


Editorial Team 

Editors-in-Chief 

Prof. Dr. Eduardo Hernandez Morales 

Departamento de computacao e matematica, Faculdade de Filosofia, Universidade de Sao Paulo, 

Brazil. 

Prof. Dr. Yong-Kui Chang 

School of Mathematics and Statistics, Xidian University, Xi’an 710071, P. R. China. 

Prof. Dr. Mostefa NADIR 

Department of Mathematics, Faculty of Mathematics and Informatics, University of Msila 28000 

ALGERIA. 

Associate Editors 

Prof.  Dr. M. Benchohra 

Departement de Mathematiques,  Universite de Sidi Bel Abbes, BP 89, 22000 Sidi Bel Abbes, Algerie. 

Prof.  Dr. Tomas Caraballo 

Departamento de Ecuaciones Diferenciales y Análisis Numérico, Facultad de Matemáticas, Universidad 

de Sevilla, C/Tarfia s/n, 41012 Sevilla, Spain. 

Prof. Dr. Sergei Trofimchuk 

Instituto de Matematicas, Universidad de Talca, Casilla 747, Talca, Chile. 

Prof.  Dr. Martin Bohner 

Missouri S&T, Rolla, MO, 65409, USA. 

Prof. Dr. Michal Feckan 

Departments of Mathematical Analysis and Numerical Mathematics, Comenius University, Mlynska 

dolina, 842 48 Bratislava, Slovakia. 

Prof. Dr. Zoubir Dahmani 

Laboratory of Pure and Applied Mathematics, LPAM, Faculty SEI, UMAB University of Mostaganem, 

Algeria. 

Prof. Dr. Bapurao C. Dhage 

Kasubai, Gurukul Colony, Ahmedpur- 413 515, Dist. Latur Maharashtra, India. 

Prof. Dr. Dumitru Baleanu 

Department of Mathematics, Faculty of Arts and Sciences, Cankaya University, 06530 Ankara: Turkey 

and Institute of Space Sciences, Magurele-Bucharest, Romania. 

Editorial Board Members 

Prof. Dr. J. Vasundhara Devi 

Department of Mathematics and GVP - Prof. V. Lakshmikantham Institute for Advanced Studies, 

GVP College of Engineering, Madhurawada, Visakhapatnam 530 048, India. 

 



Manil T. Mohan 

Department of Mathematics, Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, 

India. 

Prof. Dr. Alexander A. Katz 

Department of Mathematics & Computer Science, St. John's College of Liberal Arts and Sciences, St. 

John's University, 8000 Utopia Parkway, St. John's Hall 334-G, Queens, NY 11439. 

Prof. Dr. Ahmed M. A. El-Sayed 

Faculty of Science, Alexandria University, Alexandria, Egypt. 

Prof. Dr. G. M. N’Guerekata 

Department of Mathematics, Morgan State University, 1700 E. Cold Spring Lane, Baltimore, MD 21251, 

USA. 

Prof. Dr. Yong Ren 

Department of Mathematics, Anhui Normal University, Wuhu 241000 Anhui Province, China. 

Prof. Dr. Moharram Ali Khan 

Department of Mathematics, Faculty of Science and Arts, Khulais King Abdulaziz University, Jeddah, 

Kingdom of Saudi Arabia. 

Prof. Dr. Yusuf Pandir 

Department of Mathematics, Faculty of Arts and Science, Bozok University, 66100 Yozgat, Turkey. 

Dr. V. Kavitha 

Department of Mathematics, Karunya University, Coimbatore-641114, Tamil Nadu, India. 

Dr. OZGUR EGE 

Faculty of Science, Department of Mathematics, Ege University, Bornova, 35100 Izmir, Turkey. 

Dr. Vishnu Narayan Mishra 

Department of Mathematics, Indira Gandhi National Tribal University, Lalpur, Amarkantak, Anuppur, 

Madhya Pradesh 484 887, India. 

Dr. Michelle Pierri 

Departamento de computacao e matematica, Faculdade de Filosofia, Universidade de Sao Paulo, 

Brazil. 

Dr. Devendra Kumar 

Department of Mathematics, JECRC University, Jaipur-303905, Rajasthan, India. 

