value problem using fixed point theorems. Recently,
Zhao [25] studied triple positive solutions for two classes of delayed nonlinear fractional differential
equation with nonlinear integral boundary value conditions using Leggett-Williams fixed point theorem and
a generalization of Leggett-Williams fixed point theorem.

Motivated by the aforementioned techniques and papers, we have come to the conclusion that, although
the fractional boundary value problems have been studied by many authors, but there is few gap in the
literature on the boundary value problems with integral boundary conditions. In order to enhance the
theoretical knowledge of the above, in this paper we intend to investigate the existence and uniqueness of
solutions to the following Caputo-type fractional differential equation with deviated argument and nonlocal
integral boundary conditions:

{
cDγ[z(t)− G(t, z(t))] = F (t, z(t), z[k(t, z(t))]), 1 < γ ≤ 2, t ∈ (0, 1)
z(0) = 0, z(τ) = α

∫ 1
η z(v)dv, 0 < τ < η < 1,

(1.1)

where cDγ is the Caputo fractional derivative of order γ. F , G and k are suitably defined functions satisfying
certain conditions to be stated later and α is a positive real constant. The nonlocal integral boundary condition
z(τ) = α

∫ 1
η z(v)dv shows that the integration over a sub-strip (η, 1) of an unknown function is proportional

to the value of the unknown function at a nonlocal point τ ∈ (0, 1) with τ < η < 1.

In this work, our main aim is to establish some existence and uniqueness results for the system (1.1)
by using fixed point techniques which will provide an effective way to deal with such problems. Most
of the existing articles are only devoted to study of fractional differential equation with nonlocal integral
boundary conditions up until now Caputo-type fractional differential equation with deviated argument and
nonlocal integral boundary conditions, has not been considered in the literature. In this paper, the first
sufficient condition proving existence and uniqueness of the mild solution of (1.1) is derived by utilizing
Banach fixed point theorem under Lipschitz continuity of nonlinear terms. The second sufficient condition
proving existence of the mild solution of (1.1) is obtained via Krasnoselskii’s fixed point theorem. The third
sufficient condition is obtained by using Laray-Schauder nonlinear alternative under non-Lipschitz continuity
of nonlinear terms.
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2 Preliminaries

In this segment we discuss some basic definitions of fractional integration and differentiation and some
lemmas which plays an important role in the further sections.

Definition 2.1. [17] For a function f ∈ L1(R+), the fractional integral of order γ is described by

Iγ
0+ f (t) =

1
Γ(γ)

∫ t

0
(t− v)γ−1 f (v)dv, t > 0, γ > 0.

Definition 2.2. [13] For a function f ∈ Cm−1(R+)∩ L1(R+), the Caputo fractional derivative of order γ is described
by

cDγ
0+ f (t) =

1
Γ(m− γ)

∫ t

0
(t− v)m−γ−1 f m(v)dv,

where m− 1 < γ < m, m = [γ] + 1 and [γ] denotes the integral part of the real number γ.

Lemma 2.1. [14] Let q > 0, then

D−γDγ f (t) = f (t) + C1tγ−1 + C2tγ−2 + . . . + Cntγ−1,

for arbitrary Ci ∈ R, i = 1, 2, . . . , n, n = [γ] + 1.

Lemma 2.2. For any functions F ∈ C([0, 1], R) and G ∈ C1([0, 1], R), the solution of following linear fractional
boundary value problem

cDγ[z(t)− G(t)] = F (t), 1 < γ ≤ 2, t ∈ (0, 1) (2.2)

z(0) = 0, z(τ) = α
∫ 1

η
z(v)dv, 0 < η < 1, (2.3)

is defined by

z(t) =
1

Γ(γ)

∫ t

0
(t− v)γ−1F (v)dv− G(0) + G(t)

+
t
Λ

{
G(0)(1− α(1− η))− G(τ)− 1

Γ(γ)

∫ τ

0
(τ − v)γ−1F (v)dv

+α
∫ 1

η
G(v)dv +

α

Γ(γ)

∫ 1

η

( ∫ v

0
(v− u)γ−1F (u)du

)
dv
}

, (2.4)

where

Λ = τ − α

2
(1− η2) 6= 0. (2.5)

Proof. Using Lemma(2.1), the solution z of (2.2) given by

z(t) = IγF (t)− G(0) + G(t) + C2t + C1, (2.6)

for some constants C1, C2 ∈ R.
On applying the boundary conditions (2.3), we get C1 = 0 and

C2 =
1

(τ − α
2 (1− η2))

{
G(0)(1− α(1− η))− G(τ)− 1

Γ(γ)

∫ τ

0
(τ − v)γ−1F (v)dv

+α
∫ 1

η
G(v)dv +

α

Γ(γ)

∫ 1

η

( ∫ v

0
(v− u)γ−1F (u)du

)
dv
}

.

Substituting the values of C1 and C2 in (2.6), we get (2.4).
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3 Existence and Uniqueness Results

Let C = C([0, 1], R) be the Banach space of all continuous functions from [0, 1] to R equipped with the norm

‖z‖ = sup
t∈[0,1]

|z(t)|, z ∈ C.

Set,
B = {z ∈ C : |z(t)− z(v)| ≤ L|t− v| ∀ t, v ∈ [0, 1]},

where L is a positive constant.
With the help of Lemma (2.2), we introduce an operator Φ : B→ B as

(Φz)(t) =
1

Γ(γ)

∫ t

0
(t− l)γ−1F (l, z(l), z[k(l, z(l))])dl + [

t
Λ
(1− α(1− η))− 1]G(0, z(0))

+G(t, z(t)) +
t
Λ

{
− G(τ, z(τ))− 1

Γ(γ)

∫ τ

0
(τ − l)γ−1F (l, z(l), z[k(l, z(l))])dl

+α
∫ 1

η
G(l, z(l))dl +

α

Γ(γ)

∫ 1

η

( ∫ l

0
(l − y)γ−1F (y, z(y), z[k(y, z(y))])dy

)
dl
}

, (3.7)

where Λ is given by (2.5). Here note that the boundary value problem (1.1) has solutions if and only if the
operator Φ has fixed points.
Now, we introduce some assumptions which are required for the existence and uniqueness of the solution to
boundary value problem (1.1).

(H1) The continuous function k is defined from [0, 1]×R to R with a constant Lk > 0 such that

|k(t, z)− k(t, x)| ≤ Lk|z− x|.

(H2) The continuous function F is defined from [0, 1]×R×R to R with a constant L f > 0 such that

|F (t, z, z[k(t, z(t))])−F (t, x, x[k(t, x(t))])| ≤ L f (2 + LLk)|z− x|.

(H3) The continuously differentiable function G is defined from [0, 1]×R to R with a constant Lg > 0 such
that

|G(t, z)− G(t, x)| ≤ Lg|z− x|.

(H4) There exists M1(t) and M2(t) ∈ C such that

|F (t, z, z[k(t, z(t))])| ≤ M1(t),

and

|G(t, z)| ≤ M2(t).

Theorem 3.1. Suppose (H1)− (H3) hold with δ1 = L f (2 + LLk)µ1 + Lgµ2 < 1, where

µ1 =
1
|Λ|

(
(|Λ|+ τγ)

Γ(γ + 1)
+

α(1− ηγ+1)

Γ(γ + 2)

)
and µ2 =

(
1 +

1
|Λ| (1 + α(1− η))

)
.

Then the boundary value problem (1.1) has a unique solution.

Proof. Let sup
t∈[0,1]

|F (t, 0, 0)| = N1, sup
t∈[0,1]

|G(t, 0)| = N2 and Br = {z ∈ B : ‖z‖ ≤ r}, where r ≥ δ2
1−δ1

with

δ2 = N1µ1 + N2µ2 +
1
|Λ| ((1− α(1− η))− 1)|G(0, z(0))|).
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Now we will show that ΦBr ⊂ Br. For z ∈ Br, 0 ≤ t ≤ 1, we have

‖(Φz)(t)‖ ≤ sup
t∈[0,1]

{
1

Γ(γ)

∫ t

0
(t− l)γ−1|F (l, z(l), z[k(l, z(l))])−F (l, 0, 0) +F (l, 0, 0)|dl

+[
t
|Λ| (1− α(1− η))− 1]|G(0, z(0))|+ |G(t, z(t))− G(t, 0) + G(t, 0)|

+
t
|Λ|

{
|G(τ, z(τ))− G(τ, 0) + G(τ, 0)|+ 1

Γ(γ)

∫ τ

0
(τ − l)γ−1|F (l, z(l), z[k(l, z(l))])

−F (l, 0, 0) +F (l, 0, 0)|dl + α
∫ 1

η
|G(l, z(l))− G(l, 0) + G(l, 0)|dl

+
α

Γ(γ)

∫ 1

η

( ∫ l

0
(l − y)γ−1|F (y, z(y), z[k(y, z(y))])−F (y, 0, 0) +F (y, 0, 0)|dy

)
dl
}

≤ (L f (2 + LLk)r + N1)µ1 + (Lgr + N2)µ2 +
1
|Λ| ((1− α(1− η))− 1)|G(0, z(0))|

≤ (L f (2 + LLk)µ1 + Lgµ2)r +
[

N1µ1 + N2µ2 +
1
|Λ| ((1− α(1− η))− 1)|G(0, z(0))|

]
≤ δ1r + δ2 ≤ r.

Thus ΦBr ⊂ Br. Now for z, x ∈ Br and t ∈ [0, 1], we have

‖Φz−Φx‖ ≤ sup
t∈[0,1]

{
1

Γ(γ)

∫ t

0
(t− l)γ−1|F (l, z(l), z[k(l, z(l))])−F (l, x(l), x[k(l, x(l))])|dl

+|G(t, z(t))− G(t, x(t))|+ t
|Λ|

{
|G(τ, z(τ))− G(τ, x(τ))|

+
1

Γ(γ)

∫ τ

0
(τ − l)γ−1|F (l, z(l), z[k(l, z(l))])−F (l, x(l), x[k(l, x(l))])|dl

+α
∫ 1

η
|G(l, z(l))− G(l, x(l))|dl +

α

Γ(γ)

∫ 1

η

( ∫ l

0
(l − y)γ−1|F (y, z(y), z[k(y, z(y))])

−F (y, x(y), x[k(y, x(y))])|dy
)

dl
}

≤ [L f (2 + LLk)µ1 + Lgµ2]|z− x|
≤ δ1|z− x|.

Since δ1 < 1, ‖Φz−Φx‖ < |z− x| i.e. Φ is a contraction mapping. Therefore by Banach contraction principle,
the boundary value problem (1.1) has a unique solution.

Krasnoselskii combined two main result(Schauder’s theorem and the contraction mapping principle) of
fixed-point theory and gave a new theorem called Krasnoselskii’s fixed point theorem. Now we show
existence of solution with the help of Krasnoselskii’s fixed point theorem [24].

Theorem 3.2. (Krasnoselskii fixed point theorem [24] ) Let X be a Banach space and B be a nonempty, closed and
convex subset of X. Let Q1 and Q2 be two operators which maps B into X such that

1. Q1x + Q2y ∈ B, whenever x, y ∈ B,

2. Q1 is completely continuous,

3. Q2 is a contraction mapping.

Then there exists z ∈ B such that z = Q1z + Q2z.

Theorem 3.3. Let (H1)− (H4) hold with

δ =

(
(L f (2 + LLk))

|Λ|

[
τγ

Γ(γ + 1)
+

α(1− ηγ+1)

Γ(γ + 2)

]
+ Lg

[
1 +

1
|Λ| (1 + α(1− η))

])
< 1.

Then there exists at least one solution on [0, 1] of the given boundary value problem (1.1).



Chaudhary and Pandey / Existence results for nonlinear ... 397

Proof. Let sup
t∈[0,1]

|Mi(t)| = ‖Mi‖ for i = 1, 2, M = max{M1, M2,G(0, z(0))} and Br = {z ∈ B : ‖z‖ ≤ r},

choose r such that

r ≥ ‖M‖
[

µ1 + µ2 +
1
|Λ| (1− α(1− η))− 1

]
.

Now, introduce the decomposition of the map Φ into Φ1 and Φ2 on Br for t ∈ [0, 1] such that

(Φ1z)(t) =
1

Γ(γ)

∫ t

0
(t− l)γ−1F (l, z(l), z[k(l, z(l))])dl,

(Φ2z)(t) = [
t
Λ
(1− α(1− η))− 1]G(0, z(0)) + G(t, z(t))

+
t
Λ

{
− G(τ, z(τ))− 1

Γ(γ)

∫ τ

0
(τ − l)γ−1F (l, z(l), z[k(l, z(l))])dl

+α
∫ 1

η
G(l, z(l))dl +

α

Γ(γ)

∫ 1

η

( ∫ l

0
(l − y)γ−1F (y, z(y), z[k(y, z(y))])dy

)
dl
}

.

For y, x ∈ Br, we have

‖Φ1z + Φ2x‖ ≤ sup
t∈[0,1]

{
1

Γ(γ)

∫ t

0
(t− l)γ−1|F (l, z(l), z[k(l, z(l))])|dl + [

t
|Λ| (1− α(1− η))− 1]|G(0, x(0))|

+|G(t, x(t))|+ t
|Λ|

[
|G(τ, x(τ))|+ 1

Γ(γ)

∫ τ

0
(τ − l)γ−1|F (l, x(l), x[k(l, x(l))])|dl

+α
∫ 1

η
|G(l, x(l))|dl +

α

Γ(γ)

∫ 1

η

( ∫ l

0
(l − y)γ−1|F (y, x(y), x[k(y, x(y))])|dy

)
dl
]}

≤ ‖M1‖µ1 + ‖M2‖µ2 + [
1
|Λ| (1− α(1− η))− 1]|G(0, z(0))|

≤ ‖M‖
[

µ1 + µ2 +
1
|Λ| (1− α(1− η))− 1

]
≤ r.

Thus Φ1z+Φ2x ∈ Br. Now to show Φ1 is continuous and compact. The continuity ofF implies the continuity
of Φ1. Also

‖(Φ1z)(t)‖ ≤ sup
t∈[0,1]

{
1

Γ(γ)

∫ t

0
(t− l)γ−1|F (l, z(l), z[k(l, z(l))])|dl

}
≤ ‖M1‖

Γ(γ + 1)
,

i.e. map Φ1 is uniformly bounded on Br.
Now, we show that {Φ1z(t) : z ∈ Br} is equicontinuous. Clearly {Φ1z(t) : z ∈ Br} are equicontinuous at
t = 0. For t < t + h ≤ 1, h > 0, we have

‖Φ1z(t + h)−Φ1z(t)‖ ≤ 1
Γ(γ)

‖
∫ t+h

0
(t + h− l)γ−1F (l, z(l), z[k(l, z(l))])dl

−
∫ t

0
(t− l)γ−1F (l, z(l), z[k(l, z(l))])dl‖

≤ 1
Γ(γ)

∫ t

0

[
(t + h− l)γ−1 − (t− l)γ−1

]
‖F (l, z(l), z[k(l, z(l))])‖dl

+
1

Γ(γ)

∫ t+h

t
(t + h− l)γ−1‖F (l, z(l), z[k(l, z(l))])‖dl,

which tends to zero as h → 0, thus the set {Φ1z(t) : z ∈ Br} is equicontinuous. Therefore by Arzelà-Ascoli’s
theorem Φ1 is completely continuous.
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Next we prove that Φ2 is a contraction. For this

‖Φ2z−Φ2x‖ ≤ sup
t∈[0,1]

{
|G(t, z(t))− G(t, x(t))|+ t

|Λ|

{
|G(τ, z(τ))− G(τ, x(τ))|+ 1

Γ(γ)

∫ τ

0
(τ − l)γ−1

|F (l, z(l), z[k(l, z(l))])−F (l, x(l), x[k(l, x(l))])|dl + α
∫ 1

η
|G(l, z(l))− G(l, x(l))|dl

+
α

Γ(γ)

∫ 1

η

( ∫ l

0
(l − y)γ−1|F (y, z(y), z[k(y, z(y))])−F (y, x(y), x[k(y, x(y))])|dy

)
dl
}

≤
(
(L f (2 + LLk))

|Λ|

[
τγ

Γ(γ + 1)
+

α(1− ηγ+1)

Γ(γ + 2)

]
+ Lg

[
1 +

1
|Λ| (1 + α(1− η))

])
|z− x|

≤ δ|z− x|.

Since δ < 1, ‖Φ2z−Φ2x‖ < |z− x| i.e. Φ2 is a contraction. Therefore by Krasnoselskii fixed point theorem,
there exists at least one solution on [0, 1] of boundary value problem (1.1).

In our next result we show the existence of solution with the help of Laray-Schauder nonlinear alternative
[22].

Theorem 3.4. (Laray-Schauder nonlinear alternative [22]) Let U and U denote respectively the open and closed
subset of a nonempty, closed and convex set B of a Banach space X such that 0 ∈ U. Let T : U → B be a continuous
and compact operator. Then either

(i) T has a fixed point in U, or

(ii) there exists a point u ∈ ∂U such that u = εTu for some ε ∈ (0, 1), where ∂U is the boundary of U.

Theorem 3.5. Let the following assumptions hold.

(H5) There exists continuous nondecreasing functions ψ1, ψ2 : [0, ∞)→ (0, ∞) and θ1, θ2 ∈ L1([0, 1], R+) such that

(i) |F (t, z, x)| ≤ θ1(t)ψ1(‖z‖+ ‖x‖),
(ii) |G(t, z)| ≤ θ2(t)ψ2(‖z‖).

(H6) There exists a constant P > 0 such that P
Θ ≥ 1, where

Θ = ψ(‖P‖)
[

θ2(1) + Iγ

(
θ2(1) +

1
|Λ| (θ1(τ) + α

∫ 1

η
θ1(l)dl)

)
+

1
|Λ|

(
((1− α(1− η))− 1) + θ2(τ)

)
+ α

∫ 1

η
θ2(l)dl

]
.

Then there exists at least one solution on [0, 1] of the given boundary value problem (1.1).

Proof. Clearly the operator Φ : B → B defined by (3.7) is continuous. Firstly we show that the bounded sets
in B are mapped into the bounded sets in B by the mapping Φ. For r > 0, let Br = {z ∈ B : ‖z‖ ≤ r} be a
bounded set in B. Thus for z ∈ Br , we get

‖(Φz)(t)‖ ≤ sup
t∈[0,1]

{
1

Γ(γ)

∫ t

0
(t− l)γ−1|F (l, z(l), z[k(l, z(l))])|dl + [

t
|Λ| (1− α(1− η))− 1]|G(0, z(0))|

+|G(t, z(t))|+ t
|Λ|

{
|G(τ, z(τ))|+ 1

Γ(γ)

∫ τ

0
(τ − l)γ−1|F (l, z(l), z[k(l, z(l))])|dl

+α
∫ 1

η
|G(l, z(l))|dl +

α

Γ(γ)

∫ 1

η

( ∫ l

0
(l − y)γ−1|F (y, z(y), z[k(y, z(y))])|dy

)
dl
}

≤ ψ1(2‖r‖)
∫ 1

0

(1− l)γ−1

Γ(γ)
θ1(l)dl +

1
|Λ| ((1− a(1− η))− 1)|G(0, z(0))|+ ψ2(‖r‖)θ2(1)

+
1
|Λ|

{
ψ2(‖r‖)θ2(τ) + ψ1(2‖r‖)

∫ τ

0

(τ − l)γ−1

Γ(γ)
θ1(l)dl

+αψ2(‖r‖)
∫ 1

η
θ2(l)dl + αψ1(2‖r‖)

∫ 1

η

( ∫ l

0

(l − y)γ−1

Γ(γ)
θ1(y)dy

)
dl
}

,
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choose ψ(r) ≤ max{ψ1(2‖r‖),G(0, z(0)), ψ2(‖r‖)}, we obtain

‖(Φz)(t)‖ ≤ ψ(r)
[

θ2(1) + Iγ

(
θ2(1) +

1
|Λ| (θ1(τ) + α

∫ 1

η
θ1(l)dl)

)
+

1
|Λ|

(
((1− α(1− η))− 1) + θ2(τ)

)
+ α

∫ 1

η
θ2(l)dl

]
. (3.8)

Next, we will show that Φ maps bounded sets into equicontinuous sets in Br. For this, let t1, t2 ∈ [0, 1] with
t1 < t2 and z ∈ Br, then

‖(Φz)(t2)− (Φz)(t1)‖ ≤
∫ t2

0

(t2 − l)γ−1

Γ(γ)
|F (l, z(l), z[k(l, z(l))])|dl + |G(t2, z(t2))|

−
∫ t1

0

(t1 − l)γ−1

Γ(γ)
|F (l, z(l), z[k(l, z(l))])|dl − |G(t1, z(t1))|

+
(t2 − t1)

|Λ|

[
(1− α(1− η))G(0, z(0)) + G(τ, z(τ)) + α

∫ 1

η
|G(l, z(l))|dl

+
∫ τ

0
(τ − l)γ−1|F (l, z(l), z[k(l, z(l))])|dl

+α
∫ 1

η

( ∫ l

0
(l − y)γ−1|F (y, z(y), z[k(y, z(y))])|dy

)
dl
]

≤ ψ1(2‖r‖)
[ ∫ t1

0

(t2 − l)γ−1 − (t1 − l)γ−1

Γ(γ)
θ1(l)dl +

∫ t2

t1

(t2 − l)γ−1

Γ(γ)
θ1(l)dl

+
|t2 − t1|
|Λ|

( ∫ τ

0

(τ − l)γ−1

Γ(γ)
θ1(l)dl + α

∫ 1

η

( ∫ l

0

(l − y)γ−1

Γ(γ)
θ1(y)dy

)
dl
)]

+(θ2(t2)− θ1(t1))ψ2(‖r‖) +
|t2 − t1|
|Λ|

(
1− α(1− η))|G(0, z(0))|

+|G(τ, z(τ))|+ αψ2(‖r‖)
∫ 1

η
θ2(l)dl

)
.

Clearly, the right hand side does not depend on z ∈ Br and tends to zero as t2 → t1. Thus by Arzelà-Ascoli
theorem, Φ is compact and continuous.
Now, suppose z be the solution of the given problem. Then for ε ∈ (0, 1) and using (3.8), we get

‖z(t)‖ = ‖ε(Φz)(t)‖ ≤ ψ(‖z‖)
[

θ2(1) + Iγ

(
θ2(1) +

1
|Λ| (θ1(τ) + α

∫ 1

η
θ1(l)dl)

)
+

1
|Λ|

(
((1− α(1− η))− 1) + θ2(τ)

)
+ α

∫ 1

η
θ2(l)dl

]
,

which implies

‖z‖ ≤ ψ(‖z‖)
[

θ2(1) + Iγ

(
θ2(1) +

1
|Λ| (θ1(τ) + α

∫ 1

η
θ1(l)dl)

)
+

1
|Λ|

(
((1− α(1− η))− 1) + θ2(τ)

)
+ α

∫ 1

η
θ2(l)dl

]
.

Using assumption (H6), we get P such that ‖z‖ 6= P. Set V = {z ∈ C : ‖z‖ < P}.
Here the operator Φ : V → C is continuous and completely continuous. For any V, there is no z ∈ ∂V such
that z = εΦz for some ε ∈ (0, 1). Using Laray-Schauder nonlinear alternative, we conclude that there exists a
fixed point z ∈ V of operator Φ and this z is a solution of boundary value problem (1.1).

4 Examples

In this section, we present some examples, which indicate how our abstract result can be applied to the
problem.



400 Chaudhary and Pandey /Existence results for nonlinear ...

Example(1): Consider the following fractional boundary value problem
cD3/2

[
z(t)− e−t

1+16e−t
|z(t)|+1
2+|z(t)|

]
= 1

(t+7)2

(
|z(t)|+ |t(|z(t)|+ 1)|+ 2

)
,

z(0) = 0, z(1/4) =
∫ 1

1/2 z(l)dl.
(4.9)

Here γ = 3/2, τ = 1/4, α = 2, η = 1/2, G(t, z(t)) = e−t

1+16e−t
(|z(t)|+1)
(2+|z(t)|) , k(t, z(t)) = t

(t+7)2 (|z(t)| + 1) and

F (t, z(t), z[k(t, z(t))]) = 1
(t+7)2

(
|z(t)|+ |t(|z(t)|+ 1)|+ 2

)
. Here Λ = τ − α

2 (1− η2) = −1/2 6= 0.

Observe that

|k(t, z(t))− k(t, x(t))| ≤ 1
49
|z− x|,

|F (t, z, z[k(t, z(t))])−F (t, x, x[k(t, x(t))])| ≤ 1
(t + 7)2

[
|z| − |x|+ |t|(|z| − |x|)

]
≤ 2

49
|z− x|,

|G(t, z(t))− G(t, x(t))| ≤
∣∣∣∣ e−t

1 + 16e−t

∣∣∣∣∣∣∣∣ |z(t)|+ 1
2 + |z(t)| −

|x(t)|+ 1
2 + |x(t)|

∣∣∣∣
≤ 1

17
|z− x|.

Thus assumptions (H1)-(H3) holds with L f (2 + LLk) = 2/49 and Lg = 1/17 and we get δ1 = .2210 < 1.
Using Theorem (3.1) we get (4.9) has a unique solution.
Example(2): Consider the fractional boundary value problem given by

cD3/2
[

z(t)− 1
(t+7)2 sin z

]
= 1

π2
√

(1+t)

(
sin z + sin(t sin z)

)
,

z(0) = 0, z(1/4) =
∫ 1

1/2 z(l)dl.
(4.10)

Here γ = 3/2, τ = 1/4, α = 1, η = 1/2, G(t, z(t)) = 1
(t+7)2 sin z, k(t, z(t)) = 1

π2
√

(1+t)
t sin z and

F (t, z(t), z[k(t, z(t))]) = 1
π2
√

(1+t)

(
sin z + sin(t sin z)

)
. Here Λ = τ − α

2 (1− η2) = −1/8 6= 0.

Observe that

|k(t, z(t))− k(t, x(t))| ≤ 1
π2 |z− x|,

|F (t, z, z[k(t, z(t))])−F (t, x, x[k(t, x(t))])| ≤ 2
π2 |z− x|,

|G(t, z(t))− G(t, x(t))| ≤ 1
49
|z− x|,

|F (t, z, z[k(t, z(t))])| ≤ 2
π2
√
(1 + t)

= M1(t),

|G(t, z(t))| ≤ 1
(t + 7)2 = M2(t).

Thus conditions (H1)-(H4) holds with L f (2 + LLk) = 2/π2 and Lg = 1/49 and we get δ = .8186 < 1. Clearly
the assumptions (H1)-(H4) of Theorem (3.3) are satisfied. Therefore (4.10) has at least one solution on [0, 1].
Example(3): Consider the following fractional boundary value problem

cD3/2
[

z(t)− 1
(t+11)2 (|z|+ 1)

]
= 1

(t+7)2

[
|z|+ | sin(|z|+ 1)|+ 2

]
,

z(0) = 0, z(1/2) =
∫ 1

3/4 z(l)dl.
(4.11)

Here γ = 3/2, τ = 1/4, α = 1, η = 3/4, G(t, z(t)) = 1
(t+11)2 (|z| + 1), k(t, z(t)) = 1

(t+7)2 sin(|z| + 1) and

F (t, z(t), z[k(t, z(t))]) = 1
(t+7)2

[
|z|+ | sin(|z|+ 1)|+ 2

]
. Here Λ = τ − a

2 (1− η2) = 9/32 6= 0.
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Observe that

|F (t, z, z[k(t, z(t))])| ≤ 1
49

(2|z|+ 3),

|G(t, z(t))| ≤ 1
121

(|z|+ 1).

From (H5) we get θ1(t) = 1, ψ1(‖z‖+ ‖x‖) = 1
49 (2|z|+ 3), θ2(t) = 1 and ψ2(‖z‖) = 1

121 (|z|+ 1). Also

Θ = ψ(‖M‖)
[

θ2(1) + Iγ

(
θ2(1) +

1
|Λ| (θ1(τ) + α

∫ 1

η
θ1(l)dl)

)
+

1
|Λ|

(
((1− α(1− η))− 1) + θ2(τ)

)
+ α

∫ 1

η
θ2(l)dl

]
= ψ(‖M‖)(8.0012).

Using condition P
Θ ≥ 1, we found that there exists a constant P such that P ≥ .7274 > 0, therefore

assumptions (H5) and (H6) of Theorem (3.5) are fulfilled. Therefore (4.11) has at least one solution on [0, 1].

5 Conclusion

This paper has investigated the existence and uniqueness of solution to the Caputo-type fractional differential
equation with deviated argument and nonlocal integral boundary conditions. The first sufficient condition
proving existence and uniqueness of the mild solution of (1.1) is derived by utilizing Banach fixed point
theorem under Lipschitz continuity of nonlinear terms. The second sufficient condition proving existence of
the mild solution of (1.1) is obtained via Krasnoselskii’s fixed point theorem. The third sufficient condition is
obtained by using Laray-Schauder nonlinear alternative under non-Lipschitz continuity of nonlinear terms.
At last, examples are provided to illustrate the applications of the abstract results.
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Abstract

We obtain interval oscillation criteria for the second-order impulsive delay differential equation

(
r(t)Φα(x′(t))

)′
+ p(t)Φα(x(t− τ)) +

n

∑
i=1

qi(t)Φβi (x(t− τ)) = e(t), t ≥ t0, t 6= tk,

x(tk
+) = akx(tk), x′(tk

+) = bkx′(tk), k = 1, 2, 3, ... .

The results obtained in this paper extend some of the existing results. We have given some examples to
illustrate our results.

Keywords: Interval oscillation; Impulse; Delay; Mixed nonlinearities.
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1 Introduction

Consider the second-order impulsive delay differential equation with mixed nonlinearities

(
r(t)Φα(x′(t))

)′
+ p(t)Φα(x(t− τ)) +

n

∑
i=1

qi(t)Φβi (x(t− τ)) = e(t), t ≥ t0, t 6= tk,

x(tk
+) = akx(tk), x′(tk

+) = bkx′(tk), k = 1, 2, 3, ...

(1.1)

where

x(t−k ) := lim
t→t−k

x(t), x(t+k ) := lim
t→t+k

x(t),

x′(t−k ) := lim
h→0−

x(tk + h)− x(tk)

h
, x′(t+k ) := lim

h→0+

x(tk + h)− x(tk)

h
.

Φ∗(s) := |s|∗−1s, τ is a non negative constant, {tk} denotes the impulsive moment sequence with 0 ≤ t0 <

t1 < · · · < tk < . . . , limk→∞ tk = ∞ and tk+1 − tk > τ for k = 1, 2, 3, ... .
Let J ⊂ R be an interval, we define

PLC(J, R) :=
{

h : J → R | h is continuous on each interval (tk, tk+1),

h(t±k ) exists and h(tk) = h(t−k ) for all k ∈N
}

.

For given t0 and φ ∈ PLC([t0 − τ, t0], R), we say x ∈ PLC([t0 − τ, ∞), R) is a solution of equation(1.1) with
the initial value φ if x(t) satisfies equation(1.1) for t ≥ t0 and x(t) = φ(t) for t ∈ [t0 − τ, t0].

∗Corresponding author
E-mail address: vmuthupu@gmail.com (V. Muthulakshmi), ariyanmanju@gmail.com (R. Manjuram)
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A nontrivial solution of equation(1.1) is called oscillatory if it has arbitrarily large zeros; otherwise, it is called
nonoscillatory.

The theory of impulsive differential equations is an important branch of differential equations. The first
paper in this theory is related to V. D. Milman and A. D. Mishkis in 1960 [14]. In recent years the oscillation
theory of impulsive differential equations emerging as an important area of research, since such equations
have applications in control theory, physics, biology, population dynamics, economics, etc. For further
applications and questions concerning existence and uniqueness of solutions of impulsive differential
equation, see for example Lakshmigantham et. al [10] and the references cited therein.

During the last decades, several oscillation results were established for different kinds of impulsive delay
differential equations (see Agarwal and Karakoc [2]). Recently, interval oscillation of impulsive delay
differential equations was attracting the interest of many researchers, see Guo et. al[5, 6] and Li and Cheung
[11]. However, only very few interval oscillation results are available in the literature for ” second order
impulsive differential equations with delay ”. For example, Huang and Feng [8] considered the second order
delay differential equations with impulses

x′′(t) + p(t) f (x(t− τ)) = e(t), t ≥ t0, t 6= tk,

x(tk
+) = akx(tk), x′(tk

+) = bkx′(tk), k = 1, 2, ...

and established some interval oscillation criteria which developed some known results for the equations
without delay or impulses [4, 12, 18].

In [5], Guo et. al considered the second order mixed nonlinear impulsive differential equations with delay

(
r(t)Φα(x′(t))

)′
+ p0(t)Φα(x(t)) +

n

∑
i=1

pi(t)Φβi (x(t− σ)) = e(t), t ≥ t0, t 6= τk,

x(τk
+) = akx(τk), x′(τk

+) = bkx′(τk), k = 1, 2, ...

and obtained some interval oscillation criteria which generalized the results in [13, 15, 17].
In [11], Li and Cheung established some interval oscillation criteria for the second order impulsive delay

differential equations of the form

(
p(t)(x′(t))

)′
+ q(t)(x(t− τ)) +

n

∑
i=1

qi(t)Φαi (x(t− τ)) = e(t), t ≥ t0, t 6= tk,

x(tk
+) = akx(tk), x′(tk

+) = bkx′(tk), k = 1, 2, ...

Motivated mainly by [5, 6, 11], we establish some interval oscillation criteria for equation (1.1). We also
provide two examples to illustrate the effectiveness of our results.

2 Main results

Throughout this paper, assume that the following conditions hold without further mention:

(A1) r(t) ∈ C([t0, ∞), (0, ∞)) is non-decreasing, p, qi, e ∈ PLC([t0, ∞), R), i = 1, 2 . . . , n;

(A2) β1 > · · · > βm > α > βm+1 > · · · > βn > 0 are constants;

(A3) α is a quotient of odd positive integers, bk ≥ ak > 0, k ∈N are constants.

let k(s) := max{i : t0 < ti < s} and for cj < dj, let Mj := max{r(t) : t ∈ [cj, dj]}, j = 1, 2,
Ωj := {ω ∈ C1[cj, dj] : ω(t) 6≡ 0, ω(cj) = ω(dj) = 0}, j = 1, 2. For two constants c, d /∈ {tk} with c < d and a
function φ ∈ C([c, d], R), we define an operator Ψ : C([c, d], R)→ R by

Ψd
c [φ] =

{
0, for k(c) = k(d),

φ(tk(c)+1)θ(c) + ∑
k(d)
i=k(c)+2 φ(ti)ε(ti), for k(c) < k(d),

where

θ(c) =
bα

k(c)+1 − aα
k(c)+1

(aα
k(c)+1(tk(c)+1 − c)α)

, ε(ti) =
bα

i − aα
i

(aα
i (ti − ti−1)α)

.
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where ∑t
s = 0 if s > t.

In the discussion of the impulse moments of x(t) and x(t − τ), we need to consider the following four
cases for k(cj) < k(dj),

(s1) tk(cj)
+ τ < cj and tk(dj)

+ τ > dj; (s2) tk(cj)
+ τ < cj and tk(dj)

+ τ < dj;

(s3) tk(cj)
+ τ > cj and tk(dj)

+ τ > dj; (s4) tk(cj)
+ τ > cj and tk(dj)

+ τ < dj, j = 1, 2

and the three cases for k(cj) = k(dj),

(s̃1) tk(cj)
+ τ < cj; (s̃2) tk(dj)

+ τ < dj; (s̃3) tk(dj)
+ τ > dj, j = 1, 2.

Combining (s∗) with (s̃∗), we can get 12 cases. Throughout the paper, we study equation(1.1) under the case
of combination of (s1) with (s̃1) only. The discussions for other cases are similar and so omitted.

Let us see some lemmas which will be useful to prove our main results.

Lemma 2.1. [1] For any given n-tuple {β1, β2, . . . , βn} satisfying β1 > · · · > βm > α > βm+1 > · · · > βn > 0,
there corresponds an n-tuple (η1, η2, . . . , ηn) such that

n

∑
i=1

βiηi = α,
n

∑
i=1

ηi < 1, 0 < ηi < 1. (2.2)

Lemma 2.2. [1] For any given n-tuple {β1, β2, . . . , βn} satisfying β1 > · · · > βm > α > βm+1 > · · · > βn > 0,
there corresponds an n-tuple (η1, η2, . . . , ηn) such that

n

∑
i=1

βiηi = α,
n

∑
i=1

ηi = 1, 0 < ηi < 1. (2.3)

Lemma 2.3. [7] Suppose X and Y are non-negative, then

λXYλ−1 − Xλ ≤ (λ− 1)Yλ, λ > 1 (2.4)

where equality holds if and only if X = Y.

Lemma 2.4. Assume that for any T ≥ t0, there exists cj, dj /∈ {tk}, j = 1, 2 such that T < c1 < d1 ≤ c2 < d2 and

p(t), qi(t) ≥ 0, t ∈ [c1 − τ, d1] ∪ [c2 − τ, d2]\{tk}, i = 1, 2, 3, ..., n

e(t) ≤ 0, t ∈ [c1 − τ, d1]\{tk},
e(t) ≥ 0, t ∈ [c2 − τ, d2]\{tk}.

(2.5)

If x(t) is a non-oscillatory solution of equation(1.1), then there exist the following estimations of x(t− τ)/x(t);

(a) f or t ∈ (ti + τ, ti+1],
x(t− τ)

x(t)
>

(
t− ti − τ

t− ti

)
,

(b) f or t ∈ (ti, ti + τ),
x(t− τ)

x(t)
>

(
t− ti

bi(t + τ − ti)

)
,

(c) f or t ∈ [cj, tk(cj)+1],
x(t− τ)

x(t)
>

(
t− tk(cj)

− τ

t− tk(cj)

)
,

(d) f or t ∈ (tk(dj)
, dj],

x(t− τ)

x(t)
>

(
t− tk(dj)

bk(dj)
(t + τ − tk(dj)

)
,

(2.6)

where i = k(cj), ..., k(dj)− 1, j = 1, 2.

Proof. Without loss of generality, we assume that x(t) > 0 and x(t− τ) > 0 for t ≥ t0. In this case the selected
interval of t is [c1, d1]. From equation(1.1) and (2.5), we obtain

[
r(t)Φα(x′(t))

]′
= e(t)− p(t)Φα(x(t− τ))−

n

∑
i=1

qi(t)Φβi (x(t− τ)) ≤ 0 (2.7)
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Hence r(t)Φα(x′(t)) is non-increasing on the interval [c1, d1]\{tk}.
Case(a): ti + τ < t ≤ ti+1.
Then (t− τ, t) ⊂ (ti, ti+1] and hence there is no impulsive moment in (t− τ, t). For any s ∈ (t− τ, t), we have

x(s)− x(t+i ) = x′(ξ1)(s− ti), ξ1 ∈ (ti, s).

Because of the facts that x(t+i ) > 0, φα(∗) is an increasing function and r(s)Φα(x′(s)) is non-increasing on
(ti, ti+1), we have

φα(x(s)) > φα(x′(ξ1)(s− ti)) =
r(ξ1)

r(ξ1)
φα(x′(ξ1))(s− ti)

α,

and hence

Φα(x(s)) ≥ r(s)Φα(x′(s))
r(ξ1)

(s− ti)
α.

Since r(s) is positive and non-decreasing, the above inequality becomes

φα(x(s)) ≥ φα(x′(s)(s− ti)), ξ1 ∈ (ti, s).

Thus, we have
x′(s)
x(s)

<
1

(s− ti)
.

Integrating both sides of the above inequality from t− τ to t, we obtain

x(t− τ)

x(t)
>

(
t− ti − τ

t− ti

)
, t ∈ (ti + τ, ti+1]. (2.8)

Case(b): t ∈ (ti, ti + τ).
Then t− τ ∈ (ti − τ, ti). ie, ti − τ < t− τ < ti < t < ti + τ. Then there is an impulsive moment ti in (t− τ, t).
Then we have,

x(t)− x(t+i ) = x′(ξ2)(t− ti), ξ2 ∈ (ti, t).

Using the impulsive condition of equation(1.1) and the monotone properties of r(t), φα(t) and r(t)φα(x′(t)),
we get

φα(x(t)− aix(ti)) ≤
r(t+i )φα(x′(t+i ))

r(ξ2)
(t− ti)

α

= φα(bix′(ti))(t− ti)
α

⇒ φα

(
x(t)
x(ti)

− ai

)
≤ φα

(
bi

x′(ti)

x(ti)
(t− ti)

) (2.9)

In addition, by mean value theorem on [ti − τ, ti], we have

x(ti)− x(ti − τ) = x′(ξ3)τ, ξ3 ∈ (ti − τ, ti)

and hence, φα(x(ti)) > φα(x′(ξ3)τ)

By using the monotone properties of r(t), φα(t) and r(t)φα(x′(t)), we have

φα(x(ti)) ≥ φα(x′(ti)τ)

⇒ x′(ti)

x(ti)
<

1
τ

(2.10)

From (2.9) and (2.10), we have,

φα

(
x(t)
x(ti)

− ai

)
≤ φα

(
bi(t− ti)

τ

)
⇒ x(t)

x(ti)
≤ bi(t− ti + τ)

τ
(2.11)

For some s ∈ (ti − τ, ti), we have

x(s)− x(ti − τ) = x′(ξ4)(s− ti + τ), ξ4 ∈ (ti − τ, s)

⇒ φα(x(s)) >
r(ξ4)φα(x′(ξ4))

r(ξ4)
(s− ti + τ)α.
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Again by using the monotone properties of r(t), φα(t) and r(t)φα(x′(t)), we have

φα(x(s)) ≥ φα(x′(s)(s− ti + τ))

⇒ x′(s)
x(s)

<
1

(s− ti + τ)
.