Publishing Editors 

Dr. M. Mallikaarjunan 

Department of Mathematics, School of Arts, Science and Humanities, SASTRA Deemed to be 

University, Thanjavur-613401, Tamil Nadu, India. 

Dr. Pratap Anbalagan 

School of Information and Control Engineering, Kunsan National University, Gunsan-si, Jeonbuk, The 

Republic of Korea. 



 

The Malaya Journal of Matematik is published quarterly in single volume annually and four 

issues constitute one volume appearing in the months of January, April, July and October.  

Subscription 

The subscription fee is as follows: 

USD 350.00 For USA and Canada 

Euro 190.00 For rest of the world 

Rs. 4000.00 In India. (For Indian Institutions in India only) 

Prices are inclusive of handling and postage; and issues will be delivered by Registered Air-Mail for 

subscribers outside India. 

Subscription Order 

Subscription orders should be sent along with payment by Cheque/ D.D. favoring "Malaya 

Journal of Matematik" payable at COIMBATORE at the following address: 

 

MKD Publishing House 

5, Venus Garden, Sappanimadai Road, Karunya Nagar (Post), 

Coimbatore- 641114, Tamil Nadu, India. 

Contact No. : +91-9585408402 

E-mail : info@mkdpress.com; editorinchief@malayajournal.org; publishingeditor@malayajournal.org 

Website : https://mkdpress.com/index.php/index/index 



Vol. 4 No. 04 (2016): Malaya Journal of Matematik (MJM) 

1. Perturbation of differential linear system 

Djebbar Samir, Belaib Lekhmissi, Hadadine Mohamed Zine Eddine                   519-523 

2. Pseudo asymptotically periodic integral solution of partial neutral functional differential 

equations 

Zhinan Xia               524-533 

3. Nondifferentiable augmented Lagrangian, ε-proximal penalty methods and applications 

Noureddine Daili , K. Saadi             534-555 

4. On the Cohen p-nuclear positive sublinear operators 

A. Belacel               556-564 

5. Third Hankel determinant for certain subclass of analytic functions 

M. A. Ganiyu, K.O. Babalola             565-570 

6. Approximate controllability of nonlocal impulsive fractional neutral stochastic integro-

differential equations with state-dependent delay in Hilbert spaces 

S. Selvarasu, P. Kalamani , M. Mallika Arjunan          571-598 

7. Oscillation theorems for higher order neutral nonlinear dynamic equations on time scales 

A. Benaissa Cherif, F. Z. Ladrani, A. Hammoudi          599-605 

8. Existence results for non-autonomous neutral integro-differential systems with impulsive and 

nonlocal conditions 

M. Abinaya, V. Mohana             606-611 

9. Exact soliton solutions of the generalized combined and the generalized double combined sinh-

cosh-Gordon equations 

Nasir Taghizadeh, Seyedeh Roodabeh Moosavi Noori , Seyedeh Bahareh Moosavi Noori 

617-623 

10. Study on combinatorial dual graph in intuitionistic fuzzy environment 

Sankar Das              624-631 



Malaya J. Mat. 4(4)(2016) 519–523

Perturbation of Differential Linear System

Djebbar Samira,∗ , Belaib Lekhmissib and Hadadine Mohamed Zine Eddinec

aDepartment of Mathematics, Faculty of Exact and Applied Sciences, University of Oran 1 Ahmed Ben Bella, Algeria.

bDepartment of Mathematics, Faculty of Exact and Applied Sciences, University of Oran 1 Ahmed Ben Bella, Algeria.

cMathematics Departement, College of science Aljourf University 2014 Skaka KSA.

Abstract

The main theme studied concerns perturbation of differential linear system with constant coefficients:

dX
dt

= AX + b. (0.1)

The data of the system (0.1) provides the expression of a vector field X of Rn, in the coordinates X1, X2, ..., Xn.
The singularity of the system (0.1) or the field X, expressed by coordinates X1, X2, ..., Xn is given by the
solutions of the system of equations AX + b = 0.

In general, a small perturbation of a regular linear standard real matrix M is a matrix of the form:

M′ = M + ε.

where ε =
(
εij

)
is a matrix with elements infinitely small.

We study the regular linear perturbation when the singularity is a point with various situations and practical
examples and in the case where the singular place is a line with various practical situations. we hope that our
contribution is in fact to use certain technical of non standard Analysis ( infinitesimal calculus) which simplify
obviously the proves.