Integrating both sides of the above inequality from t− τ to ti where t ∈ (ti, ti + τ), we have

x(t− τ)

x(ti)
>

t− ti
τ

, t ∈ (ti, ti + τ). (2.12)

Hence, from (2.11) and (2.12), we have

x(t− τ)

x(t)
>

(
t− ti

bi(t + τ − ti)

)
, t ∈ (ti, ti + τ).

Case(c): t ∈ [c1, tk(c1)+1].
Then t− τ ∈ [c1 − τ, tk(c1)+1 − τ] and hence there is no impulsive moment in (t− τ, t).
For any s ∈ (t− τ, t) as in Case(a), we have

φα(x(s)) > φα(x′(ξ5)(s− tk(c1)
))

By the monotone properties of φα(∗) and r(s)Φα(x′(s)), we have

Φα(x(s)) ≥ r(s)Φα(x′(s))
r(ξ5)

(s− tk(c1)
)α.

Since r(s) is positive and non decreasing, the above inequality becomes

φα(x(s)) ≥ φα(x′(s)(s− tk(c1)
)), ξ5 ∈ (tk(c1)

, s)

⇒ x′(s)
x(s)

<
1

(s− tk(c1)
)

Integrating both sides of the above inequality from t− τ to t, we obtain

x(t− τ)

x(t)
>

(
t− tk(c1)

− τ

t− tk(c1)

)
, t ∈ [c1, tk(c1)+1].

Case(d): t ∈ (tk(d1)
, d1].

Then t− τ ∈ (tk(d1)
− τ, d1 − τ]. ie, tk(d1)

− τ < t− τ < tk(d1)
< t < tk(d1)

+ τ. Then there is an impulsive
moment tk(d1)

in (t− τ, t). Making a similar analysis of Case(b), we obtain

x(t− τ)

x(t)
>

(
t− tk(d1)

bk(d1)
(t + τ − tk(d1)

)

)
, t ∈ (tk(d1)

, d1].

When x(t) < 0, we can choose interval [c2, d2] to study equation(1.1). The proof is similar and hence
omitted. This completes the proof.

Theorem 2.1. Assume that for any T ≥ t0, there exists cj, dj /∈ {tk} , j = 1, 2, such that T < c1 < d1 ≤ c2 < d2 and
(2.5) holds. If there exists ωj(t) ∈ Ωj(cj, dj), j = 1, 2 such that, for k(cj) < k(dj),

∫ tk(cj)+1

cj

Wj(t)

(
t− tk(cj)

− τ

t− tk(cj)

)α

dt

+

k(dj)−1

∑
i=k(cj)+1

[∫ ti+τ

ti

Wj(t)
(

t− ti
bi(t + τ − ti)

)α

dt +
∫ ti+1

ti+τ
Wj(t)

(
t− ti − τ

t− ti

)α]

+
∫ dj

tk(dj)

Wj(t)

(
t− tk(dj)

bk(dj)
(t + τ − tk(dj)

)α

dt−
∫ dj

cj

(r(t)
∣∣∣ω′j(t)∣∣∣α+1

)dt

≥ MjΨ
dj
cj [ω

α+1
j ],

(2.13)
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and for k(cj) = k(dj), ∫ dj

cj

(
Wj(t)

(
t− cj

t− cj + τ

)α

− r(t)
∣∣∣ω′j(t)∣∣∣α+1

)
dt ≥ 0, (2.14)

where, Wj(t) = Q(t)ωα+1
j , j = 1, 2., and

Q(t) =

(
p(t) + η

−η0
0

n

∏
i=1

η
−ηi
i qηi

i (t)|e(t)|
η0

)
,

then equation (1.1) is oscillatory.

Proof. To arrive at a contradiction, let us suppose that x(t) is a non-oscillatory solution of equation(1.1).
Without loss of generality, we assume that x(t) > 0 and x(t − τ) > 0 for t ≥ t0. In this case the interval
of t selected for the following discussion is [c1, d1]. We define

u(t) = r(t)
φα(x′(t))

xα(t)
, t ∈ [c1, d1]. (2.15)

It follows that for t 6= tk,

u′(t) = −
(

p(t)
xα(t− τ)

xα(t)
+

∑n
i=1 qi(t)φβi (x(t− τ))

xα(t)
+
|e(t)|
xα(t)

)
− αu(t)

x′(t)
x(t)

(2.16)

for all t 6= tk, t ≥ t0, and u(t+k ) =
bk
ak

u(tk) for all k ∈N.
From the assumptions, we can choose c1, d1 ≥ t0 such that p(t) ≥ 0 and qi(t) ≥ 0 for t ∈ [c1 − τ, d1],
i = 1, 2, . . . , n, and e(t) ≤ 0 for t ∈ [c1 − τ, d1]. By Lemma 2.1, there exist ηi > 0, i = 1, . . . , n, such that
∑n

i=1 βiηi = α and ∑n
i=1 ηi < 1.

Define η0 := 1−∑n
i=1 ηi and let

u0 := η−1
0

∣∣∣ e(t)x(t− τ)

xα(t)

∣∣∣ x−1(t− τ),

ui := η−1
i qi(t)

x(t− τ)

xα(t)
xβi−1(t− τ), i = 1, 2, . . . , n .

Then by the arithmetic-geometric mean inequality (see Beckenbach and Bellman [3])

n

∑
i=0

ηiui ≥
n

∏
i=0

uηi
i , ui ≥ 0, and ηi > 0

we have

u′(t) ≤− p(t)
xα(t− τ)

xα(t)
− η

−η0
0

n

∏
i=1

η
−ηi
i qηi

i (t)
xηi (t− τ)

(xηi (t))α
x(βi−1)ηi (t− τ)|e(t)|η0 × xη0(t− τ)

(xη0(t))α
x−η0(t− τ)

− α

r1/α
u(t)

(
r(t)φα(x′(t))

xα(t)

)1/α x′(t)
φα(x′(t))1/α

, t 6= tk.

(2.17)
Since, by using Lemma(2.2), we have

n

∏
i=0

xηi (t− τ)

(xηi (t))α
=

xη0+η1+···+ηn(t− τ)

(xη0+η1+···+ηn(t))α
=

x(t− τ)

xα(t)

and
n

∏
i=1

x(βi−1)ηi (t− τ)x−η0(t− τ) = xα−1(t− τ),

the inequality (2.17) becomes

u′(t) ≤ −
[

p(t) + η
−η0
0

n

∏
i=1

η
−ηi
i qηi

i (t)|e(t)|
η0

]
× xα(t− τ)

xα(t)
− α

r1/α(t)
u

1+α
α (t),

= −Q(t)
(

x(t− τ)

x(t)

)α

− α

r1/α(t)
u1+α/α(t), t 6= tk (2.18)
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where

Q(t) =

(
p(t) + η

−η0
0

n

∏
i=1

η
−ηi
i qηi

i (t)|e(t)|
η0

)
.

First we consider the case k(c1) < k(d1). In this case the impulsive moments in [c1, d1] are
tk(c1)+1, tk(c1)+2, . . . , tk(d1)

. Choosing a ω1(t) ∈ Ω1(c1, d1), multiplying both sides of (2.18) by ωα+1
1 (t), and

then integrating it from c1 to d1, we have

k(d1)

∑
i=k(c1)+1

ωα+1
1 (ti)[u(ti)− u(t+i )]

≤
∫ tk(c1)+1

c1

[
(α + 1)

∣∣ωα
1 (t)ω

′
1(t)

∣∣ |u(t)| − α

r1/α(t)
|u(t)|(1+α)/α ωα+1

1 (t)
]

dt

+
k(d1)−1

∑
i=k(c1)+1

∫ ti+1

ti

[
(α + 1)

∣∣ωα
1 (t)ω

′
1(t)

∣∣ |u(t)| − α

r1/α(t)
|u(t)|(1+α)/α ωα+1

1 (t)
]

dt

+
∫ d1

tk(d1)

[
(α + 1)

∣∣ωα
1 (t)ω

′
1(t)

∣∣ |u(t)| − α

r1/α(t)
|u(t)|(1+α)/α ωα+1

1 (t)
]

dt

−
∫ tk(c1)+1

c1

(
x(t− τ)

x(t)

)α

W1(t)dt

−
k(d1)−1

∑
i=k(c1)+1

[∫ ti+τ

ti

(
x(t− τ)

x(t)

)α

W1(t)dt +
∫ ti+1

ti+τ

(
x(t− τ)

x(t)

)α

W1(t)dt
]

−
∫ d1

tk(d1)

(
x(t− τ)

x(t)

)α

W1(t)dt.

(2.19)

where W1(t) = Q(t)ωα+1
1 .

Letting

λ = 1 +
1
α

, X =

(
α

r1/α(t)

)α/α+1

|ωα
1 (t)| |u(t)| and Y = [αr(t)]α/α+1 ∣∣ω′1(t)∣∣α ,

and then by using Lemma(2.3), we get

(α + 1)
∣∣ωα

1 (t)ω
′
1(t)

∣∣ |u(t)| − α

r1/α(t)
|u(t)|(1+α)/α ωα+1

1 (t) ≤ r(t)
∣∣ω′1(t)∣∣α+1 . (2.20)

Meanwhile, for t = tk, k = 1, 2, ...

u(t+k ) =
(

bk
ak

)α

u(tk). (2.21)

Then the left hand side of the inequality(2.19) becomes

k(d1)

∑
i=k(c1)+1

ωα+1
1 (ti)[u(ti)− u(t+i )] =

k(d1)

∑
i=k(c1)+1

aα
i − bα

i
aα

i
ωα+1

1 (ti)u(ti). (2.22)

Substituting (2.20) and (2.22) in (2.19), we get

k(d1)

∑
i=k(c1)+1

aα
i − bα

i
aα

i
ωα+1

1 (ti)u(ti)

≤
∫ d1

c1

r(t)
∣∣ω′1(t)∣∣α+1 dt−

∫ tk(c1)+1

c1

(
x(t− τ)

x(t)

)α

W1(t)dt

−
k(d1)−1

∑
i=k(c1)+1

[∫ ti+τ

ti

(
x(t− τ)

x(t)

)α

W1(t)dt +
∫ ti+1

ti+τ

(
x(t− τ)

x(t)

)α

W1(t)dt
]

−
∫ d1

tk(d1)

(
x(t− τ)

x(t)

)α

W1(t)dt.

(2.23)
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On the other hand, for t ∈ (ti−1, ti] ⊂ [c1, d1], i = k(c1) + 2, . . . , k(d1), we have

x(t)− x(ti−1) = x′(ξ)(t− ti−1), ξ ∈ (ti−1, t).

In view of x(ti−1) > 0 and the monotone properties of φα(t), r(t)φα(x′(t)) and r(t) we obtain

φα(x(t)) > φαx′(ξ)φα(t− ti−1) ≥
r(t)
r(ξ)

φαx′(t)φα(t− ti−1)

=⇒ r(t)φα(x′(t))
φα(x(t))

<
r(ξ)

(t− ti−1)α
.

Let t→ t−i , it follows that

u(ti) =
r(ti)φα(x′(ti))

φα(x(ti))
<

M1

(ti − ti−1)α
, i = k(c1) + 2, . . . , k(d1). (2.24)

Making a similar analysis on (c1, tk(c1)+1], we get

u(tk(c1)+1) =
r(tk(c1)+1)φα(x′(tk(c1)+1))

φα(x(tk(c1)+1))
<

M1

(tk(c1)+1 − c1)α
. (2.25)

Then from (2.24), (2.25) and (A3), we have

k(d1)

∑
i=k(c1)+1

bα
i − aα

i
aα

i
ωα+1

1 (ti)u(ti) < M1

ωα+1
1 (tk(c1)+1)θ(c1) +

k(d1)

∑
i=k(c1)+2

ωα+1
1 (ti)ε(ti)


= M1Ψd1

c1

[
ωα+1

1

]
.

(2.26)

Hence, from (2.23) and (2.26) and applying Lemma (2.4), we obtain

∫ tk(c1)+1

c1

W1(t)

(
t− tk(c1)

− τ

t− tk(c1)

)α

dt

+
k(d1)−1

∑
i=k(c1)+1

[∫ ti+τ

ti

W1(t)
(

t− ti
bi(t + τ − ti)

)α

dt +
∫ τi+1

ti+τ
W1(t)

(
t− ti − τ

t− ti
dt
)α]

+
∫ d1

tk(d1)
W1(t)

(
t− tk(d1)

bk(d1)
(t + τ − tk(d1)

)α

dt−
∫ d1

c1

r(t)
∣∣ω′1(t)∣∣α+1 dt

< M1Ψd1
c1

[
ωα+1

1

]
.

(2.27)

This contradicts (2.13).
Next we consider the case k(c1) = k(d1). By the condition (s̃1) we know there is no impulse moments in

[c1, d1]. Multipling both sides of (2.18) by ωα+1
1 (t), with ω as prescribed in the hypothesis of the theorem, and

then integrating it from c1 to d1, we obtain∫ d1

c1

u′(t)ωα+1
1 dt ≤ −

∫ d1

c1

α

r1/α(t)
|u(t)|(α+1)/α ωα+1

1 (t)dt−
∫ d1

c1

(
x(t− τ)

x(t)

)α

W1(t)dt. (2.28)

Using integration by parts on the left hand side and noting the condition ω1(c1) = ω1(d1) = 0, we obtain∫ d1

c1

[
(α + 1)ωα

1 ω′1(t)u(t)−
α

r1/α(t)
|u(t)|(α+1)/α ωα+1

1 (t)
]

dt−
∫ d1

c1

(
x(t− τ)

x(t)

)α

W1(t)dt ≥ 0. (2.29)

It follows that∫ d1

c1

[
(α + 1)

∣∣ωα
1 ω′1(t)

∣∣ |u(t)| − α

r1/α(t)
ωα+1

1 (t) |u(t)|(α+1)/α
]

dt−
∫ d1

c1

(
x(t− τ)

x(t)

)α

W1(t)dt ≥ 0. (2.30)

Letting

λ = 1 +
1
α

, X =

(
α

r1/α(t)

)α/α+1

|ωα
1 (t)| |u(t)| and Y = [αr(t)]α/α+1 ∣∣ω′1(t)∣∣α
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and applying the Lemma(2.3), we get

∫ d1

c1

[
r(t)

∣∣ω′1(t)∣∣α+1 −
(

x(t− τ)

x(t)

)α

W1(t)
]

dt ≥ 0. (2.31)

Now to estimate x(t−τ)
x(t) on [c1, d1].

If t ∈ [c1, d1] then t − τ ∈ [c1 − τ, d1 − τ] and then there is no impulsive moment in (t − τ, t). For any
t ∈ (t− τ, t), we have

x(t)− x(c1 − τ) = x′(ξ)(t− c1 + τ), ξ ∈ (c1 − τ, t).

By using the monotone properties of r(t), φα(∗) and r(t)Φα(x′(t)), we get

φα(x(t)) > φα(x′(ξ))(t− c1 + τ) =
r(ξ)
r(ξ)

φα(x′(ξ))(t− c1 + τ)α

≥ r(t)Φα(x′(t))
r(t)

(t− c1 + τ)α = φα(x′(t))(t− c1 + τ).

Therefore,
x′(t)
x(t)

<
1

(t− c1 + τ)
.

Integrating both sides of the above inequality from t− τ to t, we obtain

x(t− τ)

x(t)
>

(
t− c1

t− c1 + τ

)
, t ∈ [c1, d1]. (2.32)

From (2.31) and (2.32) we obtain

∫ d1

c1

[
W1(t)

(
t− c1

t− c1 + τ

)α

− r(t)
∣∣ω′1(t)∣∣α+1

]
dt < 0. (2.33)

This again contradicts our assumption.
When x(t) is eventually negative, we can consider the interval [c2, d2] and reach a similar

contradiction.Thus the proof is complete.

Following Kong [9] and Philos [16], we introduce a class of functions:
Let D = {(t, s) : t0 ≤ s ≤ t}, H1, H2 ∈ C1(D, R). A pair of functions (H1, H2) is said to belong to a function
class H, if H1(t, t) = H2(t, t) = 0, H1(t, s) > 0, H2(t, s) > 0 for t > s and there exist h1, h2 ∈ Lloc(D, R) such
that

∂H1(t, s)
∂t

= h1(t, s)H1(t, s),
∂H2(t, s)

∂s
= −h2(t, s)H2(t, s).

We assume there exists cj, dj, δj /∈ {tk}, k = 1, 2, . . . , (j = 1, 2) which satisfy T < c1 < δ1 < d1 ≤ c2 < δ2 < d2
for any T ≥ t0. Noticing whether or not there are impulse moments of x(t) in [cj, δj] and [δj, dj], we should
consider the following four cases,

(S1) k(cj) < k(δj) < k(dj); (S2) k(cj) = k(δj) < k(dj);

(S3) k(cj) < k(δj) = k(dj); (S4) k(cj) = k(δj) = k(dj), j = 1, 2.

Moreover in the discussion of impulse moments of x(t− τ), it is necessary to consider the following two cases,

¯(S1) tk(δj)
+ τ > δj; ¯(S2) tk(δj)

+ τ ≤ δj, j = 1, 2.

In the following theorem, we only consider the case of combination of (S1) with ¯(S1). For the other cases,
similar conclusions can be given and hence their proof is omitted.
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For our convenience, we define

Π1,j =:
1

H1(δj, cj)

{ ∫ tk(cj)+1

cj

H̃1(t, cj)

(
t− tk(cj)

− τ

t− tk(cj)

)α

dt

+
k(δ1)−1

∑
i=k(cj)+1

[ ∫ ti+τ

ti

H̃1(t, cj)

(
t− ti

bi(t + τ − ti)

)α

dt +
∫ ti+1

ti+τ
H̃1(t, cj)

(
t− ti − τ

t− ti

)α

dt
]

+
∫ δj

tk(δj)
H̃1(t, cj)

(
t− tk(δj)

bk(δj)
(t + τ − tk(δj)

)

)α

dt

− 1
(α + 1)α+1

∫ δj

cj

r(t)H1(t, cj)
∣∣h1(t, cj)

∣∣α+1 dt
}

(2.34)
and

Π2,j =:
1

H2(dj, δj)

{ ∫ tk(δj)
+τ

δj

H̃2(dj, t)

(
t− tk(δj)

bk(δj)
(t + τ − tk(δj)

)

)α

dt +
∫ tk(δj)+1

tk(δj)
+τ

H̃2(dj, t)

(
t− tk(δj)

− τ

t− tk(δj)

)α

dt

+

k(dj)−1

∑
i=k(δj)+1

[ ∫ ti+τ

ti

H̃2(dj, t)
(

t− ti
bi(t + τ − ti)

)α

dt +
∫ ti+1

ti+τ
H̃2(dj, t)

(
t− ti − τ

t− ti

)α

dt
]

+
∫ dj

tk(dj)
H̃2(dj, t)

(
t− tk(dj)

bk(dj)
(t + τ − tk(dj)

)

)α

dt

− 1
(α + 1)α+1

∫ dj

δj

r(t)H2(dj, t)
∣∣h2(dj, t)

∣∣α+1 dt
}

,

(2.35)
where H̃1(t, cj) = H1(t, cj)Q(t), H̃2(dj, t) = H2(dj, t)Q(t), (j = 1, 2) and

Q(t) =

(
p(t) + η

−η0
0

n

∏
i=1

η
−ηi
i qηi

i (t)|e(t)|
η0

)
.

Theorem 2.2. Assume that for any T ≥ t0, there exist cj, dj, δj /∈ {tk}, j = 1, 2 such that c1 < δ1 < d1 ≤ c2 < δ2 <

d2, and (2.5) holds. If there exists (H1, H2) ∈ H such that

Π1,j + Π2,j >
Mj

H1(δj, cj)
Ψ

δj
cj [H1(., cj)] +

Mj

H2(dj, δj)
Ψ

dj
δj
[H2(dj, .)], j = 1, 2, (2.36)

then equation(1.1) is oscillatory.

Proof. To arrive at a contradiction, let us suppose that x(t) is a non-oscillatory solution of equation(1.1).
Without loss of generality, we assume that x(t) > 0 and x(t− τ) > 0 for t ≥ t0. In this case the interval of t
selected for the following discussion is [c1, d1]. Continuing as in Theorem(2.5), we can get (2.18). Multiplying
both sides of (2.18) by H1(t, c1) and integrating it from c1 to δ1, we have∫ δ1

c1

H1(t, c1)u′(t)dt ≤ −
∫ δ1

c1

H1(t, c1)
α

r1/α(t)
|u(t)|(1+α)/α dt

−
∫ δ1

c1

H̃1(t, c1)

(
x(t− τ)

x(t)

)α

dt
(2.37)
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Since the impulsive moments tk(c1)+1, tk(c1)+2, . . . , tk(δ1)
are in [c1, δ1], using the integration by parts on the

left-hand side of the above inequality, we obtain

∫ δ1

c1

H1(t, c1)u′(t)dt =

(∫ tk(c1)+1

c1

+
∫ tk(c1)+2

tk(c1)+1

+... +
∫ δ1

tk(δ1)

)
H1(t, c1)du(t)

=
k(δ1)

∑
i=k(c1)+1

[u(ti)− u(t+i )]H1(ti, c1) + u(δ1)H(δ1, c1)

−
(∫ tk(c1)+1

c1

+
∫ tk(c1)+2

tk(c1)+1

+... +
∫ δ1

tk(δ1)

)
u(t)h1(t, c1)H1(t, c1)dt

=
k(δ1)

∑
i=k(c1)+1

aα
i − bα

i
aα

i
H1(ti, c1)u(ti) + H1(δ1, c1)u(δ1)

−
(∫ tk(c1)+1

c1

+
∫ tk(c1)+2

tk(c1)+1

... +
∫ δ1

tk(δ1)

)
u(t)h1(t, c1)H1(t, c1)dt.

(2.38)

Substituting (2.38) into (2.37), we have

∫ δ1

c1

H̃1(t, c1)

(
x(t− τ)

x(t)

)α

dt ≤
k(δ1)

∑
i=k(c1)+1

bα
i − aα

i
aα

i
H1(ti, c1)u(ti)− H1(δ1, c1)u(δ1)

+
∫ δ1

c1

H1(t, c1)

[
|h1(t, c1)| |u(t)| −

α

r1/α(t)
|u(t)|(1+α)/α

]
dt.

(2.39)

Letting

λ = 1 +
1
α

, X =
αα/α+1 |u(t)|
[r(t)]1/α+1 and Y =

[
α(α + 1)−(α+1)r(t)

]α/α+1
|h1(t, c1)|α ,

and then by using Lemma(2.3), the above inequality becomes

∫ δ1

c1

H̃1(t, c1)

(
x(t− τ)

x(t)

)α

dt ≤
k(δ1)

∑
i=k(c1)+1

bα
i − aα

i
aα

i
H1(ti, c1)u(ti)− H1(δ1, c1)u(δ1)

+
1

(1 + α)1+α

∫ δ1

c1

r(t)H1(t, c1) |h1(t, c1)|α+1 dt.

(2.40)

To estimate x(t−τ)
x(t) , we have to divide the interval [c1, δ1] into several sub intervals and by using Lemma(2.4),

we get estimation for the left hand side of the above inequality as follows,

∫ δ1

c1

H̃1(t, c1)

(
x(t− τ)

x(t)

)α

dt

>
∫ tk(c1)+1

c1

H̃1(t, c1)

(
t− tk(c1)

− τ

t− tk(c1)

)α

dt

+
k(δ1)−1

∑
i=k(c1)+1

[ ∫ ti+τ

ti

H̃1(t, c1)

(
t− ti

bi(t + τ − ti)

)α

dt +
∫ ti+1

ti+τ
H̃1(t, c1)

(
t− ti − τ

t− ti

)α

dt
]

+
∫ δ1

tk(δ1)
H̃1(t, c1)

(
t− tk(δ1)

bk(δ1)
(t + τ − tk(δ1)

)

)α

dt.

(2.41)
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From (2.40) and (2.41), we have

∫ tk(c1)+1

c1

H̃1(t, c1)

(
t− tk(c1)

− τ

t− tk(c1)

)α

dt

+
k(δ1)−1

∑
i=k(c1)+1

[ ∫ ti+τ

ti

H̃1(t, c1)

(
t− ti

bi(t + τ − ti)

)α

dt +
∫ ti+1

ti+τ
H̃1(t, c1)

(
t− ti − τ

t− ti

)α

dt
]

+
∫ δ1

tk(δ1)
H̃1(t, c1)

(
t− tk(δ1)

bk(δ1)
(t + τ − tk(δ1)

)

)α

dt− 1
(1 + α)1+α

∫ δ1

c1

r(t)H1(t, c1) |h1(t, c1)|α+1 dt

<
k(δ1)

∑
i=k(c1)+1

bα
i − aα

i
aα

i
H1(ti, c1)u(ti)− H1(δ1, c1)u(δ1).

(2.42)

Multiplying both sides of (2.18) by H2(d1, t) and using similar analysis as above, we can obtain

∫ tk(δ1)
+τ

δ1

H̃2(d1, t)

(
t− tk(δ1)

bk(δ1)
(t + τ − tk(δ1)

)

)α

dt +
∫ tk(δ1)+1

tk(δ1)
+τ

H̃2(d1, t)

(
t− tk(δ1)

− τ

t− tk(δ1)

)α

dt

+
k(d1)−1

∑
i=k(δ1)+1

[ ∫ ti+τ

ti

H̃2(d1, t)
(

t− ti
bi(t + τ − ti)

)α

dt +
∫ ti+1

ti+τ
H̃2(d1, t)

(
t− ti − τ

t− ti

)α

dt
]

+
∫ d1

tk(d1)
H̃2(d1, t)

(
t− tk(d1)

bk(d1)
(t + τ − tk(d1)

)

)α

dt− 1
(α + 1)α+1

∫ d1

δ1

r(t)H2(d1, t) |h2(d1, t)|α+1 dt

<
k(d1)

∑
i=k(δ1)+1

bα
i − aα

i
aα

i
H2(d1, ti)u(ti) + H2(d1, δ1)u(δ1).

(2.43)

Dividing (2.42) and (2.43) by H1(δ1, c1) and H2(d1, δ1) respectively, and adding them, we get

Π1,1 + Π2,1 <
1

H1(δ1, c1)

k(δ1)

∑
i=k(c1)+1

bα
i − aα

i
aα

i
H1(ti, c1)u(ti)

+
1

H2(d1, δ1)

k(d1)

∑
i=k(δ1)+1

bα
i − aα

i
aα

i
H2(d1, ti)u(ti). (2.44)

On the other hand, similar to (2.26), we have

k(δ1)

∑
i=k(c1)+1

bα
i − aα

i
aα

i
H1(ti, c1)u(ti) ≤ M1Ψδ1

c1 [H1(., c1)] (2.45)

and

k(d1)

∑
i=k(δ1)+1

bα
i − aα

i
aα

i
H2(d1, ti)u(ti) ≤ M1Ψd1

δ1
[H2(d1, .)]. (2.46)

Substituting (2.45)and (2.46) in (2.44), we obtain a contradiction to the condition (2.36).
When x(t) is eventually negative, we can consider [c2, d2] and reach a similar contradiction.

Hence the proof is complete.

Remark 2.1. When α = 1, our results reduces to Theorem(2.2) and Theorem(2.4) of [11].

Remark 2.2. When τ = 0 and α = 1, Theorem(2.5) reduces to Theorem(2.1) of [13].

Remark 2.3. When ak = bk = 1 for all k = 1, 2, 3, ..., τ = 0 and α = 1, our results reduces to Theorem(1) of [17] for
the case ρ(t) = 1.
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3 Examples

In this section we give two examples to illustrate our main results.

Example 3.1. Consider the impulsive differential equation(
Φα(x′(t))

)′
+ γ0 sin tΦα

(
x(t− π

12
)
)
+ γ1e−t/2Φβ1

(
x(t− π

12
)
)

+ γ2 cos2 tΦβ2

(
x(t− π

12
)
)
= sin 2t, t ≥ t0, t 6= tk,i,

x(t+k,i) = akx(tk,i), x′(t+k,i) = bkx′(tk,i),

where tk,i = 2kπ +
3π

8
+ (−1)i−2

(π

4

)
, i = 1, 2 and k = 1, 2, ...

(3.47)

Here,
r(t) = 1, p(t) = γ0 sin t, q1(t) = γ1e−t/2, q2(t) = γ2 cos2 t and e(t) = sin 2t, t ≥ t0 > 0,

where γ0, γ1 and γ2 are positive constants. If we choose η0 = 1/2, β1 = 19/2, β2 = 5/2 and α = 3, then
by Lemma (2.1), we can easily find η1 = η2 = 1/4. For any T > 0, we can choose n large enough such that
T < c1 = 2nπ + π

12 < d1 = 2nπ + π
6 and c2 = 2nπ + π

4 < d2 = 2nπ + 2π
3 , then there are impulsive moments

tn,1 = 2nπ + π
8 in [c1, d1] and tn,2 = 2nπ + 5π

8 in [c2, d2].
Let

ωj(t) = sin 12t ∈ Ωj(cj, dj), j = 1, 2.

Then we have,

Q(t) = γ0 sin t + (1/2)−1/2(1/4)−1/4(1/4)−1/4γ1/4
1 (e−t/2)1/4γ1/4

2 (cos t)1/2| sin 2t|1/2,

and
Wj(t) = Q(t)ωα+1

j (t), j = 1, 2.

In view of ∑
k(dj)−1
i=k(cj)+1 = 0 as k(cj) + 1 > k(dj)− 1, j = 1, 2, the left hand side of (2.13) is the following

∫ tk(c1)+1

c1

W1(t)

(
t− tk(c1)

− τ

t− tk(c1)

)α

dt

+
k(d1)−1

∑
i=k(c1)+1

[∫ ti+τ

ti

W1(t)
(

t− ti
bi(t + τ − ti)

)α

dt +
∫ ti+1

ti+τ
W1(t)

(
t− ti − τ

t− ti

)α]

+
∫ d1

tk(d1)

W1(t)

(
t− tk(d1)

bk(d1)
(t + τ − tk(d1)

)α

dt−
∫ d1

c1

(r(t)
∣∣ω′1(t)∣∣α+1

)dt

=
∫ 2nπ+π/8

2nπ+π/12
W1(t)

(
t− (2(n− 1)π + 5π/8)− π/12

t− (2(n− 1)π + 5π/8))

)3

dt

+
∫ 2nπ+π/6

2nπ+π/8
W1(t)

(
t− (2nπ + π/8)

bn,1(t + π/12− (2nπ + π/8))

)3

dt− 124
∫ 2nπ+π/6

2nπ+π/12

(
cos4 12t

)
dt

=
∫ π/8

π/12
W1(t)

(
t + 31π/24
t + 11π/8)

)3
dt +

∫ π/6

π/8
W1(t)

(
t− π/8

bn,1(t− π/24)

)3
dt− 124

∫ π/6

π/12

(
cos4 12t

)
dt.

≈
[
0.01464γ0 + 0.0878γ1/4

1 γ1/4
2

]
+ b−3

n,1

[
0.00004889γ0 + 0.0002811γ1/4

1 γ1/4
2

]
− 648π.

(3.48)

On the other hand , the right hand side of (2.13)

Ψd1
c1 [ω

α+1
1 ] = ωα+1

1 (tk(c1)+1)
bα

k(c1)+1 − aα
k(c1)+1

(aα
k(c1)+1(tk(c1)+1 − c1)α)

+
k(d1)

∑
i=k(c1)+2

ωα+1
1 (ti)

bα
i − aα

i
(aα

i (ti − ti−1)α)
.

= sin4 12(2nπ + π/8)
(

bn,1 − an,1

an,1(2nπ + π/8− (2nπ + π/12))

)3

=

(
24
π

)3 ( bn,1 − an,1

an,1

)3
.

(3.49)
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Thus for t ∈ [c1, d1], if we choose γ0, γ1 and γ2 large enough so that

0.01464γ0 + 0.0878γ1/4
1 γ1/4

2 + b−3
n,1

(
0.00004889γ0 + 0.0002811γ1/4

1 γ1/4
2

)
− 648π

≥
(

24
π

)3 ( bn,1 − an,1

an,1

)3
,

(3.50)

then (2.13) will be satisfied.
Similarly for t ∈ [c2, d2], we can get the following condition

0.153651γ0 + 0.02648γ1/4
1 γ1/4

2 + b−3
n,2

(
0.00010044γ0 − 0.000143γ1/4

1 γ1/4
2

)
− 3240π

≥
(

8
3π

)3 ( bn,2 − an,2

an,2

)3
.

(3.51)

Hence by Theorem (2.1) for suitable γ0, γ1 and γ2, equation(3.47) becomes oscillatory.

Example 3.2. Consider the impulsive differential equation(
Φα(x′(t))

)′
+ κ0 p(t)Φα

(
x(t− π

12
)
)
+ κ1q1(t)Φβ1

(
x(t− π

12
)
)

+ κ2q2(t)Φβ2

(
x(t− π

12
)
)
= e(t), t ≥ t0, t 6= tk,i,

x(t+k,i) = akx(tk,i), x′(t+k,i) = bkx′(tk,i)

(3.52)

where κ0, κ1, and κ2 are positive constants, and

tn,1 = 2nπ + π/8, tn,2 = 2nπ + 3π/8, tn,3 = 2nπ + 13π/8 and tn,4 = 2nπ + 17π/8.

In addition let, q1(t) = et/2, q2(t) = et/4,

p(t) =


e4t, t ∈ [2nπ + π/12, 2nπ + π/2],

sin2 t, t ∈ [2nπ + 3π/2, 2nπ + 5π/2]

and

e(t) =


− sin 2t, t ∈ [2nπ + π/12, 2nπ + π/2],

cos2 t, t ∈ [2nπ + 3π/2, 2nπ + 5π/2].

For any t0 > 0, we choose n large enough such that t0 < 2nπ + π/12 and let [c1, d1] = [2nπ + π/12, 2nπ +

π/2], [c2, d2] = [2nπ + 3π/2, 2nπ + 5π/2], δ1 = 2nπ + π/6, δ2 = 2nπ + 5π/3. Then p(t), q(t) and e(t) satisfy
(2.5) on [c1, d1] and [c2, d2]. Let H1(t, s) = H2(t, s) = (t− s)3 then h1(t, s) = −h2(t, s) = 3/(t− s). Now choose
η0 = 1/2, β1 = 5/2, β2 = 1/2, and α = 1.
Then one can easily find η1 = 3/8, η2 = 1/8.

Q(t) = p(t) + (1/2)−1/2(3/8)−3/8(1/8)−1/8q3/8
1 (t)q1/8

2 (t)|e(t)|1/2.

Also by a simple calculation, we get

Π1,1 =
1

H1(2nπ + π
6 , 2nπ + π

12 ){ ∫ 2nπ+π/8

2nπ+π/12
H1(t, 2nπ + π/12)Q(t)

(
t− (2(n− 1)π + 3π/8)− π/12

t− (2(n− 1)π + 3π/8)

)
dt

+
∫ 2nπ+π/6

2nπ+π/8
H1(t, 2nπ + π/12)Q(t)

(
t− (2nπ + π/8)

bn,1(t + π/12− (2nπ + π/8))

)
dt

− 1
22

∫ 2nπ+π/6

2nπ+π/12
H1(t, 2nπ + π/12) |h1(t, 2nπ + π/12)|2 dt

}
≈ κ0

(
0.0169 +

0.1042
bn,1

)
+ κ1

3/8κ2
1/8
(

0.0101) +
0.0411

bn,1

)
− 4.2971

(3.53)
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and

Π2,1 =
1

H2(2nπ + π
2 , 2nπ + π

6 ){ ∫ 2nπ+π/8+π/12

2nπ+π/6
H̃2(2nπ + π/2, t)

(
t− (2nπ + π/8)

bn,1(t + π/12− (2nπ + π/8))

)
dt

+
∫ 2nπ+3π/8

2nπ+π/8+π/12
H̃2(2nπ + π/2, t)

(
t− (2nπ + π/8)− π/12

t− (2nπ + π/8)

)
dt

+
∫ 2nπ+π/2

2nπ+3π/8
H̃2(2nπ + π/2, t)

(
t− (2nπ + 3π/8)

bn,2(t + π/12− (2nπ + 3π/8))

)
dt

− 1
(2)2

∫ 2nπ+π/2

2nπ+π/6
H2(2nπ + π/2, t) |h2(2nπ + π/2, t)|2 dt

}
.

≈ κ0

(
2.0198 +

0.4843
bn,1

+
0.1987

bn,2

)
+ κ1

3/8κ2
1/8
(

0.1597 +
0.1340

bn,1
+

0.0031
bn,2

)
− 1.0742.

(3.54)

From (3.53) and (3.54), we get

Π1,1 + Π2,1 ≈ κ0

(
2.0367 +

0.5885
bn,1

+
0.1987

bn,2

)
+ κ1

3/8κ2
1/8
(

0.1698 +
0.1751

bn,1
+

0.0031
bn,2

)
− 5.3713. (3.55)

which gives the left hand side of (2.36).
On the other hand, the right hand side of the inequality (2.36) is

M1

H1(δ1, c1)
Ψδ1

c1 [H1(., c1)] =
1

H1(2nπ + π/6, 2nπ + π/12)
H1(2nπ + π/8, 2nπ + π/12)

×
(

bn,1 − an,1

an,1(2nπ + π/8− (2nπ + π/12))

)
≈(0.9549)

(
bn,1 − an,1

an,1

)
,

(3.56)

and

M1

H2(d1, δ1)
Ψd1

δ1
[H2(d1, .)] =

1
(2nπ + π/2− 2nπ − π/6)3 (2nπ + π/2− 2nπ − 3π/8)3

×
(

bn,2 − an,2

an,2(2nπ + 3π/8− 2nπ − π/6))

)
≈(0.0805)

(
bn,2 − an,2

an,2

)
.

(3.57)

From (3.56) and (3.57), we have the right hand side of (2.36) as

M1

H1(δ1, c1)
Ψδ1

c1 [H1(., c1)] +
M1

H2(d1, δ1)
Ψd1

δ1
[H2(d1, .)]

≈ (0.9549)
(

bn,1 − an,1

an,1

)
+ (0.0805)

(
bn,2 − an,2

an,2

)
.

(3.58)

Thus (2.36) is satisfied for j = 1 if

κ0

(
2.0367 +

0.5885
bn,1

+
0.1987

bn,2

)
+ κ1

3/8κ2
1/8
(

0.1698 +
0.1751

bn,1
+

0.0031
bn,2

)
> 5.3713 + (0.9549)

(
bn,1 − an,1

an,1

)
+ (0.0805)

(
bn,2 − an,2

an,2

)
.

(3.59)

Similarly for [c2, d2], we have

Π1,2 + Π2,2 ≈κ0

(
0.0887 +

0.0501
bn,3

+
0.0046

bn,4

)
+ κ1

3/8κ2
1/8
(

2.6583 +
0.4302

bn,3
+

0.1122
bn,4

)
− 2.5782. (3.60)
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and

M2

H1(δ2, c2)
Ψδ2

c2 [H1(., c2)] +
M2

H2(d2, δ2)
Ψd2

δ2
[H2(d2, .)]

≈ (1.0742)
(

bn,3 − an,3

an,3

)
+ (0.0632)

(
bn,4 − an,4

an,4

)
.

(3.61)

Thus (2.36) is satisfied for j = 2 if

κ0

(
0.0887 +

0.0501
bn,3

+
0.0046

bn,4

)
+ κ1

3/8κ2
1/8
(

2.6583 +
0.4302

bn,3
+

0.1122
bn,4

)
> 2.5782 + (1.0742)

(
bn,3 − an,3

an,3

)
+ (0.0632)

(
bn,4 − an,4

an,4

)
.

(3.62)

Hence, by Theorem (2.2), equation(3.52) is oscillatory if (3.59) and (3.62) hold.

4 Conclusion

In this paper, we have established interval oscillation results for equation (1.1) using Riccati transformation,
some classical inequalities and Kong’s technique. These results extend some well-known results in [11, 13, 17].
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Abstract

We consider an almost r-contact Kenmotsu manifold admitting a semi-symmetric metric connection and
study semi-invariant submanifolds of an almost r-contact Kenmotsu manifold endowed with a
semi-symmetric meric connection. We obtain Gauss and Weingarten formuale for such a connection and also
discuss the integrability conditions of the distributions on a generalized Kenmotsu manifold.
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1 Introduction

A Let M be an n-dimensional differentiable manifold. The torsion tensor T of a linear connection ∇ in M
is given by

T(X, Y) = ∇XY−∇YX− [X, Y].

The connection∇ is symmetric if its torsion tensor T vanishes, otherwise it is non-symmetric. The connection
∇ is metric if there is a Riemannian metric g in M such that∇g = 0, otherwise it is non-metric. It is well known
that a linear connection is symmetric and metric if it is the Levi-Civita connection. In 1924, A. friedmann and
J. A. Schouten introduced the notion of semi-symmetric linear connection [8]. In 1932, H. A. Hayden [10]
introduced semi-symmetric metric connection in a Riemannian manifold and this was studied systematically
by K. Yano [14]. In 1975, S. Golab studied some properties of semi-symmetric and quarter-symmetric linear
connections [9]. A linear connection ∇ is said to be semi-symmetric if its torsion tensor T is of the form

T(X, Y) = η(Y)X− η(X)Y,

where η is a 1-form.

On the other hand, A. Bejancu, introduced the notion of semi-invariant submanifolds [6] or contact
CR-submanifolds [5], as a generalization of invariant and anti-invariant submanifolds of an almost contact
metric manifold and was followed by several geometers in [1, 2, 4, 7, 11, 12]. Semi-invariant submanifolds of
a Kenmotsu manifold immersed in a generalized almost r-contact metric structure was defined and studied
by R. Nivas and S. Yadav [13]. The first author, M. D. Siddiqi and J. P. ojha studied some characteristic

∗Corresponding author.
E-mail address: mobinahmad@rediffmail.com (Mobin Ahmad), malikhaseeb80@gmail.com(Abdul Haseeb) and sheeba.rizvi7@gmail.com
(Sheeba Rizvi)
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properties of semi-invariant submanifolds of a Kenmotsu manifold immersed in a generalized almost
r-contact structure admitting a quarter-symmetric non-metric connection [3].

Semi-symmetric connections play an important role in the study of Riemannian manifolds. There are
various physical problems involving the semi-symmetric metric connection. For example, if a man is moving
on the surface of the earth always facing one definite point, say Jaruselam or Mekka or the North pole, then
this displacement is semi-symmetric and metric [8]

Motivated by the above studies, in this paper we study semi-invariant submanifolds of a Kenmotsu
manifold immersed in a generalized almost r-contact structure admitting a semi-symmetric metric
connection. The paper is organized as follows : In Section 2, we give a brief account of a Kenmotsu manifold
immersed in a generalized almost r-contact metric manifold. In Section 3, semi-invariant submanifolds,
semi-symmetric metric connection are defined and also Gauss and Weingarten equations are obtained. In
Section 4, some lemmas on semi-invariant submanifolds are proved and integrability conditions of certain
distributions on semi-invariant submanifolds are discussed. In the last Section 5, semi-invariant
submanifolds of a generalized Kenmotsu manifold with parallel horizontal distributions for semi-symmetric
metric connection are investigated.

2 Preliminaries

Let M̄ be a (2n + r)-dimensional Kenmotsu manifold with a generalized almost r-contact structure
(φ, ξp, ηp, g), where φ is a tensor field of type (1, 1), ξp are r-vector fields, ηp are r 1-forms and g is the
associated Riemannian metric, satisfying

φ2 = a2 I +
r

∑
p=1

ηp ⊗ ξp, (2.1)

ηp(ξq) = δpq, p, q ∈ (r) := 1, 2, 3......r, (2.2)

φ(ξp) = 0, p ∈ (r), (2.3)

ηp(φX) = 0, p ∈ (r), (2.4)

g(φX, φY) + a2g(X, Y) +
r

∑
p=1

ηp(X)ηp(Y) = 0, (2.5)

ηp(X) = g(X, ξp), (2.6)

( ¯̄∇Xφ)Y = −
r

∑
p=1

ηp(Y)φX− g(X, φY)
r

∑
p=1

ξp, (2.7)

¯̄∇Xξp = X−
r

∑
p=1

ηp(X)ξp, (2.8)

where I is the identity tensor field and X, Y are vector fields on M̄ and ¯̄∇ denotes the Riemannian connection.

3 Semi-invariant Submanifolds

An n-dimensional Riemannian submanifold M of a Kenmotsu manifold M̄ with an almost r-contact structure
is called a semi-invariant submanifold, if ξp is tangent to M and there exists on M a pair of orthogonal
distributions (D, D⊥) such that
(i) TM = D⊕ D⊥ + {ξp},
(ii) the distribution D is invariant under φ, that is, φDx = Dx for all x ∈ M,
(ii) the distribution D⊥ is anti-invariant under φ, that is, φD⊥x ⊂ T⊥x M for all x ∈ M,
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where Tx M and T⊥x M are respectively the tangent and normal space of M at x.
The distribution D (resp., D⊥) can be defined by projection P (resp., Q) which satisfies the conditions

P2 = P, Q2 = Q, PQ = QP = 0. (3.9)

The pair of distributions (D, D⊥) is called the ξ-horizontal (resp., ξ-vertical), if ξx ∈ Dx (resp., ξx ∈ D⊥x ). A
semi-invariant submanifold M is said to be an invariant (resp., anti-invariant) submanifold if D⊥x = 0 (resp.,
Dx = 0) for each x ∈ M, we also call M proper, if neither D nor D⊥ is null. It is easy to check that each
hypersurface of M which is tangent to ξp inherits a structure of the semi-invariant submanifold of M̄.
Owing due to the existence of 1-form ηp, we define a semi-symmetric metric connection ∇̄ in a Kenmotsu
manifold with a generalized almost r-contact structure by

∇̄XY = ¯̄∇XY +
r

∑
p=1

ηp(Y)X− g(X, Y)
r

∑
p=1

ξp (3.10)

for any X, Y ∈ TM, where ¯̄∇ is the induced connection on M. From (2.7) and (3.10), we get

(∇̄Xφ)Y = −2
r

∑
p=1

ηp(Y)φX− g(X, φY)
r

∑
p=1

ξp. (3.11)

We denote the metric tensor of M̄ as well as that is induced on M by g. Let ∇̄ be the semi-symmetric metric
connection on M̄ and ∇ be the induced connection on M with respect to the unit normal N.

Theorem 3.1. The connection induced on the semi-invariant submanifolds of a generalized Kenmotsu manifold with a
semi-symmetric metric connection is also a semi-symmetric metric connection.

Proof. Let ∇ be the induced connection with respect to the unit normal N on semi-invariant submanifolds of
a generalized Kenmotsu manifold with a semi-symmetric metric connection ∇̄. Then

∇̄XY = ∇XY + m(X, Y), (3.12)

where m is a tensor field of type (0, 2) on semi-invariant submanifold M. If ∇∗ is the induced connection on
semi-invariant submanifolds from the Riemannian connection ¯̄∇, then

¯̄∇XY = ∇∗XY + h(X, Y), (3.13)

where h is the second fundamental tensor. Now from (3.10), (3.12) and (3.13), we have

∇XY + m(X, Y) = ∇∗XY + h(X, Y) + ηp(Y)φX− g(X, Y)
r

∑
p=1

ξp.

Equating the tangential and normal components from both the sides of the above equation, we get

h(X, Y) = m(X, Y),

∇XY = ∇∗XY + ηp(Y)φX− g(X, Y)
r

∑
p=1

ξp.

Thus the connection ∇ is also a semi-symmetric metric connection.

Now, the Gauss formula for semi-invariant submanifolds of a generalized Kenmotsu manifold with a
semi-symmetric metric connection is

∇̄XY = ∇XY + h(X, Y) (3.14)

and Weingarten formula for M is given by

∇̄X N = −AN X +∇⊥X N (3.15)

for X, Y ∈ TM, N ∈ T⊥M, where h and A are called the second fundamental tensors of M and ∇⊥ denotes
the operator of the normal connection. Moreover, we have

g(h(X, Y), N) = g(AN X, Y). (3.16)
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Any vector field X tangent to M is given as

X = PX + QX + ηp(X)ξp, (3.17)

where PX and QX belong to the distribution D and D⊥ respectively. For any vector field N normal to M, we
have

φN = BN + CN, (3.18)

where BN (resp., CN) denotes the tangential (resp., normal) component of φN.

4 Integrability of distributions

Lemma 4.1. Let M be a semi-invariant submanifolds of a generalized Kenmotsu manifold with a semi-symmetric metric
connection. Then

2(∇̄Xφ)Y = ∇XφY−∇YφX + h(X, φY)− h(Y, φX)− φ[X, Y]

for each X, Y ∈ D.

Proof. Using Gauss formula, we have

∇̄XφY− ∇̄YφX = ∇XφY−∇YφX + h(X, φY)− h(Y, φX). (4.19)

Also the covariant differentiation yields

∇̄XφY− ∇̄YφX = (∇̄Xφ)Y− (∇̄Yφ)X + φ[X, Y]. (4.20)

From (4.19) and (4.20), we get

(∇̄Xφ)Y− (∇̄Yφ)X = ∇XφY−∇YφX + h(X, φY)− h(Y, φX)− φ[X, Y]. (4.21)

Using ηp(X) = 0 for each X ∈ D in (3.11), we get

(∇̄Xφ)Y + (∇̄Yφ)X = 0. (4.22)

On adding (4.21) and (4.22), we get the result.

Similar computations also yields the following:

Lemma 4.2. Let M be a semi-invariant submanifold of a generalized Kenmotsu manifold with a semi-symmetric metric
connection. Then

2(∇̄Xφ)Y = −AφYX +∇⊥X φY−∇YφX− h(Y, φX)− φ[X, Y]

for each X ∈ D, Y ∈ D⊥.

Lemma 4.3. Let M be a semi-invariant submanifold of a generalized Kenmotsu manifold with a semi-symmetric metric
connection. Then

P∇XφPY− PAφQYX = φP∇XY− 2
r

∑
p=1

ηp(Y)φPX, (4.23)

Q∇XφPY−QAφQYX = Bh(X, Y), (4.24)

h(X, φPY) +∇⊥X φQY = φQ∇XY + Ch(X, Y)− 2
r

∑
p=1

ηp(Y)φQX, (4.25)

ηP(∇XφPY)− ηP(AφQYX) = −2g(X, φY) (4.26)

for all X, Y ∈ TM.
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Proof. By the covariant differentiation of φY, we have

∇̄XφY = (∇̄Xφ)Y + φ(∇̄XY).

Using (3.14) and (3.17) in the above equation, we get

(∇̄Xφ)Y = ∇̄XφPY + ∇̄XφQY− φ∇XY− φh(X, Y). (4.27)

By the use of Gauss and Weingarten formulae and (3.18) in (4.27), we have

(∇̄Xφ)Y = P∇XφPY + Q∇XφPY + ηP(∇XφPY)ξp + h(X, φPY)− PAφQYX (4.28)

−QAφQYX− ηP(AφQYX)ξp +∇⊥X φQY− φP∇XY− φQ∇XY− Bh(X, Y)− Ch(X, Y).

On comparing (4.27) and (4.28) and equating horizontal, vertical and normal components, we get (4.23), (4.24),
(4.25) and (4.26) respectively.

Definition 4.1. The horizontal distribution D is said to be parallel with respect to the connection∇ on M, if∇XY ∈ D
for all vector fields X, Y ∈ D.

Theorem 4.2. Let M be semi-invariant submanifolds of a generalized Kenmotsu manifold M̄ with a semi-symmetric
metric connection. If M is ξp- horizontal, then the distribution D is integrable if and only if

h(X, φY) = h(φX, Y) (4.29)

for all X, Y ∈ D.

Proof. Let M be ξp- horizontal and X, Y ∈ D, then (4.25) reduces to

h(X, φY) = φQ∇XY + Ch(X, Y) (4.30)

from which we get
h(X, φY)− h(φX, Y) = φQ[X, Y].

Thus if M is ξp horizontal, then we have

h(X, φY) = h(φX, Y).

Hence D is integrable.

Theorem 4.3. Let M be semi-invariant submanifolds of a generalized Kenmotsu manifold M̄ with a semi-symmetric
metric connection. If M is ξp-vertical, then the distribution D⊥ is integrable if and only if AφXY = AφYX.

Proof. Let M be ξp-vertical and X, Y ∈ D⊥, then (4.25) reduces to

∇⊥X φY = φQ∇XY + Ch(X, Y)− 2
r

∑
p=1

ηp(Y)φQX. (4.31)

By using (3.11), (3.15) and (4.31), we get

∇̄XφY = −2
r

∑
p=1

ηp(Y)φX− 2g(X, φY)
r

∑
p=1

ξp + φP∇XY (4.32)

+φQ∇XY + Bh(X, Y) + Ch(X, Y).

Since M is ξp-verticle, Weingarten formula is given by

∇⊥X φY = ∇̄XφY + AφYX

which by using (4.32) becomes

∇⊥X φY = −2
r

∑
p=1

ηp(Y)φX + φP∇XY + φQ∇XY + Bh(X, Y) (4.33)
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+Ch(X, Y) + AφYX.

From (4.31) and (4.33), we get
φP∇XY = −AφYX− Bh(X, Y).

Similarly, φP∇YX = −AφXY− Bh(X, Y), which gives

φP[X, Y] = AφXY− AφYX.

Thus if M is ξp-verticle, we see that [X, Y] ∈ D⊥, that is, P[X, Y] = 0 if and only if AφXY = AφYX.

5 Parallel horizontal distribution

Definition 5.2. A non-zero normal vector field N is said to be D-parallel normal section if

∇⊥X N = 0 f or all X ∈ D. (5.34)

Definition 5.3. A semi-invariant submanifold M is said to be totally r-contact umbilical if there exists a normal vector
H on M such that

h(X, Y) = g(φX, φY)H +
r

∑
p=1

ηp(X)h(Y, ξp) +
r

∑
p=1

ηp(Y)h(X, ξp) (5.35)

for all vector fields X, Y tangent to M.

If H = 0, then the fundamental form is given by

h(X, Y) =
r

∑
p=1

ηp(X)h(Y, ξp) +
r

∑
p=1

ηp(Y)h(X, ξp), (5.36)

then M is called totally r-contact geodesic.

Theorem 5.4. If M is totally r-contact umbilical semi-invariant submanifolds of a generalized Kenmotsu manifold M̄
with a semi-symmetric metric connection with parallel horizontal distribution, then M is totally r-contact geodesic.

Proof. Let M be semi-invariant submanifolds of a generalized Kenmotsu manifold M̄ with a semi-symmetric
metric connection. Then from (4.23) and (4.24), we have

P∇XφPY− PAφQYX = φP∇XY− 2
r

∑
p=1

ηp(Y)φPX,

Q∇XφPY−QAφQYX = Bh(X, Y).

Adding the last two equations, we have

∇XφPY− AφQYX = φP∇XY + Bh(X, Y). (5.37)

Interchanging X and Y in (5.37), we get

∇YφPX− AφQXY = φP∇YX + Bh(X, Y). (5.38)

Adding (5.37) and (5.38), we get

∇XφPY +∇YφPX− AφQYX− AφQXY = φP∇XY + φP∇YX + 2Bh(X, Y).

Taking inner product with Z, we get

g(∇XφPY +∇YφPX− AφQYX− AφQXY, Z) = g(φP∇XY + φP∇YX + 2Bh(X, Y), Z).

Splitting the above equation, we get

g(∇XφPY, Z) + g(∇YφPX, Z)− g(AφQYX, Z)− g(AφQXY, Z) = g(φP∇XY, Z)



Mobin Ahmad et al. / Semi-invariant submanifolds of a Kenmotsu manifold.. 427

+g(φP∇YX, Z) + g[2B(g(φX, φY)H +
r

∑
p=1

ηp(X)h(Y, ξp) +
r

∑
p=1

ηp(Y)h(X, ξp), Z)].

g(∇XφPY, Z) + g(∇YφPX, Z)− g(h(X, Z), φQY)− g(h(Y, Z), φQX) = g(φP∇XY, Z)

+g(φP∇YX, Z) + 2g(φX, φY)g(BH, Z) + 2
r

∑
p=1

ηp(X)g(Bh(Y, ξp), Z) + 2
r

∑
p=1

ηp(Y)g(Bh(X, ξp), Z).

= g(φP∇XY, Z) + g(φP∇YX, Z)− 2a2g(X, Y)g(BH, Z)− 2
r

∑
p=1

ηp(X)ηp(Y)g(BH, Z)

+2
r

∑
p=1

ηp(X)g(h(Y, ξp), φZ) + 2
r

∑
p=1

ηp(Y)g(h(X, ξp), φZ)

which by replacing Y by BH and Z by X and then using (5.35), we get

g(∇XφPBH, X) + g(∇BHφPX, X)− g(X, X)g(H, φQBH)− g(BH, X)g(H, φQX) (5.39)

= g(φP∇XBH, X) + g(φP∇BHX, X)− 2a2g(X, BH)g(BH, X)− 2
r

∑
p=1

ηp(X)ηp(BH)g(BH, X)

+2
r

∑
p=1

ηp(X)g(h(BH, ξp), φX) + 2
r

∑
p=1

ηp(BH)g(h(X, ξp), φX).

For any X ∈ D, we have
g(X, BH) = g(φX, BH) = 0.

Taking covariant differentiation along vector X, we get

g(∇XφX, BH) + g(φX,∇XBH) = 0.

As the horizontal distribution D is parallel, so we have

g(φX,∇XBH) = 0. (5.40)

From (5.39) and (5.40), we get

g(∇BHφPX, X)− g(H, φQBH) = g(φP∇BHX, X).

For any unit vector X ∈ D, we have

g((∇BHφP)X, X) + g(φP∇BHX, X)− g(H, φQBH) = g(φP∇BHX, X).

g((∇BHφP)X, X)− g(H, φQBH) = 0. (5.41)

From (5.41), we have

g(BH, QBH) +
r

∑
p=1

ηp(PH)g(φX, X) = 0.

Thus we have

g((∇BHφP)X, X) = g(H, φQBH) = −g(φH, QBH) = −g(BH, QBH) = 0.

provided BH = 0.
Since φH ∈ D⊥, we have CH = 0, hence φH = 0, thus H = 0.
Hence M is totally r-contact geodesic.

Remark 5.1. For a generalized Kenmotsu manifold with a semi-symmetric metric connection, we have
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∇̄Xξp = ¯̄∇Xξp +
r

∑
p=1

ηp(ξp)X− g(X, ξp)
r

∑
p=1

ξp (5.42)

= 2PX + 2QX.

Equating the tangential and normal components, we have

∇̄Xξp = 2PX + 2QX = 2X, (5.43)

h(X, ξp) = 0, (5.44)

ηp(X)ξp = 0. (5.45)

Also for any X ∈ D, we have
g(ANξp, X) = g(h(X, ξp), N) = 0. (5.46)

Thus if X ∈ D, then ANξp ∈ D⊥ and if X ∈ D⊥, then ANξp ∈ D.

Theorem 5.5. Let M be D-umbilic (resp., D⊥-umbilic) semi-invariant submanifolds of a generalized Kenmotsu
manifold M̄ with a semi-symmetric metric connection. If M is ξp-horizontal (resp., ξp-verticle) , then it is D-totally
geodesic (resp., D⊥-totally geodesic).

Proof. If M is D-umbilic semi-invariant submanifolds of a generalized Kenmotsu manifold M̄ with a semi-
symmetric metric connection with ξp-horizontal, then we have

h(X, ξp) = g(X, ξp)L (5.47)

which means that L = 0, from which we get h(X, ξp) = 0. Hence M is D-totally geodesic.
Similarly, we can prove that if M is a D⊥-umbilic semi-invariant submanifold with ξp-verticle, then M is
D⊥-totally geodesic.
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Abstract

In this work, we demonstrate Hermite-Hadamard type inequalities for Riemann-Liouville fractional inte-
grals via once differentiable and twice differentiable defined using λϕ-preinvex functions.
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1 INTRODUCTION

The recently, Fractional calculus and generalizations is handled much. In especially the issue of fractional
calculus is done various applications. These areas is physical sciences, economics, engineering, medicine and
biological sciences[1− 8].

In this work, we give some Hermite-Hadamard type inequalities and the results via classical Riemann-
Liouville fractional integrals for λϕ−preinvex functions by considering recent studies about this field.

2 Preliminaries

In this section, we will give some definitions, lemmas and notations which we use later in this work.

Definition 2.1. (see [3]) Let f ∈ L [a, b] .The Riemann-Liouville fractional integral Jα
a+ f and Jα

b− f of order α > 0 with
a > 0 are defined by

Jα
a+ f (x) = 1

Γ(α)

∫ x
a (x− t)α−1 f (t) dt , 0 ≤ a < x ≤ b

Jα
b− f (x) = 1

Γ(α)

∫ b
x (t− x)α−1 f (t) dt , 0 ≤ a < x ≤ b

(2.1)

Where Γ is the gamma function.

Definition 2.2. (see [9]) The incomplete beta function is defined as follows:

Bx (a, b) =
∫ x

0 ta−1 (1− t)b−1 dt, (2.2)

Here x ∈ [0, 1] , a, b > 0.
∗Corresponding author.

E-mail address: sumeyye ermeydan@hotmail.com (Sümeyye ERMEYDAN).



Sümeyye ERMEYDAN et al. / Riemann-Liouville Fractional Hermite-Hadamard Inequalities... 431

Definition 2.3. (see [10]) A function f : I ⊆ R→ R is said to belong to the class MT (I) if f is positive and ∀x, y ∈ I
and t ∈ (0, 1) satisfies the inequality:

f (tx + (1− t) y) ≤
√

t
2
√

1−t
f (x) +

√
1−t

2
√

t
f (y) . (2.3)

Definition 2.4. (see [11]) A function f : I ⊆ R → R is said to belong to the class m−MT (I) if f is positive and
∀x, y ∈ I and t ∈ (0, 1) , with m ∈ [0, 1] satisfies the inequality:

f (tx + m (1− t) y) ≤
√

t
2
√

1−t
f (x) + m

√
1−t

2
√

t
f (y) . (2.4)

Definition 2.5. A function f : I ⊆ R → R is said to a λ − MT−convex function or said to belong to the class
λ−MT (I) if f is positive and ∀x, y ∈ I, λ ∈

(
0, 1

2

]
and t ∈ (0, 1) satisfies the inequality:

f (tx + (1− t) y) ≤
√

t
2
√

1−t
f (x) + (1−λ)

√
1−t

2λ
√

t
f (y) . (2.5)

Lemma 2.0. (see [12]) Let f : [a, b]→ R be a once differentiable mapping on (a, b) for a < b. If f ′ ∈ L [a, b] , there is
a following equality for fractional integrals

f (a)+ f (b)
2 − Γ(α+1)

2(b−a)α

[
Jα
a+ f (b) + Jα

b− f (a)
]

= b−a
2

∫ 1
0

[
(1− t)α − tα

]
f ′ (ta + (1− t) b) dt.

(2.6)

Lemma 2.0. (see [13]) Let f : [a, b] → R be a twice differentiable mapping on (a, b) for a < b. If f ′′ ∈ L [a, b] , there
is following equality for fractional integrals

f (a)+ f (b)
2 − Γ(α+1)

2(b−a)α

[
Jα
a+ f (b) + Jα

b− f (a)
]

= (b−a)2

2

∫ 1
0

[
1−(1−t)α+1−tα+1

α+1

]
f ′′ (ta + (1− t) b) dt.

(2.7)

Lemma 2.0. (see [14]) For t ∈ [0, 1] ,we have

(1− t)m ≤ 21−m − tm f or m ∈ [0, 1] ,
(1− t)m ≥ 21−m − tm f or m ∈ [1, ∞) .

Let Rn be Euclidian space and K is said to a nonempty closed in Rn. Let f : K → R, ϕ : K → R and η : K× K → R

be a continuous functions.

Definition 2.6. ([15]) Let u ∈ K. The set K is said to be ϕ−invex at u according to η and ϕ if

u + teiϕη(v, u) ∈ K (2.8)

for all u, v ∈ K and t ∈ [0, 1].

Remark 2.1. Some special cases of Definition 6 are as follows.

(1) If ϕ = 0, there K is defined an invex set.
(2) If η(v, u) = v− u, there K is defined a ϕ−convex set.
(3) If ϕ = 0 and η(v, u) = v− u, there K is defined a convex set.

Definition 2.7. Let f : I ⊆ R→ R be a nonnegative function.Afunction f on the set Kϕη is said to be λϕ − preinvex
function according to ϕ and bifunction η and ∀u, v ∈ I, t ∈ (0, 1) and 0 ≤ ϕ ≤ π

2 then

f
(
u + teiϕη (v, u)

)
≤

√
t

2
√

1−t
f (v) + (1−λ)

√
1−t

2λ
√

t
f (u) . (2.9)

Remark 2.2. In Definition 7, if λ = 1
2 , ϕ = 0 and η (v, u) = v− u. Definition 7 reduces to Definition 3;

f (tv + (1− t) u) ≤
√

t
2
√

1−t
f (v) +

√
1−t

2
√

t
f (u) .

Remark 2.3. By considering Definition 7, if λ = 1
2 , ϕ = 0, and η (v, u) = v− u. for m ∈ [0, 1], we can write;

f
(
mu + teiϕη (v, mu)

)
= f (tv + m (1− t) u) ≤

√
t

2
√

1−t
f (v) + m

√
1−t

2
√

t
f (u) .

Remark 2.4. In Definition 7, if ϕ = 0 and η (v, u) = v− u. Definition 7 reduces to Definition 5;

f (tv + (1− t) u) ≤
√

t
2
√

1−t
f (v) + (1−λ)

√
1−t

2λ
√

t
f (u) .
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3 Main Results

Lemma 3.0. Let f : [a, b] → R be a once differentiable mappings on (a, b) with a < b , η (b, a) > 0. If f ′ ∈
L
[
a, a + eiϕη (b, a)

]
, then the following equality for fractional integral holds:

f (a)+ f (a+eiϕη(b,a))
2 − Γ(α+1)

2(eiϕη(b,a))
α

[
Jα
a+ f

(
a + eiϕη (b, a)

)
+ Jα

(a+eiϕη(b,a))
− f (a)

]
= eiϕη(b,a)

2

∫ 1
0

[
(1− t)α − tα

]
f ′
(
a + (1− t)eiϕη (b, a)

)
dt.

(3.10)

Proof. By using Definition 7 and via the partial integration method ,we have following equality.∫ 1
0

[
(1− t)α − tα

]
f ′
(
a + (1− t) eiϕη (b, a)

)
dt

=
f (a)+ f (a+eiϕη(b,a))

eiϕη(b,a)
− α

eiϕη(b,a)

×
[

1
(eiϕη(b,a))

α

∫ a+eiϕη(b,a)
a (x− a)α−1 f (x) dx

+ 1
(eiϕη(b,a))

α

∫ a+eiϕη(b,a)
a

(
a + eiϕη (b, a)− x

)α−1 f (x) dx
]

=
f (a)+ f (a+eiϕη(b,a))

eiϕη(b,a)
− Γ(α+1)

(eiϕη(b,a))
α+1

×
[

Jα
a+ f

(
a + eiϕη (b, a)

)
+ Jα

(a+eiϕη(b,a))
− f (a)

]
.

(3.11)

By multiplying the both sides of (3.2) by eiϕη(b,a)
2 , we have:

f (a)+ f (a+eiϕη(b,a))
2 − Γ(α+1)

2(eiϕη(b,a))
α

[
Jα
a+ f

(
a + eiϕη (b, a)

)
+ Jα

(a+eiϕη(b,a))
− f (a)

]
= eiϕη(b,a)

2

∫ 1
0

[
(1− t)α − tα

]
f ′
(
a + (1− t) eiϕη (b, a)

)
dt.

The proof is done.

Remark 3.5. In Lemma 4, if ϕ = 0 and η (b, a) = b− a, Lemma 4 reduces to Lemma 1;

f (a)+ f (b)
2 − Γ(α+1)

2(b−a)α

[
Jα
a+ f (b) + Jα

b− f (a)
]

= b−a
2

∫ 1
0

[
(1− t)α − tα

]
f ′ (ta + (1− t) b) dt.

Theorem 3.1. Let I ⊆ R → R be a open invex set with respect to bifunction η : I × I → R where η (b, a) > 0. Let
f : [0, b] → R be a differentiable mapping. If | f ′| is measurable and | f ′| decreasing and λϕ − preinvex function on I
for α > 0 and 0 ≤ a < b, then:∣∣∣∣ f (a)+ f (a+eiϕη(b,a))

2 − Γ(α+1)
2(eiϕη(b,a))

α

[
Jα
a+ f

(
a + eiϕη (b, a)

)
+ Jα

(a+eiϕη(b,a))
− f (a)

]∣∣∣∣
≤ eiϕη(b,a)

4

[
| f ′ (a)|+ 1−λ

λ | f
′ (b)|

] (
B 1

2

(
1
2 , α + 1

2

)
− B 1

2

(
α + 1

2 , 1
2

))
.

Proof. By using Definition 7 and Lemma 4,we have:∣∣∣∣ f (a)+ f (a+eiϕη(b,a))
2 − Γ(α+1)

2(eiϕη(b,a))
α

[
Jα
a+ f

(
a + eiϕη (b, a)

)
+ Jα

(a+eiϕη(b,a))
− f (a)

]∣∣∣∣
≤ eiϕη(b,a)

2

∫ 1
0

∣∣(1− t)α − tα
∣∣ ∣∣ f ′ (a + (1− t) eiϕη (b, a)

)∣∣ dt

≤ eiϕη(b,a)
2

[∫ 1
2

0
[
(1− t)α − tα

] ∣∣ f ′ (a + (1− t) eiϕη (b, a)
)∣∣ dt

+
∫ 1

1
2

[
tα − (1− t)α] ∣∣ f ′ (a + (1− t) eiϕη (b, a)

)∣∣ dt
]

≤ eiϕη(b,a)
2

[∫ 1
2

0
[
(1− t)α − tα

] ( √
t

2
√

1−t
| f ′ (a)|+ (1−λ)

√
1−t

2λ
√

t
| f ′ (b)|

)
dt

+
∫ 1

1
2

[
tα − (1− t)α] ( √

t
2
√

1−t
| f ′ (a)|+ (1−λ)

√
1−t

2λ
√

t
| f ′ (b)|

)
dt
]

≤ eiϕη(b,a)
2

[
| f ′ (a)|

∫ 1
2

0
[
(1− t)α − tα

] 1
2
√

t(1−t)
dt

+ (1−λ)
λ | f ′ (b)|

∫ 1
2

0
[
tα − (1− t)α] 1

2
√

t(1−t)
dt
]

≤ eiϕη(b,a)
4

[
| f ′ (a)|+ 1−λ

λ | f
′ (b)|

] (
B 1

2

(
1
2 , α + 1

2

)
− B 1

2

(
α + 1

2 , 1
2

))
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The proof is done.

Theorem 3.2. Let I = [a, b] → R be a open invex set with respect to bifunction η : I × I → R and f : [0, b] → R be
a differentiable mapping and 1 < q < ∞. If | f ′|q is measurable and | f ′|q decreasing and λϕ − preinvex function on I
for 0 ≤ a < b and η (b, a) > 0 then:∣∣∣∣ f (a)+ f (a+eiϕη(b,a))

2 − Γ(α+1)
2(eiϕη(b,a))

α

[
Jα
a+ f

(
a + eiϕη (b, a)

)
+ Jα

(a+eiϕη(b,a))
− f (a)

]∣∣∣∣
≤ eiϕη(b,a)

2

[
π
4 | f ′ (a)|q + π

4

(
1−λ

λ

)
| f ′ (b)|q

] 1
q
(

2−21−αp

pα+1

) 1
p

where α > 0, 1
p + 1

q = 1.

Proof. By using Definition 7, Lemma 4 and Hölder’s inequality, we have:∣∣∣∣ f (a)+ f (a+eiϕη(b,a))
2 − Γ(α+1)

2(eiϕη(b,a))
α

[
Jα
a+ f

(
a + eiϕη (b, a)

)
+ Jα

(a+eiϕη(b,a))
− f (a)

]∣∣∣∣
≤ eiϕη(b,a)

2

∫ 1
0

∣∣(1− t)α − tα
∣∣ ∣∣ f ′ (a + (1− t) eiϕη (b, a)

)∣∣ dt

≤ eiϕη(b,a)
2

(∫ 1
0

∣∣(1− t)α − tα
∣∣p dt

) 1
p
(∫ 1

0

∣∣ f ′ (a + (1− t) eiϕη (b, a)
)∣∣q dt

) 1
q

≤ eiϕη(b,a)
2

(∫ 1
0

∣∣(1− t)α − tα
∣∣p dt

) 1
p

×
(∫ 1

0

( √
t

2
√

1−t
| f ′ (a)|q + (1−λ)

√
1−t

2λ
√

t
| f ′ (b)|q

)
dt
) 1

q

≤ eiϕη(b,a)
2

[
π
4 | f ′ (a)|q + π

4

(
1−λ

λ

)
| f ′ (b)|q

] 1
q

×
(∫ 1

2
0
[
(1− t)αp − tαp] dt +

∫ 1
1
2

[
tαp − (1− t)αp] dt

) 1
p

≤ eiϕη(b,a)
2

[
| f ′ (a)|q + 1−λ

λ | f
′ (b)|q

] 1
q (π

4
) 1

q
(

2−21−αp

pα+1

) 1
p .

Here, we (A1 − A2)
P ≤ AP

1 − AP
2 for any A1 > A2 ≥ 0 and p ≥ 1. The proof is done.

Theorem 3.3. Let I = [0, b] → R be a open invex set with respect to bifunction η : I × I → R and f : [0, b] → R

be a differentiable mapping and 1 < q < ∞, f ′ ∈ L
[
a + eiϕη (b, a)

]
. If | f ′|q is measurable and | f ′|q decreasing and

λϕ − preinvex function on I for 0 ≤ a < b and η (b, a) > 0 then:∣∣∣∣ f (a)+ f (a+eiϕη(b,a))
2 − Γ(α+1)

2(eiϕη(b,a))
α

[
Jα
a+ f

(
a + eiϕη (b, a)

)
+ Jα

(a+eiϕη(b,a))
− f (a)

]∣∣∣∣
≤ 2−

1
q eiϕη (b, a)

(
1−2−α

α+1

) q−1
q
[
| f ′(a)|q

2

(
B 1

2

(
1
2 , α + 1

2

)
− B 1

2

(
α + 1

2 , 1
2

))
+
(

1−λ
λ

)
| f ′(b)|q

2

(
B 1

2

(
1
2 , α + 1

2

)
− B 1

2

(
α + 1

2 , 1
2

))] 1
q

where α > 0, 1
p + 1

q = 1.

Proof. By using Definition 7, Lemma 4 and Power Mean inequality, we have:∣∣∣∣ f (a)+ f (a+eiϕη(b,a))
2 − Γ(α+1)

2(eiϕη(b,a))
α

[
Jα
a+ f

(
a + eiϕη (b, a)

)
+ Jα

(a+eiϕη(b,a))
− f (a)

]∣∣∣∣
≤ eiϕη(b,a)

2

∫ 1
0

∣∣(1− t)α − tα
∣∣ ∣∣ f ′ (a + (1− t) eiϕη (b, a)

)∣∣ dt

≤ eiϕη(b,a)
2

(∫ 1
0

∣∣(1− t)α − tα
∣∣ dt
)1− 1

q

×
(∫ 1

0

∣∣(1− t)α − tα
∣∣ ∣∣ f ′ (a + (1− t) eiϕη (b, a)

)∣∣q dt
) 1

q

≤ eiϕη(b,a)
2

(∫ 1
2

0
[
(1− t)α − tα

]
dt +

∫ 1
1
2

[
tα − (1− t)α] dt

)1− 1
q

×
(∫ 1

0

∣∣(1− t)α − tα
∣∣ ∣∣ f ′ (a + (1− t) eiϕη (b, a)

)∣∣q dt
) 1

q
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≤ eiϕη(b,a)
2

(
2−21−α

α+1

) q−1
q
[∫ 1

2
0
[
(1− t)α − tα

] ( √
t

2
√

1−t
| f ′ (a)|q + (1−λ)

√
1−t

2λ
√

t
| f ′ (b)|q

)
dt

+
∫ 1

1
2

[
tα − (1− t)α] ( √

t
2
√

1−t
| f ′ (a)|q + (1−λ)

√
1−t

2λ
√

t
| f ′ (b)|q

)
dt
] 1

q

≤ 2−
1
q eiϕη (b, a)

(
1−2−α

α+1

) q−1
q
[
| f ′(a)|q

2

(
B 1

2

(
1
2 , α + 1

2

)
− B 1

2

(
α + 1

2 , 1
2

))
+
(

1−λ
λ

)
| f ′(b)|q

2

(
B 1

2

(
1
2 , α + 1

2

)
− B 1

2

(
α + 1

2 , 1
2

))] 1
q

.

The proof is done.

Lemma 3.0. Let f : [a, b] → R be a twice differentiable mappings on (a, b) with a < b, η (b, a) > 0. If f ′′ ∈
L
[
a, a + eiϕη (b, a)

]
, then the following equality for fractional integral holds:∣∣∣∣ f (a)+ f (a+eiϕη(b,a))

2 − Γ(α+1)
2(eiϕη(b,a))

α

[
Jα
a+ f

(
a + eiϕη (b, a)

)
+ Jα

(a+eiϕη(b,a))
− f (a)

]∣∣∣∣
=

(eiϕη(b,a))
2

2(α+1)

∫ 1
0

[
1− (1− t)α+1 − tα+1

]
f ′′
(
a + (1− t) eiϕη (b, a)

)
dt.

(3.12)

Proof. By using Definition 7 and Lemma 2, if use twice the partial integration method, we have:∫ 1
0

[
1−(1−t)α+1−tα+1

α+1

]
f ′′
(
a + (1− t) eiϕη (b, a)

)
dt

= −
(

1−(1−t)α+1−tα+1
)

f ′(a+(1−t)eiϕη(b,a))
(α+1)eiϕη(b,a)

∣∣∣∣∣
1

0
+ 1

eiϕη(b,a)

∫ 1
0

[
(1− t)α − tα

]
f ′
(
a + (1− t) eiϕη (b, a)

)
dt

= 1
eiϕη(b,a)

∫ 1
0

[
(1− t)α − tα

]
f ′
(
a + (1− t) eiϕη (b, a)

)
dt

(3.13)

Motivated by Lemma 4, then:

1
eiϕη(b,a)

(
f (a)+ f (a+eiϕη(b,a))

eiϕη(b,a)
− Γ(α+1)

(eiϕη(b,a))
α+1

×
[

Jα
a+ f

(
a + eiϕη (b, a)

)
+ Jα

(a+eiϕη(b,a))
− f (a)

])
=

f (a)+ f (a+eiϕη(b,a))

(eiϕη(b,a))
2 − Γ(α+1)

(eiϕη(b,a))
α+2

×
[

Jα
a+ f

(
a + eiϕη (b, a)

)
+ Jα

(a+eiϕη(b,a))
− f (a)

])
.

By multipling the both sides of (3.5) by (eiϕη(b,a))
2

2 , we have:∣∣∣∣ f (a)+ f (a+eiϕη(b,a))
2 − Γ(α+1)

2(eiϕη(b,a))
α

[
Jα
a+ f

(
a + eiϕη (b, a)

)
+ Jα

(a+eiϕη(b,a))
− f (a)

]∣∣∣∣
=

(eiϕη(b,a))
2

2

∫ 1
0

[
1−(1−t)α+1−tα+1

α+1

]
f ′′
(
a + (1− t) eiϕη (b, a)

)
dt

The proof is done.

Remark 3.6. In Lemma 5, if ϕ = 0 and η (b, a) = b− a. Lemma 5 reduces to Lemma 2;

f (a)+ f (b)
2 − Γ(α+1)

2(b−a)α

[
Jα
a+ f (b) + Jα

b− f (a)
]

= (b−a)2

2

∫ 1
0

[
1−(1−t)α+1−tα+1

α+1

]
f ′′ (ta + (1− t) b) dt.

Theorem 3.4. Let f : [0, b] → R be a differentiable mapping. If | f ′′| is measurable and | f ′′| is decreasing and
λ − preinvex function on [0, b] for 0 ≤ a < b, η (b, a) > 0 and α > 0, then the following inequality for fractional
integrals holds: ∣∣∣∣ f (a)+ f (a+eiϕη(b,a))

2 − Γ(α+1)
2(eiϕη(b,a))

α

[
Jα
a+ f

(
a + eiϕη (b, a)

)
+ Jα

(a+eiϕη(b,a))
− f (a)

]∣∣∣∣
≤ (eiϕη(b,a))

2

4(α+1)

{
| f ′′ (a)|

[
π
2 − B

( 3
2 , α + 3

2
)
− B

(
α + 5

2 , 1
2

)]
+
(

1−λ
λ

)
| f ′′ (b)|

[
π
2 − B

(
1
2 , α + 5

2

)
− B

(
α + 3

2 , 3
2
)]}

.
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Proof. By using Definition 7 and Lemma 5, we have:∣∣∣∣ f (a)+ f (a+eiϕη(b,a))
2 + Γ(α+1)

2(eiϕη(b,a))
α

[
Jα
a+ f

(
a + eiϕη (b, a)

)
+ Jα

(a+eiϕη(b,a))
− f (a)

]∣∣∣∣
≤ (eiϕη(b,a))

2

2

∫ 1
0

∣∣∣∣ 1−(1−t)α+1−tα+1

α+1

∣∣∣∣ ∣∣ f ′′ (a + (1− t) eiϕη (b, a)
)∣∣ dt

≤ (eiϕη(b,a))
2

2(α+1)

∫ 1
0

[
1− (1− t)α+1 − tα+1

] ( √
t

2
√

1−t
| f ′′ (a)|+ (1−λ)

√
1−t

2λ
√

t
| f ′′ (b)|

)
dt

≤ (eiϕη(b,a))
2

2(α+1)

{
| f ′′(a)|

2

(∫ 1
0 t

1
2 (1− t)

−1
2 dt−

∫ 1
0 t

1
2 (1− t)α+ 1

2 dt−
∫ 1

0 tα+ 3
2 (1− t)

−1
2 dt

)
+
(

1−λ
λ

)
| f ′′(b)|

2

(∫ 1
0 t

−1
2 (1− t)

1
2 dt−

∫ 1
0 t

−1
2 (1− t)α+ 3

2 dt−
∫ 1

0 tα+ 1
2 (1− t)

1
2 dt
)}

≤ (eiϕη(b,a))
2

4(α+1)

{
| f ′′ (a)|

[
π
2 − B

( 3
2 , α + 3

2
)
− B

(
α + 5

2 , 1
2

)]
+
(

1−λ
λ

)
| f ′′ (b)|

[
π
2 − B

(
1
2 , α + 5

2

)
− B

(
α + 3

2 , 3
2
)]}

.

The proof is done.

Theorem 3.5. Let f : [0, b] → R be a differentiable mapping and 1 < q < ∞. If | f ′′|q is measurable and | f ′′|q is
decreasing and λϕ − preinvex function on [0, b] for η (b, a) > 0 and 0 ≤ a < b, then the following inequality for
fractional integrals holds:∣∣∣∣ f (a)+ f (a+eiϕη(b,a))

2 − Γ(α+1)
2(eiϕη(b,a))

α

[
Jα
a+ f

(
a + eiϕη (b, a)

)
+ Jα

(a+eiϕη(b,a))
− f (a)

]∣∣∣∣
≤ (eiϕη(b,a))

2

2(α+1)

(
1− 21−α

) (
π
4 | f ′′ (a)|q + π

4

(
1−λ

λ

)
| f ′′ (b)|q

) 1
q

where α > 0, 1
p + 1

q = 1.