Keywords: perturbation singular, regular, critical points, exact solution, differential system, orbits, infinitely-
small , infinitely-large.

2010 MSC: 39B55, 39B52, 39B82. c©2012 MJM. All rights reserved.

1 Introduction

The study of linear stability informs us about the stability of the system when the non-linear terms are taken
into account.When the two eigenvalues have a strictly negative real part, linear stability implies non-linear
stability.

In the case of unstable systems and when the two eigenvalues are strictly positive real parts. A system
which is unstable by linear stability it remains when the non-linear contributions are taken into consideration.
On the other hand, when at least one of the real part of the eigenvalues is zero, i.e. in the case of centers,
taking into account the non-linear terms can lead to different results from those obtained by linearization. we
hope that our contribution is in fact to use certain Technics of non standard Analysis ( infinitesimal calculus)
which simplify obviously the proves.

∗Corresponding author.
ssamirdjebbar@yahoo.fr (Djebbar Samir), belaib lekhmissi@yahoo.fr (Belaib Lekhmissi) and mhadadine@gmail.com (Hadadine Mohamed
Zine Eddine).
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2 Regular linear perturbations

A translation of the origin, we assume b = 0, that gives a homogeneous linear system:

dx
dt

= Ax.

Since rank(A) = 1, there exist elements (α, β) ∈ R2, (a, b) ∈ R2, a2 + b2 � 0 such as a11 = αa , a12 = αb ,
a21 = βa , a22 = βb.
The matrix A is written as:

A =

(
αa αb
βa βb

)
(2.2)

and the system becomes: {
x′1 = αax1 + αbx2
x′2 = βax1 + βbx2

3 Notation

The following abbreviations will be adopted.

NSO: Non singular orbits.
S: Singularity to indicate that a quantity does not take the value 0.
We will write indifferently a 6= 0 or (a) .
NSO: x1 = constant whence x′1 = 0 Thus α = 0.
S: x2 = 0 whence x′2 = βbx2. {

x′1 = 0; α = 0, a = 0, β 6= 0, b 6= 0,
x′2 = βbx2; βb ≺ 0.

{
x′1 = 0; α = 0, a = 0, β 6= 0, b 6= 0,

x′2 = βbx2; βb ≺ 0.

NSO: it is a line of positive slope.
S: x2 = 0. {

x′1 = αbx2 α 6= 0, a = 0, β 6= 0, b 6= 0
x′2 = βbx2 αb ≺ 0, βb ≺ 0

NSO: x2 = constant whence x′2 = 0 Thus β = 0
S: it is a line of positive slope.
NSO: They are line of negative slope.
S: it is a line of negative slope parallel with NOS.{

x′1 = α (ax1 + bx2) α 6= 0, a 6= 0, β 6= 0, b 6= 0
x′2 = β (ax1 + bx2) αa ≺ 0, βa ≺ 0

The non singular orbits are perpendicular to the singularity, the system which makes it possible to describe
them is {

x′1 = 0
x′2 = 0

The non singular orbits are parallel to the singularity described by the following system{
x′1 = x2
x′2 = 0

.
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Since rankA = 1, there exist elements (α, β) ∈ R2, (a, b) ∈ R2, a2 + b2 � 0 such as a11 = αa , a12 = αb
,a21 = βa , a22 = βb.

The matrix (A, b) is written as:

(A, b) =
(

αa αb b1
βa βb b1

)
and the system (0.1) become: {

x′1 = α (ax1 + bx2) + b1
x′2 = β (ax1 + bx2) + b2

first case b1 = b2 = 0 we must take α, β, a, b non zero so that the matrix (A, b) remains of rank2 second case
b1 = 0, b2 6= 0 we have: {

x′1 = α (ax1 + bx2)

x′2 = β (ax1 + bx2) + b2

If α = 0, β 6= 0 is impossible because rank (A, b) will not be equal any more to 2

Remark 3.1. For a linear differential connection of R2 with constant coefficients

dX
dt

= AX + b

with:
rank (A, b) = 1 + rank (A) = 2.

There exists two possible models.