Proof. By using Definition 7, Lemma 5 and Hölder’s inequality we have:∣∣∣∣ f (a)+ f (a+eiϕη(b,a))
2 − Γ(α+1)

2(eiϕη(b,a))
α

[
Jα
a+ f

(
a + eiϕη (b, a)

)
+ Jα

(a+eiϕη(b,a))
− f (a)

]∣∣∣∣
≤ (eiϕη(b,a))

2

2

∫ 1
0

∣∣∣∣ 1−(1−t)α+1−tα+1

α+1

∣∣∣∣ ∣∣ f ′′ (a + (1− t) eiϕη (b, a)
)∣∣ dt

≤ (eiϕη(b,a))
2

2(α+1)

(∫ 1
0

[
1− (1− t)α+1 − tα+1

]p
dt
) 1

p
(∫ 1

0

∣∣ f ′′ (a + (1− t) eiϕη (b, a)
)∣∣q dt

) 1
q

≤ (eiϕη(b,a))
2

2(α+1)

(∫ 1
0 [1− 2−α]

p dt
) 1

p
(∫ 1

0

( √
t

2
√

1−t
| f ′′ (a)|q + (1−λ)

√
1−t

2λ
√

t
| f ′′ (b)|q

)q
dt
) 1

q

≤ (eiϕη(b,a))
2

2(α+1) (1− 2−α)
(

π
4 | f ′′ (a)|q + π

4

(
1−λ

λ

)
| f ′′ (b)|q

) 1
q .

The proof is done.

Theorem 3.6. Let f : [0, b] → R be a differentiable mapping and 1 < q < ∞. If | f ′′|q is measurable and | f ′′|q is
decreasing and λϕ − preinvex function on [0, b] for 0 ≤ a < b and η (b, a) > 0, then the following inequality for
fractional integrals holds:∣∣∣∣ f (a)+ f (a+eiϕη(b,a))

2 − Γ(α+1)
2(eiϕη(b,a))

α

[
Jα
a+ f

(
a + eiϕη (b, a)

)
+ Jα

(a+eiϕη(b,a))
− f (a)

]∣∣∣∣
≤ (eiϕη(b,a))

2

2(α+1) (1− 2−α)
q−1

q
(
| f ′′(a)|q

2

[
B
( 3

2 , α + 3
2
)
+ B

(
α + 5

2 , 1
2

)
− π

2

]
+
(

1−λ
λ

)
| f ′′(b)|q

2

[
B
(

1
2 , α + 5

2

)
+ B

(
α + 3

2 , 3
2
)
− π

2

]) 1
q

.

where α > 0, 1
p + 1

q = 1.



436 Sümeyye ERMEYDAN et al. / Riemann-Liouville Fractional Hermite-Hadamard Inequalities...

Proof. By using Definition 7, Lemma 5 and Power Mean’s inequality, we have:∣∣∣∣ f (a)+ f (a+eiϕη(b,a))
2 − Γ(α+1)

2(eiϕη(b,a))
α

[
Jα
a+ f

(
a + eiϕη (b, a)

)
+ Jα

(a+eiϕη(b,a))
− f (a)

]∣∣∣∣
≤ (eiϕη(b,a))

2

2

∫ 1
0

∣∣∣∣ 1−(1−t)α+1−tα+1

α+1

∣∣∣∣ ∣∣ f ′′ (a + (1− t) eiϕη (b, a)
)∣∣ dt

≤ (eiϕη(b,a))
2

2(α+1)

(∫ 1
0

∣∣∣1− (1− t)α+1 − tα+1
∣∣∣ dt
)1− 1

q

×
(∫ 1

0

∣∣∣1− (1− t)α+1 − tα+1
∣∣∣ ∣∣ f ′′ (a + (1− t) eiϕη (b, a)

)∣∣q dt
) 1

q

≤ (eiϕη(b,a))
2
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0
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q
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√
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2λ
√

t
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dt
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q

≤ (eiϕη(b,a))
2
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(
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1
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1
2 dt−

∫ 1
0 t

1
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2 dt−
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1
2 dt
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1−λ
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)
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2
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2 dt−
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2 dt−
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2 dt
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2 , 1
2

))
+
(
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q
.

The proof is done.
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Abstract

In this paper we introduce the concept of the global bipartite domination number γgb(G) of a connected
bipartite graph G and study some of its general properties. Moreover we determine the global bipartite
domination number of certain classes of graphs.
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1 Introduction

In this paper we consider simple, connected and bipartite graphs. All notations and definitions not given here
can be found in [1, 3]. A graph is an ordered pair G = (V(G), E(G)), where V(G) is a finite nonempty set
and E(G) is a collection of 2- point subsets of V. The sets V(G) and E(G) are the vertex set and edge set of G
respectively. The degree of a vertex v in G is the number of edges incident at v. The set of all neighbors of v is
the open neighborhood of v, denoted by N(v). Let Pn, Cn, Kn and Km,ndenote path, cycle, complete graph and
complete bipartite graph respectively. The sudivision of the graph G is the graph S(G) obtained from G by
subdividing each edge of G. The corona G ◦ K1 of G is the graph obtained from G by adding a pendant edge
to each vertex of G. A set A ⊆ V(G) of vertices in a graph G = (V, E) is called a dominating set, if every vertex
v ∈ V is either an element of A or adjacent to an element of A. The domination number γ(G) of a graph G is
the minimum cardinality of a dominating set in G.

2 Main results

We introduce a new concept, namely, Global Bipartite Dominating Set of a simple bipartite graph. Then we
define the global bipartite domination number of G.

Definition 2.1. Let G be a connected bipartite graph with bipartition (X, Y), with |X| = m and |Y| = n. The relative
complement of G in Km,n denoted by Ĝ is the graph obtained by deleting all edges of G from Km,n (i.e., Km,n \G). A global
bipartite dominating set (GBDS) of G is a set S of vertices of G such that it dominates G and its relative complement Ĝ.
The global bipartite domination number, γgb(G) is the minimum cardinality of a global bipartite dominating set of G.

Theorem 2.1. For any connected spanning subgraph G of Km,n, γ(G) ≤ γgb(G) ≤ m + n.

Proof. A global bipartite dominating set of G is a dominating set of G and so γ(G) ≤ γgb(G). The set of all
vertices of G is clearly a GBDS of G so, γgb(G) ≤ m + n. Therefore γ(G) ≤ γgb(G) ≤ m + n.

∗Corresponding author
E-mail address: anil@uoc.ac.in (Anil Kumar V.), latheesby@gmail.com (Latheesh Kumar A. R.)
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Remark 2.1. The bounds in Theorem 2.1 are sharp. For the complete bipartite graph G = Km,n, γgb(Km,n) = m + n.
For P4, γ(P4) = γgb(P4) = 2. So Km,n has the largest possible GBD number. Also the bounds in Theorem 2.1 are strict.
For the graph K2,3 − e, γ(K2,3 − e) = 2 and γgb(K2,3 − e) = 4.

Theorem 2.2. If G and Ĝ does not contain isolated vertices, then γgb(G) ≤ min{m, n}, where G is a spanning
subgraph of Km,n.

Proof. Let (X, Y) be the bipartition of G with |X| = m ≤ |Y| = n. Since G and Ĝ does not contain isolated
vertices, X is a G.B.D.S. of G. Therefore γgb(G) ≤ m.

Theorem 2.3. For any positive integers m and n, γgb(Km,n) = m + n.

Proof. Let G be a complete bipartite graph with partitions X and Y. Then uv ∈ E(G) for every u ∈ X and
v ∈ Y. Let Ĝ denotes the relative complement of G in Km,n. Then Ĝ contains m + n isolated vertices. Hence
every global bipartite dominating set of G must contain all vertices of Ĝ and so γgb(G) ≥ slantm + n. Now
V(G) is a global bipartite dominating set of G. Hence γgb(G) = m + n.

Theorem 2.4. For a spanning subgraph G of Km,n, a vertex v is in every global bipartite dominating set of G if and
only if v is an isolated vertex in Ĝ.

Proof. If |V(G)| ≤ 3, the proof is trivial. So let |V(G)| > 3. If v is an isolated vertex in Ĝ, then v is in every
global bipartite dominating set of G. Conversely if v is not an isolated vertex in Ĝ, then there exist atleast two
vertices u and w such that u is adjacent to v in G and w is adjacent to v in Ĝ. So V(G) \ {v} is a global bipartite
dominating set of G.

Theorem 2.5. Let G be a connected bipartite graph with partite sets X and Y. Let S = V1 ∪V2 be a GBDS of G, where
V1 ⊆ X and V2 ⊆ Y. Then if V1 = φ, then V2 = Y and if V2 = φ, then V1 = X.

Proof. Let S = V1 ∪V2, where V1 ⊆ X and V2 ⊆ Y. If V1 = φ, then S ⊆ Y. Since G is bipartite, the vertices in Y
are not adjacent and so S ⊇ Y. Therefore S = V2 = Y. Similarly, we can prove that if V2 = φ then V1 = X.

Theorem 2.6. Let (X, Y) be the bipartition of a connected graph G. Then X is a GBDS of G if and only if |N(y)| <
|X|, ∀y ∈ Y.

Proof. Let X be a GBDS of G. If possible assume that there exists a vertex y ∈ Y such that |N(y)| = |X|. Then
y is an isolated vertex in Ĝ, contradiction to the fact that X is a GBDS of G. Conversely, since G is connected,
X is dominating set of G. So it is sufficient to show that X dominates Ĝ also. Let y ∈ Y, then N(y) is a proper
subset of X. So y is adjacent to at least one vertex of X in Ĝ. This completes the proof.

Theorem 2.7. Let G be a connected sub graph of Km,n. Then γgb(G) = m + n− 1 if and only if G ∼= Km,n − e.

Proof. Let G ∼= Km,n − e. where e = uv ∈ E(Km,n). So uv /∈ E(G) and hence uv ∈ E(Ĝ). Since Ĝ contains
m + n− 2 isolated vertices, every global bipartite dominating set of G contains all vertices of V(G)− {u, v}
and at least one of u and v. Thus

γgb(G) ≥ m + n− 1 (2.1)

Since V(G)− {u} is a GBDS of G, it follows that

γgb(G) ≤ m + n− 1 (2.2)

Thus by (1) and (2)we obtain γgb(G) = m + n− 1.
Conversely assume that γgb(G) = m + n− 1. To prove G ∼= Km,n − e. We observe that γgb(Km,n) = m + n and
γgb(Km,n − e) = m + n− 1. Let G be a proper subgraph of Km,n − e containing m + n vertices. Then Ĝ contains
atmost m + n− 3 isolated vertices. In that case Ĝ contains a path uvw. Then V(G)− {u, w} is a GBDS of G. So
γgb(G) ≤ m + n− 2. This completes the proof.

Theorem 2.8. Let G be a graph with bipartition (X, Y). If G has a γ-set S = V1 ∪V2, where V1 ⊆ X and V2 ⊆ Y then
S is a γgb-set of G if and only if

⋂
x∈V1

N(x) ⊆ V2 and
⋂

y∈V2

N(y) ⊆ V1.
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Proof. Let
⋂

x∈V1

N(x) ⊆ V2 and
⋂

y∈V2

N(y) ⊆ V1. Since S is a γ- set of G, it suffices to show that S dominates the

relative compliment of G. Let u ∈ X. If u ∈
⋂

y∈V2

N(y), then u ∈ V1. If u /∈
⋂

y∈V2

N(y) then u is adjacent to atleast

one vertex of V2 in Ĝ. Similarly, we can prove that if v ∈ Y then v ∈ V2 or v is adjacent to atleast one vertex
of V1 in Ĝ. Conversely, let S dominates Ĝ. Let x be an arbitrary vertex in X. If x ∈

⋂
y∈V2

N(y), then in Ĝ, x is

not adjacent to any vertex of V2. Since S dominates Ĝ, we can deduce that x ∈ V1. If x /∈
⋂

y∈V2

N(y), then x is

adjacent to atleast one element of V2 in Ĝ. Hence the proof.

Corollary 1. Let G be a connected bipartite graph with n vertices, n ≥ 4. Then γgb(G ◦K1) = n, where G ◦K1 denotes
the corona of the graphs G and K1.

Proof. If G ∼= K1,n, the proof is trivial. Otherwise, let (X, Y) be the bipartition of G ◦K1. Let S = V1 ∪V2, where
V1 ⊆ X and V2 ⊆ Y, be the set of all pendant vertices of G ◦K1. Clearly S is γ-set of G ◦K1. Also

⋂
x∈V1

N(x) = φ

and
⋂

y∈V2

N(y) = φ. Therefore the proof follows immediately from theorem 2.8.

Corollary 2. For n ≥ 10, γgb(Pn) = γ(Pn) = d n
3 e.

Proof. Let V(Pn) = {1, 2, 3, . . . , n}. Then X = {x : x is even, x ≤ n}, Y = {y : y is odd, y ≤ n} is the bipartition
of Pn. Let S1 = {i : i ≡ 1(mod 3), i ≤ n} and S2 = {i : i + 1 ≡ 0(mod 3), i ≤ n}. Then either S1 or S2 is a γ-set
of Pn. Also for i = 1, 2,

⋂
x∈Si∩X

N(x) = φ and
⋂

y∈Si∩Y
N(y) = φ. Thus the proof follows from theorem 2.8.

Corollary 3. For an even integer n ≥ 10, γgb(Cn) = γ(Cn) = d n
3 e.

Proof. The proof is exactly similar to corollary 2.

Theorem 2.9. For any two positive integers a and b with a < b, there exists a graph G such that γ(G) = a and
γgb(G) = b.

Proof. Consider the graph Kb−a,a, with partite sets W = {w1, w2, . . . , wb−a} and U = {u1, u2, . . . , ua}. Let G be
the graph obtained from Kb−a,a by adding new vertices v1, v2, . . . , vaand join vi with ui for i = 1, 2, . . . , a. Let
S be a dominating set of G. Since for each i, vi is adjacent to ui only, |S| ≥ a. Now U is a dominating set of G.
So |S| ≤ a. Hence γ(G) = a. In Ĝ, the vertices w1, w2, . . . , wb−a are isolated. So W is a subset of every γgb-set
of G. Therefore the set {u1, u2, . . . , ua, w1, w2, . . . , wb−a} is a γgb-set of G. Hence γgb(G) = b.

Figure 1: Graph G with γ = 2 and γgb = 6

Lemma 2.1. If G is an r-regular connected bipartite graph with bipartition (X, Y) then |X| = |Y|.

Proof. Each edge in G contributes exactly one to the degree sums r|X| and r|Y|. Therefore r|X| = r|Y| = |E| ⇒
|X| = |Y|.

Theorem 2.10. If G is an n− 1-regular bipartite graph, then γgb(G) = n.
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Proof. Since G is n− 1 regular, Ĝ has n components and all of them are P2. So γ(Ĝ) = n. Then by theorem 2.8,
we can find a γ-set of Ĝ such that it dominates G also. Therefore γgb(G) = n.

Theorem 2.11. Let G be a healthy spider with 2n + 1 vertices, then γgb(G) = n + 1.

Proof. Let S be a γ-set of G, then |S| = n and u /∈ S (see Figure 2). So S dominates all vertices except u in Ĝ.
So S ∪ {u} is a γgb-set of G. This completes the proof.

Figure 2: Healthy Spider

Theorem 2.12. If G is a wounded spider with n + k + 1 vertices, then γgb(G) = k + 1.

Proof. Observe that γ(G) = k + 1. Also the set S = {1, 2, 3, . . . , k, u} is a γgb-set of G (see Figure 3).

Figure 3: Wounded Spider

Theorem 2.13. γgb(Bn) = 4, where Bn is the book graph on 2n + 1 vertices.

Figure 4: Book Graph
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Proof. Let the vertices of Bn be labelled as shown in figure 4. Then
X = {v, u1, u2, . . . , un}, Y = {u, v1, v2, . . . , vn} is the bipartition of Bn. Clearly the set {u, v} is the γ-set of Bn.
Also {u, v, u1, v1} is a γ-set of B̂n. Therefore γgb(Bn) = 4.

Theorem 2.14. γgb(S(Kn)) = n, where S(Kn) is the subdivision of the complete graph Kn.

Proof. Let X be the set of all old vertices and Y be the set of all new vertices of S(Kn). Then (X, Y) is a bipartition
of S(Kn). In S(Kn), the degree of each vertex in X is n− 1 and the degree of each vertex in Y is 2. We construct
a γ-set of S(Kn) as follows: Let S ⊆ X such that |S| = n − 2. Then S dominates all but one vertex u in Y.
Also N(u) = {x, y} and X − S = {x, y}. So S ∪ {u} is a γ-set of S(Kn). Since S ∪ {u} does not dominate x
and y in Ĝ, this set is not a γgb-set. So S ∪ {u, v}, where v /∈ N(x) ∪ N(y), is a γgb-set of S(Kn). Therefore
γgb(S(Kn)) = n.
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In the paper entitled Certain properties of a subclass of harmonic convex functions of complex order
defined by Multiplier transformations- Malaya J. Mat. 4(3)2016, 362-372, the presentation of definition of
modified Multiplier transformation of harmonic function f = h + g as given below.

I0
γ f (z) = D0 f (z) = h(z) + g(z) (1)

I1
γ f (z) =

γD0 f (z) + D1 f (z)
γ + 1

(2)

In
γ f (z) = I1

γ(In−1
γ f (z)), (n ∈ N0) (3)

In
γ f (z) = z +

∞

∑
k=2

(
k + γ

1 + γ
)nakzk + (−1)n

∞

∑
k=1

(
k− γ

1 + γ
)nbkzk. (4)

Also if f is given by (1) then,

In
γ f (z) = f ∗̃ (φ1(z) + φ2(z))∗̃......∗̃(φ1(z) + φ2(z))︸ ︷︷ ︸

n−times

= h ∗ (φ1(z) ∗ ...(φ1(z)︸ ︷︷ ︸
n−times

+g + (φ2(z) ∗ ...(φ2(z)))︸ ︷︷ ︸
n−times

, (5)

where ∗ denotes the usual Hadamard product or convolution of power series and

φ1(z) =
(1 + γ)z− γz2

(1 + γ)(1− z)2 , φ2(z) =
(γ− 1)z− γz2

(1 + γ)(1− z)2 (6)

is taken from the article by Yasar and S. Yalçin [1].
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[1] E. Yasar and S. Yalçin, Certain properties of a subclass of harmonic functions, Appl. Math. Inf. Sci.,
7(5)(2013), 1749-1753.

Received: July 10, 2016; Accepted: July 17, 2016

UNIVERSITY PRESS

Website: http://www.malayajournal.org/

∗Corresponding author.
E-mail address: kvijaya@vit.ac.in (K. Vijaya), kthilagavathi@vit.ac.in (K.Thilagavathi) and nmagi2000@yahoo.co.in (N. Magesh).

443



Malaya J. Mat. 4(3)(2016) 444–447

Caratheodory’s Theorem for B−1-convex Sets

G. Adilova and I. Yesilceb,∗

aDepartment of Mathematics, Faculty of Education, Akdeniz University, Dumlupinar Boulevard 07058, Campus, Antalya, Turkey.

bDepartment of Mathematics, Faculty of Science and Letters, Mersin University, Ciftlikkoy Campus, 33343, Mersin, Turkey.

Abstract

In this article, our main concept is B−1−convexity that is a new abstract convexity type. For the
B−1−convex sets, Caratheodory’s Theorem which is one of the most important results in convexity theory is
proved and its corollary is given.
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1 Introduction

Caratheodory’s Theorem is the fundamental dimensionality result in convexity theory, and it is the source
of many other results in which dimensionality is prominent. It is used to prove Helly’s Theorem, concerning
intersections of convex sets, as well as various results about infinite systems of linear inequalities.

If S is a subset of Rn, the convex hull of S can be obtained by forming all convex combinations of elements
of S. According to the classical theorem of Caratheodory, it is not really necessary to form combinations
involving more than n + 1 elements at a time. One can limit attention to convex combinations λ1x1 + λ2x2 +

... + λmxm such that m ≤ n + 1 (or even to combinations such that m = n + 1, if one does not insist on the
vectors xi being distinct).

B−1-convexity is an abstract convexity type ([5–7]). In 2012, B−1-convexity is introduced in [1]. Then,
B−1−convex sets and their properties examined in [2, 4]. The applications of B−1-convexity to Mathematical
Economy is investigated in [3]. Separation of B−1−convex sets by B−1−measurable maps is studied in [8].

In this paper, we examine Caratheodory’s Theorem for B−1−convex sets. As being in classic convexity, this
theorem is significant in B−1−convexity and it has applications to the Optimization Theory and Mathematical
Economy. Since it is used for proving Helly’s and Radon Theorems which are thought to be examined for
B−1−convexity in next studies, we need to express Caratheodory’s Theorem for B−1−convex sets.

The outline of this article is as follows: In Section 2, we recall some definitions and theorems about
B−1−convexity. Then, we prove the Caratheodory’s Theorem for B−1−convex sets and its corollary in last
section.

2 B−1−convexity

For r ∈ Z−, the map x → ϕr(x) = x2r+1 is a homeomorphism from K = R \ {0} to itself; x = (x1, x2, ..., xn)→
Φr(x) = (ϕr(x1), ϕr(x2), ..., ϕr(xn)) is homeomorphism from Kn to itself.

∗Corresponding author.
E-mail address: gabiladilov@gmail.com (G. Adilov), ilknuryesilce@gmail.com (I. Yesilce).
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For a finite nonempty set A =
{

x(1), x(2), ..., x(m)
}
⊂ Kn the Φr-convex hull (shortly r-convex hull) of A,

which we denote Cor(A) is given by

Cor(A) =

{
Φ−1

r

(
m

∑
i=1

tiΦr(x(i))

)
: ti ≥ 0,

m

∑
i=1

ti = 1

}
.

We denote by
m
∧

i=1
x(i) the greatest lower bound with respect to the coordinate-wise order relation of

x(1), x(2), ..., x(m) ∈ Rn, that is:

m
∧

i=1
x(i) =

(
min

{
x(1)1 , x(2)1 , ..., x(m)

1

}
, ..., min

{
x(1)n , x(2)n , ..., x(m)

n

})
where, x(i)j denotes jth coordinate of the point x(i).

Thus, we can define B−1-polytopes as follows:

Definition 2.1. [1] The Kuratowski-Painleve upper limit of the sequence of sets {Cor(A)}r∈Z− , denoted by Co−∞(A)

where A is a finite subset of Kn, is called B−1-polytope of A.

The definition of B−1-polytope can be expressed in the following form in
Rn

++ = {(x1, ..., xn) ∈ Rn : xi > 0, i = 1, 2, ..., n}.

Theorem 2.1. [1] For all nonempty finite subsets A =
{

x(1), x(2), ..., x(m)
}
⊂ Rn

++ we have

Co−∞(A) = lim
r→−∞

Cor(A) =

{
m
∧

i=1
tix(i) : ti ≥ 1, min

1≤i≤m
ti = 1

}
.

Next, we give the definition of B−1-convex sets.

Definition 2.2. [1] A subset U of Kn is called a B−1-convex if for all finite subsets A ⊂ U the B−1-polytope Co−∞(A)

is contained in U.

By Theorem 2.1, we can reformulate the above definition for subsets of Rn
++:

Theorem 2.2. [1] A subset U of Rn
++ is B−1-convex if and only if for all x(1), x(2) ∈ U and all λ ∈ [1, ∞) one has

λx(1) ∧ x(2) ∈ U.

Definition 2.3. Given a set S ⊂ Kn, the intersection of all the B−1-convex subsets of Kn containing S is called the
B−1-convex hull of S and is denoted by B−1[S].

3 Caratheodory’s Theorem for B−1-convex Sets

Lemma 3.1. In Rn
++, a set of the form ∏n

i=1 [xi, yi] is a B−1-convex set.

Proof. If A ⊂ ∏n
i=1 [xi, yi] then Φr (A) ⊂ ∏n

i=1

[
x2r+1

i , y2r+1
i

]
, from the convexity of a product of intervals we

obtain, after taking the inverse image by Φr, Cor(A) ⊂ ∏n
i=1 [xi, yi] and therefore Co−∞(A) ⊂ ∏n

i=1 [xi, yi].

We denote by 〈L〉m, the family of nonempty subsets of L of cardinality at most m.

Theorem 3.3. (Carathedory’s Theorem) If L is a compact subset of Rn
++ then

Co−∞(L) =
⋃

A∈〈L〉n+1

Co−∞(A)

Consequently, for all subsets L of Rn
++,

B−1 [L] =
⋃

A∈〈L〉n+1

B−1 [A] =
⋃

A∈〈L〉n+1

Co−∞(A) ;

and, if L is compact, B−1 [L] = Co−∞(L).
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Proof. If x ∈ Co−∞(L) then there is a sequence
(
xrk

)
rk∈N

with xrk ∈ Co−rk (L), ∀k ∈ N which converges to x.

But from Caratheodorys theorem, there is, for each k, a set of points x1
k , x2

k , ..., xn+1
k in L and a set of numbers

ρ1
k , ρ2

k , ..., ρn+1
k in [1,+∞) such that

n+1

∑
j=1

(
ρ

j
k

)−2rk+1
= 1

and

Φ−rk

(
xrk

)
=

n+1

∑
j=1

(
ρ

j
k

)−2rk+1
Φ−rk

(
xj

k

)
or, for i = 1, 2, ..., n,

xrk ,i =

(
n+1

∑
j=1

(
ρ

j
kxj

k,i

)−2rk+1
) 1
−2rk+1

Since L is compact we can without loss of generality assume that each of the sequences
(

xj
k

)
k∈N

,

j = 1, 2, ..., n + 1 converges in L to a point xj, and also that each of the sequences ρ
j
k, j = 1, 2, ..., n + 1

converges in L to a point ρj in [1,+∞). Taking into account that all the numbers involved are positive we
have

lim
k→∞

(
n+1

∑
j=1

(
ρ

j
kxj

k,i

)−2rk+1
) 1
−2rk+1

= min
1≤j≤n+1

{
ρjxj

i

}
moreover

min
1≤j≤n+1

{
ρj
}
= 1 .

Taking the limit componentwise we obtain x = ∧n+1
j=1 ρjxj, with ρj ≥ 1 for all j and min1≤j≤n+1

{
ρj} = 1. We

have shown that x ∈ Co−∞(A) with A =
{

x1, x2, ..., xn+1} ⊂ L. The last formula follows from B−1 [A] =

Co−∞(A) for all finite sets A, B−1 [L] =
⋃

A∈〈L〉
Co−∞(A) and the first part applied to the finite sets A ∈ 〈L〉.

Corollary 3.1. If L is a compact subset of Rn
++ then B−1 [L] is compact.

Proof. If L ⊂ ∏n
i=1 [ai, bi] then Co−∞(L) ⊂ ∏n

i=1 [xi, yi]; Co−∞(L) is therefore compact. The equality B−1 [L] =
Co−∞(L) concludes the proof.
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Abstract

In this paper, we use the Riemann-Liouville fractional integrals to establish some new integral inequalities related

to the Chebyshev inequality in the case where the synchronicity of the given functions is replaced by another condition.

This paper generalises some recent results in the paper of [C.P. Niculescu and I. Roventa: An extension of Chebyshev’s

algebraic inequality, Math. Reports, 2013].
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1 Introduction

Let us consider the Chebyshev inequality [10]

1

b− a

∫ b

a

f(x)g(x)dx ≥

(
1

b− a

∫ b

a

f(x)dx

)(
1

b− a

∫ b

a

g(x)dx

)
, (1.1)

where f and g are two integrable and synchronous functions on [a, b] i.e. (f(x)− f(y)(g(x)− g(y)) ≥ 0, x, y ∈
[a, b].

Many researchers have given considerable attention to (1.1), see [2, 4, 7, 11–13, 15] and the references therein.

For the fractional integration case, it has been proved in [1] that for any synchronous functions f and g on

[a, b], the fractional inequality

Jα(1)Jαfg(x) ≥ Jαf(x)Jαg(x), x ∈ [a, b] (1.2)

is valid.

For more information and applications on Chebyshev inequality, we refer the reader to [3, 5, 6, 9, 14, 16].

On the other hand, recently in [11], C.P. Niculescu and L. Roventa have proved that for two functions f and

g of the space L∞([a, b]), the Chebyshev’s inequality still works by assuming the condition:

(
f(x)− 1

x− a

∫ b

a

f(x)dx
)(
g(x)− 1

x− a

∫ b

a

g(x)dx
)
≥ 0. (1.3)

The main purpose of this paper is to establish some new results for (1.1) by using the Riemann-Liouville

fractional integrals. We present our results in the case where the synchronicity of the given functions is

replaced by another condition that is more general than that presented in [11]. For our results, Theorem 1 of

[11] can be deduced as a special case.

∗Corresponding author.

E-mail address: zzdahmani@yahoo.fr (Z. Dahmani)
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2 Preliminaries

In this section, we present some preliminaries on Riemann-Liouville fractional integration.

Definition 2.1. The Riemann-Liouville fractional integral operator of order α ≥ 0, for a continuous function

f on [a, b] is defined as

Jαa f (t) =
1

Γ (α)

∫ t

a

(t− τ)
α−1

f (τ) dτ, α > 0, a < t ≤ b, (2.4)

J0
af (t) = f (t) ,

where Γ (α) :=
∫∞
0
e−uuα−1du.

For α > 0, β > 0, we have the following two properties:

Jαa J
β
a f (t) = Jα+βa f (t) (2.5)

and

Jαa J
β
a f (t) = Jβa J

α
a f (t) . (2.6)

For more details, one can consult [8].

3 Main Results

Lemma 3.1. Let f and g be two functions belonging to L∞([a, b]), then for all x ∈ ]a, b] , α ≥ 1, we have

1

x− a
Jαa f(x)g(x) (3.7)

=

(
1

x− a

∫ x

a

f(s)ds

)(
1

x− a
Jαa g(x)

)
+

1

(x− a) Γ(α)

∫ x

a

[(
f(t)− 1

t− a

∫ t

a

f(s)ds

)(
(x− t)α−1g(t)− 1

t− a

∫ t

a

(x− s)α−1g(s)ds

)]
dt.

Proof. We have: ∫ x

a

f(t)(x− t)α−1g(t)dt

=

(
f(t)

∫ t

a

(x− s)α−1g(s)ds

)t=x
t=a

−
∫ x

a

(
f ′(t)

∫ t

a

(x− s)α−1g(s)ds

)
dt (3.8)

= f(x)

∫ x

a

(
(x− s)α−1g(s)ds−

∫ x

a

((t− a)f ′(t))

(
1

t− a

∫ t

a

(x− s)α−1g(s)ds

))
dt.

To integrate by part, let us take the quantities

u(t) =
1

t− a

∫ t

a

(x− s)α−1g(s)ds, u(t)′ =
−1

(t− a)
2

∫ t

a

(x− s)α−1g(s)ds+
(x− t)α−1

(t− a)
g(t)

and

v′(t) = (t− a)f ′(t), v(t) =

∫ t

a

(s− a)f ′(s)ds = (t− a)f(t)−
∫ t

a

f(s)ds.

So, it yields that

∫ x

a

f(t)(x− t)α−1g(t)dt

= f(x)

∫ x

a

(x− s)α−1g(s)ds

−
[(

1

t− a

∫ t

a

(x− s)α−1g(s)ds

)(
(t− a)f(t)−

∫ t

a

f(s)ds

)]t=x
t=a

−
∫ x

a

[(
1

(t− a)
2

∫ t

a

(x− s)α−1g(s)ds

)(
(t− a)f(t)−

∫ t

a

f(s)ds

)]
dt

+

∫ x

a

[(
(x− t)α−1

(t− a)
g(t)

)(
(t− a)f(t)−

∫ t

a

f(s)ds

)]
dt. (3.9)
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Consequently, ∫ x

a

f(t)(x− t)α−1g(t)dt

=
1

x− a

(∫ x

a

f(s)ds

)(∫ x

a

(x− s)α−1g(s)ds

)
−
∫ x

a

1

(t− a)
2

(∫ t

a

(x− s)α−1g(s)ds

)(
(t− a)f(t)−

∫ t

a

f(s)ds

)
dt

+

∫ x

a

(
1

t− a
(x− t)α−1g(t)

)(
(t− a)f(t)−

∫ t

a

f(s)ds

)
dt. (3.10)

Therefore, ∫ x

a

f(t)(x− t)α−1g(t)dt

=
1

x− a

(∫ x

a

f(s)ds

)(∫ x

a

(x− s)α−1g(s)ds

)
−
∫ x

a

[
1

(t− a)

(∫ t

a

(x− s)α−1g(s)ds

)
1

(t− a)

(
(t− a)f(t)−

∫ t

a

f(s)ds

)]
dt

+

∫ x

a

[(
1

t− a
(x− t)α−1g(t)

)(
(t− a)f(t)−

∫ t

a

f(s)ds

)]
dt. (3.11)

Hence, ∫ x

a

f(t)(x− t)α−1g(t)dt

=
1

x− a

(∫ x

a

f(s)ds

)(∫ x

a

(x− s)α−1g(s)ds

)
−
∫ x

a

[
1

(t− a)

(∫ t

a

(x− s)α−1g(s)ds

)(
f(t)− 1

(t− a)

∫ t

a

f(s)ds

)]
dt

+

∫ x

a

[
(x− t)α−1g(t)

(
f(t)− 1

t− a

∫ t

a

f(s)ds

)]
dt. (3.12)

=
1

x− a

(∫ x

a

f(s)ds

)(∫ x

a

(x− s)α−1g(s)ds

)
+

∫ x

a

[(
f(t)− 1

t− a

∫ t

a

f(s)ds

)(
(x− t)α−1g(t)− 1

t− a

∫ t

a

(x− s)α−1g(s)ds

)]
dt,

and then,

1

Γ(α)

∫ x

a

f(t)(x− t)α−1g(t)dt

=
1

x− a

(∫ x

a

f(s)ds

)(
1

Γ(α)

∫ x

a

(x− s)α−1g(s)ds

)
(3.13)

+
1

Γ(α)

∫ x

a

[(
f(t)− 1

t− a

∫ t

a

f(s)ds

)(
(x− t)α−1g(t)− 1

t− a

∫ t

a

(x− s)α−1g(s)ds

)]
dt.

So,

Jαa f(x)g(x)

=
1

x− a

(∫ x

a

f(s)ds

)
Jαa g(x) (3.14)

+
1

Γ(α)

∫ x

a

[(
f(t)− 1

t− a

∫ t

a

f(s)ds

)(
(x− t)α−1g(t)− 1

t− a

∫ t

a

(x− s)α−1g(s)ds

)]
dt.

Consequently, we obtain (3.7).

An immediate consequence of the previous Lemma is the following result:
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Theorem 3.1. Let f and g be two functions of the space L∞([a, b]) and suppose that for any α ≥ 1 and for

any t, x ∈]a, b]; t ≤ x ≤ b, the inequality(
f(t)− 1

t− a

∫ t

a

f(s)ds

)(
(x− t)α−1g(t)− 1

t− a

∫ t

a

(x− s)α−1g(s)ds

)
≥ 0

is satisfied.

Then, we have:

1

x− a
Jαa f(x)g(x)

≥
(

1

x− a

∫ x

a

f(s)ds

)(
1

x− a
Jαa g(x)

)
. (3.15)

Remark 3.1. Taking α = 1, x = b in Theorem 3.1, we obtain Theorem 1 of [11].

Acknowledgment: The authors would like to give special thanks to Professor M. Kirane who has proposed

the problem.
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Abstract

In this article, an efficient modification of the Picard iteration method (PIM) is presented by using
Chebyshev polynomials. Special attention is given to study the convergence of the proposed method. The
proposed modification is tested for some examples to demonstrate reliability and efficiency of the introduced
method. A comparison between our numerical results against the conventional numerical method,
fourth-order Runge-Kutta method (RK4) is given. From the presented examples, we found that the proposed
method can be applied to wide class of non-linear ordinary differential equations.

Keywords: Picard iteration method, Chebyshev polynomials, Runge-Kutta method, Convergence analysis.

2010 MSC: 65N20, 41D15. c©2012 MJM. All rights reserved.

1 Introduction

Many different approximate methods have recently introduced to solve non-linear problems of differential
equations, such as, variational iteration method ([3], [8], [18], [19], [22]), Adomian decomposition method ([1],
[10], [23]), homotopy perturbation method ([6], [20]) and spectral collocation method ([6], [17]). The Adomian
decomposition method provides solutions as a series by employing the so-called Adomian’s polynomials
which are related to the derivatives of the nonlinearities; therefore, these nonlinearities must be analytical
functions of the dependent variables and this has often been ignored in the literature, for the existence
and the uniqueness of solutions to, for example, initial-value problems in ODEs is ensured under much
milder conditions ([4], [14]). However, the decomposition method may be formulated in a manner that
does not require that the nonlinearities be differentiable with respect to the dependent variables and their
derivatives [15]. Other techniques also require that the nonlinearities be analytical functions of the dependent
variable and provide either convergent series or asymptotic expansions to the solution include perturbation
methods [13], the homotopy perturbation technique and the homotopy analysis procedure [21].

By way of contrast, iterative techniques for solving a large class of linear or non-linear differential
equations without the tangible restriction of sensitivity to the degree of the non-linear term and also it
reduces the size of calculations besides, its interactions are direct and straightforward. These techniques
include the well-known Picard fixed-point iterative procedure.

In this paper, we present a modification of PIM. This modification depends on the useful properties of the
Chebyshev polynomials. Special attention is given to study the convergence analysis of the proposed method.
Convergence analysis is reliable enough to estimate the maximum absolute error of the solution given by PIM.
To guarantee this study, effectively employ this modification to a certain class of non-linear ODEs. Therefore,
this modification of PIM has been widely used for solving non-linear problems to overcome the shortcoming
of other methods.
∗Corresponding author.
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The rest of this paper is organized as follows: Section 2 is assigned to the analysis of the standard PIM.
Section 3 is assigned to the convergence study of the proposed method. In section 4, some test problems have
been solved by the modified PIM, to illustrate the efficiency of the proposed method. In finally, the paper ends
with the conclusions in section 5.

2 Picard iteration method

To illustrate the analysis of PIM, we limit ourselves to consider the following non-linear first order ODE in
the type ([5], [9], [16])

u′(x) = R u + N(u), u(0) = c, 0 < x < a, (2.1)

here R is a linear bounded operator i.e., it is possible to find a number m1 > 0 such that ||R u|| ≤ m1||u||.
The non-linear term N(u) is Lipschitz continuous with |N(u)− N(v)| ≤ m2 |u− v|, ∀ x ∈ J = [0, a], for any
constant m2 > 0.
The PIM gives the possibility to write the solution of Eq.(2.1) in the following iteration formula

up(x) = u(0) +
∫ x

0
[R up−1(τ) + N(up−1(τ)) ]dτ, p ≥ 1. (2.2)

The successive approximations up, p ≥ 0, of the solution u(x) will be readily obtained upon using any
selective function u0. The initial values of the solution are usually used for selecting the zeroth approximation
u0. In this technique we obtain a sequence of components of the solution u(x). Consequently, the exact
solution may be obtained by using

u(x) = lim
p→∞

up(x). (2.3)

3 Convergence analysis

In this section, the sufficient conditions are presented to guarantee the convergence of PIM, when applied
to solve non-linear ODEs, where the main point is that we prove the convergence of the recurrence sequence
([2], [12]), which is generated by using PIM.

Lemma 3.1. Let A : U → V be a bounded linear operator and let {up} be a convergent sequence in U with limit u,
then up → u in U implies that A(up)→ A(u) in V [12].

Now, to prove the convergence of the sequence of solution using the Picard iteration method, we will
rewrite Eq.(2.2) in an operator form as follows

up = A[up−1], (3.4)

where the operator A takes the following form

A [u] = u(0) +
∫ x

0
[R u + N(u) ] dτ. (3.5)

Theorem 3.1. Assume that X be a Banach space and A : X → X is a nonlinear mapping, and suppose that

|| A[u]− A[v] || ≤ α ||u− v||, ∀ u, v ∈ X, (3.6)

for any constant α = (m1 + m2)a (0 < α < 1) where m1, m2 and a are defined above. Then A has a unique fixed point.
Furthermore, the sequence (2.2) using PIM with an arbitrary choice of u(0) ∈ X, converges to the fixed point of A and

||up − uq|| ≤
αq

1− α
||u1 − u0||. (3.7)

Proof. Denoting (C[J], ||.||) Banach space of all continuous functions on J with the norm defined by

||u(x)|| = max
x∈J
|u(x)|.
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We are going to prove that the sequence {up} is a Cauchy sequence in this Banach space

‖up − uq‖ = max
x∈J
| up − uq |

= max
x∈J

∣∣∣ ∫ x

0
[ R (up−1 − uq−1) + N(up−1)− N(uq−1) ] dτ

∣∣∣
≤ max

x∈J

∫ x

0
[ |R (up−1 − uq−1)|+ |N(up−1)− N(uq−1)| ] dτ

≤ max
x∈J

∫ x

0
[ (m1 + m2)(up−1 − uq−1) ] dτ

≤ α||up−1 − uq−1||.

Let, p = q + 1 then

‖uq+1 − uq‖ ≤ α ‖uq − uq−1‖ ≤ α2 ‖uq−1 − uq−2‖ ≤ ... ≤ αq ‖u1 − u0‖.

From the triangle inequality we have

||up − uq|| ≤ ||uq+1 − uq||+ ||uq+2 − uq+1||+ ... + ||up − up−1||

≤ [ αq + αq+1 + ... + αp−1 ] ||u1 − u0||

≤ αq[ 1 + α + α2 + ... + αp−q−1 ] ||u1 − u0||

≤ αq[
1− αp−q−1

1− α
] ||u1 − u0||.

Since 0 < α < 1 so, (1− αp−q−1) < 1 then

||up − uq|| ≤
αq

1− α
||u1 − u0||.

But ||u1 − u0|| < ∞ so, as q → ∞ then ||up − uq|| → 0. We conclude that {up} is a Cauchy sequence in C[J]
so, the sequence converges and the proof is complete.