Ame exotique or parabola The trajectories of the parabola of equation x2 =
1
2

x2
1 + k, k ∈ R corresponding

with the system: {
x′1 = 1

x′2 = x1.

Ame stable The trajectories are exponential curves of equation x2 = k exp(x1), k ∈ R corresponding with the
system: {

x′1 = 1
x′2 = x2.

The axis of the traces represents the states with a comb type.
The axis of the traces represents the states of the heart type.

4 Regular linear perturbation when the singular place is a point

If B is a real matrix of order p and ε a real matrix of p order have infinitely small elements, then it exists a real
infinitely small ε,such as det (B + ε) = det B + ε.
The various situations or the singularity is a point.
With a loss less of general information, it can be limited to the homogeneous systems:

dx
dt

= Ax.

with rankA = 2, A standard matrix.
First case : A is not diagonal.
We work with the figure X, giving the qualitative states in term of trace.
Defined as Tr : R2 → R is a continuous standard function.
Thus Tr (B + ε) = TrB + ε where ε is Infinitesimal. If B is a standard function and ε a matrix of Infinitesimals.
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The linear differential system
dx
dt

= Ax, A standard matrix.
In SDN the state (respectively IDN) (det A � 0, TrA ≺ 0 respectively TrA � 0).

det A =
1
4
(TrA)2, undergoing a small regular linear perturbation:

dx
dt

= (A + ε) x and ε a matrix of
infinitesimals.
SDN the state (respectively IDN) changes into SDN(respectively IDN).

if det (A + ε) =
1
4
(Tr (A + ε))2 ( it is said that states SDN and IDN resist ).

The SDN state (respectively IDN) changes into SN (respectively IN).

if det (A + ε) ≺ 1
4
(Tr (A + ε))2.

The linear differential system
dx
dt

= Ax, A standard.

In the state C (detA � 0, TrA = 0) undergoing a small regular linear perturbation.
dx
dt

= (A + ε) x and ε a

matrix of infinitesimals.Then the state C resist if (Tr (A + ε)) = 0 and the state C transforms into FI if
(Tr(A + ε)) � 0 and the state C transform into FS if (Tr(A + ε)) ≺ 0

Example 4.1. Let be the system
dx
dt

= Ax in the state C

A =

(
−2 2
−3 2

)
det A = 2, TrA = 0

The C state resists if the matrix ε is chosen null.
The state C transforms it self into FI if we take

ε =

(
ε11 0
0 0

)
with ε11 i, p � 0

A + ε =

(
−2 + ε11 2
−3 2

)
det (A + ε) = 2 + 2ε11 � 0 , Tr(A + ε) = ε11

The C state transforms it self into FS if we take ε =

(
ε11 0
0 0

)
with ε11i, p � 0

We obtain:

det (A + ε) = 2 + 2ε11 � 0, Tr (A + ε) = ε11 � 0. (4.3)

det (A + ε) = 2 + 2ε11 �
1
4
(Tr (A + ε))2 =

1
4

ε2
11 � 0. (4.4)

qualitative state colC with three answers over looked the small regular linear perturbation, to resist
,change into colFS , change into colFI

5 Conclusion

we used non-standard matrices infinitely close to standard matrices, then we try to see if the Poincares
Classification looses its properties at the singular points. Our goal is to find, for non-linear systems when
the linearized is a matrix close to a standard matrix, a possible link between what we do and to generalize our
results.
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Pseudo Asymptotically Periodic Integral Solution of Partial Neutral

Functional Differential Equations
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Abstract In this paper, we propose a new class of functions called µ-pseudo S-asymptotically periodic

function on R by the measure theory. Furthermore, the existence, uniqueness of µ-pseudo S-asymptotically
periodic integral solution to partial neutral functional differential equations with finite delay are
investigated. Here we assume that the undelayed part is not necessarily densely defined and satisfies the
Hille-Yosida condition.

Keywords: µ-pseudo S-asymptotically periodic function, Partial neutral functional differential equations,
Measure theory, Integral solution.
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1 Introduction

The existence of periodic solution or asymptotically periodic solution is very important in the qualitative
studies of many problems. Many authors have made important contributions to the theory of periodicity,
asymptotic periodicity and applications to differential equations, integral equations, integro-differential
equations and partial functional differential equations. More details on this topic can be found in
[10, 12, 20, 21, 25, 30].