Theorem 3.2. The maximum absolute error of the approximate solution up to problem (2.1) is estimated to be

max
t∈J
|uexact − up| ≤ β, (3.8)

where β =
αq a [m1 ||u0||+ k ]

1− α
, k = max

x∈J
|N(u0)|.

Proof. From Theorem 1 and inequality (3.7) we have

||up − uq|| ≤
αq

1− α
||u1 − u0||,

as p→ ∞ then up → uexact and

||u1 − u0|| = max
x∈J

∣∣∣ ∫ x

0
[ R u0 + N(u0) ] dτ

∣∣∣ ≤ max
x∈J

∫ x

0
[ |R u0|+ |N(u0)| ] dτ ≤ a [m1 ||u0||+ k ],

so, the maximum absolute error in the interval J is

||uexact − up|| = max
x∈J
|uexact − up| ≤ β.

This completes the proof.

Our main goal in this paper is concerned with the implementation of PIM and its modification which have
efficiently used to solve a certain class of ODEs. To achieve this goal, at the beginning of implementation of
PIM, we use the orthogonal Chebyshev polynomials to expand the functions in the non-homogeneous term
in the considered differential equation [17].
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4 Solution procedure using the modified PIM

In this section, an efficient modification of PIM is presented by using Chebyshev polynomials.
The well known Chebyshev polynomials [17] are defined on the interval [−1, 1] and can be determined with
the aid of the following recurrence formula

Tn+1(z) = 2z Tn(z)− Tn−1(z), n = 1, 2, ... .

The first three Chebyshev polynomials are T0(z) = 1, T1(z) = z, T2(z) = 2z2 − 1.

Theorem 4.3. The error in approximating f (x) by the sum of its first m terms is bounded by the sum of the absolute
values of all the neglected coefficients. If

fm(x) =
m

∑
k=0

ck Tk(x), (4.9)

then, for all f (x), all m, and all x ∈ [−1, 1], we have

ET(m) ≡ | f (x)− fm(x)| ≤
∞

∑
k=m+1

|ck|. (4.10)

Proof. The Chebyshev polynomials are bounded by one, that is, |Tk(x)| ≤ 1 for all x ∈ [−1, 1] and for all k.
This implies that the k-th term is bounded by |ck|. Subtracting the truncated series from the infinite series,
bounding each term in the difference, and summing the bounds gives the theorem.

For more details about the definition of the Chebyshev polynomials and its properties see ([7], [11], [17]).
Now, in order to use these polynomials on the interval [0, 1] we define the so called shifted Chebyshev
polynomials by introducing the change of variable z = 2x − 1. Let the shifted Chebyshev polynomials
Tn(2x− 1) be denoted by T∗n (x). Then T∗n (x) can be obtained as follows

T∗n+1(x) = 2(2x− 1) T∗n (x)− T∗n−1(x), n = 1, 2, ... . (4.11)

Now, we use the shifted Chebyshev expansion to expand f (x) in the following form

f (x) ≈ fm(x) =
m

∑
k=0

ck T∗k (x), (4.12)

where the constant coefficients ck are defined by

ck =
2

π hk

∫ 1

0

f (x) T∗k (x)
√

x− x2
dx, h0 = 2, hk = 1, k = 1, 2, .... (4.13)

Now, the proposed modification will implement to solve the following two initial non-linear ordinary
differential equations.

Model problem 1

Consider the following non-linear ordinary differential equation

u′′(x) + x u′(x) + x2 u3(x) = f (x), x ∈ [0, 1], (4.14)

where f (x) = (2 + 6x2)ex2
+ x2 e3x2

and subject to the following initial conditions

u(0) = 1, u′(0) = 0. (4.15)

The exact solution of this problem is u(x) = ex2
.

The procedure of the solution follows the following two steps:
Step 1. Expand the function f (x) using shifted Chebyshev polynomials:

Using the above consideration, the function f (x) can be approximated by eight terms (m = 8) of the shifted
Chebyshev expansion (4.12) as follows

fC(x) ≈ 2.00232− 0.358488 x + 18.0328 x2 − 86.4534 x3 + 416.556 x4 − 1042.66 x5

+ 1502.72x6 − 1134.64x7 + 366.624x8.
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Step 2. Implementation of PIM:
To solve Eq.(4.14) by the PIM we reduce this equation to the following system of first order ODEs

u′(x) = v(x), (4.16)

v′(x) = −x v(x)− x2 u3(x) + f (x), (4.17)

with the following initial conditions u(0) = 1, v(0) = 0.
Now, the PIM gives the possibility to write the solution of the system (4.16)-(4.17) with the aid of the following
iteration formula

un+1(x) = u0 +
∫ x

0
vn(τ)dτ, n ≥ 0, (4.18)

vn+1(x) = v0 −
∫ x

0
[τ vn(τ) + τ2 u3

n(τ)− f (τ) ]dτ, n ≥ 0. (4.19)

We start with initial approximations u0 = 1, v0 = 0, and by using the above iteration formulae (4.18)-(4.19),
we can directly obtain the components of the solution.
Now, the first three components of the solution u(x) of Eq.(4.14) by using (4.18)-(4.19) are

u0(x) = 1,

u1(x) = 1,

u2(x) = 1 + 1.00116x2 − 0.059748x3 + 1.4194x4 − 4.32267x5 + 13.8852x6 − 24.8252x7

+26.8343x8 − 15.7589x9 + 4.0736x10 + ...,

u3(x) = 1 + 1.00116x2 − 0.059748x3 + 1.25254x4 − 4.31371x5 + 13.6959x6 − 24.3106x7 + 25.3466x8

−13.3453x9 + 1.68833x10 + 1.28936x11 − 0.308606x12 + ....

Now, also to perform PIM, we can expand the function f (x) using Taylor series at the point x = x0 as follows

f (x) ≈
m

∑
k=0

f (k)(x0)

k!
(x− x0)

k, (4.20)

for an arbitrary integer number m.
If we expand the function f (x) by the Taylor series (4.20) about the point x0 = 0 with eight terms, we have

fT(x) ≈ 2 + 9 x2 + 10 x4 + 7.83 x6 + 5.58333 x8 + O(x9).

So, the first three components of the solution by using (4.18)-(4.19) are

u0(x) = 1,

u1(x) = 1,

u2(x) = 1 + x2 + 0.666667x4 + 0.333333x6 + 0.139881x8 + 0.062037x10,

u3(x) = 1 + x2 + 0.5x4 + 0.244444x6 + 0.104167x8 + 0.0496032x10 − 0.00469978x12 .

Also, to solve the same problem (4.14) using the fourth-order Runge-Kutta method, we used its corresponding
system of ODEs (4.16)-(4.17).

The absolute errors between the function f (x) and its approximation by using the Taylor expansion (Top)
and the Chebyshev expansion (Bottom) are presented in figure 1.
The absolute error between the exact solution u(x) and the approximate solution uC(x) = u4(x) (after four
iterations) and using the Chebyshev expansion for f (x) with m = 8 is presented in figure 2(Right). Also,
the absolute error between the exact solution u(x) and the approximate solution uT(x) = u4(x) (after four
iterations) using the Taylor expansion for f (x) with eight terms is presented in figure 2(Left).
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Figure 1: The absolute error: | f (x)− fT(x)| (Top) and | f (x)− fC(x)| (Bottom).

Figure 2: The absolute error |u(x)− uT(x)| (Left) and |u(x)− uC(x)| (Right).

Also, the figure 3 presents a comparison between the exact solution u(x), with the numerical solution uRK4
using fourth-order Runge-Kutta and the approximate solution of our proposed method uC(x). From this
figure, we can see that the two methods are in excellent agreement with the exact solution.

Figure 3: Comparison between the exact solution u(x), uRK4 and the approximate solution
of the proposed method uC(x).
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Model problem 2

Consider the following non-linear ordinary differential equation

u′′ + u u′ = f (x), x ∈ [0, 1], (4.21)

where f (x) = x sin(2x2)− 4x2sin(x2) + 2 cos(x2) with the following initial conditions

u(0) = 0, u′(0) = 0. (4.22)

The exact solution of this problem is u(x) = sin(x2).
The procedure of the solution follows the following two steps:
Step 1. Expand the function f (x) using shifted Chebyshev polynomials:

Using the above consideration, the function f (x) can be approximated by eight terms (m = 8) of the
expansion (4.12) as follows

fC(x) ≈ 2− 0.0003 x + 0.008 x2 + 1.892 x3 − 4.308 x4 − 2.399 x5 + 4.682 x6 − 6.276 x7 + 3.025 x8.

Step 2. Implementation of PIM:
To solve Eq.(4.21) by the PIM we reduce this equation to the following system of ODEs

u′(x) = v(x), (4.23)

v′(x) = −u(x) v(x) + f (x), (4.24)

with the following initial conditions u(0) = 0, v(0) = 0.
According to PIM we can construct the following iteration formula

un+1(x) = u0 +
∫ x

0
[vn(τ)]dτ, n ≥ 0. (4.25)

vn+1(x) = v0 −
∫ x

0
[un(τ) vn(τ)− f (τ) ]dτ, n ≥ 0. (4.26)

Therefore, the first three components of the solution u(x) of Eq.(4.21) using (4.25)-(4.26) are

u0(x) = 0,

u1(x) = x2 + 0.1 x5 − 0.166667 x6 − 0.0185185 x9 + 0.00833333 x10 + ...,

u2(x) = x2 − 0.166667 x6 − 0.012 x8 + 0.008333 x10 − 0.0004545 x11 + 0.002932 x12 + ...,

u3(x) = x2 − 0.1667 x6 + 0.0083 x10 + 0.0011 x11 − 0.0017 x13 + 0.00003 x14 − 0.0003 x15 + ...,

Now, if we expand the function f (x) by the Taylor series (4.20) with eight terms, we have

fT(x) ≈ 2 + 2 x3 − 5 x4 − 1.33333 x7 + 0.75 x8 + O(x9).

So, the first three components of the solution u(x) of Eq.(4.21) using (4.25)-(4.26) are

u0(x) = 0,

u1(x) = x2 − 0.00004 x3 + 0.0007 x4 + 0.0946 x5 − 0.1436 x6 − 0.0571 x7 + 0.0836 x8 + ...,

u2(x) = x2 − 0.00004 x3 + 0.0007 x4 − 0.0054 x5 − 0.143585 x6 − 0.0572 x7 + 0.0718 x8 + ...,

u3(x) = x2 − 0.00004 x3 + 0.0007 x4 − 0.0054 x5 − 0.1436 x6 − 0.0572 x7 + 0.0843 x8 + ... .

Figure 4 presents the absolute error between the function f (x) and its approximation by using the Taylor
expansion (Top) and the Chebyshev expansion (Bottom).
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Figure 4: The absolute error: | f (x)− fT(x)| (Top) and | f (x)− fC(x)| (Bottom).

Figure 5: The absolute error: |u(x)− uT(x)| (Left) and |u(x)− uC(x)| (Right).

Figure 6: Comparison between the exact solution u(x), uRK4 and the approximate solution
of the proposed method uC(x).

The absolute error between the exact solution u(x) and the approximate solution uC(x) ' u4(x) (after four
iterations) using the Chebyshev expansion for f (x) with m = 8 is presented in figure 5(Right). Also, the
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absolute error between the exact solution u(x) and the approximate solution uT(x) ' u4(x) (after four
iterations) using the Taylor expansion for f (x) with eight terms is presented in figure 5(Left). Also, the
figure 6 presents a comparison between exact solution u(x), with the numerical solution uRK4 using fourth-
order Runge-Kutta and the approximate solution of the proposed method uC(x). From these figures, we can
conclude that the proposed method is in excellent agreement with the exact solution.

5 Conclusion

In this article, we used the properties of the shifted Chebyshev polynomials to introduce an efficient
modification of PIM. Also, we presented comparative solutions with the proposed method and fourth-order
Runge-Kutta method. From the introduced model problems, we can conclude that the proposed idea can be
applied to solve the non-linear models of ordinary differential equations. Also, the obtained results
demonstrate reliability and efficiency of the proposed method and achieve the convergence study of the
method. From the resulting numerical solution we can conclude that the solution using this modification
converges faster and is in excellent conformance with the exact solution. An interesting point about PIM is
that only few iterations or, even in some special cases, one iteration, lead to exact solution or solution with
high accuracy. Finally, all the obtained numerical results are done by using Matlab 8.
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Abstract

In [4] K.S.S. Nambooripad introduced biordered sets as a partial algebra (E, ωr, ωl) where ωr and ωl are
two quasiorders on the set E satisfying biorder axioms; to study the structure of a regular semigroup. Later in
[2] David Esdown showed that the set of idempotents of a regular semigroup forms a regular biordered set.
Here we extend the idea of biordered sets into rings and discussed some of its properties.

Keywords: Biordered set, Sandwitch set.
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1 Introduction

The set of idempotent elements in a semigroup S usually denoted as E(S) and is important structural
objects which can be used effectively in analyzing the structure of the semigroup. The concept of biordered
set was originally introduced by Nambooripad[1972, 1979] to describe the structure of the set of idempotents
of a semigroup in general and that of a regular semigroup in particular. A biordered set is a partial algebra
(partial semigroup) together with two quasi orders on the domain of definition of the partial binary operation.
Nambooripad identified a partial binary operation on the set of idempotents E(S) of a semigroup S arising
from the binary operation in S, defined two quasi orders on E(S) and the resulting structure is abstracted as
a biordered set. later on david Esdown showed that any biordeed set arises as the set of idempotents of a
semigroup (see[2]).

In this paper we discuss the biordered sets which are the set of idempotents of a ring and we provide
certain examples of such biordered sets.

2 Preliminaries

First we recall some basic definitions regarding semigroups, biorderede sets and rings needed in the sequel.
A set S in which for every pair of elements a, b ∈ S there is an element a · b ∈ S which is called the product
of a by b is called a groupoid. A groupoid S is a semigroup if the binary operation on S is associative. An
element a ∈ S is called regular if there exists an element a′ ∈ S such that aa′a = a, if every element of S is
regular then S is a regular semigroup. An element e ∈ S such that e · e = e is called an idempotent and the set
of all idempotents in S will be denoted by E(S).

2.1 Biordered Sets

By a partial algebra E we mean a set together with a partial binary operation on E. Then (e, f ) ∈ DE
if and only if the product e f exists in the partial algebra E. If E is a partial algebra, we shall often denote
the underlying set by E itself; and the domain of the partial binary operation on E will then be denoted by
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DE. Also, for brevity, we write e f = g, to mean (e, f ) ∈ DE and e f = g. The dual of a statement T about a
partial algebra E is the statement T∗ obtained by replacing all products e f by its left-right dual f e. When DE
is symmetric, T∗ is meaningful whenever T is. On E we define

ωr = {(e, f ) : f e = e} ωl = {(e, f ) : e f = e}

andR = ωr ∩ (ωr)−1, L = ωl ∩ (ωl)−1, ω = ωr ∩ωl . The data required to specify a biordered set E consists
of a pair of quasiorders ωr and ωl . We will refer to ωr as the right quasiorder of E and, ωl as the left quasiorder
of E.

Definition 2.1. Let E be a partial algebra. Then E is a biordered set if the following axioms and their duals hold:

1. ωr and ωl are quasi orders on E and

DE = (ωr ∪ωl) ∪ (ωr ∪ωl)−1

2. f ∈ ωr(e)⇒ fR f eωe

3. gωl f and f , g ∈ ωr(e)⇒ geωl f e.

4. gωr f ωre⇒ g f = (ge) f

5. gωl f and f , g ∈ ωr(e)⇒ ( f g)e = ( f e)(ge).

We shall often write E =< E, ωl , ωr > to mean that E is a biordered set with quasiorders ωl , ωr. The
relation ω defined is a partial order and

ω ∩ (ω)−1 ⊂ ωr ∩ (ωl)−1 = 1E.

Definition 2.2. Let M(e, f ) denote the quasi ordered set (ωl(e) ∩ ωr( f ),<) where < is defined by g < h ⇔
egωreh, and g f ωlh f . Then the set

S(e, f ) = {h ∈ M(e, f ) : g < h forall g ∈ M(e, f )}

is called the sandwich set of e and f .

1. f , g ∈ ωr(e)⇒ S( f , g)e = S( f e, ge)

The biordered set E is said to be regular if S(e, f ) 6= ∅ ∀e, f ∈ E

A ring is a set R together with two binary operations ′+′,′ ·′ with the following properties.

1. The set (R,+) is an abelian group.

2. The set (R, ·) is a semigroup.

3. The operation · is distributive over +.

3 Biordered set of a Ring

Let (R,+, .) be a ring. An element e ∈ R is a multiplicative idempotent if e · e = e and an additive
idempotent if e + e = e and e is an idempotent in the ring R if and only if e is both an additive and a
multiplicative idempotent. Denote E as the set of all multiplicative idempotents in R. In (R,+, ·) define

a⊕ b = a + b− ab.

It is easy to see that ⊕ is an associative binary operation on R and both the additive reduct (R,⊕) and the
multiplicative reduct (R, ·) are semigroups. Further it can be seen that every multiplicative idempotent in
(R, ·) is an additive idempotent in (R,⊕) and hence the set of multiplicative idempotents E of (R, ·) coinsides
with the set of additive idempotents of E⊕ (R,⊕).
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Lemma 3.1. Let e, f be idempotents in R then,

e⊕ f = e⇐⇒ f ωre
e⊕ f = f ⇐⇒ eωl f

Proof. Suppose e⊕ f = e, then

e + f − e f = e⇒ f − e f = 0⇒ f = e f ⇒ f ωre.

Conversely, let f ωre then, e f = f . Consider e⊕ f , we have

e⊕ f = e + f − e f = e + f − f = e.

Similarly, let e⊕ f = f then by definition,

e + f − e f = f ⇒ e− e f = 0⇒ e f = e⇒ eωl f .

Conversely, assume that eωl F then e f = e. Therefore,

e⊕ f = e + f − e f = e + f − e = f

It is easy to observe that the domain of both the binary operations · and ⊕ coincides and we denote this
domain by D, for (e, f ) ∈ D either (e, f ) ∈ ωr ∪ ωl or ( f , e) ∈ ωr ∪ ωl . In the first case either f ⊕ e = e or
e⊕ f = e. If f ⊕ e = e, (e⊕ f )2 = (e⊕ f )⊕ (e⊕ f ) = e⊕ ( f ⊕ e)⊕ f = e⊕ e⊕ f = e⊕ f and so e⊕ f ∈ E⊕.
Thus e⊕ f ∈ E⊕ whenever (e, f ) ∈ ωr ∪ ωl . Similarly, it can be seen that e⊕ f ∈ E⊕ when ( f , e) ∈ ωr ∪ ωl .
Thus, by restricting the operation in (R,⊕, ·) to D we obtain the partial algebra (D,⊕) defining the operations
in the ring R to (D,⊕), we obtain a partial algebra on E⊕. Now in the light of the biorder axioms we have the
following Proposition.

Proposition 3.1. Let e, f , g be idempotents in R. Then

1. eωl f ⇒ eω f ⊕ eL f

2. gωl f , e ∈ ωl( f ) ∩ωl(g)⇒ e⊕ gωle⊕ f

3. eωl f ωl g⇒ ( f ⊕ e)⊕ g = f ⊕ g

4. f ωrg, e ∈ ωl( f ) ∩ωl(g)⇒ e⊕ ( f ⊕ g) = (e⊕ f )⊕ (e⊕ g)

Proof. (1) eωl f , so e( f ⊕ e) = e( f + e − f e) = e and ( f ⊕ e)e = ( f + e − f e)e = e that is eω( f ⊕ e). Also
( f ⊕ e) f = ( f + e − f e) f = f + e f − f e f = f + e − f e = f ⊕ e and f ( f ⊕ e) = f ( f + e − f e) = f that is
f ⊕ eL f .

(2) gωl f and e ∈ ωl( f ) ∩ωl(g). Therefore,

(e⊕ g) · (e⊕ f ) = (e + g− eg) · f = e⊕ g

Thus, (e⊕ g)ωl(e⊕ f ).

(3) eωl f ωl g, we have e⊕ f = f , f ⊕ g = g and e⊕ g = g. Therefore,

f ⊕ g = f ⊕ (e⊕ g) = ( f ⊕ e)⊕ g.

(4) Since f ωrg, e ∈ ωl( f ) ∩ωl(g) we have, f ⊕ g = g, e⊕ f = f and e⊕ g = g. Therefore,

e⊕ ( f ⊕ g) = (e⊕ f )⊕ g = (e⊕ f )⊕ (e⊕ g).

Next we proceed to define the addictive sandwich set of the biordered set E⊕.
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Proposition 3.2. For e, f ∈ E⊕, let

M̃(e, f ) = {g ∈ ER : e ∈ ωr(g) and f ∈ ωl(g),≺}

where ≺ is defined by h ≺ g⇐⇒ hg = gh = h. Then M̃(e, f ) is a quasiordered set and the set

S̃(e, f ) =
{

h ∈ M̃(e, f ) : h ≺ g for all g ∈ M̃(e, f )
}

is called the addictive sandwich set of e and f (in that order).

Proof. For g, h ∈ M̃(e, f ), then both gh and hg in M̃(e, f ) also h ≺ h and if h ≺ g, g ≺ k then h ≺ k. Thus
M̃(e, f ) is a quasiordered set and S̃(e, f ) are minimal elements of M̃(e, f ).

Lemma 3.2. For any idempotents e, f ∈ R and h ∈ S̃(e, f ) then f ⊕ h⊕ e = h.

Proof. Since h ∈ S̃(e, f ), we have he = e and f h = f thus

f ⊕ h⊕ e = ( f ⊕ h) + e− ( f ⊕ h)e

= f + h− f + e− ( f + h− f h)e

= h.

Remark 3.1. For any two idempotents e, f ∈ R and e 6= f then S̃(e, f ) and S(e, f ) are disjoint.

Example 3.1. A complemented distributive lattice is called a Boolean lattice. Let (L,∨,∧) be a Boolean lattice. Then
(L,+, ·) where e + f = e ∨ f and e · f = e ∧ f is a ring. Now define ⊕ on (L,+, ·) as follows

e⊕ f = (e ∧ f ′) ∨ (e′ ∧ f )

so e⊕ f = (e + f )− e f and L = (L,⊕) is a semigroup and we denote the addictive idempotent set by E⊕. It should
be noted that the set of multiplicative idempotents E and the set of all addictive idempotent set E⊕ coincides with L and
L (ie., the lattice is a band with respect to both · and ⊕. Let us now describe the biordered set E as follows:
ωr and ωl , defined by eωr f ⇒ f ∧ e = e and eωl f ⇒ e ∧ f = e are quasiorders and ω = ωr ∩ ωl is a partial
order. Since e ∧ f = f ∧ e we have ωr = ωl = ω on E. Also M(e, f ) = (ωl(e) ∩ ωr( f ), <) where g < h ⇔
egωreh, g f ωlh f , and S(e, f ) the maximal elements of M(e, f ), thus S(e, f ) = {e ∧ f }.
Next we define the addictive sandwitch set E⊕ as follows

M̃(e, f ) = {g : eωrg and f ωl g,≺}

where h ≺ g means hg = gh = h, thus we have M̃(e, f ) = {e ∨ f } and

S̃(e, f ) = {e ∨ f } .

Example 3.2. Consider the real quarternions Q = {q = q0 + q1i + q2 j + q3 j | qi ∈ R}. It is well known that with
respect to the usual additin and multplication defined by the rule i2 = j2 = k2 = −1 and ij = −ji = k, jk = −kj =
i, ki = −ik = j is a noncommutative skewfield. The idempotent set is

EQ = {e = (0, 0, 0, 0), f = (1, 0, 0, 0)}

then ωl(e) = {e} and ωr( f ) = {e, f }, so M(e, f ) = {e} = S(e, f ).
Now for q, r ∈ Q define q⊕ r = q + r− qr, it is easy to obseve that Q = (Q,⊕) is a semigroup and EQ = EQ. The
additive sandwitch set of Q is described as follows.

M̃(e, f ) = {g ∈ ER : e ∈ ωr(g) and f ∈ ωl(g),≺}

since e ∈ ωl( f ) and f ∈ ωr( f ), we have M̃(e, f ) = { f } Also since

S̃(e, f ) =
{

h ∈ M̃(e, f ) : h ≺ g for all g ∈ M̃(e, f )
}
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we have S̃(e, f ) = { f }.

Example 3.3. Consider the set M2(Z) of 2× 2 matrices with integer entries. This is a non-commutative ring with
usual addition and multiplication of matrices. The possible idempotents ER in this ring are[

0 0
0 0,

]
,
[

1 0
0 1

]
,
[

1 0
0 0

]
,
[

0 0
0 1

]
,
[

1 1
0 0

]
,
[

1 0
1 0

]
,
[

0 1
0 1

]
,
[

0 0
1 1

]

Let e =
[

0 1
0 1

]
, f =

[
0 0
1 1

]
∈ (ER , ·). then

ωl(e) = {
[

0 1
0 1

]
,
[

0 1
0 0

]
,
[

0 0
0 1

]
} and ωr( f ) = {

[
0 0
1 1

]
,
[

0 0
1 0

]
,
[

0 0
0 1

]
}

Thus M(e, f ) = {
[

0 0
0 1

]
,<} and so S(e, f ) =

[
0 0
0 1

]
,

Now we proceed to describe the addictive sandwitch set, we have

M̃(e, f ) = {g : e ∈ ωr(g), f ∈ ωl(g),≺}

where h ≺ g means hg = gh = h. Thus M̃(e, f ) = {
[

1 0
0 1

]
,
[

0 1
1 0

]
,≺}.

Thus

S̃(e, f ) =
[

1 0
0 1

]
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Abstract

A complete set of relations is established between the first and second Zagreb index of a graph and of its
congraph. Formulas for the Zagreb indices of several derived graphs are also obtained.
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1 Introduction

The graphs considered in this paper are assumed to be simple, i.e., to possess no directed or weighted
edges and no self–loops. Let G be such a graph with vertex set V(G) and edge set E(G). If |V(G)| = p and
|E(G)| = q, then we say that G is a (p, q)-graph. The edge connecting the vertices x and y will be denoted by
xy.

The set of vertices of G, adjacent to a vertex v will be denoted by NG(v). The degree of the vertex v, denoted
by d(v) = dG(v), is the number of first neighbors of v, that is dG(v) = |NG(v)|.

Let G be a graph with vertex set V(G) and edge set E(G). The common neighborhood graph (congraph) of G,
denoted by con(G), is the graph with vertex set V(con(G)) = V(G), in which two vertices are adjacent if and
only if they have a common neighbor in G. In other words, for every x, y ∈ V(G),

xy ∈ E(con(G))⇐⇒ NG(x) ∩ NG(y) 6= ∅ .

The concept of common neighborhood graphs originates from the study of a special kind of graph energy [2].
The basic properties of these derived graphs were established soon after that [1, 3]. Also, various mathematical
properties of congraphs have been discovered [8, 13, 14].

Two old and most studied degree–based graph invariants are the so-called first and second Zagreb indices,
defined as

M1(G) = ∑
v∈V(G)

d(v)2 and M2(G) = ∑
uv∈E(G)

d(u) d(v) .

For details on their history, mathematical properties and chemical applications, we refer to [4, 5, 9–12] and the
references cited therein.

The so-called forgotten topological index is defined as [6, 7]

F = F(G) = ∑
v∈V(G)

d(v)3 .

∗Corresponding author
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In [15], Li and Zheng introduced the first general Zagreb index as

Mk
1(G) = ∑

v∈V(G)

d(v)k

where k ∈ N ∪ {0}. Obviously, M0
1(G) = |V(G)|, M1

1(G) = 2|E(G)|, M2
1(G) = M1(G), and M3

1(G) = F(G).
Also, in [16], the the second general Zagreb index was defined as

Mk
2(G) = ∑

uv∈E(G)

[
d(u) d(v)

]k

where k ∈N∪ {0}. Obviously M0
2(G) = |E(G)| and M1

2(G) = M2(G).

We now define two new degree–based graph invariants, pertaining to congraphs:

Ξ1(G) = ∑
v∈V(G)

dG(v) dcon(G)(v) and Ξ2(G) = ∑
uv∈E(con(G))

dG(u) dG(v) .

Throughout this paper, we use standard graph–theoretical notation. G denoted the complement of the
graph G. As usual, Pn, Cn, and Kn, are, respectively, the n-vertex path, cycle, and complete graph. In addition,
Kn,m is the complete bipartite graph with n + m vertices. Recall that K1,n−1 is called the star and often denoted
by Sn.

In this paper, we investigate some properties of congraphs and the Zagreb indices of congraphs and
establish relations between the Zagreb indices of congraphs and several degree–based invariants of the parent
graphs.

2 Degree–related properties of common neighborhood graph

Lemma 2.1. Let G be a simple (p, q)-graph and let con(G) be a (p, q′)-graph. Then, for every v ∈ V(G) the following
holds.

(1) dcon(G)(v) =

∣∣∣∣∣ ⋃
u∈NG(v)

NG(u) \ {v}
∣∣∣∣∣ = |Ncon(G)(v)| .

(2) If G has no cycles of size 4, then dcon(G)(v) + dG(v) = ∑
u∈NG(v)

dG(u).

(3) If dG(u) + dG(v) > p holds for every u, v ∈ V(G), then con(G) ∼= Kp .

(4) If G has no cycles of size 3, then con(G) is a subgraph of G.

Proof.
(1) From the definition of a congraph we have

u ∈ Ncon(G)(v)⇐⇒ uv ∈ E(con(G))⇐⇒ NG(u) ∩ NG(v) 6= ∅ .

Then there exists a ∈ NG(v) and a ∈ NG(u) such that

a ∈ NG(v) and u ∈ NG(a)

implies
Ncon(G)(v) =

⋃
u∈NG(v)

NG(u) \ {v} .

(2) For every u, w ∈ NG(v), we have v ∈ NG(u)∩ NG(w). We can easily see that NG(u)∩ NG(w) = {v}, since,
if there exist a ∈ NG(u)∩ NG(w) such that a 6= v, it would follow that au, vu, aw, vw ∈ E(G), that is we would
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have a cycle of size 4, which is a contradiction. Also, by

dcon(G)(v) =

∣∣∣∣∣∣ ⋃
u∈NG(v)

NG(u) \ {v}

∣∣∣∣∣∣ =
∣∣∣∣∣∣ ⋃
u∈NG(v)

(NG(u) \ {v})

∣∣∣∣∣∣
= ∑

u∈NG(v)
|NG(u) \ {v}| = ∑

u∈NG(v)
(|NG(u)| − 1)

=

 ∑
u∈NG(v)

d(u)

− |NG(v)| =

 ∑
u∈NG(v)

d(u)

− d(v)

the claim (2) in Lemma 2.1 follows.
(3) It suffices to show that NG(u) ∩ NG(v) 6= ∅ for every u, v ∈ V(G). Otherwise, we would have

p ≥ |NG(u) ∪ NG(v)| = |NG(u)|+ |NG(v)| = d(u) + d(v) > p

which is a contradiction. Hence, it follows that uv ∈ E(con(G)) that is con(G) ∼= Kp .
(4) It is enough to show that E(con(G)) ⊆ E(G). Hence, for every uv ∈ E(con(G)), we have NG(u) ∩

NG(v) 6= ∅. That is there exist a ∈ NG(u) ∩ NG(v). Then au, av ∈ E(G), but uv /∈ E(G), otherwise G would
have a cycle of size 3. Hence, uv ∈ E(G).

Theorem 2.1. Let G be a (p, q)-graph. In the congraph of G, for every u, v ∈ V(G), if d(u) + d(v) > p then:

(1) Ξ1(G) = 2q (p− 1)

(2) Ξ2(G) = 2q2 − 1
2 M1(G) .

Proof. By Lemma 2.1, con(G) ∼= Kp .

(1)

Ξ1(G) = ∑
v∈V(G)

dG(v) dcon(G)(v) = ∑
v∈V(G)

dG(v) (p− 1)

= (p− 1) ∑
v∈V(G)

dG(v) = 2q(p− 1).

(2)

Ξ2(G) = ∑
uv∈E(con(G))

d(u) d(v) = ∑
uv∈E(Kp)

d(u) d(v) =
1
2 ∑

u,v∈V(G), u 6=v
d(u) d(v)

=
1
2

 ∑
u∈V(G)

d(u) ∑
v∈V(G)

d(v)− ∑
v∈V(G)

d(v)2

 =
1
2
[
2q · 2q−M1(G)

]

= 2q2 − 1
2

M1(G) .

Theorem 2.2. Let G be a (p, q)-graph and have no cycles of size 4. Also, let con(G) be a (p, q′)-graph. Then,

q′ =
1
2 ∑

v∈V(G)

dG(v)2 − q =
1
2

M1(G)− q . (2.1)
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Proof. First we show that NG(u) ∩ NG(w) = {v} holds for every u, w ∈ NG(v). Otherwise, if there would
exist a ∈ NG(u) ∩ NG(v), then it is easy to see that G has a cycle of size 4, which is a contradiction. Hence, by
Lemma 2.1 we get dcon(G)(v) + dG(v) = ∑

u∈NG(v)
dG(u). Thus,

∑
v∈V(G)

dcon(G)(v) + ∑
v∈V(G)

dG(v) = ∑
v∈V(G)

∑
u∈NG(v)

dG(u)

and
2q′ + 2q = ∑

v∈V(G)

dG(v)2

from which Eq. (2.1) follows.

Theorem 2.3. Let G be a (p, q)-graph having no cycles of size 4. Also, let con(G) be a (p, q′)-graph. Then,

(1) M1(con(G)) = F + 2 Ξ2(G)− 4M2(G) + M1(G);

(2) M2(G) = 1
2
[
Ξ1(G) + M1(G)

]
.

Proof. By Lemma 2.1, we have:
(1)

M1(con(G)) = ∑
v∈V(con(G))

dcon(G)(v)
2 = ∑

v∈V(G)

 ∑
u∈NG(v)

d(u)− d(v)

2

= ∑
v∈V(G)

 ∑
u∈NG(v)

d(u)

2

− 2 ∑
v∈V(G)

 ∑
u∈NG(v)

d(u)

 d(v) + ∑
v∈V(G)

d(v)2

= F + 2 Ξ2(G)− 4M2(G) + M1(G) .

(2)

Ξ1(G) = ∑
v∈V(G)

d(v) dcon(G)(v) = ∑
v∈V(G)

d(v)

 ∑
u∈NG(v)

d(u)− d(v)



= ∑
v∈V(G)

d(v)

 ∑
u∈NG(v)

d(u)

− ∑
v∈V(G)

d(v)2

= 2 ∑
uv∈E(G)

d(v) d(u)− ∑
v∈V(G)

d(v)2 = 2M2(G)−M1(G)

If there is a cycle of size 4, then we can change it into a square. Two cycles of order 4 in a graph are said to
be disjoint, if they have no common diagonals in their corresponding squares.

Definition 2.1. A graph G is called type S, if any two cycles of size 4 are disjoint.

Example 2.1. (1) Every graph which has at most one cycle of size 4 is a graph of type S.

(2) Every graph, such that every two cycles of order 4 have at most one common edge in their corresponding squares,
is a graph of type S.

(3) K4 is a graph of type S.

(4) K2,3 is not a graph of type S.
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Theorem 2.4. Let G be a (p, q)-graph and s be the number corresponding squares of cycles of size 4. Also, let con(G)

be a (p, q′)-graph. Then,

(1) If G is a graph of type S, then M1(G) = 2q + 2q′ + 4s.

(2) If G is a any graph, M1(G) ≤ 2q + 2q′ + 4s.

(3) If G has no cycles of size 4, then M1(G) = 2q + 2q′.

Proof. (1) Let V(G) = {v1, v2, . . . , vp} and A = [aij]p×p be the adjacency matrix of graph G. Since d(vi) =

∑
p
k=1 aik, we get

M1(G) = ∑
vi∈V(G)

d(vi)
2 = ∑

vi∈V(G)

(
p

∑
k=1

aik

)2

= ∑
vi∈V(G)

p

∑
k=1

a2
ik + 2 ∑

vi∈V(G)
∑

1≤k≤k′≤p
aik aik′

= ∑
vi∈V(G)

p

∑
k=1

aik + 2 ∑
vi∈V(G)

∑
1≤k≤k′≤p

aik aik′

= ∑
vi∈V(G)

d(vi) + 2 ∑
vi∈V(G)

∑
1≤k≤k′≤p

aik aik′ .

Since aik aik′ = 0 or 1. Hence it is equal with one if aik = 1 and aik′ = 1. Therefore, for some k 6= k′

there exist vk, vk′ ∈ V(G) such that vi vk ∈ E(G) and vi vk′ ∈ E(G). Hence vk vk′ ∈ E(con(G)) and this
edge appears only once, since G has no cycles of size 4. But, if G has any cycle of size 4, then this edge
is appear only twice. Since every cycle of size 4 corresponds to a square and every square, have two
diagonals. Thus ∑v∈V(G) ∑1≤k≤k′≤p aik aik′ = q′ + 2s. Therefore, M1(G) = 2q + 2q′ + 4s.

(2) The proof of this part is similar to part (1) but since edge vi vk ∈ E(G) appears at most twice, hence
M1(G) ≤ 2q + 2q′ + 4s.

(3) It directly follows from part (1).

Corollary 2.1. Let G be a tree. Then,
M1(G) = 2q + 2q′ .

Corollary 2.2. Let G be a (p, q)-graph and s be the number corresponding squares of cycles of size 4. Also, let con(G)

be a (p, q′)-graph. In this case, if G is graph of type S, then q′ = 1
2 M1(G)− q− 2s.

The following theorem is well known.

Theorem 2.5. Let G be a graph with vertices labeled V(G) = {v1, v2, . . . , vn} and let A be its corresponding adjacency
matrix. For any positive integer k, the (i, j) entry a(k)ij of Ak = [a(k)ij ] is equal to the number of walks from vi to vj that
use exactly k edges.

Remark 2.1. For a simple (p, q)-graph, we have

(1) For every i 6= j entry a(2)ij of A2 = [a(2)ij ] is equal to the number paths of order 2 from vi to vj.

(2) trA2 = ∑
p
i=1 a(2)ii = 2q.

(3) ∑
1≤i,j≤p

i 6=j

a(2)ij is equal to the number paths of order 2 from u to v for every disjoint u, v ∈ V(G).
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Lemma 2.2. Let A = [aij] be the adjacency matrix of the graph G. Define B = [bij] such that

bij =

{
1 a(2)ij 6= 0 f or i 6= j
0 otherwise

Then B is the adjacency matrix of con(G). In particular, if G has no cycles of size 4, then B = A2 − C where C is
degree matrix of G.

Proof. For every vivj ∈ E(con(G)), it is enough that bij = 1 and otherwise it is equal zero. By definition from

bij we have bij is equal one if a(2)ij 6= 0 for i 6= j. This implies that a(2)ij = |NG(vi) ∩ NG(vj)| 6= 0, that is

NG(vi)∩ NG(vj) 6= ∅. Hence vivj ∈ E(con(G)). In particular, if G has no cycle of size 4, then a(2)ij = 1 or 0 for
i 6= j. Otherwise, we get |NG(vi) ∩ NG(vj)| ≥ 2. Then G has a cycle of size 4, which is a contradiction. Thus,
B = A2 − C.

Remark 2.2. For a (p, q)-graph, let r be the number paths of order 3 from u to v for every {u, v} ⊆ V(G), and ti the
number of cycles of size 3 containing the vertex vi . Then,

(1) For every i 6= j, the entry a(3)ij of A3 = [a(3)ij ] is equal to the number of walks from vi to vj of order 3.

(2) trA3 = ∑
p
i=1 a(3)ii = ∑

p
i=1 2ti = 6 `, where ` is the number of triangle.

(3) Let rij be the number of paths from vi to vj of order 3, then

a(3)ij =


d(vi) + d(vj)− 1 + rij vivj ∈ E(G)

rij vivj /∈ E(G)

2ti i = j

(4)

∑
1≤i,j≤p

a(3)ij = 6 `+ 2

 ∑
vivj∈E(G)

(d(vi) + d(vj)− 1 + rij)

+ 2

 ∑
vivj /∈E(G)

rij


= 6 `+ 2M1(G)− 2q + 2r .

Theorem 2.6. Let G be a (p, q)-graph and con(G) a (p, q′)-graph. Also, let A = [aij]p×p and B = [bij]p×p be the
adjacency matrices of G and con(G), respectively.

Then,

(1) Ξ1(G) = ∑1≤i,j≤p cij where A B = [cij]p×p.

(2) If G has no cycle of size 4, then Ξ1(G) is equal to the number of paths of order 2 or 3 from u to v for every
u, v ∈ V(G).

(3) If G has no cycle of size 3 and 4, then Ξ1(G) = 2|L|+ 2|L′|, where L = {{u, v} ⊆ V(G) | d(u, v) = 2} and
L′ = {{u, v} ⊆ V(G)| d(u, v) = 3}.

Proof. (1) Let V(G) = {v1, v2, . . . , vp}. Since dG(vk) = ∑
p
i=1 aik and dcon(G)(vk) = ∑

p
j=1 bkj, we have

∑
1≤i,j≤p

cij = ∑
1≤i,j≤p

p

∑
k=1

aik bkj =
p

∑
k=1

∑
1≤i,j≤p

aik bkj

=
p

∑
k=1

(
p

∑
i=1

aik

)(
p

∑
j=1

bkj

)
=

p

∑
k=1

d(vk) dcon(G)(vk)

= ∑
v∈V(G)

dG(v) dcon(G)(v) = Ξ1(G) .
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(2)

∑
1≤i,j≤p

cij = Ξ1(G) = ∑
v∈V(G)

dG(v) dcon(G)(v) = ∑
vi∈V(G)

p

∑
k=1

aik

p

∑
k′=1

bik′

= ∑
vi∈V(G)

∑
1≤k,k′≤p

aik bik′ .