The notion of S-asymptotic periodicity is an important generalization of asymptotic periodicity, which
was introduced by Henrı́quez et al. in [18, 19]. Since then, it attracted the attention of many researchers [7,
11, 13, 22] and this concept has undergone several interesting, natural, and powerful generalizations, such as
pseudo S-asymptotic periodicity [23], weighted pseudo S-asymptotic periodicity [28], and so on. On the other
hand, Blot et al. [9] used some results of the measure theory to establish a new concept of µ-pseudo almost
periodicity which generalizes weighted pseudo almost periodicity. Using the methods of [9], we introduce
the concept of µ-pseudo S-asymptotic periodicity by measure theory in this paper.

Partial neutral functional differential equations (PNFDEs), arising from many biological, chemical, and
physical systems, become an interesting and important field in dynamical systems. In the standard framework
of semilinear PNFDEs, one assumes that the operator A in the linear part is densely defined. However, there
are many examples in which the density condition is not satisfied [3, 15, 17, 27, 29]. Here we assume that the
linear part is not necessarily densely defined and satisfies the Hille-Yosida condition. Existence, uniqueness
of µ-pseudo S-asymptotically periodic integral solution to PNFDEs are investigated.

The paper is organized as follows. In Section 2, some notations are presented and we propose a new
class of functions called µ-pseudo S-asymptotically periodic function by the measure theory. In Section 3, we
recall some fundamental results which include the variation of constants formula and spectral decomposition.
Sections 4 is devoted to the existence and uniqueness of µ-pseudo S-asymptotically periodic integral solution
of PNFDEs. In Section 5, we provide an example to illustrate our main results.

∗Corresponding author.
maysa elgendy@yahoo.com : xiazn299@zjut.edu.cn (Zhinan Xia)
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2 Preliminaries and basic results

Let (X, ‖ · ‖), (Y, ‖ · ‖) are two Banach spaces and N, R, R+ and C stand for the set of natural numbers, real
numbers, nonnegative real numbers and complex numbers, respectively. For A being a linear operator on X,
D(A), ρ(A), R(λ, A), σ(A) stand for the domain, the resolvent set, the resolvent and spectrum of A. In order
to facilitate the discussion below, we further introduce the following notations:

• C(R, X) (resp. C(R×Y, X)): the set of continuous functions from R to X (resp. from R×Y to X).

• C = C([−r, 0], X): the space of continuous functions from [−r, 0] to X endowed with the uniform norm
topology.

• BC(R, X) (resp. BC(R× Y, X)): the Banach space of bounded continuous functions from R to X (resp.
from R×Y to X) with the supremum norm.

• B(X, Y): the Banach space of bounded linear operators from X to Y endowed with the operator topology.
In particular, we write B(X) when X = Y.

• Lp(R, X): the space of all classes of equivalence (with respect to the equality almost everywhere on R)
of measurable functions f : R→ X such that ‖ f ‖ ∈ Lp(R, R).

For ω > 0, define
C0(R, X) = {x ∈ BC(R, X) : lim

|t|→∞
‖x(t)‖ = 0}.

Cω(R, X) = {x ∈ BC(R, X) : x is ω-priodic}.

Definition 2.1. A function f ∈ BC(R, X) is called asymptotically ω-periodic if there exists g ∈ Cω(R, X), ϕ ∈
C0(R, X) such that f = g + ϕ. Denote by APω(R, X) the set of such functions.

Definition 2.2. A function f ∈ BC(R, X) is said to be S-asymptotically ω-periodic if there exists ω > 0 such
that lim

t→∞
( f (t + ω)− f (t)) = 0. Denote by SAPω(R, X) the set of such functions.

Definition 2.3. A function f ∈ BC(R, X) is called pseudo S-asymptotically ω-periodic if there exists ω > 0
such that

lim
T→∞

1
2T

∫ T

−T
‖ f (t + ω)− f (t)‖dt = 0.

Denote by PSAPω(R, X) the set of such functions.

Let U be the set of all functions ρ : R → (0, ∞) which are positive and locally integrable over R. For a
given T > 0 and each ρ ∈ U, set

m(T, ρ) :=
∫ T

−T
ρ(t)dt.

Define U∞ := {ρ ∈ U : lim
T→∞

m(T, ρ) = ∞}.

Definition 2.4. Let ρ ∈ U∞. A function f ∈ BC(R, X) is called weighted pseudo S-asymptotically ω-periodic
if there exists ω > 0 such that

lim
T→∞

1
m(T, ρ)

∫ T

−T
ρ(t)‖ f (t + ω)− f (t)‖dt = 0.

Denote by WPSAPω(R, X) the set of such functions.

Remark 2.1. Note that in the above definitions, if the function f is limited on R+, i.e., APω(R+, X),
SAPω(R+, X), PSAPω(R+, X), WPSAPω(R+, X) is defined in [18], [23], [24], [28], respectively.

Next, we introduce the new class of functions called µ-pseudo S-asymptotically periodic on R by the
measure theory. B denotes the Lebesgue σ-field of R, M stands for the set of all positive measure µ on B
satisfying µ(R) = ∞ and µ([a, b]) < ∞ for all a, b ∈ R (a ≤ b). We formulate the following hypothesis:

(H0) For all τ ∈ R, there exist β > 0 and a bounded interval I such that

µ({a + τ, a ∈ A}) ≤ βµ(A) if A ∈ B satisfies A ∩ I = ∅.



526 Z. N. Xia / Pseudo Asymptotically Periodic Integral Solution of PNFDEs

Definition 2.5. Let µ ∈ M. A function f ∈ BC(R, X) is called µ-pseudo S-asymptotically ω-periodic if there
exists ω > 0 such that

lim
T→+∞

1
µ([−T, T])

∫
[−T,T]

‖ f (t + ω)− f (t)‖dµ(t) = 0.

Denote by PSAPω(R, X, µ) the set of such functions.

Remark 2.2. (i) If the measure µ is the Lebesgue measure, PSAPω(R, X, µ) is PSAPω(R, X).

(ii) Let ρ(t) > 0 a.e. on R for the Lebesgue measure. µ denotes the positive measure defined by

µ(A) =
∫

A
ρ(t)dt for A ∈ B,

where dt denotes the Lebesgue measure on R, then PSAPω(R, X, µ) is WPSAPω(R, X). One can see
[4, 8, 9] for more details.

Similarly as the proof of [9], one has the following results for PSAPω(R, X, µ).

Lemma 2.1. Let µ ∈ M, then the following properties hold:

(i) f ± g ∈ PSAPω(R, X, µ) if f , g ∈ PSAPω(R, X, µ).

(ii) λ f ∈ PSAPω(R, X, µ) if λ ∈ R, f ∈ PSAPω(R, X, µ).

(iii) APω(R, X) ⊂ SAPω(R, X) ⊂ PSAPω(R, X) ⊂WPSAPω(R, X) ⊂ PSAPω(R, X, µ).

(iv) PSAPω(R, X, µ) is a Banach space with the supremum norm ‖ · ‖.
Lemma 2.2. Let µ ∈ M and satisfies (H0), then PSAPω(R, X, µ) is translation invariant.

Theorem 2.1. Assume that µ ∈ M. Let f : R × X → X be a function bounded on bounded sets of X, f ∈
PSAPω(R× X, X, µ), and there exists a constant L f > 0 such that

‖ f (t, x)− f (t, y)‖ ≤ L f ‖x− y‖, t ∈ R, x, y ∈ X,

then f (·, u(·)) ∈ PSAPω(R, X, µ) if u(·) ∈ PSAPω(R, X, µ).

.

Lemma 2.3. Let µ ∈ M and satisfies (H0), if f ∈ PSAPω(R, X, µ), G ∈ L1(R, B(X)), then the convolution product
f ∗ G defined by

( f ∗ G)(t) =
∫ +∞

−∞
G(s) f (t− s)ds, t ∈ R

lies in PSAPω(R, X, µ).