For aik = 1 and bik′ = 1 we have vivk ∈ E(G) and vivk′ ∈ E(con(G)), respectively. Thus we have three
cases:

case(1): For k = k′ and i 6= j, if vivj, vivk ∈ E(G), then aik bik′ = 1.

case(2): For k = k′ and i = j, if avi, avk, vivk ∈ E(G), then aik bik′ = 1.

case(3): For k 6= k′ and i 6= j if vivk, vivj, vjvk′ ∈ E(G),, then aik bik′ = 1.

Since the graph G has no cycles of size 4, in every of the above cases only once appear. Thus,
∑1≤i,j≤p cij = Ξ1(G) is the number all of paths of order 2 or 3 from u to v for every u, v ∈ V(G).

(3) This part can be obtained easily from part (2).

Theorem 2.7. Let G be a (p, q)-graph. Then, 2 M2(G)− 2 M1(G) + 2q = r + 6 ` where r = the number of all paths
of order 3 from u to v for every {u, v} ⊆ V(G) and ` is the number of triangles.

Proof. Let V(G) = {v1, v2, . . . , vp} then

M2(G) = ∑
vivj∈E(G)

d(vi) d(vj) = ∑
vivj∈E(G)

p

∑
k=1

aik

p

∑
k′=1

ak′ j

=
p

∑
k=1

p

∑
k′=1

∑
vivj∈E(G)

aik ak′ j =
1
2 ∑
{k,k′}⊆V(G)

 ∑
vivj∈E(G)

aik ak′ j

 .

Since vivj ∈ E(G), if aikak′ j = 1, then vivj ∈ E(G), aik = 1, and ak′ j = 1. In this case, there exist vertices vk and
vk′ such that we have following four cases:

case(1): If k′ = i and vivj, vivk ∈ E(G), then aik ak′ j = 1.
case(2): If k = j and vivj, vjvk′ ∈ E(G), then aik ak′ j = 1.
case(3): If k = k′ and vivk, vivj ∈ E(G), then aik ak′ j = 1.
case(4): If k 6= k′ and vivk, vivj, vjvk′ ∈ E(G), then aik ak′ j = 1.
Thus, in every above cases determine all of the number of walks of order 3. Thus, by Remark 2.2,

M2(G) =
1
2 ∑

1≤i,j≤p
a(3)ij =

1
2
(6 `+ 2 M1(G)− 2q + 2 r) = 3`+ M1(G)− q + r .

Example 2.2.
Let G be a (4, 4)-graph with V(G) = {a, b, c, d} and E(G) = {ab, ac, bc, bd}. Then, M2(G) = 19, M1(G) =

18 where q = 4, r = 2 and ` = 1. Then

19 = M2(G) = 3 + 18− 4 + 2 = 3`+ M1(G)− q + r .

3 Conclusion

In this paper, we defined the Zagreb indices of congraphs and investigate the degree–related properties of
the congraphs and the Zagreb indices of congraphs. Moreover, we obtained relations between Zagreb indices
of parent graphs and graph invariants such as number of edges of parent graph, number of edges of congraph,
the number of all paths of order 3, number of triangles and the number of cycles of size 4 by using adjacency
matrix of the parent graph.
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Abstract

In this paper, we introduce the notion of a θ-local function and investigate some of their properties. Also,
we define two operators ()∗θ and ψθ in an ideal topological space.
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1 Introduction

In 1968, Velicko[22] introduced the notions of θ-open subsets, θ-closed subsets and θ-closure, for the sake
of studying the important class of H-closed spaces in terms of arbitrary filterbases. In 1990, Jankovic and
Hamlett[7,8 ] defined the concept of I-open set via local function which was given by Vaidyanathaswamy.
O.Njastad[16,17] introduced the concept of compatible ideals in 1966. This ideal was also called as
supercompact by Vaidyanathaswamy[20,21]. In an ideal topological space, the local function was introduced
by Kuratowski[11]. After that so many mathematicians like Hayashi [7], Natkaniec[15] and Modak and
Bandyopadhyay[14] have studied this field and proved some new results in an ideal topological spaces. In
2009, Jeong Gi Kang and Chang Su Kim [10] defined pre-local function, semi-local function and α -local
function. In 2011, Shyamapada Modak [16] introduced δ-local function and an operator ψδ in the ideal
topological spaces. In 2013, Arokia Rani and Nithya[2] introduced precompatible ideals, Al-Omari and
Noiri[1] defined the local closure function and an operator ψΓ and K. Bhavani[3,4] introduced g-local
function and ψg -operator in the ideal topological spaces.

In this paper, we introduce the notion of a θ-local function and investigate some of their properties. We
also introduce two operators ()∗θ and ψθ a ∗θ-closure operator in lines with kuratowski. Also, we discuss
θ-compatibility of topological spaces.

2 Preliminaries

Let (X, τ) be a topological space with no separation properties assumed. For a subset A of a space (X, τ),
cl(A) and int(A) denote the closure of A and the interior of A respectively. (X, τ) and (Y, σ) will be replaced
by X and Y if there is no chance of confusion. A subset A of X is said to be semi open[9] (resp. pre open[10]
and α -open[13] if A⊂ cl(int(A)) (resp. A ⊂ int(cl(A)) and A ⊂ int(cl(int(A)))). The complement of semi open
(resp. pre open and α -open) is called semi closed (resp. pre closed and α-closed).

A set A is said to be θ-open[1] if every point of A has an open neighborhood whose closure is contained
in A. It is very well known that the family of all θ-open subsets of (X, τ) are topologies on X which we shall
denote by τθ. From the definitions it follows immediately that τθ ⊂ τ . A space (X, τ) is regular if and only if
τθ = τ . A point x ∈ X is said to be in the θ-closure of a subset A⊆ X[6] if for each open neighbourhood U of x

*Corresponding author
E-mail address: anandhi1996r@gmail.com (M. Anandhi).
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we have cl(U)∩ A 6= φ . We shall denote θ-closure by clθ(A). A subset A ⊆ X is called θ-closed if A = clθ(A).
In general, the θ- closure of a given set need not be a θ-closed set. But it is always closed. A point x ∈ A is
said to be a θ-limit point of A[5] in X if for each θ-open set U containing x, such that U ∩ (A - {x}) 6= φ .The
set all θ-limit points of A is called a θ-derived set of A and is denoted by Dθ(A).

An ideal I on a topological space (X, τ) is a nonempty collection of subsets of X which satisfies (i) A ∈ I
and B⊆ A implies B∈ I and (ii) A ∈ I and B ∈ I implies (A ∪ B) ∈ I. A topological space (X, τ) with an
ideal I on X is called an ideal topological space and is denoted by (X, τ, I). For a subset A ⊆ X , A∗(I) =
{x ∈ X : U ∩A /∈ I for every U ∈ τ(x)} is called the local function of A with respect to I and τ [4]. We simply
write A* in case there is no chance for confusion. A Kuratowski[11] closure operator cl*(.) for a topology τ∗(I)

called the τ∗-topology finer than τ is defined cl∗(A) =A∪A∗. A subsetA of an ideal space (X, τ, I) is τ∗-closed
[18] (resp. ∗ -dense in itself [18], ∗-perfect [18]) if A∗ ⊂ A (resp. A ⊂ A∗, A = A∗). Clearly, A is ∗-perfect if and
only if A is τ∗-closed and ∗-dense in itself. An ideal I in a space (X, τ) is said to be compatible with respect to
τ [9], denoted by I ∼ τ , if for every subset A of X and for each x ∈ A, there exists a neighborhood U of x such
that U ∩A ∈ I, then A ∈ I. Let (X, τ) be a topological space with I an ideal on X , then τ is pre-compatible[2]
with I, if for every A ⊆ X , and for every x ∈ A, there exists a U ∈ PO(x) such that U ∩A ∈ I, then A ∈ I and
is denoted by I ∼P τ . An operator[8] ψ : ℘(X)→ τ is defined as: ψ(A) = {x ∈ X : there exists an open set Ox
such that Ox−A ∈ I}, for every A ∈ ℘(X). Its equivalent definition is ψ(A) = X− (X−A)∗. Let A be a subset
of an ideal topological space (X, τ, I). Then the set (1) A∗

p(I, τ) = {x ∈ X : U ∩ A /∈ I for each U ∈ τp(x)} is
called the pre-local function with respect to I and τ . (2) A∗

s(I, τ) = {x ∈ X : U ∩A /∈ I for each U ∈ τs(x)} is
called the semi-local function with respect to I and τ . (3) A∗

α(I, τ) = {x ∈ X : U ∪A /∈ I for each U ∈ τα(x)}
is called the α-local function with respect to I and τ . Al-Omari and Noiri[1] defined the local closure function
and an operator ψΓ in an ideal topological spaces as follows:Γ(A)(I, τ) = {x ∈ X : A ∩ cl(U) /∈ I for every
U ∈ τ(x)} and ψΓ(A) = X - Γ(X − A) where ψ : ℘(X) → τ . K. Bhavani[3,4] introduced g-local function and
ψg-operator in the ideal topological spaces as: : A∗(I, τg) = {x ∈ X : U ∩ A /∈ I for every g-open set U
containing x} and ψg(A) = {x ∈ X : there exists a g-open set Ux containing x such that Ux −A ∈ I} for every
A ∈ ℘(X) where ψg : ℘(X)→ ℘(X).
Result 2.1 Let A be a subset of a topological space (X, τ). If A ∈ τθ, then clθ(A) = A

Lemma 2.1. [1]. Let A be a subset of a topological space (X, τ). Then

1. if A is open, then cl(A) = clθ(A)

2. if A is closed, then int(A) = intθ(A)

Lemma 2.2. If (X, τ, I) is an ideal topological space, then I is codense[18] if and only in A ⊂ A∗ for every open set A
of X .

Lemma 2.3. [18]. If (X, τ, I) be an ideal topological space andA ⊂ X . IfA ⊂ A∗, thenA∗ = cl(A∗) = cl(A) = cl∗(A).

3 The Operator() ∗θ

In this section we shall introduce an operator ()∗θ and discuss various properties of this operator.

Definition 3.1. Let A be a subset of an ideal topological space (X, τ, I). Then, the θ-local function of I on X is defined
as A∗θ(I, τ) = {x ∈ X : Ux ∩ A /∈ I for every Ux ∈ θO(X,x)} with respect to I and τ and is denoted as A∗θ for
A∗θ(I, τ).

Lemma 3.1. Let (X, τ, I) be an ideal topological space. Then every subset A of X ,

(1) A∗
p(I, τ) ⊆ A∗θ(I, τ).

(2) A∗
s(I, τ) ⊆ A∗θ(I, τ).

(3) A∗
α(I, τ) ⊆ A∗θ(I, τ).

(4) Γ(A)(I, τ) ⊆ A∗θ(I, τ).

(5) A∗
g(I, τ) ⊆ A∗θ(I, τ).
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Proof. Straight forward.

Remark 3.1. The converse of the Lemma 3.1 need not be true as seen in the following examples.

Example 3.1. Let (X, τ, I) be an ideal topological space with X = {a, b, c}, τ = {φ, {a}, {c}, {a, c}, {b, c}, X} and I
= {φ, {c}}. If A = {a, b}, then A∗θ = {a, b, c} 6⊂ {a, b} = A∗

p.

Example 3.2. Let (X, τ, I) be an ideal topological space with X = {a, b, c, d}, τ = {φ ,{a},{b},{c},{a, b},
{a, c},{b, c},{a, b, c}, {a, c, d},X} and I = {φ, {b}, {c}, {b, c}}. If A = {a, b, c}, then A∗θ = {a, c, d} 6⊂ {a, d} = A∗

s .

Example 3.3. In example 3.2, if A = {b, c, d} then, A∗θ = {a, c, d} 6⊂ {d} = A∗
α .

Example 3.4. Let (X, τ, I) be an ideal topological space with X = {a, b, c, d}, τ = {φ, {d}, {a, c}, {a, c, d}, X} and I
= {φ, {c}}. If A = {a}, then A∗θ = {a, b, c, d} 6⊂ {a, b, c} = Γ(A).

Example 3.5. Let (X, τ, I) be an ideal topological space with X = {a, b, c, d, e}, τ = {φ ,{a},{c, d},{a, c, d},
{b, c, d, e},X} and I = {φ, {c}, {d}, {c, d}}. If A = {a, b, c, d}}, then A∗θ = X 6⊂ {a, b} = A∗

g .

Remark 3.2. The above discussions are summarized in the following diagram.

Remark 3.3. A ⊂ A∗θ and A∗θ ⊂ A are not true in general as shown in the following example.

Example 3.6. Let (X, τ, I) be an ideal topological space with X = {a, b, c, d, e}, τ = {φ ,{a},{c, d},{a, c, d},
{b, c, d, e},X} and I = {φ, {b}, {c}, {b, c}}. (i) If A = {a, b}, then A∗θ = {a}. Therefore, A 6⊂ A∗θ. (ii) If A = {a, b, d},
then A∗θ = X . Therefore, A∗θ 6⊂ A.

Remark 3.4. Let (X, τ, I) be an ideal topological space and A ⊂ X . Then, cl∗θ(A) = A ∪A∗θ is a ∗θ-closure operator.

Remark 3.5. Open sets of τ∗θ. Let (X, τ) be a topological space and I an ideal on X and observe that A is τ∗θ-closed
iff τ∗θ ⊂ A. Now we have U ∈ τ∗θ iff X −U is τ∗θ-closed iff (X −U)∗θ ⊆ X −U iff U ⊆ X − (X −U)∗θ. Therefore,
x ∈ U → x /∈ (X − U)∗θ → there exists a θ-neighbourhood V such that V ∩ (X − U) ∈ I. Now let I = V ∩ (X − U)

and we have x ∈ V − I ⊆ U , where I ∈ I . We shall denote β(I, τθ) = {V − I : V ∈ τθ, I ∈ I}.

Theorem 3.1. Let (X, τ) be a topological space and I an ideal on X. Then β is a basis for τ∗θ .

Lemma 3.2. If (X, τ, I) is an ideal topological space and A ⊂ X . If A ⊂ A∗θ, then A∗θ= clθ(A) = cl∗θ(A).

Proof. Always cl∗θ(A) ⊂ clθ(A). Let x /∈ cl∗θ(A). Then, there exists a τ∗θ-open set G containing x such that
G∩A = φ. By Remark 3.5, there exists V ∈ τθ and I ∈ I such that x ∈ V −I ⊂ G. SinceG∩A = φ⇒ (V −I)∩A =
φ⇒ (V ∩A)−I = φ⇒ ((V ∩A)−I)∗θ = φ∗θ ⇒ (V ∩A)∗θ−I∗θ = φ⇒ (V ∩A)∗θ = φ⇒ V ∩A∗θ = φ⇒ x /∈ clθ(A).
Therefore,clθ(A) ⊂ cl∗θ(A). Hence cl∗θ(A) = clθ(A) − − − (1). We know that cl∗θ(A) = A ∪ A∗θ = A∗θ—(2),
since A ⊂ A∗θ. From (1) and (2), A∗θ = clθ(A) = cl∗θ(A).

Definition 3.2. Let (X, τ, I) be an ideal topological space and A ⊂ X . If A ⊂ A∗θ, then A is said to be ∗θ-dense in
itself.

Definition 3.3. Let (X, τ, I) be an ideal topological space and A ⊂ X . If A∗θ ⊂ A, then A is said to be ∗θ-closed.

Remark 3.6. Let (X, τ, I) be an ideal topological space and A ⊂ X . Then, τ∗θ = {X −A : cl∗θ(A) = A}.
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Proposition 3.1. Let (X, τ, I) be an ideal topological space and A ⊂ X . Then A is τ∗θ-closed if and only if A∗θ ⊂ A.

Proof. Let A be τ∗θ-closed. Then, A = cl∗θ(A) ⇒ A = A ∪ A∗θ ⇒ A∗θ ⊂ A. Conversely, let A∗θ ⊂ A. By
assumption, A ∪A∗θ = A. i.e. cl∗θ(A) = A. Hence, A is τ∗θ -closed.

Proposition 3.2. Let (X, τ, I) be an ideal topological space. Then the following hold for every subsetA ofX, cl∗θ(A) ⊂
clθ(A);

Proof. Let x ∈ cl∗θ(A). Then, x ∈ A or x ∈ A∗θ. If x ∈ A∗θ, then there exists a θ-open set Ux containing x such
that Ux ∩A /∈ I. That is Ux ∩A 6= φ. This implies that x ∈ clθ(A). Thus, cl∗θ(A) ⊂ clθ(A).

Proposition 3.3. Let x ∈ cl∗θ(A) if and only if V ∩A 6= φ for every ∗θ-open set V ⊆ X .

Properties of ()∗θ operator

Theorem 3.2. Let (X, τ, I) be an ideal topological space and let A,B be subsets of X. Then for θ-local functions the
following properties hold:

(i) φ∗θ = φ .

(ii) A ⊂ B implies A∗θ ⊂ B∗θ.

(iii) For an another ideal J ⊃ I on X, A∗θ(J ) ⊂ A∗θ(I).

(iv) A∗ ⊂ A∗θ.

(v) A∗θ ⊂ clθ(A).

(vi) (A∗θ)∗θ ⊂ A∗θ, if A is θ-closed.

(vii) A∗θ ∪B∗θ = (A ∪B)∗θ.

(viii) (A ∩B)∗θ ⊂ A∗θ ∩B∗θ.

(ix) for a θ-open set U , U ∩A∗θ = U ∩ (U ∩A)∗θ ⊂ (U ∩A)∗θ.

(x) For I ∈ I, (A ∪ I)∗θ = A∗θ = (A− I)∗θ.

(xi) (A−B)∗θ −B∗θ = (A∗θ −B∗θ) ⊂ (A−B)∗θ.

(xii) (A−A∗θ) ∩ (A−A∗θ)∗θ = φ .

(xiii) If A ∈ I, then A∗θ = φ .

(xiv) A∗θ(I ∩ J ) ⊃ A∗θ(I) ∪A∗θ(J ).

Proof. (i) From the definition of θ-local function, φ∗θ = φ is obvious.

(ii) Let x ∈ A∗θ. Then for every θ-open set Ux containing x, Ux ∩ A /∈ I. Since A ⊂ B implies that
Ux ∩A ⊂ Ux ∩B /∈ I. Therefore, Ux ∩B /∈ I. This implies that x ∈ B∗θ. Hence, A∗θ ⊂ B∗θ.

(iii) Let x ∈ A∗θ(J ). Then for every θ-open set Ux containing x, such that Ux ∩ A /∈ J . This implies that
Ux ∩A /∈ I, since I ⊂ J . So, x ∈ A∗θ(I). Hence, A∗θ(J ) ⊂ A∗θ(I).

(iv) Let x ∈ A∗. We assert that x ∈ A∗θ. If not, then there is a θ-open set Ux containing x such that Ux∩A ∈ I.
Since every θ-open is open, Ux is open and since, Ux ∩ A ∈ I contradicts the assumption x ∈ A∗.
Therefore, x ∈ A∗θ. This implies that A∗ ⊂ A∗θ.

(v) Let x ∈ A∗θ. Then for every θ-open set Ux containing x, Ux ∩ A /∈ I. Since every θ-open is open, Ux is
open. This implies that Ux ∩A 6= φ for every θ-open set containing x. Hence, x ∈ clθ(A).

(vi) From (v) A∗θ ⊂ clθ(A). (A∗θ)∗θ ⊂ (clθ(A))∗θ. But A = clθ(A), since A is θ-closed. This implies that
(A∗θ)∗θ ⊂ A∗θ.
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(vii) Since A ⊂ A ∪ B and B ⊂ A ∪ B. Then from (ii) A∗θ ⊂ (A ∪ B)∗θ and B∗θ ⊂ (A ∪ B)∗θ. Hence,
A∗θ ∪B∗θ ⊂ (A ∪B)∗θ. Conversely suppose that x /∈ A∗θ ∪B∗θ. Then, x /∈ A∗θ and x /∈ B∗θ. If x /∈ A∗θ,
then there exists θ-open set Ux containing x such that Ux ∩A ∈ I. Similarly since x /∈ B∗θ, there exists θ-
open set Vx containing x such that Vx∩A ∈ I. Then by the hereditary property of ideal,A∩(Ux∩Vx) ∈ I
and B ∩ (Ux ∩ Vx) ∈ I. Again, by the finite additivity of the ideal, (A ∪ B) ∩ (Ux ∩ Vx) ∈ I. Hence,
x /∈ (A ∪B)∗θ. So, (A ∪B)∗θ ⊂ A∗θ ∪B∗θ. Hence A∗θ ∪B∗θ = (A ∪B)∗θ.

(viii) Since A ∩ B ⊂ A and A ∩ B ⊂ B, from (2), (A ∩ B)∗θ ⊂ A∗θ and (A ∩ B)∗θ ⊂ B∗θ. Hence, (A ∩ B)∗θ ⊂
A∗θ ∩B∗θ.

(ix) Let x ∈ U ∩A∗θ. Let Vx be a θ-open set containing x, then A ∩ (U ∩ Vx) /∈ I, since x ∈ A∗θ and U ∩ Vx is
a θ-open set containing x . Hence, x ∈ (U ∩A)∗θ. Therefore, U ∩A∗θ ⊂ (U ∩A)∗θ.
Therefore, U ∩A∗θ ⊂ U ∩(U ∩A)∗θ−−−−(1). Again for U ∩A ⊂ A, (U ∩A)∗θ ⊂ A∗θ. So, U ∩(U ∩A)∗θ ⊂
U ∩ A∗θ − − − −(2). From (1) and (2) we have U ∩ A∗θ = U ∩ (U ∩ A)∗θ. Hence, U ∈ τθ, U ∩ A∗θ =
U ∩ (U ∩A)∗θ ⊂ (U ∩A)∗θ.

(x) Since A ⊂ A ∪ I , A∗θ ⊂ (A ∪ I)∗θ[by(i)] − − − − − (1). Let x ∈ (A ∪ I)∗θ. Then for every θ-open set Ux
containing x, Ux∩ (A∪ I) /∈ I. Since Ux∩ I ∈ I, it follows that Ux∩A /∈ I. Hence x ∈ A∗θ which implies
that (A ∪ I)∗θ ⊂ A∗θ − − − − − (2). From (1) and (2), we have (A ∪ I)∗θ = A∗θ − − − − − (3). Since
(A− I) ⊂ A, then (A− I)∗θ ⊂ A∗θ −−−−− (4). Now, for reverse inclusion, let x ∈ A∗θ. We claim that
x ∈ (A − I)∗θ. If not, then there is some θ-open set Ux containing x such that Ux ∩ (A − I) ∈ I. Since,
I ∈ I, I ∪ (Ux ∩ (A − I)) ∈ I. This implies I ∪ (Ux ∩ A) ∈ I. So, Ux ∩ A ∈ I, a contradiction to the fact
that x ∈ A∗θ. Hence, A∗θ ⊂ (A− I)∗θ −−−−−−(5). From (4) and (5), we have, A∗θ = (A− I)∗θ. Again
from (3) and (6) we have (A ∪ I)∗θ = A∗θ = (A− I)∗θ.

(xi) Let x ∈ A∗θ − B∗θ. Then, x ∈ A∗θ and x /∈ B∗θ. This implies that Ux ∩ A /∈ I, for every θ-open set Ux
containing x and Vx ∩ B ∈ I, for some θ-open set Vx containing x. Hence Vx ∩ A /∈ I and Vx ∩ B ∈ I.
Suppose that (A − B) ∩ Vx ∈ I. Since ((A − B) ∩ Vx) ∪ (B ∩ Vx) = (A ∪ B) ∩ Vx, by finite additivity
property of ideal, (A ∪ B) ∩ Vx ∈ I. Since A ∩ Vx ⊂ (A ∪ B) ∩ Vx, A ∩ Vx ∈ I, which is a contradiction
to the fact that Vx ∩ A /∈ I. Therefore, (A − B) ∩ Vx /∈ I and so, x ∈ (A − B)∗θ − − − (1). Therefore,
A∗θ −B∗θ ⊂ (A−B)∗θ −−−−(2).
Also, x /∈ B∗θ implies that x ∈ (A − B)∗θ − B∗θ. Therefore, A∗θ − B∗θ ⊂ (A − B)∗θ − B∗θ − − − −(3).
Let x ∈ (A − B)∗θ − B∗θ. Then x ∈ (A − B)∗θ and x /∈ B∗θ. If x ∈ (A − B)∗θ , then for every θ-open
set Ux containing x such that (A − B) ∩ Ux /∈ I. Suppose that x /∈ A∗θ, then there is some θ-open set
Vx containing x, A ∩ Vx ∈ I. Since, x /∈ B∗θ, then there is some θ-open set Wx containing x, such that
B ∩Wx ∈ I. Since ((A − B) ∩ Vx) ∪ (B ∩ Vx) = (A ∪ B) ∩ Vx = (A ∩ Vx) ∪ (B ∩ Vx) by finite additive
property of the ideal, (A ∪ B) ∩ Vx ∈ I. Since (A − B) ∩ Vx ⊂ (A ∪ B) ∩ Vx, (A − B) ∩ Vx ∈ I which
is a contradiction. Therefore, A ∩ Vx /∈ I, x ∈ A∗θ and x /∈ B∗θ. Therefore, x ∈ A∗θ − B∗θ. Thus
(A−B)∗θ −B∗θ ⊂ A∗θ −B∗θ −−− (4). From (3) and (4), we have (A∗θ −B∗θ) = (A−B)∗θ −B∗θ. Using
(2), we have (A−B)∗θ −B∗θ = (A∗θ −B∗θ) ⊂ (A−B)∗θ.

(xii) Since A− A∗θ ⊂ X − A∗θ. So, (A− A∗θ) ∩ A∗θ = φ. Since (A− A∗θ) ⊂ A, (A− A∗θ)∗θ ⊂ A∗θ. It follows
that (A−A∗θ) ∩ (A−A∗θ)∗θ = φ .

(xiii) Suppose that x ∈ A∗θ. Then, there exists some θ-open set containing x such that Ux ∩ A /∈ I. But, since
A ∈ I, Ux ∩A ∈ I for every Ux ∈ τθ . This is a contradiction. Hence, A∗θ = φ .

Remark 3.7. In Theorem 3.2, the reverse inclusions of (iii), (viii) are not valid as in the following example.

Example 3.7. Let X = {a, b, c, d} with τ = {φ, {a}, {c, d}, {a, c, d}, {b, c, d, e}, X}, J = {φ, {b}, {c}, {b, c}} and I
= {φ, {c}}.

(1) Let A = {a, b}. Then, A∗θ(I) = {a, b, c, d} 6⊂ {a} = A∗θ(J ) .

(2) Let A = {a, b, c, d}, A∗θ = X, B = {a, b, c, e}, B∗θ = X, A ∩B ={a, b, c}, (A ∩B)∗θ = {a}. Therefore A∗θ ∩B∗θ

= X 6⊂ {a} = (A ∩B)∗θ.

Proposition 3.4. Let (X, τ, I) be an ideal topological space and A ⊂ X where I = {φ}. Then A∗θ = clθ(A).
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Proof. Let I = {φ}. We know that clθ(A) = A∪Dθ(A) where Dθ(A) is the θ-derived set of A. Let x ∈ A∪Dθ(A)

and let Ux be a θ-open set containing x. Then x ∈ A or x ∈ Dθ(A). If x ∈ A then x ∈ Ux ∩A and so Ux ∩A 6= φ

. If x ∈ Dθ(A), then φ 6= [Ux − {x}] ∩A ⊂ Ux ∩A and thus Ux ∩A 6= φ . Hence, clθ(A) = A ∪Dθ(A) ⊂ A∗θ. By
Theorem 3.2(v), A∗θ ⊂ clθ(A). Therefore, A∗θ = clθ(A).

Proposition 3.5. Let (X, τ, I) be an ideal topological space and A ⊂ X where I = ℘(X). Then A∗θ = φ for every
A ⊂ X .

Proof. Since A∗θ = {x ∈ X : Ux ∩ A /∈ ℘(X) for every θ-open set Ux containing x} = φ . Therefore, A∗θ = φ for
every A ⊂ X .

Theorem 3.3. Let (X, τ, I) be an ideal topological space and let A,B be subsets of X. Then for θ-local functions the
following properties hold:

1. A∗θ = clθ(A∗θ) ⊆ clθ(A) and A∗θ is θ-closed.

2. If A ⊆ A∗θ and A∗θ is open, then, A∗θ = clθ(A).

Proof. 1. Always A∗θ ⊆ clθ(A
∗θ). Let x ∈ clθ(A∗θ). Then , there exists some open set Ux containing x such

that A∗θ ∩Ux 6= φ . Therefore, there exists some y ∈ A∗θ ∩Ux and Ux ∈ τθ(x). Since y ∈ A∗θ , there exists
some θ-open set Vx such that A ∩ Vx ∩ Ux = A ∩ Vx /∈ I. Therefore, x ∈ A∗θ . Hence, A∗θ = clθ(A∗θ) and
A∗θ = clθ(A∗θ) ⊆ clθ(A) by Theorem 3.2 (v).

2. For any subset A of X, by(1) we haveA∗θ = clθ(A∗θ) ⊆ clθ(A). SinceA ⊆ A∗θ andA∗θ is open, by Lemma
1.2, clθ(A) ⊆ clθ(A∗θ) = cl(A∗θ) = A∗θ ⊆ clθ(A) and hence, A∗θ = clθ(A).

Theorem 3.4. Let (X, τ, I) be an ideal topological space. Then, A∗θ ⊃ A− ∪{U ⊂ X : U ∈ I} for all A ⊂ X .

Proof. Let B = ∪{U ⊂ X : U ∈ I} and let x ∈ (A− B). Then x ∈ A and x /∈ B. This implies that x /∈ U for all
U ∈ I so that {x} = {x} ∩ A /∈ I because x ∈ A . For every G ∈ τθ(x), we have {x} ∩ A ⊂ G ∩ A /∈ I by the
heredity of ideal. Hence, x ∈ A∗θ.

Remark 3.8. The converse of the theorem 3.4 need not be true as seen in the following example.

Example 3.8. Let X = {a, b, c, d} with τ = {φ, {a}, {c, d}, {a, c, d}, {b, c, d, e}, X} and I = {φ, {b}, {c}, {b, c}}. Let
A = {a, b, c, d}. B = ∪{U ⊂ X : U ∈ I} = {b, c}. A - B = {a, d}. A∗θ =X 6⊂ {a, d} = A−B.

Theorem 3.5. Let (X, τ, I) be an ideal topological space and B = ∪{U ⊂ X : U ∈ I}. If B ∈ I then (A∗θ)∗θ = A∗θ

for all A ⊂ X .

Proof. Let A be a subset of X. Then, (A∗θ)∗θ ⊂ A∗θ by Theorem 3.2(vi) . Furthermore, A∗θ ⊃ A−B by Theorem
3.4. It follows from Theorem 3.2(ii) that (A∗θ)∗θ ⊃ (A − B)∗θ. Since B ∈ I, by Theorem 3.2 (x) implies that
(A∗θ)∗θ ⊃ (A−B)∗θ = A∗θ. Therefore, (A∗θ)∗θ = A∗θ.

Theorem 3.6. Let (X, τ, I) be an ideal topological space in which τθ = ℘(X). Then A∗θ = A − ∪{U ⊂ X : U ∈ I}
for all A ⊂ X .

Proof. Let B = A−∪{U ⊂ X : U ∈ I} and let x ∈ A∗θ. Then {x} ∩A /∈ I because {x} ∈ τθ = ℘(X). Since ideal
I always contains φ, {x} ∩ A 6= φ and so x ∈ A. It follows that {x} = {x} ∩ A /∈ I so that x /∈ U for all U ∈ I.
Hence, x /∈ B and therefore, x ∈ A − B. Hence, A∗θ ⊂ A − B. The reverse inclusion is obvious by Theorem
3.4.

Remark 3.9. Let (X, τ, I) be an ideal topological space in which every member of τ is clopen. Then A∗θ = A−∪{U ⊂
X : U ∈ I} for all A ⊂ X .

Proof. Let B = A−∪{U ⊂ X : U ∈ I} and let A ∈ ℘(X). Then every clopen set is θ-open. Hence A ∈ τθ, which
means that ℘(X) ⊂ τθ so that ℘(X) = τθ . By Theorem 3.6 A∗θ = A−B.

Theorem 3.7. Let (X, τ, I) be an ideal topological space. Then, the following properties holds.

1. If I = {φ}, then cl∗θ(A) = clθ(A).
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2. If I = ℘(X), then cl∗θ(A) = A.

3. If A ∈ I , then cl∗θ(A) = A.

Proof. Obvious.

Theorem 3.8. Let (X, τ, I) be an ideal topological space and let A,B be subsets of X. Then for ∗θ-local functions the
following properties hold:

(i) cl∗θ(φ) = φ .

(ii) If A ⊂ B, then cl∗θ(A) ⊂ cl∗θ(B).

(iii) For an another ideal J ⊇ I on X, cl∗θ(A, τ,J ) ⊂ cl∗θ(A, τ, I).

(iv) cl∗(A) ⊂ cl∗θ(A).

(v) cl∗θ(A) ⊂ clθ(A).

(vi) cl∗θ(cl∗θ(A)) ⊂ cl∗θ(A) if A is θ-closed.

(vii) cl∗θ(A) ∪ cl∗θ(B) = cl∗θ(A ∪B).

(viii) cl∗θ(A ∩B) ⊂ cl∗θ(A) ∩ cl∗θ(B).

Proof. It is obvious by using Remark 3.5 and Theorem 3.7.

Remark 3.10. In Theorem 3.8, The reverse inclusions of (ii), (iv), (v) and the converse of (iii) and (viii) are not valid as
seen in the following examples.

Example 3.9. (iii) Let X = {a, b, c, d} with τ = {φ, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}, {a, c, d}, X} and I =
{φ, {a}} , J = {φ, {b}, {c}, {b, c}}. Let A = {a, d}, cl∗θ(A, τ,J ) = {a, c, d} ⊃ {a, d} = cl∗θ(A, τ, I) but J 6⊂ I.

Example 3.10. Let X = {a, b, c, d} with τ = {φ, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}, {a, c, d}, X} and I =
{φ, {b}, {c}, {b, c}} .

(ii) Let A = {c},B = {a, b}. Then cl∗θ(A) = {c} ⊂ X = cl∗θ(B), butA 6⊂ B.

(iv) Let A = {a}. Then cl∗θ(A) = {a, c, d} 6⊂ {a, d} = cl∗(A).

(viii) Let A = {b, c}, B = {b, d}. Then cl∗θ(A) = {b, c}, cl∗θ(B) = X, A ∩ B = {b}. cl∗θ(A ∩ B) = {b}. So, cl∗θ(A) ∩
cl∗θ(B) = {b, c} 6⊂ {b} = cl∗θ(A ∩B).

(v) Let A = {b, c}. Then, clθ(A) = X 6⊂ {b, c} = cl∗θ(A).

Remark 3.11. Dθ(A) ⊂ cl∗θ(A) and cl∗θ(A) ⊂ Dθ(A) are not true in general as shown in the following example.

Example 3.11. Let (X, τ, I) be an ideal topological space with X = {a, b, c, d, e}, τ = {φ ,{a},{c, d},{a, c, d},
{b, c, d, e},X} and I = {φ, {c}, {d}, {c, d}}.

(i) If A = {c, d}, then A∗θ = φ . Therefore, Dθ(A) = {b, c, d, e} 6⊂ {c, d} = cl∗θ(A).

(ii) If A = {a, b, d}, then A∗θ = X . Therefore, cl∗θ(A) = X 6⊂ {b, c, d, e} = Dθ(A).

Proposition 3.6. Let (X, τ, I) be an ideal topological space. For any subset A of X, the following properties are hold.

(i) A∗θ −A ⊂ clθ(A)−A ⊂ Dθ(A).

(ii) If I = {φ}, then A∗θ −A = clθ(A)−A ⊂ Dθ(A).

(iii) If I = ℘(X), then A∗θ = Dθ(A).

Proof. (i)From Theorem 3.2(v), we have A∗θ ⊂ clθ(A) . Then, A∗θ −A ⊂ clθ(A)−A. Since clθ(A) = A∪Dθ(A),
clθ(A)−A ⊂ Dθ(A). It follows that A∗θ −A ⊂ clθ(A)−A ⊂ Dθ(A).
(ii) and (iii) are straight forward by Proposition 3.4 and Proposition 3.5.
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4 θ - Compatibility

Definition 4.1. Let (X, τ, I) be an ideal topological space, then τ is θ-compatible with the ideal I, if for every A ⊆ X

and if for every x ∈ A, there exists U ∈ τθ(x) such that U ∩A ∈ I, then A ∈ I and it is denoted by τ ∼θ I.

Theorem 4.1. Let (X, τ, I) be an ideal topological space, then the following properties are equivalent:

1. τ ∼θ I;

2. If a subset A of X has a cover of θ-open sets each of whose intersection with A is in I, then A ∈ I;

3. For every A ⊆ X , A ∩A∗θ = φ implies that A ∈ I;

4. For every A ⊆ X , A−A∗θ ∈ I.

5. For every A ⊆ X , if A contains no nonempty subset B with B ⊆ B∗θ, then A ∈ I.

Proof. (1)⇒ (2) . The proof is obvious.
(2)⇒ (3). LetA ⊆ X and x ∈ A. Since A ∩A∗θ = φ , x /∈ A∗θ and there exists some θ-open set Vx ∈ τθ such

that Vx ∩A ∈ I. Therefore, we have A ⊆
⋃
{Vx : x ∈ A} and Vx ∈ τθ and by (2) A ∈ I.

(3) ⇒ (4). For any A ⊆ X , A − A∗θ ⊆ A and (A − A∗θ) ∩ (A − A∗θ)∗θ ⊆ (A − A∗θ) ∩ A∗θ = φ . By (3),
A−A∗θ ∈ I.

(4)⇒ (5). By (4), for everyA ⊆ X ,A−A∗θ ∈ I. LetA−A∗θ = J ∈ I,A = J∪(A∩A∗θ) and by Theorem 3.17
(vii) and (xiii),A∗θ = J∗θ∪(A∩A∗θ)∗θ = (A∩A∗θ)∗θ . Therefore, we have (A∩A∗θ) =A∩(A∩A∗θ)∗θ ⊆ (A∩A∗θ)∗θ

and (A ∩A∗θ) ⊆ A. By the assumption A ∩A∗θ = φ and hence A =(A−A∗θ) ∈ I.
(5) ⇒ (1). Let A ⊆ X and assume that for every x ∈ A, there exists some θ-open set Ux containing x,

Ux ∩A ∈ I. Then A ∩A∗θ = φ . Suppose that A contains B such that B ⊆ B∗θ. Then B = B ∩B∗θ ⊆ A ∩A∗θ =
φ . Therefore, A contains no nonempty subset B with B ⊆ B∗θ. Hence A ∈ I.

Lemma 4.1. Let (X, τ, I) be an ideal topological space. If τ ∼θ I, then for every A ⊆ X , A∩A∗θ = φ implies that A∗θ

= φ .

Proof. Let A be any subset of X and A ∩ A∗θ = φ . By Theorem 4.1, A ∈ I and by Theorem 3.2 (xiii), A∗θ = φ

.

Theorem 4.2. Let (X, τ, I) be an ideal topological space. If τ ∼θ I then the following properties are equivalent:

1. For every A ⊆ X , A ∩A∗θ = φ implies that A∗θ = φ .

2. For every A ⊆ X , (A−A∗θ)∗θ = φ .

3. For every A ⊆ X , (A ∩A∗θ)∗θ = A∗θ .

Proof. (1)⇒ (2). Assume that every A ⊆ X , A∩A∗θ = φ implies that A∗θ = φ . Let B = A−A∗θ , then B ∩B∗θ

= (A−A∗θ) ∩ (A−A∗θ)∗θ = (A ∩ (X −A∗θ)) ∩ (A ∩ (X −A∗θ))∗θ ⊆ (A ∩ (X −A∗θ)) ∩ (A∗θ ∩ (X −A∗θ)∗θ) =
φ. By (1), we have B∗θ = φ . Hence (A−A∗θ)∗θ = φ .

(2)⇒ (3) Assume for everyA ⊆ X , (A−A∗θ)∗θ = φ . A = (A−A∗θ)∪(A∩A∗θ) . A∗θ = [(A−A∗θ)∪(A∩A∗θ)]∗θ

= (A−A∗θ)∗θ ∪ (A ∩A∗θ)∗θ = (A ∩A∗θ)∗θ.
(3)⇒ (1) Assume for every A ⊆ X , A∩A∗θ = φ and (A∩A∗θ)∗θ = A∗θ. This implies that φ = φ∗θ = A∗θ.

Definition 4.2. If (X, τ, I) is an ideal topological space, then I is ∗θ-codense if and only if A ⊂ A∗θ for every θ-open
set A of X .

Characterization of θ -local function in ∗θ-codense ideal topological space.

Theorem 4.3. Let (X, τ, I) be an ideal topological space. Then the following are equivalent:

1 . X = X∗θ.

2. τθ ∩ I = {φ}.
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3. If I ∈ I, then intθ(I) = φ .

4. For every U ∈ τθ, U ⊂ U∗θ.

Proof. (1) ⇒ (2): Let U ∈ τθ ∩ I. Then U ∈ τθ and U ∈ I. Suppose that x ∈ U . Since x ∈ X , this implies
x ∈ X∗θ. SinceU is a θ-open set containing x, U∩X /∈ I implies thatU /∈ I which is a contradiction. Therefore,
x /∈ U for every x ∈ X . This implies that U = φ and so τθ ∩ I = {φ}.

(2)⇒ (3): Suppose that (2) holds. Let I ∈ I be such that I 6= φ . Then intθ(I) ∈ τθ and intθ(I) ⊂ I implies
that intθ(I) ∈ I. Therefore, by (2), intθ(I) = φ .

(3) ⇒ (4): U ∈ τθ and x ∈ U . Suppose that x /∈ U∗θ. Then there exists a θ-open set Vx containing x such
that Vx∩U ∈ I. Since U ∩Vx is a θ-open set containing x, U ∩Vx = intθ(U ∩Vx) = φ by (3). Since x ∈ Vx ,x /∈ U .
Thus U ⊂ U∗θ for every U ∈ τθ.

(4)⇒ (1): Since X is θ-open, by (4), X ⊂ X∗θ, X = X∗θ.

Theorem 4.4. Let (X, τ, I) be an ideal topological space and I ∈ I. Then, I is τ∗θ-closed.

Proof. Let I ∈ I. By Theorem 3.22 (x) I∗θ = (I − I)∗θ = φ∗θ = φ . Hence cl∗θ(I) = I ∪ I∗θ = I which implies that
I is τ∗θ -closed.

Theorem 4.5. Let (X, τ, I) be an ideal topological space and A ⊂ X . Then A∗θ(τ∗θ, I) ⊂ A∗θ(τθ, I).

Proof. Let x ∈ A∗θ(τ∗θ, I). Suppose that x /∈ A∗θ(τ∗θ, I). Then there exists a θ-open set Ux containing x, such
that A∩Ux ∈ I. Since Ux ∈ τθ ⊂ τ∗θ, A∩Ux ∈ I for a τ∗θ-open set Ux containing x. Therefore, x /∈ A∗θ(τ∗θ, I)

which implies that A∗θ(τ∗θ, I) ⊂ A∗θ(τθ, I).

Theorem 4.6. Let (X, τ) be an ideal topological space where I and J are ideals on X and A ⊂ X . Then the following
hold:

(i) A∗θ(I ∩ J ) = A∗θ(I) ∪A∗θ(J ).

(ii) If I ⊂ J , then τ∗θ(I) ⊂ τ∗θ(J ).

(iii) τ∗θ(I ∩ J ) = τ∗θ(I) ∩ τ∗θ(J ).

Proof. (i) Let x /∈ A∗θ(I∩J ) if and only if there exists a θ-open set Ux containing x, such thatA∩Ux ∈ I∩J
if and only if A ∩ Ux ∈ I and A ∩ Ux ∈ J if and only if x /∈ A∗θ(I) and x /∈ A∗θ(J ) if and only if
x /∈ A∗θ(I) ∪A∗θ(J ). Hence, A∗θ(I ∩ J ) = A∗θ(I) ∪A∗θ(J ) for every subset A ⊂ X .

(ii) Let I ⊂ J . Now if X − A ∈ τ∗θ(I), then A ∪ A∗θ(I) = A which implies that A∗θ(I) ⊂ A. Since
I ⊂ J , A∗θ(J ) ⊂ A∗θ(I) ⊂ A by Theorem 3.17 (iii). Therefore, X − A ∈ τ∗θ(J ) which implies that
τ∗θ(I) ⊂ τ∗θ(J ).

(iii) LetA ⊂ X andX−A ∈ τ∗θ(I∩J ). Since I∩J is a subset of I andJ ,X−A ∈ τ∗θ(I) andX−A ∈ τ∗θ(J )

if and only if A is τ∗θ(I)- closed and τ∗θ(J )- closed if and only if A∗θ(I) ⊂ A and A∗θ(J ) ⊂ A. Hence,
A∗θ(I) ∪ A∗θ(J ) ⊂ A if and only if A∗θ(I ∩ J ) ⊂ A by (i). This implies that A is τ∗θ(I ∩ J )-closed.
Therefore, τ∗θ(I ∩ J ) = τ∗θ(I) ∩ τ∗θ(J ).

5 The operator ψθ

Definition 5.1. Let (X, τ, I) be an ideal topological space. An operator ψθ :℘(X)→ τ is defined as ψθ(A) = {x ∈ X :
there exists a θ-open set Ux containing x such that Ux − A ∈ I}, for every A ∈ ℘(X). We observe that ψθ(A) =
X − (X −A)∗θ.

Theorem 5.1. Let (X, τ, I) be a ideal topological space. Then, for A ∈ ℘(X), ψθ(A) = X − (X −A)∗θ.
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Proof. Let x ∈ ψθ(A). Then there exists a θ-open set Ux containing x such that Ux − A ∈ I. Then X ∩ (Ux −
A) ∈ I, implies that Ux ∩ (X − A) ∈ I. So x /∈ (X − A)∗θ and hence, x ∈ X − (X − A)∗θ. Therefore,
ψθ(A) ⊂ X − (X − A)∗θ . For reverse inclusion, if x ∈ X − (X − A)∗θ, then x /∈ (X − A)∗θ and so there exists
a θ-open set Ux containing x such that Ux ∩ (X − A) ∈ I which implies that Ux − A ∈ I. Hence x ∈ ψθ(A).
Thus X − (X −A)∗θ ⊂ ψθ(A) and so ψθ(A) = X − (X −A)∗θ.

Theorem 5.2. Let (X, τ, I) be an ideal topological space and let A , B be subsets of X , then the following hold:

(i) If A ⊆ B, then ψθ(A) ⊆ ψθ(B).

(ii) If A,B ∈ ℘(X), then ψθ(A) ∪ ψθ(B) ⊂ ψθ(A ∪B)

(iii) If A,B ∈ ℘(X), then ψθ(A) ∩ ψθ(B)=ψθ(A ∩B).

(iv) If A ⊆ X , ψθ(A) ⊂ ψ(A).

(v) If U ∈ τθ , then U ⊆ ψθ(U). Also, if U ∈ τ∗θ, then U ⊆ ψθ(U).

(vi) If A ⊆ X , then ψθ(A) ⊆ ψθ(ψθ(A)).

(vii) If A ⊆ X , then ψθ(A) = ψθ(ψθ(A)) if and only if ((X −A)∗θ)∗θ = (X −A)∗θ.

(viii) If A ⊆ X and I ∈ I, then ψθ(A− I) = ψθ(A) = ψθ(A ∪ I).

(ix) If (A−B) ∪ (B −A) ∈ I, then ψθ(A) = ψθ(B).

Proof. (i) Since A ⊆ B, then (X − A) ⊇ (X − B). Then by Theorem 3.22 (ii), (X − A)∗θ ⊇ (X − B)∗θ and
hence ψθ(A) ⊆ ψθ(B).

(ii) Since A ⊂ A ∪B and B ⊂ A ∪B, by (i) ψθ(A) ∪ ψθ(B) ⊂ ψθ(A ∪B).

(iii) ψθ(A∩B) = X − (X − (A∩B))∗θ = X − ((X −A)∪ (X −B))∗θ. This implies that ψθ(A∩B) = X − ((X −
A)∗θ ∪ (X − B)∗θ), from Theorem 3.22(xi). Therefore, ψθ(A ∩ B) = (X − (X − A)∗θ) ∪ (X − (X − B)∗θ)

and hence, ψθ(A ∩B) = ψθ(A) ∩ ψθ(B).

(iv) From Theorem 3.17 (iv), we have that (X − A)∗ ⊂ (X − A)∗θ. This implies that X − (X − A)∗ ⊃
X − (X −A)∗θ and ψθ(A) ⊂ ψ(A).

(v) Since U ∈ τθ, then X − U is a θ-closed set. So, clθ(X − U) = X − U . By theorem 3.22 (vi), (X − U)∗θ ⊆
clθ(X − U) = (X − U). Then, U ⊆ X − (X − U)∗θ = ψθ(U) for every U ∈ τθ. If U ∈ τ∗θ, then X − U is a
τ∗θ-closed which implies that (X − U)∗θ ⊆ (X − U) and so, U ⊆ X − (X − U)∗θ = ψθ(U).

(vi) This follows from (i) and (v).

(vii) Since ψθ(ψθ(A)) =X−(X−ψθ(A))∗θ =X−(X−(X−(X−A)∗θ))∗θ =X−((X−A)∗θ)∗θ =X−(X−A)∗θ

= ψθ(A) if and only if ((X −A)∗θ)∗θ = (X −A)∗θ.

(viii) We know that X − (X − (A − I))∗θ = X − ((X − A) ∪ I)∗θ = X − (X − A)∗θ, ( Theorem3.22(xvi)). So,
ψθ(A − I) = ψθ(A). Also, we know that X − (X − (A ∪ I))∗θ = X − ((X − A) − I)∗θ = X − (X − A)∗θ,
(from Theorem 3.22(xvi)). So, ψθ(A− I) = ψθ(A). Also, ψθ(A ∪ I) = ψθ(A).

(ix) Given that (A − B) ∪ (B − A) ∈ I, and let A − B = I1, B − A = I2. We observe that I1 and I2 ∈ I by
heredity. Also, observe that, B = ((A− I1) ∪ I2). Thus, ψθ(A) = ψθ((A− I1) ∪ I2) = ψθ(B).

Corollary 5.1. Let (X, τ, I) be an ideal topological space. Then U ⊆ ψθ(U) for every θ-open set U ⊆ X .

Proof. We know that ψθ(U) = X − (X −U)∗θ. Now (X −U)∗θ ⊆ clθ(X −U) = X −U , since X −U is θ-closed.
Therefore, U = X − (X − U) ⊆ X − (X − U)∗θ = ψθ(U).

Remark 5.1. The following example shows that a set A is not θ-open but satisfies A ⊆ ψθ(A).
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Example 5.1. Let X = {a, b, c, d}, τ = {φ, {a}, {c, d}, {a, c, d}, {b, c, d}, X} and I = {φ, {c}, {c, d}}. Let A = {b}.
Then ψθ({b}) = X − (X − {b})∗θ = X − ({a, c, d})∗θ = X − {a} = {b, c, d}. Therefore, A ⊆ ψθ(A), But A is not
θ-open.

Theorem 5.3. Let (X, τ, I) be an ideal topological space. If A ⊆ X , then, A ∩ ψθ(A) = intθ(A).

Proof. If x ∈ A ∩ ψθ(A), then x ∈ A and there exists a θ-open set Ux containing x, such that Ux −A ∈ I. Then,
by Remark 3.5, Ux− (Ux−A) ∈ τθ-open neighborhood of x and x ∈ intθ(A). On the other hand, if x ∈ intθ(A)

there exists a basic τθ-open neighborhood Vx −A of x, where Vx −A ∈ τ and I ∈ I, such that x ∈ Vx − I ⊆ A
which implies Vx −A ⊆ I and hence Vx −A ∈ I. Hence, x ∈ A ∩ ψθ(A).

Theorem 5.4. Let (X, τ, I) be an ideal topological space and A ⊆ X . Then the following properties hold:

1. ψθ(A) =
⋃
{U ∈ τθ: U −A ∈ I}.

2. ψθ(A) ⊇
⋃
{U ∈ τθ :(U −A) ∪ (A− U) ∈ I}.

Proof. (1) This follows immediately from the definition of ψθ-operator.

(2) Since I is heredity, it is obvious that
⋃
{U ∈ τθ:(U −A)∪ (A−U) ∈ I} ⊆

⋃
{U ∈ τθ: U −A ∈ I} = ψθ(A)

for every A ⊆ X .

Theorem 5.5. Let (X, τ, I) be an ideal topological space. Then τ ∼θ I if and only if ψθ(A)−A ∈ I for every A ⊆ X .

Proof. Necessity:
Assume τ ∼θ I and let A ⊆ X . Observe that x ∈ ψθ(A) − A ∈ I if and only if x /∈ A and x /∈ (X − A)∗θ

if and only if x /∈ A and there exists some θ-open set Ux ∈ τθ(x) such that Ux − A ∈ I if and only if there
exists some θ-open set Ux ∈ τθ(x) such that x ∈ Ux − A ∈ I. Now, for each x ∈ ψθ(A) − A and Ux ∈ τθ(x),
Ux ∩ (ψθ(A)−A) ∈ I by heredity and hence, ψθ(A)−A ∈ I by assumption that τ ∼θ I.
Sufficiency:

Let A ⊆ X and assume that for each x ∈ A there exists some θ-open set Ux ∈ τθ(x) such that Ux ∩ A ∈ I.
Observe that ψθ(X−A)−(X−A) =A−A∗θ = {x : there exists some θ-open setUx ∈ τθ(x) such thatUx∩A ∈ I}.
Thus, we have A ⊆ ψθ(X −A)− (X −A) ∈ I and hence, A ∈ I by heredity of I.

Theorem 5.6. Let (X, τ, I) be an ideal topological space with τ ∼θ I, A ⊆ X . If N is a nonempty θ-open subset of
A∗θ ∩ ψθ(A), then N −A ∈ I and N ∩A /∈ I.

Proof. If N ⊆ A∗θ ∩ ψθ(A), then N − A ⊆ ψθ(A) − A ∈ I by Theorem 5.5 and hence N − A ∈ I by heredity.
Since N ∈ τθ − {φ} and N ⊆ A∗θ, we have N ∩A /∈ I by the definition of A∗θ.

Remark 5.2. Let (X, τ, I) be an ideal topological space with τ ∼θ I. Then ψθ(A) = ψθ(ψθ(A)) for every A ⊆ X .

Proof. ψθ(A) ⊆ ψθ(ψθ(A)) follows from Theorem 5.2(vi). Since τ ∼θ I, it follows from Theorem 5.5 that
ψθ(A) ⊆ A ∪ I for some I ∈ I, and hence ψθ(A) = ψθ(ψθ(A)) by Theorem 5.2 (viii).

Theorem 5.7. Let (X, τ, I) be an ideal topological space with τ ∼θ I. Then ψθ(A) =
⋃
{ψθ(U): U ∈ τθ , ψθ(U)−A ∈

I}.

Proof. Let Φ(A) =
⋃
{ψθ(U): U ∈ τθ , ψθ(U)− A ∈ I}. Clearly Φ(A) ⊆ ψθ(A). Now let x ∈ ψθ(A). Then, there

exists a θ-open set U , such that U −A ∈ I. By Corollary 5.1, U ⊆ ψθ(U)and ψθ(U)−A ⊆ [ψθ(U)−U ]∪ [U −A].
By Theorem 5.5 ψθ(U) − U ∈ I. Hence, x ∈ Φ(A) and Φ(A) ⊇ ψθ(A). Consequently, we obtain Φ(A) =
ψθ(A).

Theorem 5.8. Let (X, τ, I) be an ideal topological space with τ ∼θ I, where τθ∩I = φ. Then forA ⊆ X , ψθ(A) ⊆ A∗θ.

Proof. Suppose x ∈ ψθ(A) and x /∈ A∗θ. Then, there exists a θ-open set Ux ∈ τ(x) such that Ux ∩ A ∈ I. Since
x ∈ ψθ(A), by Theorem 5.4 x ∈

⋃
{U ∈ τθ : U − A ∈ I} and there exists a θ-open set Vx ∈ τθ(x) such that

Vx−A ∈ I. Now, we have Ux ∩ Vx ∈ τθ(x), Ux ∩ Vx ∩A ∈ I and Ux ∩ Vx−A ∈ I by heredity. Hence, by finite
additivity, we have (Ux ∩Vx ∩A)∪ (Ux ∩Vx−A) = Ux ∩Vx ∈ I. Since (Ux ∩Vx) ∈ τθ, this is contrary to τθ ∩I
= φ . Therefore, x ∈ A∗θ. This implies that ψθ(A) ⊆ A∗θ.
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Abstract

In this paper we are concerned with a nonlocal problem of a stochastic differential equation that contains
a Brownian motion. The solution contains both of mean square Riemann and mean square Riemann-Steltjes
integrals, so we study an existence theorem for unique mean square continuous solution and its continuous
dependence of the random data X0 and the (non-random data) coefficients of the nonlocal condition ak. Also,
a stochastic differential equation with the integral condition will be considered.
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1 Introduction

Many authors in the last decades studied a nonlocal problems of ordinary differential equations, the reader
is referred to ([3]-[8]), and references therein.
Also the theory of stochastic differential equations, random fixed point theory, existence of solutions of
stochastic differential equations by using successive approximation method and properties of these solutions
have been extensively studied by several authors, especially those contain the Brownian motion as a formal
derivative of the Gausian white noise, the Brownian motion W(t), t ∈ R, is defined as a stochastic process
such that

W(0) = 0, E(W(t)) = 0, E(W(t))2 = t

and [W(t1) −W(t2)] is a Gaussian random variable for all t1, t2 ∈ R. The reader is referred to ([1]-[2]) and
([9]-[13]) and references therein.
Here we are concerned with the stochastic differential equation

dX(t) = f (t, X(t))dt + g(t)dW(t), t ∈ (0, T] (1.1)

with the nonlocal random initial condition

X(0) +
n

∑
k=1

ak X(τk) = X0, ak > 0 , τk ∈ (0, T), (1.2)

where X0 is a second order random variable independent of the Brownian motion W(t) and ak are positive
real integers.

∗Corresponding author.
maysa elgendy@yahoo.com : amasyed@alexu.edu.eg (A. M. A. El-Sayed), ragab 537@yahoo.com (R. O. Abd-El-Rahman) and
maysa elgendy@yahoo.com (M. El-Gendy).
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The existence of a unique mean square solution will be studied. The continuous dependence on the random
data X0 and the non-random data ak will be established. The problem (1.1) with the integral condition

X(0) +
T∫

0

X(s)dv(s) = X0. (1.3)

will be considered.

2 Integral representation

Let I = [0, T] and C = C(I, L2(Ω)) be the class of all mean square continuous second order stochastic
process with the norm

‖ X ‖C= sup
t∈[0,T]

‖ X(t) ‖2= sup
t∈[0,T]

√
E(X(t))2.

Throughout the paper we assume that the following assumptions hold

(H1) The function f : [0, T]× L2(Ω)→ L2(Ω) is mean square continuous.

(H2) There exists an integrable function k : [0, T]→ R+, where

sup
t∈[0,T]

t∫
0

k(s)ds ≤ m

such that the function f satisfies the mean square Lipschitz condition

‖ f (t, X1(t))− f (t, X2(t)) ‖2≤ k(t) ‖ X1(t)− X2(t) ‖2 .

(H3) There exists a positive real number m1 such that

sup
t∈[0,T]

| f (t, 0) |≤ m1.

Now we have the following lemmas.

Lemma 2.1. For a deterministic function g(t) : I → <+ and a Brownian motion W(t)∣∣∣∣∣∣
∣∣∣∣∣∣

t∫
0

g(s)dW(s)

∣∣∣∣∣∣
∣∣∣∣∣∣
2

=

t∫
0

g2(s)ds

Proof. ∣∣∣∣∣∣
∣∣∣∣∣∣

t∫
0

g(s)dW(s)

∣∣∣∣∣∣
∣∣∣∣∣∣
2

= E

 t∫
0

g(s)dW(s)

2

= E

 t∫
0

g(s)dW(s)

 t∫
0

g(s)dW(s)


= E

(
lim

n→∞

n−1

∑
k=0

g(tk)∆W(tk)

)(
lim

n→∞

n−1

∑
k=0

g(tk)∆W(tk)

)

=

(
lim

n→∞

n−1

∑
k=0

g2(tk)E(∆W(tk))
2

)

=

(
lim

n→∞

n−1

∑
k=0

g2(tk)(∆tk)

)

=

t∫
0

g2(s)ds

This complete the proof.
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Lemma 2.2. The solution of the problem (1.1)and(1.2) can be expressed by the integral equation

X(t) = a

X0 −
m

∑
k=1

ak

τk∫
0

f (s, X(s))ds−
m

∑
k=1

ak

τk∫
0

g(s)dW(s)

+

t∫
0

f (s, X(s))ds +
t∫

0

g(s)dW(s), (2.1)

where a =

(
1 +

n
∑

k=1
ak

)−1
.

Proof. . Integrating equation (1.1), we obtain

X(t) = X(0) +
t∫

0

f (s, X(s))ds +
t∫

0

g(s)dW(s)

and

X(τk) = X(0) +

τk∫
0

f (s, X(s))ds +
τk∫

0

g(s)dW(s),

then

n

∑
k=1

akX(τk) =
n

∑
k=1

akX(0) +
n

∑
k=1

ak

τk∫
0

f (s, X(s))ds +
n

∑
k=1

ak

τk∫
0

g(s)dW(s)

X0 − X(0) =
n

∑
k=1

akX(0) +
n

∑
k=1

ak

τk∫
0

f (s, X(s))ds +
n

∑
k=1

ak

τk∫
0

g(s)dW(s)

and (
1 +

n

∑
k=1

ak

)
X(0) = X0 −

n

∑
k=1

ak

τk∫
0

f (s, X(s))ds−
n

∑
k=1

ak

τk∫
0

g(s)dW(s),

then

X(0) =

(
1 +

n

∑
k=1

ak

)−1
X0 −

n

∑
k=1

ak

τk∫
0

f (s, X(s))ds−
n

∑
k=1

τk∫
0

g(s)dW(s)

 .

Hence

X(t) = a

X0 −
n

∑
k=1

ak

τk∫
0

f (s, X(s))ds−
n

∑
k=1

ak

τk∫
0

g(s)dW(s)

+

t∫
0

f (s, X(s))ds +
t∫

0

g(s)dW(s).

where a =

(
1 +

n
∑

k=1
ak

)−1
.

Now define the mapping

FX(t) = a

X0 −
n

∑
k=1

ak

τk∫
0

f (s, X(s))ds−
n

∑
k=1

ak

τk∫
0

g(s)dW(s)

+

t∫
0

f (s, X(s))ds +
t∫

0

g(s)dW(s). (2.2)

Then we can prove the following lemma.

Lemma 2.3. F : C → C.

Proof. . Let X ∈ C, t1 , t2 ∈ [0, T] such that | t2 − t1 |< δ, then

FX(t2)− FX(t1) =

t2∫
t1

f (s, X(s))ds +
t2∫

t1

g(s)dW(s).
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From assumption (H2) we have

‖ f (t, X(t)) ‖2 − | f (t, 0) |≤‖ f (t, X(t))− f (t, 0) ‖2≤ k(t) ‖ X(t) ‖2,

then we have
‖ f (t, X(t)) ‖2≤ k(t) ‖ X(t) ‖2 + | f (t, 0) |≤ k(t) ‖ X ‖C +m1.

So,

‖ F X(t2)− F X(t1) ‖2≤
t2∫

t1

|| f (s, X(s))||2 ds+ ‖
t2∫

t1

g(s)dW(s) ‖2,

using assumptions and lemma 2.1, we get

‖ F X(t2)− F X(t1) ‖2≤‖ X ‖C

t2∫
t1

k(s)ds + m1(t2 − t1) +

√√√√√ t2∫
t1

g2(s)ds

which proves that F : C → C.

3 Existence and uniqueness

For the existence of a unique continuous solution X ∈ C of the problem (1.1)-(1.2), we have the following
theorem.

Theorem 3.1. Let the assumptions (H1) − (H3) be satisfied. If 2m < 1, then the problem (1.1)-(1.2) has a unique
solution X ∈ C.

Proof. Let X and X∗ ∈ C, then

‖ FX(t)− FX∗(t) ‖2

=

∣∣∣∣∣∣
∣∣∣∣∣∣

t∫
0

[ f (s, X(s))− f (s, X∗(s))]ds− a
n

∑
k=1

ak

τk∫
0

[ f (s, X(s))− f (s, X∗(s))]ds

∣∣∣∣∣∣
∣∣∣∣∣∣
2

≤
t∫

0

|| f (s, X(s))− f (s, X∗(s))||2 ds + a
n

∑
k=1

ak

τk∫
0

|| f (s, X(s))− f (s, X∗(s))||2 ds

≤ m ‖ X− X∗ ‖C +

[
a

n

∑
k=1

ak

]
m ‖ X− X∗ ‖C,

≤
[

1 + a
n

∑
k=1

ak

]
m ‖ X− X∗ ‖C

≤ 2m ‖ X− X∗ ‖C .

Hence
‖ FX− FX∗ ‖C≤ 2m ‖ X− X∗ ‖C .

If 2m < 1 , then F is contraction and there exists a unique solution X ∈ C of the nonlocal stochastic problem
(1.1)-(1.2), [2]. This solution is given by (2.1).

4 Continuous dependence

Consider the stochastic differential equation (1.1) with the nonlocal condition

X(0) +
n

∑
k=1

ak X(τk) = X̃0 , τk ∈ (0, T) (4.1)
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Definition 4.1. The solution X ∈ C of the nonlocal problem (1.1)-(1.2) is continuously dependent (on the data X0) if
∀ε > 0 , ∃δ > 0 such that ‖ X0 − X̃0 ‖2≤ δ implies that ‖ X− X̃ ‖C≤ ε

Here, we study the continuous dependence (on the random data X0) of the solution of the stochastic
differential equation (1.1) and (1.2).

Theorem 4.2. Let the assumptions (H1)− (H3) be satisfied. Then the solution of the nonlocal problem (1.1)-(1.2) is
continuously dependent on the random data X0.

Proof. Let

X(t) = a

X0 −
n

∑
k=1

ak

τk∫
0

f (s, X(s))ds−
n

∑
k=1

ak

τk∫
0

g(s)dW(s)

+

t∫
0

f (s, X(s))ds +
t∫

0

g(s)dW(s)

be the solution of the nonlocal problem (1.1)-(1.2) and

X̃(t) = a

X̃0 −
n

∑
k=1

ak

τk∫
0

f (s, X̃(s))ds−
n

∑
k=1

ak

τk∫
0

g(s)dW(s)

+

t∫
0

f (s, X̃(s))ds +
t∫

0

g(s)dW(s)

be the solution of the nonlocal problem (1.1) and (4.1). Then

X(t)− X̃(t) = a[X0 − X̃0]− a
n

∑
k=1

ak

τk∫
0

[ f (s, X(s))− f (s, X̃(s))]ds

+

t∫
0

[ f (s, X(s))− f (s, X̃(s))]ds.

Using our assumptions, we get

‖ X(t)− X̃(t) ‖2 ≤ a ‖ X0 − X̃0 ‖2 +a
n

∑
k=1

ak

τk∫
0

‖ f (s, X(s))− f (s, X̃(s)) ‖2 ds

+

t∫
0

‖ f (s, X(s))− f (s, X̃(s)) ‖2 ds

≤ aδ + 2m ‖ X− X̃ ‖2,

then

‖ X− X̃ ‖C ≤ aδ

1− 2m
= ε

This complete the proof.

Now consider the stochastic differential equation (1.1) with the nonlocal condition

X(0) +
n

∑
k=1

ãk X(τk) = X0 , τk ∈ (0, T) (4.2)

Definition 4.2. The solution X ∈ C of the nonlocal problem (1.1)-(1.2) is continuously dependent (on the coefficient
ak of the nonlocal condition) if ∀ε > 0 , ∃δ > 0 such that | ak − ãk |≤ δ implies that ‖ X− X̃ ‖C≤ ε

Here, we study the continuous dependence (on the coefficient ak of the nonlocal condition) of the solution
of the stochastic differential equation (1.1) and (1.2).

Theorem 4.3. Let the assumptions (H1)− (H3) be satisfied. Then the solution of the nonlocal problem (1.1)-(1.2) is
continuously dependent on the coefficient ak of the nonlocal condition.
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Proof. Let

X(t) = a

X0 −
n

∑
k=1

ak

τk∫
0

f (s, X(s))ds−
n

∑
k=1

ak

τk∫
0

g(s)dW(s)

+

t∫
0

f (s, X(s))ds +
t∫

0

g(s)dW(s)

be the solution of the nonlocal problem (1.1)-(1.2) and

X̃(t) = ã

X0 −
n

∑
k=1

ãk

τk∫
0

f (s, X̃(s))ds−
n

∑
k=1

ãk

τk∫
0

g(s)dW(s)

+

t∫
0

f (s, X̃(s))ds +
t∫

0

g(s)dW(s)

be the solution of the nonlocal problem (1.1) and (4.2).

Then

X(t)− X̃(t) = [a− ã]X0 +

t∫
0

[ f (s, X(s))− f (s, X̃(s))]ds−
[

n

∑
k=1

ak −
n

∑
k=1

ãk

] τk∫
0

g(s)dW(s)

− a
n

∑
k=1

ak

τk∫
0

f (s, X(s))ds + ã
n

∑
k=1

ãk

τk∫
0

f (s, X̃(s))ds.

Now

| a− ã | =

∣∣∣∣∣∣∣∣
1

1 +
n
∑

k=1
ak

− 1

1 +
n
∑

k=1
ãk

∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣

n
∑

k=1
(ãk − ak)(

1 +
n
∑

k=1
ak

)(
1 +

n
∑

k=1
ãk

)
∣∣∣∣∣∣∣∣ ≤

∣∣∣∣∣ n

∑
k=1

(ãk − ak)

∣∣∣∣∣ ≤ nδ

and

ã
n

∑
k=1

ãk

τk∫
0

f (s, X̃(s))ds− a
n

∑
k=1

ak

τk∫
0

f (s, X(s))ds

= ã

(
1 +

n

∑
k=1

ãk

) τk∫
0

f (s, X̃(s))ds− a

(
1 +

n

∑
k=1

ak

) τk∫
0

f (s, X(s))ds

− ã
τk∫

0

f (s, X̃(s))ds + a
τk∫

0

f (s, X(s))ds

= ã(ã−1)

τk∫
0

f (s, X̃(s))ds− a(a−1)

τk∫
0

f (s, X(s))ds

− ã
τk∫

0

f (s, X̃(s))ds + a
τk∫

0

f (s, X(s))ds

= −
τk∫

0

[ f (s, X(s))− f (s, X̃(s))]ds + a
τk∫

0

f (s, X(s))ds− ã
τk∫

0

f (s, X̃(s))ds

− ã
τk∫

0

f (s, X(s))ds + ã
τk∫

0

f (s, X(s))ds

= −
τk∫

0

[ f (s, X(s))− f (s, X̃(s))]ds + [a− ã]
τk∫

0

f (s, X(s))ds

+ ã
τk∫

0

[ f (s, X(s))− f (s, X̃(s))]ds
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and [
a

n

∑
k=1

ak − ã
n

∑
k=1

ãk

] τk∫
0

g(s)dW(s) =

[
a

(
1 +

n

∑
k=1

ak

)
− ã

(
1 +

n

∑
k=1

ãk

)] τk∫
0

g(s)dW(s)

− [a− ã]
τk∫

0

g(s)dW(s)

=
[

aa−1 − ãã−1
] τk∫

0

g(s)dW(s)− [a− ã]
τk∫

0

g(s)dW(s)

= −[a− ã]
τk∫

0

g(s)dW(s).

Then

‖ X(t)− X̃(t) ‖2 ≤ nδ ‖ X0 ‖2 +

t∫
τk

‖ f (s, X(s))− f (s, X̃(s)) ‖2 ds + nδ

∣∣∣∣∣∣
∣∣∣∣∣∣

τk∫
0

g(s)dW(s)

∣∣∣∣∣∣
∣∣∣∣∣∣
2

+ nδ [m ‖ X ‖C +m1T] + ã
τk∫

0

‖ f (s, X(s))− f (s, X̃(s)) ‖2 ds.

Using our assumptions we get

‖ X− X̃ ‖C ≤ nδ ‖ X0 ‖2 +m ‖ X− X̃ ‖C +nδ

√√√√√ τk∫
0

g2(s)ds + nδ [m ‖ X ‖C +m1T]

+ ãm ‖ X− X̃ ‖C,

then

‖ X− X̃ ‖C ≤ nδ

‖ X0 ‖2 +m ‖ X ‖C +m1T +

√√√√√ τk∫
0

g2(s)ds

+ (1 + ã)m ‖ X− X̃ ‖C

≤ nδ

‖ X0 ‖2 +m ‖ X ‖C +m1T +

√√√√√ τk∫
0

g2(s)ds

+ 2m ‖ X− X̃ ‖C .

Hence

‖ X− X̃ ‖C ≤
nδ

[
‖ X0 ‖2 +m ‖ X ‖C +m1T +

√
τk∫
0

g2(s)ds

]
1− 2m

= ε.

This complete the proof.

5 Nonlocal Integral Condition

Let
ak = v(tk)− v(tk−1), τk ∈ (tk−1, tk),

where
0 < t1 < t2 < t3 < .... < T.
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Then, the nonlocal condition (1.2) will be in the form

X(0) +
n

∑
k=1

X(τk) (v(tk)− v(tk−1)) = X0.

From the mean square continuity of the solution of the nonlocal problem (1.1)-(1.2), we obtain from [13]

l.i.m
n→∞

n

∑
k=1

X(τk) (v(tk)− v(tk−1)) =
∫ T

0
X(s)dv(s),

that is, the nonlocal conditions (1.2) is transformed to the mean square Riemann-Steltjes integral condition

X(0) +

T∫
0

X(s)dv(s) = X0.

Now, we have the following theorem.

Theorem 5.4. Let the assumptions (H1)-(H3) be satisfied, then the stochastic differential equation (1.1) with the
nonlocal integral condition (1.3) has a unique mean square continuous solution represented in the form

X(t) = a?

X0 −
T∫

0

s∫
0

f (θ, X(θ))dθdv(s)−
T∫

0

s∫
0

g(θ)dW(θ)dv(s)

+

t∫
0

f (θ, X(θ))dθ +

t∫
0

g(θ)dW(θ),

where a? = (1 + v(T)− v(0))−1.

Proof. Taking the limit of equation (2.1) we get the proof.

6 Conclusion

Here we defined the mean square continuous solution for the stochastic differential equation and proved
the existence of unique solution of the problem (1.1)-(1.2), then we studied the continuous dependence of the
solution of (1.1)-(1.2) on the initial random data and the nonrandom coefficient of the nonlocal condition .
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Abstract

In this paper we are concerned with a problem of of a delay stochastic differential equation with nonlocal
condition, the solution is represented as stochastic integral equation that contain mean square Riemann
integral. We study the existence of at least mean square continuous solution for this problem. The existence
of the maximal and minimal solutions will be proved.
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1 Introduction

The problems of differential equation with nonlocal condition studied recently by some authors, see ([3]-[5])
and ([7]-[8]) and references therein. Problems of the stochastic differential equations have been extensively
studied by several authors in the last decades The reader is referred to ([1]-[2]), ([6]) and ([9]-[14]) and
references therein.
Let φ : [0, T]→ [0, T] be continuous real-valued function such that φ(t) ≤ t, t ∈ [0, T].
Here we are concerned with the delay stochastic differential equation

dX(t)
dt

= f (t, X(φ(t))), t ∈ (0, T] (1.1)

with the random nonlocal initial condition

X(0) +
m

∑
k=1

akX(τk) = X0, τk ∈ (0, T), (1.2)

where X0 is a second order random variable and ak are positive real numbers.
Our aim is to study the existence of at least mean square continuous solution of the problem (1.1)-(1.2). Also
we define the maximal and minimal solution of the stochastic differential equation. Hence we study the
existence of maximal and minimal solution of the problem (1.1)-(1.2).

2 Preliminaries

Here we give some preliminaries which will be needed in our work.

∗Corresponding author.
maysa elgendy@yahoo.com : amasyed@alexu.edu.eg (A. M. A. El-Sayed), fatmagaafar2@yahoo.com (F. Gaafar) and
maysa elgendy@yahoo.com (M. El-Gendy).
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Definition 2.1. [13][Random Caratheodory function]
Let X be a stochastic process and let t ∈ I = [a, b], a and b are real numbers. A stochastic function f (t, X(ω)) is called
a Caratheodory function if it satisfies the following conditions

1. f (t, X(.)) is measurable for every t,

2. f (., X(ω)) is continuous for a.e. stochastic process X.

Theorem 2.1. [12][ Schauder and Tychonoff theorem]
Let Q be a closed bounded convex set in a Banach space and Let T be a completely continuous operator on Q such that
T(Q) ⊂ Q. Then T has at least one fixed point in Q. That is, there is at least one x∗ ∈ Q such that T(x∗) = x∗.

Definition 2.2. [10] A family of real random functions (X1(t), X2(t), ..., Xk(t)) is uniformly bounded in mean square
sense if there exist a β ∈ R (β is finite) such that E(X2

n(t)) < β for all n ≥ 1 and all t ∈ I = [a, b], where a, b are real
numbers.

Definition 2.3. [10] A family of real random functions (X1(t), X2(t), ..., Xk(t)) is equicontinuous in mean square
sense if for each t ∈ I = [a, b], where a, b are real numbers and ε > 0, there exist a δ > 0 such that

E([Xn(t2)− Xn(t1)]
2) < ε, ∀ n ≥ 1 when ever | t2 − t1 |< δ.

Theorem 2.2. [10][Arzela theorem]
Every uniformly bounded equicontinuous family (sequence) of functions ( f1(x), f2(x), ..., fk(x)) has at least one
subsequence which converges uniformly on the I = [a, b], where a, b are real numbers

Theorem 2.3. [11][Stochastic Lebesgue dominated convergence theorem]
Let Xn(t) be a sequence of random vectors (or functions) is converging to X(t) such that

X(t) = lim
n→∞

Xn(t), a.s.,

and Xn(t) is dominated by an integrable function a(t) such that ‖ Xn(t) ‖2≤ a(t). Then

1. E[ lim
n→∞

Xn] = lim
n→∞

E[Xn] and

2. E[Xn(t)− X(t)]→ 0 as n→ ∞

where a.s. means that it happens with probability one.

3 Integral representation

Let I = [0, T] and C = C(I, L2(Ω)) be the class of all mean square continuous second order stochastic
process with the norm

‖ X ‖C= sup
t∈[0,T]

‖ X(t) ‖2= sup
t∈[0,T]

√
E (X(t))2.

Throughout the paper we assume that the following assumptions hold

i- The functions f : [0, T]× L2(Ω)→ L2(Ω) is Caratheodory function in mean square sense.

ii- There exists an integrable function l(t) ∈ L1 such that

‖ f (t, X(t)) ‖2≤ l(t) , ∀(t, X) ∈ I × L2(Ω)

with

[
sup

t∈[0,T]

t∫
0

l(s)ds ≤ M

]
, where M is a positive real number.

Now we have the following lemma.
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Lemma 3.1. The solution of the nonlocal stochastic problem (1.1) and (1.2) can be expressed by the stochastic integral
equation

X(t) = a

X0 −
m

∑
k=1

ak

τk∫
0

f (s, X(φ(s)))ds

+

t∫
0

f (s, X(φ(s)))ds (3.1)

where a =

(
1 +

m
∑

k=1
ak

)−1
.

Proof. . Integrating equation (1.1), we obtain

X(t) = X(0) +
t∫

0

f (s, X(φ(s)))ds

and

X(τk) = X(0) +

τk∫
0

f (s, X(φ(s)))ds,

then

m

∑
k=1

akX(τk) =
m

∑
k=1

akX(0) +
m

∑
k=1

ak

τk∫
0

f (s, X(φ(s)))ds,

X0 − X(0) =
m

∑
k=1

akX(0) +
m

∑
k=1

ak

τk∫
0

f (s, X(φ(s)))ds

and (
1 +

m

∑
k=1

ak

)
X(0) = X0 −

m

∑
k=1

ak

τk∫
0

f (s, X(φ(s)))ds,

then

X(0) =

(
1 +

m

∑
k=1

ak

)−1
X0 −

m

∑
k=1

ak

τk∫
0

f (s, X(φ(s)))ds

 .

Hence

X(t) = a

X0 −
m

∑
k=1

ak

τk∫
0

f (s, X(φ(s)))ds

+

t∫
0

f (s, X(φ(s)))ds,

where a =

(
1 +

m
∑

k=1
ak

)−1
.

4 Existence of at least mean square continuous solution

For the existence of at least continuous solution X ∈ C of the stochastic problem (1.1) and (1.2), we have
the following theorem.

Theorem 4.4. Let the assumptions (i)-(ii) be satisfied, then the problem (1.1)-(1.2) has at least a solution X ∈ C given
by the stochastic integral equation (3.1).

Proof. . Consider in the space C, the set Q such that

Q = {X ∈ C :‖ X ‖C≤ β; β is a positive real number}

Now for each X(t) ∈ Q we can define the operator H by

HX(t) = a

X0 −
m

∑
k=1

ak

τk∫
0

f (s, X(φ(s)))ds

+

t∫
0

f (s, X(φ(s)))ds



500 A. M. A. El-Sayed et al. / On the maximal and minimal solutions of...

we shall prove that HX(t) ∈ Q. For that let X(t) ∈ Q, then

‖ HX(t) ‖2 ≤ a ‖ X0 ‖2 +a
m

∑
k=1

ak

τk∫
0

‖ f (s, X(φ(s))) ‖2 ds +
t∫

0

‖ f (s, X(φ(s))) ‖2 ds

≤ a ‖ X0 ‖2 +a
m

∑
k=1

ak

τk∫
0

l(φ(s))ds +
t∫

0

l(φ(s))ds

≤ a ‖ X0 ‖2 +a
m

∑
k=1

ak

τk∫
0

l(s)ds +
t∫

0

l(s)ds

≤ a ‖ X0 ‖2 +a
m

∑
k=1

ak M + M.

Let a ‖ X0 ‖2 +a
m
∑

k=1
ak M + M = β, β is clearly a positive real number, then (‖ HX ‖C≤ β), so HX ∈ Q and

hence HQ ⊂ Q and is also uniformly bounded.
For t1, t2 ∈ R+ , t1 < t2, let | t2 − t1 | < δ, then

‖ HX(t2)− HX(t1) ‖2 ≤
t2∫

t1

‖ f (s, X(φ(s))) ‖2 ds ≤
t2∫

t1

l(s)ds ≤ M.

Then {HX} is a class of equicontinuous functions. Therefore the operator H is equicontinuous and uniformly
bounded.
Suppose that {Xn} ∈ C such that Xn → X in mean square sense.
So,

l.i.m
n→∞ HXn(t) =

l.i.m
n→∞

aX0 − a
m

∑
k=1

ak

τk∫
0

f (s, Xn(φ(s)))ds

+
l.i.m

n→∞

 t∫
0

f (s, Xn(φ(s)))ds


= aX0 −

(
a

m

∑
k=1

ak

)
l.i.m

n→∞

 τk∫
0

f (s, Xn(φ(s)))ds

+
l.i.m

n→∞

 t∫
0

f (s, Xn(φ(s)))ds

 .

Using our assumptions and then applying stochastic Lebesgue dominated convergence theorem, we get

l.i.m
n→∞ HXn(t) = aX0 − a

m

∑
k=1

ak

τk∫
0

l.i.m
n→∞ [ f (s, Xn(s))]ds +

t∫
0

l.i.m
n→∞ [ f (s, Xn(φ(s)))]ds

= aX0 − a
m

∑
k=1

ak

τk∫
0

[ f (s, l.i.m
n→∞ Xn(φ(s)))]ds +

t∫
0

[ f (s, l.i.m
n→∞ Xn(φ(s)))]ds

= aX0 − a
m

∑
k=1

ak

τk∫
0

f (s, X(φ(s)))ds +
t∫

0

f (s, x(φ(s)))ds

= HX(t)

This proves that H is continuous operator, then H is continuous and compact.

Then H has a fixed point X ∈ C which proves that there exists at least one solution of the stochastic
differential equation (1.1)-(1.2) given by (3.1).

5 Maximal and minimal solution

Now we give the following definition.
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Definition 5.4. Let q(t) be a solution of the problem (1.1)-(1.2), then q(t) is said to be a maximal solution of (1.1)-(1.2)
if every solution X(t) of (1.1)-(1.2) satisfies the inequality

‖ X(t) ‖2<‖ q(t)) ‖2 .

A minimal solution s(t) can be defined by similar way by reversing the above inequality i.e.

‖ X(t) ‖2>‖ s(t) ‖2 .

In this section f assumed to satisfy the following definition.

Definition 5.5. The functions f : [0, T]× L2(Ω) → L2(Ω) is said to be stochastically decreasing if for any X, Y ∈
L2(Ω) satisfying

‖ X(t) ‖2<‖ Y(t) ‖2

implies that
‖ f (t, X(t)) ‖2<‖ f (t, Y(t)) ‖2 .

Now we have the following lemma.

Lemma 5.2. Let the assumptions (i)-(ii) be satisfied and let X, Y ∈ L2(Ω) satisfying

‖ X(t) ‖2≤ a

‖ X0 ‖2 +
m

∑
k=1

ak

τk∫
0

‖ f (s, X(φ(s))) ‖2 ds

+

t∫
0

|| f (s, X(φ(s)))||2 ds

and

‖ Y(t) ‖2≥ a

‖ X0 ‖2 +
m

∑
k=1

ak

τk∫
0

‖ f (s, Y(φ(s))) ‖2 ds

+

t∫
0

|| f (s, Y(φ(s)))||2 ds.

If f (t; x) is stochastically decreasing function . Then

‖ X(t) ‖2<‖ Y(t) ‖2 (5.1)

Proof. . Let the conclusion (5.1) be false, then there exists t1 such that

‖ X(t1) ‖2=‖ Y(t1) ‖2, t1 > 0 (5.2)

and
‖ X(t) ‖2<‖ Y(t) ‖2, 0 < t < t1 (5.3)

since f (t; x) satisfies the definition (5.5)and using equation (5.3), we get

‖ X(t1) ‖2 ≤ a

‖ X0 ‖2 +
m

∑
k=1

ak

τk∫
0

‖ f (s, X(φ(s))) ‖2 ds

+

t1∫
0

‖ f (s, X(φ(s))) ‖2 ds

< a

‖ X0 ‖2 +
m

∑
k=1

ak

τk∫
0

‖ f (s, Y(φ(s))) ‖2 ds

+

t1∫
0

‖ f (s, Y(φ(s))) ‖2 ds

< ‖ Y(t) ‖2, 0 < t < t1,

which contradicts equation (5.2), then
‖ X(t) ‖2<‖ Y(t) ‖2 .

Now we have the following theorem.

Theorem 5.5. Let the assumptions (i)-(ii) be satisfied. If f (t, X(t)) satisfies the definition (5.5), then there exist a
maximal solution of the problem (1.1)-(1.2).
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Proof. . Firstly we shall prove the existence of the maximal solution of the problem.
Let ε > 0 be given. Now consider the integral equation

Xε(t) = a

X0 −
m

∑
k=1

ak

τk∫
0

fε(s, Xε(φ(s)))ds

+

t∫
0

fε(s, Xε(φ(s)))ds, (5.4)

where
fε(t, Xε(t)) = f (s, Xε(t)) + ε

Clearly the function fε(t, Xε(t)) satisfies the conditions (i)-(ii) and

‖ fε(t, Xε(t)) ‖2≤ l(t) + ε = l̀(t),

then equation (5.4) is a solution of the problem (1.1)-(1.2) according to Theorem (4.4).
Now let ε1 and ε2 be such that 0 < ε2 < ε1 < ε Then

Xε1(t) = a

X0 −
m

∑
k=1

ak

τk∫
0

fε1(s, Xε1(φ(s)))ds

+

t∫
0

fε1(s, Xε1(φ(s)))ds,

= a

X0 −
m

∑
k=1

ak

τk∫
0

( f (s, Xε1(φ(s))) + ε1) ds

+

t∫
0

( f (s, Xε1(φ(s))) + ε1) ds,

this implies that

‖ Xε1(t) ‖2 ≥ a ‖ X0 ‖2 +a
m

∑
k=1

ak

τk∫
0

|| f (s, Xε1(φ(s))) + ε1||2 ds +
t∫

0

|| f (s, Xε1(φ(s))) + ε2||2 ds

≥ a ‖ X0 ‖2 +a
m

∑
k=1

ak

τk∫
0

|| f (s, Xε1(φ(s))) + ε2||2 ds +
t∫

0

|| f (s, Xε1(φ(s))) + ε2||2 ds, ε2 < ε1

(5.5)

and

‖ Xε2(t) ‖2≤ a

‖ X0 ‖2 +
m

∑
k=1

ak

τk∫
0

||( f (s, Xε2(φ(s))) + ε2)||2 ds

+

t∫
0

||( f (s, Xε2(φ(s))) + ε2)||2 ds. (5.6)

Using Lemma (5.2), then equations (5.5) and (5.6) implies

‖ Xε2(t) ‖2<‖ Xε1(t) ‖2

As shown before in the proof of Theorem (4.4) the family of functions xε(t) defined by equation (3.1) is
uniformly bounded and equicontinuous functions. Hence by Arzela Theorem, there exists a decreasing
sequence εn such that ε→ 0 as n→ ∞ and lim

n→∞
Xεn(t) exists uniformly in C and denote this limit by q(t), then

from the continuity of the function fεn in the second argument and applying Lebesgue dominated convergence
Theorem, we get

q(t) = lim
n→∞

Xεn(t)

which proves that q(t) is a solution of the problem (1.1)-(1.2)
Finally, we shall show that q(t) is the maximal solution of the problem (1.1)-(1.2). To do this, let X(t) be any
solution of the problem (1.1)-(1.2).
Then

‖ Xε(t) ‖2≥ a ‖ X0 ‖2 +a
m

∑
k=1

ak

τk∫
0

|| f (s, Xε(φ(s))) + ε||2 ds +
t∫

0

|| f (s, Xε(φ(s))) + ε||2 ds
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and

‖ X(t) ‖2≤ a

||X0||2 +
m

∑
k=1

ak

τk∫
0

‖ f (s, Xε(φ(s))) ‖2 ds

+

t∫
0

‖ f (s, X(φ(s))) ‖2 ds.

Applying Lemma (5.2), we get
‖ Xε(t) ‖2>‖ X(t) ‖2

from the uniqueness of the maximal solution (see [6]), it is clear that Xε(t) tends to q(t) uniformly as ε→ 0.

By similar way as done above we can prove that s(t) is the minimal solution of the problem (1.1)-(1.2). The
maximal and minimal solutions of the problem (1.1)-(1.2) can be defined in the same fashion as done above.
If the function f assumed to satisfy the following definition.

Definition 5.6. The functions f : [0, T]× L2(Ω) → L2(Ω) is said to be stochastically increasing if for any X, Y ∈
L2(Ω) satisfying

‖ X(t) ‖2<‖ Y(t) ‖2

implies that
‖ f (t, X(t)) ‖2>‖ f (t, Y(t)) ‖2 .

Now we have the following theorem.

Theorem 5.6. Let the assumptions (i)-(ii) be satisfied. If f (t, X) satisfies the definition (5.6), then there exist a minimal
solution of the problem (1.1)-(1.2).

6 Examples

Here, as an application of our results, we give the following two examples.

Example 6.1. Let β ∈ (0, 1]. As φ, one can take, for example φ(t) = βt.

Let the assumptions of Theorem (4.4) be satisfied. Then the problem

dX(t)
dt

= f (t, X(βt)), t ∈ (0, T]

with the nonlocal random initial condition

X(0) +
n

∑
k=1

akX(τk) = X0, τk ∈ (0, T),

has at least one solution X ∈ C([0, T], L2(Ω)).

Example 6.2. Let the assumptions of Theorem (4.4) be satisfied, let γ ≥ 1. As φ, one can tack, for example φ(t) = tγ.
Then the problem

dX(t)
dt

= f (t, X(tγ)), t ∈ (0, 1]

with the nonlocal random initial condition

X(0) +
n

∑
k=1

akX(τk) = X0, τk ∈ (0, 1),

has at least one solution X ∈ C([0, 1], L2(Ω)).

7 Conclusion

Here we defined the mean square solution for the stochastic differential equation and proved the existence
of at least one solution of the problem (1.1)-(1.2), then we proved the existence of the maximal and minimal
solution of (1.1)-(1.2).
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Abstract

In this work, the authors investigated the coefficient estimates for Bazilevič Ma-Minda Functions for
the class Tα

n (λ, β, l, Φ). The first few coefficient bounds for this class were obtained and also the relevant
connection to Fekete-Szegö theorem and were briefly discussed. Our results serve as a new generalization in
this direction and gives birth to many corollaries.

Keywords: Analytic Function, Univalent Function, Starlike Function, Convex Function, Bazilevič Function,
Subordination, Sigmoid Function, Fekete-Szegö Inequality.
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1 Introduction

In the twentieth century, the theory of special functions was overshadowed by other fields like functional
analysis, real analysis, algebra, topology, differential equations and so on. These functions do not have
specific definitions but they constitute an information process that is inspired by the way biological nervous
system such as the brain processes information. This information process contains large numbers of highly
interconnected elements (neurons) working together to perform specific tasks.

Special functions can be categorized into three, namely ramp function, sigmoid function and threshold
function. The most popular of the functions is the sigmoid function because of its gradient descent
algorithm. It can be evaluated by truncated series expansion (see details in [5], [9] and [11]).

The sigmoid function of the form

g(z) =
1

1 + e−z (1.1)

is differentiable and has the following properties:

(i) it outputs real numbers between 0 and 1.

(ii) it maps a very large input domain to a small range of outputs.

(iii) it never loses information because it is a one-to-one function.

(iv) it increases monotonically.

The four properties show that sigmoid function is very useful in geometric functions theory.

∗Corresponding author.
olatunjiso@futa.edu.ng (S.O. Olatunji) and ejdansu@futa.edu.ng (E.J. Dansu).
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Let A denote the class of functions of the form

f (z) = z +
∞

∑
k=2

akzk (z ∈ U) (1.2)

which are analytic in the open disk U = {z : |z| < 1} and normalized by f (0) = f ′(0)− 1 = 0.

A domain U ⊂ C is convex if the line segment joining any two points in U lies entirely in U, while a
domain is starlike with respect to a point ω0 ∈ U if the line segment joining any point of U to ω0 lies inside
U. A function f ∈ A is starlike if f (U) is a starlike domain with respect to the origin and convex if f (U) is
convex.

Recall that starlike and convex functions are denoted by ST and CV respectively and analytically written
as Re z f ′(z)

f (z) > 0 and Re
(

1 + z f ′′(z)
f ′(z)

)
> 0. Starlike and convex functions of type α are denoted by ST(α) and

CV(α) respectively and characterized by Re z f ′(z)
f (z) > α and Re

(
1 + z f ′′(z)

f ′(z)

)
> α where α : 0 ≤ α < 1 (see detail

in [2]).

The two functions f and g are analytic in the open unit disk U. We say f is subordinate to g written as
f < g ∈ U if there exists a Schwarz function w(z) which is analytic in U with w(0) = 0 and |w(z)| < 1 such
that f (z) = g(w(z)). It follows from Schwarz lemma that f (z) < g(z) (z ∈ U) =⇒ f (0) = g(0) and
f (U) ⊂ g(U) (see details in [8]).

Ma and Minda[7] unified various subclasses of starlike and convex functions for which either of the
quantity z f ′(z)

f (z) or 1 + z f ′′(z)
f ′(z) is subordinate to a more general superordinate function. For this purpose, they

considered an analytic function ϕ with positive real part in the open unit disk U, ϕ(0) = 1 and ϕ′(0) > 0 and
ϕ maps U onto a region starlike with respect to 1 and symmetric with respect to the real axis. The class of Ma-
Minda starlike function consists of functions f ∈ A satisfying the subordination z f ′(z)

f (z) < ϕ(z) and Ma-Minda

convex function consists of functions f ∈ A satisfying subordination 1 + z f ′′(z)
f ′(z) < ϕ(z) (detail in [2]).

Lemma 1.1 (Pommerenke[13]). If a function p ∈ P is given by

p(z) = 1 + p1z + p2z2 + ... (z ∈ U) (1.3)

then |pk| ≤ 2 (k ∈ N), where P is the class of Caratheodory function, analytic in U for which p(0) = 1 and
Re p(z) > 0 (z ∈ U) .

Let α > 0 (α is real), then

f (z)α =

(
z +

∞

∑
k=2

akzk

)α

(1.4)

which gives

f (z)α = (z + a2z2 + a3z3 + a4z4 + ...)α (1.5)

Or, equivalently
f (z)α = (z(1 + a2z + a3z2 + a4z3 + ...))α (1.6)

Using simple expansion for (1.6), we have

f (z)α = zα

(
1 + α(a2z + a3z2 + a4z3 + ...) +

α(α− 1)
2!

(a2z + a3z2 + a4z3 + ...)2 + ...
)

(1.7)

Since the expansion continues, then

f (z)α = zα
(

1 + α(a2z + a3z2 + a4z3 + ...)
)

which implies
f (z)α = zα + αa2zα+1 + αa3zα+2 + αa4zα+3 + ...
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This finally gives

f (z)α = zα +
∞

∑
k=2

ak(α)zα+k−1 (1.8)

Catas et al.[3] defined the Catas Operator as follows:

I0(λ, l) : A→ A

I0(λ, l) f (z) = f (z)

I1(λ, l) f (z) = (I(λ, l) f (z))
(

1− λ + l
1 + l

)
+ (I(λ, l) f (z))

(
λz

1 + l

)
= z +

∞

∑
k=2

(
1 + λ(k− 1) + l

1 + l

)
akzk

and

I2(λ, l) f (z) = (I1(λ, l) f (z))
(

1− λ + l
1 + l

)
+ (I1(λ, l) f (z))

(
λz

1 + l

)
= z +

∞

∑
k=2

(
1 + λ(k− 1) + l

1 + l

)2

akzk

In general,

In(λ, l) f (z) = I(λ, l)(In−1(λ, l) f (z)) = z +
∞

∑
k=2

(
1 + λ(k− 1) + l

1 + l

)n
akzk (1.9)

Applying (1.9) in (1.8), we have

In(λ, l) f (z)α =

(
1 + λ(α− 1) + l

1 + l

)n
zα +

∞

∑
k=2

(
1 + λ(α + k− 2) + l

1 + l

)n
ak(α)zα+k−1 (1.10)

where n ∈ N0, α > 0 (α is real), λ ≥ 0, l ≥ 0.

Oladipo and Olatunji[10] used (1.10) to define a class Tα
n (λ, β, l) with geometric condition satisfying

Re
In(λ, l) f (z)α(

1+λ(α−1)+l
1+l

)n
zα

> β (1.11)

where n ∈ N0, α > 0 (α is real), λ ≥ 0, l ≥ 0 and 0 ≤ β < 1. The first few coefficient bounds for the class were
obtained and the coefficient inequalities for the class were derived by employing Hayami’s method [6]. By
specializing the parameters involved in (1.11), we obtain various subclasses of analytic functions studied by
[1], [12], [14], [15] and so on.

In this work, the authors defined a new class of functions denoted by Tα
n (λ, β, l, Φ) as related to modified

sigmoid function with geometric condition satisfying

Re In(λ,l) f (z)α(
1+λ(α−1)+l

1+l

)n
zα
− β

1− β
< ϕ(z) (1.12)

where n ∈ N0, α > 0 (α is real), λ ≥ 0, l ≥ 0 and 0 ≤ β < 1. The first few coefficient estimates for the class are
obtained. Also, the relevant connection to Fekete-Szegö theorem are briefly discussed.

For the purpose of our results, we require the following lemmas.

Lemma 1.2 (Fadipe-Joseph et al.[5]). Let g be a sigmoid function and

Φ(z) = 2g(z) = 1 +
∞

∑
m=1

(−1)m

2m

(
∞

∑
n=1

(−1)n

n!
zn

)m

(1.13)

then Φ(z) ∈ P, |z| < 1 where Φ(z) is a modified sigmoid function.

Lemma 1.3 (Fadipe-Joseph et al.[5]). Let

Φm,n(z) = 2g(z) = 1 +
∞

∑
m=1

(−1)m

2m

(
∞

∑
n=1

(−1)n

n!
zn

)
(1.14)

then |Φm,n(z)| < 2.



508 S.O. Olatunji and E.J. Dansu. / Coefficient Estimates for Bazilevič Ma-Minda Functions...

Lemma 1.4 (Fadipe-Joseph et al.[5]). If Φ(z) ∈ P and it is starlike, then f is a normalized univalent function of
the form (1.2).

Setting m = 1, Fadipe-Joseph et al.[5] remarked that Φ(z) = 1 + ∑∞
n=1 cnzn where cn = (−1)n+1

(2n)! . As such,
|cn| ≤ 2, n = 1, 2, 3, ... and the result is sharp for each n.

2 Coefficient Estimates

In the sequel, it is assumed that ϕ is an analytic function with positive real part in the open unit disk U, with
ϕ(0) = 1, ϕ′(0) > 0 and ϕ(U) is symmetric with respect to the real axis. Such a function has a series expansion
of the form

ϕ(z) = 1 + β1z + β2z2 + β3z3 + β4z4 + ... (β1 > 0) (2.15)

For functions in the class Tα
n (λ, β, l, Φ), the following results are obtained.

Theorem 2.1. If f (z)α ∈ Tα
n (λ, β, l, Φ) is given by (1.12), then

|a2(α)| ≤
(1− β)B1

4α
(

1+λα+l
1+λ(α−1)+l

)n (2.16)

|a3(α)| ≤
(1− β)

[
2α(B2 − B1)

(
1+λα+l

1+λ(α−1)+l

)2n
− (α− 1)(1− β)B2

1

(
1+λ(α+1)+l
1+λ(α−1)+l

)n
]

32α2
(

1+λα+l
1+λ(α−1)+l

)2n ( 1+λ(α+1)+l
1+λ(α−1)+l

)n (2.17)

|a4(α)| ≤
2(1− β)(3B3 − 6B2 − B1)

384α
(

1+λ(α+2)+l
1+λ(α−1)+l

)n

− (α− 1)(1− β)3B1

384α3
(

1+λα+l
1+λ(α−1)+l

)3n


3
[

2α(B2 − B1)
(

1+λα+l
1+λ(α−1)+l

)2n
− (α− 1)(1− β)B2

1

(
1+λ(α+1)+l
1+λ(α−1)+l

)n
]

(
1+λ(α+1)+l
1+λ(α−1)+l

)n


+

(α− 2)(1− β)2B3
1

384α
(2.18)

Proof. Let f (z)α ∈ Tα
n (λ, β, l, Φ). Then there are analytic functions u : U → U with u(0) = 0 satisfying

In(λ,l) f (z)α(
1+λ(α−1)+l

1+l

)n
zα
− β

1− β
= ϕ(u(z)) (2.19)

Define the function Φ(z) by

Φ(z) =
1 + u(z)
1− u(z)

= 1 +
1
2

z− 1
24

z3 +
1

240
z5 − 1

64
z6 +

779
20160

z7 − ... (2.20)

or, equivalently

u(z) =
Φ(z)− 1
Φ(z) + 1

=
1
4

z− 1
16

z2 − 1
192

z3 − 5
768

z4 − 13
15360

z5 + ... (2.21)

In view of (2.19), (2.20) and (2.21), clearly

In(λ,l) f (z)α(
1+λ(α−1)+l

1+l

)n
zα
− β

1− β
= ϕ

(
Φ(z)− 1
Φ(z) + 1

)
(2.22)

Using (2.21) together with (2.15), it is evident that

ϕ

(
Φ(z)− 1
Φ(z) + 1

)
= 1 +

B1

4
z +

B2 − B1

16
z2 − B1 + 6B2 − 3B3

192
z3 +

5B1 + B2 − 9B3 + 3B4

768
z4 + ... (2.23)
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Recall that
In(λ, l) f (z)α(

1+λ(α−1)+l
1+l

)n
zα

= 1 +
∞

∑
k=2

(
1 + λ(α + k− 2) + l

1 + λ(α− 1) + l

)n
ak(α)zk−1

which has the expansion

1 + α

(
1 + λα + l

1 + λ(α− 1) + l

)n
a2z +

(
αa3 +

α(α− 1)
2

a2
2

)(
1 + λ(α + 1) + l
1 + λ(α− 1) + l

)n
z2

+

(
αa4 + α(α− 1)a2a3 +

α(α− 1)(α− 2)
6

a3
2

)(
1 + λ(α + 2) + l
1 + λ(α− 1) + l

)n
z3

+

(
αa5 +

α(α− 1)
2!

(2a2a4 + a2
3) +

α(α− 1)(α− 2)
3

a2
2a3 +

α(α− 1)(α− 2)(α− 3)
24

a4
2

)(
1 + λ(α + 3) + l
1 + λ(α− 1) + l

)n
z4

+ ...
(2.24)

Therefore (2.22) yields

1 + α

(
1 + λα + l

1 + λ(α− 1) + l

)n
a2z +

(
αa3 +

α(α− 1)
2

a2
2

)(
1 + λ(α + 1) + l
1 + λ(α− 1) + l

)n
z2

+

(
αa4 + α(α− 1)a2a3 +

α(α− 1)(α− 2)
6

a3
2

)(
1 + λ(α + 2) + l
1 + λ(α− 1) + l

)n
z3

+

(
αa5 +

α(α− 1)
2!

(2a2a4 + a2
3) +

α(α− 1)(α− 2)
3

a2
2a3 +

α(α− 1)(α− 2)(α− 3)
24

a4
2

)(
1 + λ(α + 3) + l
1 + λ(α− 1) + l

)n
z4

+ ... = β + (1− β)

[
1 +

B1

4
z +

B2 − β1

16
z2 − B1 + 6B2 − 3B3

192
z3 +

5B1 + B2 − 9B3 + 3B4

768
z4 + ...

]
(2.25)

Comparing the L.H.S. and R.H.S. of (2.25), it gives

α

(
1 + λα + l

1 + λ(α− 1) + l

)n
a2(α) =

(1− β)B1

4
(2.26)

(
αa3(α) +

α(α− 1)
2

a2
2(α)

)(
1 + λ(α + 1) + l
1 + λ(α− 1) + l

)n
=

(1− β)(B2 − B1)

16
(2.27)

(
αa4(α) + α(α− 1)a2(α)a3(α) +

α(α− 1)(α− 2)
6

a3
2(α)

)(
1 + λ(α + 2) + l
1 + λ(α− 1) + l

)n
= − (1− β)(B1 + 6B2 − 3B3)

192
(2.28)

So, by simple computation, we obtain

|a2(α)| ≤
(1− β)B1

4α
(

1+λα+l
1+λ(α−1)+l

)n (2.29)

|a3(α)| ≤
(1− β)

[
2α(B2 − B1)

(
1+λα+l

1+λ(α−1)+l

)2n
− (α− 1)(1− β)B2

1

(
1+λ(α+1)+l
1+λ(α−1)+l

)n
]

32α2
(

1+λα+l
1+λ(α−1)+l

)2n ( 1+λ(α+1)+l
1+λ(α−1)+l

)n (2.30)

|a4(α)| ≤
2(1− β)(3B3 − 6B2 − B1)

384α
(

1+λ(α+2)+l
1+λ(α−1)+l

)n

− (α− 1)(1− β)3B1

384α3
(

1+λα+l
1+λ(α−1)+l

)3n


3
[

2α(B2 − B1)
(

1+λα+l
1+λ(α−1)+l

)2n
− (α− 1)(1− β)B2

1

(
1+λ(α+1)+l
1+λ(α−1)+l

)n
]

(
1+λ(α+1)+l
1+λ(α−1)+l

)n


+

(α− 2)(1− β)2B3
1

384α
(2.31)
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and this completes the proof of Theorem (2.1).

By specializing some parameters that are involved, we obtain some corollaries.

Setting β = 0, it gives the following corollary

Corollary 2.1. If f (z)α ∈ Tα
n (λ, 0, l, Φ) is given by (1.12), then

|a2(α)| ≤
B1

4α
(

1+λα+l
1+λ(α−1)+l

)n (2.32)

|a3(α)| ≤

[
2α(B2 − B1)

(
1+λα+l

1+λ(α−1)+l

)2n
− (α− 1)B2

1

(
1+λ(α+1)+l
1+λ(α−1)+l

)n
]

32α2
(

1+λα+l
1+λ(α−1)+l

)2n ( 1+λ(α+1)+l
1+λ(α−1)+l

)n (2.33)

|a4(α)| ≤
2(3B3 − 6B2 − B1)

384α
(

1+λ(α+2)+l
1+λ(α−1)+l

)n

− (α− 1)B1

384α3
(

1+λα+l
1+λ(α−1)+l

)3n


3
[

2α(B2 − B1)
(

1+λα+l
1+λ(α−1)+l

)2n
− (α− 1)B2

1

(
1+λ(α+1)+l
1+λ(α−1)+l

)n
]

(
1+λ(α+1)+l
1+λ(α−1)+l

)n


+

(α− 2)B3
1

384α
.

(2.34)

Setting α = 1 in Corollary (2.1) gives

Corollary 2.2. If f (z) ∈ T1
n(λ, 0, l, Φ) is given by (1.12), then

|a2(1)| ≤
B1

4
(

1+λ+l
1+l

)n (2.35)

|a3(1)| ≤

[
2(B2 − B1)

(
1+λ+l

1+l

)2n
]

32
(

1+λ+l
1+l

)2n ( 1+2λ+l
1+l

)n (2.36)

|a4(1)| ≤
2(3B3 − 6B2 − B1)

384
(

1+3λ+l
1+l

)n −
B3

1
384

. (2.37)

Putting λ = 1 in Corollary (2.2) yields

Corollary 2.3. If f (z) ∈ T1
n(1, 0, l, Φ) is given by (1.12), then

|a2(1)| ≤
B1

4
(

2+l
1+l

)n (2.38)

|a3(1)| ≤

[
2(B2 − B1)

(
2+l
1+l

)2n
]

32
(

2+l
1+l

)2n ( 3+l
1+l

)n (2.39)

|a4(1)| ≤
2(3B3 − 6B2 − B1)

384
(

4+l
1+l

)n −
B3

1
384

. (2.40)

Taking l = 0 in Corollary (2.3) it is seen that
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Corollary 2.4. If f (z) ∈ T1
n(1, 0, 0, Φ) is given by (1.12), then

|a2(1)| ≤
B1

4(2)n (2.41)

|a3(1)| ≤
[
2(B2 − B1)(2)2n]

32(2)2n3n (2.42)

|a4(1)| ≤
2(3B3 − 6B2 − B1)

384(4)n −
B3

1
384

. (2.43)

If n = 0 in Corollary (2.4) we get

Corollary 2.5. If f (z) ∈ T1
0 (1, 0, 0, Φ) is given by (1.12), then

|a2(1)| ≤
B1

4
(2.44)

|a3(1)| ≤
(B2 − B1)

16
(2.45)

|a4(1)| ≤
(3B3 − 6B2 − B1)

192
−

B3
1

384
. (2.46)

3 The Fekete-Szegö Inequality

In order to obtain the Fekete-Szegö Inequalities, we shall employ the Deniz and Orhan[4] and Ma and
Minda[7] approach.

Theorem 3.1. If f (z)α ∈ Tα
n (λ, β, l, Φ) is given by (1.12), then

|a3 − µa2
2| ≤

1− β

32

∣∣∣∣∣∣∣
B2

1(β− 1)(α + 2µ− 1)
(

1+λ(α+1)+l
1+λ(α−1)+l

)n
− 2α(B1 − B2)

(
1+λα+l

1+λ(α−1)+l

)2n

α2
(

1+λ(α+1)+l
1+λ(α−1)+l

)n ( 1+λα+l
1+λ(α−1)+l

)2n

∣∣∣∣∣∣∣ . (3.47)

Proof. From (2.29) and (2.30), we have

a3−µa2
2 =

(1− β)

[
2α(B2 − B1)

(
1+λα+l

1+λ(α−1)+l

)2n
− (α− 1)(1− β)B2

1

(
1+λ(α+1)+l
1+λ(α−1)+l

)n
]

32α2
(

1+λα+l
1+λ(α−1)+l

)2n ( 1+λ(α+1)+l
1+λ(α−1)+l

)n −µ

 (1− β)B1

4α
(

1+λα+l
1+λ(α−1)+l

)n


2

.

(3.48)
Simplifying (3.48), we have

a3 − µa2
2 =

1− β

32

B2
1(β− 1)(α + 2µ− 1)

(
1+λ(α+1)+l
1+λ(α−1)+l

)n
− 2α(B1 − B2)

(
1+λα+l

1+λ(α−1)+l

)2n

α2
(

1+λ(α+1)+l
1+λ(α−1)+l

)n ( 1+λα+l
1+λ(α−1)+l

)2n

 (3.49)

which completes the proof.

Taking µ = 1, we obtain

Corollary 3.6. If f (z)α ∈ Tα
n (λ, β, l, Φ) is given by (1.12), then

|a3 − a2
2| ≤

1− β

32

∣∣∣∣∣∣∣
B2

1(β− 1)(α + 1)
(

1+λ(α+1)+l
1+λ(α−1)+l

)n
− 2α(B1 − B2)

(
1+λα+l

1+λ(α−1)+l

)2n

α2
(

1+λ(α+1)+l
1+λ(α−1)+l

)n ( 1+λα+l
1+λ(α−1)+l

)2n

∣∣∣∣∣∣∣ . (3.50)

4 Conclusion

By varying other parameters that are involved, many corollaries can be generated.
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Abstract

The generalized Bessel transform satisfies some uncertainty principles similar to the Euclidean Fourier
transform. A generalization of Donoho-Stark uncertainty principle is obtained for the generalized Bessel
transform.
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1 Introduction

There are many theorems known which state that a function and its classical Fourier transform on R

cannot both be sharply localized. That it is impossible for a nonzero function and its Fourier transform
to be simultaneously small. There are several manifestations of this principle. We refer the reader to the
excellent survey article by Folland and Sitaram [3], and also the monograph by S. Thangavelu [5]. In this
paper we are interested in a variant of Donoho-Stark’s uncertainty principle. Recall that Donoho and Stark
[2] paid attention to the supports of functions and gave qualitative uncertainty principles for the Fourier
transforms. The purpose of this paper is to obtain uncertainty principle similar to Donoho-Stark’s principle
for the generalized Bessel transform. The outline of the content of this paper is as follows.
Section 2 is dedicated to some properties and results concerning the Generalized Bessel transform.
Section 3 is devoted to the Donoho-Stark’s uncertainty principle for the Generalized Bessel transform.

2 Preliminaries

In this section we recapitulate some facts about harmonic analysis related to the generalized Bessel
operator. We cite here, as briefly as possible, some properties. For more details we refer to [1].
Throughout this paper we assume that α > −1

2 .

We consider the second-order singular differential operator on the half line

Lα,n f (x) =
d2

dx2 f (x) +
2α + 1

x
d

dx
f (x)− 4n(α + n)

x2 f (x).

The generalized Bessel transform is defined for a function f ∈ L1
α,n(R

+) by

Fα,n( f )(λ) =
∫ ∞

0
f (x)ϕλ(x)x2α+1dx, λ ≥ 0, (2.1)

∗Corresponding author.
E-mail address : safouanenajat@gmail.com (N. Safouane), r.daher@fsac.ac.ma (R. Daher) and a.abouelaz@fsac.ac.ma ( A. Abouleaz).
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where

ϕλ(x) = aα+2nx2n
∫ 1

0
cos(λtx)(1− t2)α+2n− 1

2 dt

and

ϕλ(x) = aα+2nx2n
∫ 1

0
cos(λtx)(1− t2)α+2n− 1

2 dt

and

aα+2n =
2Γ(α + 2n + 1)
√

πΓ(α + 2n + 1
2 )

. (2.2)

• The function ϕλ satisfies the differential equation

Lα,n ϕλ = −λ2 ϕλ

• For all λ ∈ C and x ∈ R+,
|ϕλ(x)| ≤ x2ne|Imλ||x|. (2.3)

• For all λ ∈ R+ and x ∈ R+,
λ2n ϕλ(x) = x2n ϕx(λ). (2.4)

We denote by

• Lp
α(R

+) the class of measurable functions f on [0,+∞[ for which

‖ f ‖Lp
α(R+) < ∞

where

‖ f ‖Lp
α(R+) =

(∫ ∞

0
| f (x)|px2α+1dx

) 1
p

, if p < ∞,

and ‖ f ‖L∞
α (R+) = ess supx≥0| f (x)|.

• Lp
α,n(R

+) the class of measurable functions f on R+ for which

‖ f ‖Lp
α,n(R+) = ‖x

−2n f ‖Lp
α+2n(R

+) < ∞.

For every f ∈ L1
α,n(R

+)
⋂

L2
α,n(R

+) we have the Plancherel formula∫ ∞

0
| f (x) |2 x2α+1dx =

∫ ∞

0
| Fα,n( f )(λ) |2 dµα+2n(λ),

where

dµα+2n(λ) =
1

4α+2n(Γ(α + 2n + 1))2 λ2α+4n+1dλ. (2.5)

The generalized Bessel transform Fα,n extends uniquely to an isometric isomorphism from L2
α,n(R

+) onto
L2

α+2n(R
+).

The inverse transform is given by

F−1
α,n ( f )(x) =

∫ ∞

0
f (λ)ϕλ(x)dµα+2n(λ), (2.6)

where the integral converge in L2
α,n(R

+).
Let f ∈ L1

α,n(R
+) such that Fα,n( f ) ∈ L1

α+2n(R
+), then the inverse generalized Fourier-Bessel transform is

given by the formula

f (x) =
∫ ∞

0
Fα,n( f )(λ)ϕλ(x)dµα+2n(λ). (2.7)
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3 Donoho-Stark for the Fourier generalized transform

Throughout this section we denote by ‖.‖ the operator norm on L2
α,n(R+). More precisely if T is an operator

then

‖T‖ = sup f∈L2
α,n(R+)

‖T f ‖L2
α,n(R+)

‖ f ‖L2
α,n(R+)

.

We say that f is ε-concentrated on a measurable set E if

|| f −XE f ||L2
α,n(R+) < ε,

where χE is the characteristic function of the set E.
Donoho and Stark [3] have shown that if f of unit L2(R+) norm is εT concentrated on a measurable set T and
its Fourier transform F ( f ) is εW , on a measurable set W, then

|W|.|T| ≥ (1− εT − εW)2.

Here, |T| is the Lebesque measure of the set T. This inequality has been slightly improved in ref.[4] to

|W|.|T| ≥ (1− (ε2
T + ε2

W)
1
2 )2.

In this section, we will extend the Donoho-Stark uncertainty principle to the generalized Bessel transform.
Let PE denote the time-limiting operator

(PE f )(x) =
{

f (x), x ∈ E
0, x ∈ R+\E . (3.8)

This operator cuts off the part of f outside E. Let us now be more precise, we need to introduce some notations,
so f is ε-concentrated on a set E if, and only if

|| f − PE f ||L2
α,n(R+) ≤ ε.

For simplicity, we will use PX to P[0,X]. Clearly ||PE|| = 1 because PE is a projection. The second operator is
the frequency-limiting operator

(QE f )(x) =
∫

E
ϕy(x)Fα,n( f )(y)dµα+2n(y), (3.9)

From (2.6) we can also write QE as follows

QE f (x) = F−1
α,n (PE(Fα,n( f )))(x).

Then by (2.6) and (2.7) we deduce that Fα,n( f ) is ε-concentrated on F if and only if ‖ f − QF f ‖L2
α,n(R) ≤

ε‖ f ‖L2
α,n(R).

We have from (3.8) and (3.9)

(PXQY f )(x) = PX

∫ Y

0
ϕy(x)Fα,n( f )(y)dµα+2n(y)

= PX

∫ Y

0
ϕy(x)

∫ ∞

0
ϕy(t) f (t)dµα(t)dµα+2n(y)

= PX

∫ ∞

0
f (t)

∫ Y

0
ϕy(x)ϕy(t)dµα+2n(y)dµα(t)

=
∫ ∞

0
f (t)q(x, t)dµα(t),

where

q(x, t) =


∫ Y

0
ϕy(x)ϕy(t)dµα+2n(y), x < X

0, x ≥ X
.
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The Hilbert-Schmidt norm of PXQY is

‖PXQY‖HS =

(∫ ∞

0

∫ ∞

0
|q(x, t)|2dµα(x)dµα(t)

) 1
2

.

The norm ||PXQY|| does not exceed the Hilbert-Schmidt norm of PXQY, therefore

||PXQY||2 ≤ ‖PXQY‖2
HS

=
∫ ∞

0

∫ ∞

0
|q(x, t)|2dµα(x)dµα(t)

=
∫ X

0

∫ ∞

0
|q(x, t)|2dµα(x)dµα(t).

Notice that

q(x, t) =
∫ Y

0
ϕy(x)ϕy(t)dµα+2n(y)

=
∫ Y

0
y2n ϕy(x)y2n ϕy(t)dµα(y).

From (2.4) we deduce that

=
∫ Y

0
x2n ϕx(y)t2n ϕt(y)dµα(y)

=
∫ Y

0
x2nt2n ϕx(y)ϕt(y)dµα(y)

= x2nt2nFα,n(ϕt(.)X[0,Y])(x),

the Plancherel formula for the generalized Bessel transform yields∫ ∞

0
|q(x, t)|2dµα(x) =

∫ ∞

0
|x2nt2nFα,n(ϕt(.)X[0,Y])(x)|2dµα(x)

=
aα

aα+2n

∫ ∞

0
|t2nFα,n(ϕt(.)X[0,Y])(x)|2dµα+2n(x)

=
aα

aα+2n

∫ ∞

0
|Fα,n(t2n ϕt(.)X[0,Y])(x)|2dµα+2n(x),

by Plancherel formula we have

aα

aα+2n

∫ ∞

0
|Fα,n(t2n ϕt(.)X[0,Y])(x)|2dµα+2n(x) =

aα

aα+2n

∫ Y

0
|t2n ϕt(x)|2dµα(x)

=
aα

aα+2n

∫ Y

0
|x2n ϕx(t)|2dµα(x)

=

(
aα

aα+2n

)2 ∫ Y

0
|ϕx(t)|2dµα+2n(x).

Consequently,

||PXQY||2 ≤
(

aα

aα+2n

)2 ∫ X

0

∫ Y

0
|ϕx(t)|2dµα+2n(x)dµα(t)

≤
(

aα

aα+2n

)2 ∫ X

0

∫ Y

0
|t2n|2dµα+2n(x)dµα(t)

=

(
aα

aα+2n

)3 ∫ X

0

∫ Y

0
dµα+2n(x)dµα+2n(t)

=

(
aα

aα+2n

)3 ∫ X

0

∫ Y

0
dµα+2n(x)dµα+2n(t)

=

(
aα

aα+2n

)3 (XY)α+2n+1

α + 2n + 1
.
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We put

bα,n =

(
aα+2n

aα

)3
(α + 2n + 1). (3.10)

Let XY < (bα,n)
1

α+2n+1 . Then ||PXQY|| < 1 and therefore I − PXQY is invertible with

||(I − PXQY)
−1|| ≤

∞

∑
k=0
||PXQY||k

≤
∞

∑
k=0

[
(XY)α+2n+1

bα,n

]k

=
bα,n

bα,n − (XY)α+2n+1 .

We have
I = PX + P(X,∞) = PXQY + PXQ(Y,∞) + P(X,∞).

The orthogonality of PX and P(X,∞) gives

||PXQ(Y,∞) f ||2L2
α,n(R+)

+ ||P(X,∞) f ||2L2
α,n(R+)

= ||PXQ(Y,∞) f + P(X,∞) f ||2L2
α,n(R+)

.

Together with ||PX || = 1

|| f ||22,α,n ≤ ||(I − PXQY)
−1||2||(I − PXQY) f ||2L2

α,n(R+)

≤
(

bα,n

bα,n − (XY)α+2n+1

)2 [
||PXQ(Y,∞) f ||2L2

α,n(R+)
+ ||P(X,∞) f ||2L2

α,n(R+)

]
≤

(
bα,n

bα,n − (XY)α+2n+1

)2 [
||Q(Y,∞) f ||2L2

α,n(R+)
+ ||P(X,∞) f ||2L2

α,n(R+)

]
.

If f of unit norm is εX-time-limited on [0, X], then ||P(X,∞) f ||L2
α,n(R+) ≤ εX , If f of unit norm is εY-bandlimited

on [0, Y], then ||Q(Y,∞) f ||L2
α,n(R+) ≤ εY. Then if f of unit norm is both εX-time-limited and εY-bandlimited,

1 ≤
(

bα,n

bα,n − (XY)α+2n+1

)2
(ε2

X + ε2
Y)

or

XY ≥ (bα,n)
1

α+2n+1

(
1− (ε2

X + ε2
Y)

1
2

) 1
α+2n+1 .

We arrive at the Donoho-Stark uncertainty principle for the generalized Bessel transform.

Theorem 3.1. Let a unit norm signal f be εX-time-limited on [0, X] and εY-bandlimited on [0, Y]. Then

XY ≥ (bα,n)
1

α+2n+1

(
1− (ε2

X + ε2
Y)

1
2

) 1
α+2n+1

where bα,n is given by (3.10).
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