Proof. Let f ∈ PSAPω(R, X, µ), then by Lemma 2.2, one has f (· − s) ∈ PSAPω(R, X, µ) for all s ∈ R. It is not
difficult to see that f ∗ G ∈ BC(R, X). Since µ(R) = +∞, then there exists r0 ≥ 0 such that µ([−r, r]) > 0 for
all r ≥ r0. Hence by Fubini’s theorem, one has

1
µ([−T, T])

∫
[−T,T]

‖( f ∗ G)(t + ω)− ( f ∗ G)(t)‖dµ(t)

≤ 1
µ([−T, T])

∫
[−T,T]

∫ +∞

−∞
‖G(s)‖‖ f (t + ω− s)− f (t− s)‖dsdµ(t)

≤
∫ +∞

−∞

‖G(s)‖
µ([−T, T])

∫
[−T,T]

‖ f (t− s + ω)− f (t− s)‖dµ(t)ds.

Moreover, since G ∈ L1(R, B(X)) and

0 ≤ ‖G(s)‖
µ([−T, T])

∫
[−T,T]

‖ f (t− s + ω)− f (t− s)‖dµ(t) ≤ 2‖G‖‖ f ‖ for all s ∈ R,

then

lim
T→+∞

∫ ∞

−∞

‖G(s)‖
µ([−T, T])

∫
[−T,T]

‖ f (t− s + ω)− f (t− s)‖dµ(t)ds = 0,

by Lebesgue dominated convergence theorem and f (· − s) ∈ PSAPω(R, X, µ), one has

lim
T→+∞

1
µ([−T, T])

∫
[−T,T]

‖( f ∗ G)(t + ω)− ( f ∗ G)(t)‖dµ(t) = 0,

that is f ∗ G ∈ PSAPω(R, X, µ).
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3 Variation of constants formula and spectral decomposition

In this paper, we will investigate the existence and uniqueness of µ-pseudo S-asymptotically periodic integral
solution for PNFDEs:

d
dt
Dut = ADut + L(ut) + f (t), t ∈ R, (3.1)

where A is a linear operator on Banach space X, not necessarily densely defined and satisfies the Hille-Yosida
condition. Fix r ≥ 0, ut ∈ C is defined by ut(θ) = u(t + θ) for θ ∈ [−r, 0]. D ∈ B(C, X), L ∈ B(C, X),
f ∈ PSAPω(R, X, µ). For the well posedness of (3.1), we assume that D has the following form:

Dψ = ψ(0)−
∫ 0

−r
[dη(θ)]ψ(θ) for ψ ∈ C,

for a mapping η : [−r, 0] → B(X) of bounded variation and nonatomic at zero, which means that there exists
a continuous nondecreasing function δ : [0, r]→ [0,+∞) such that δ(0) = 0 and∣∣∣∣∫ 0

−s
[dη(θ)]ψ(θ)

∣∣∣∣ ≤ δ(s) sup
−r≤θ≤0

|ψ(θ)| for ψ ∈ C, s ∈ [0, r].

To (3.1), we associate the following initial value problem
d
dt
Dut = ADut + L(ut) + f (t), t ≥ σ,

uσ = ϕ ∈ C.
(3.2)

Definition 3.1. [16] u ∈ C([−r+ σ,+∞], X) is said to be an integral solution of (3.2) if the following conditions
hold:

(i)
∫ t

σ Dusds ∈ D(A) for t ≥ σ.

(ii) Dut = Dϕ + A
∫ t

σ Dusds +
∫ t

σ(L(us) + f (s))ds for t ≥ σ.

(ii) uσ = ϕ.

If D(A) = X, the integral solution coincide with the known mild solution. One can see that if ut is an
integral solution of (3.2), then ut ∈ D(A) for all t ≥ 0, in particular Dϕ ∈ D(A). Let us introduce the part A0
of the operator A in D(A) which defined by{

D(A0) = {x ∈ D(A) : Ax ∈ D(A)}
A0x = Ax for x ∈ D(A0).

We make the following assumption:

(H1) A satisfies the Hille-Yosida condition: there exist M ≥ 1, ω ∈ R such that (ω,+∞) ⊂ ρ(A) and

|R(λ, A)n| ≤ M
(λ−ω)n , for n ∈N, λ > ω.

Lemma 3.1. [6] A0 generates a strongly continuous semigroup (T0(t))t≥0 on D(A).

The phase space C0 of (3.2) is defined by

C0 = {ϕ ∈ C : Dϕ ∈ D(A)}.

For each t ≥ 0, we define the linear operator U (t) on C0 by

U (t) = vt(·, ϕ),

where v(·, ϕ) is the solution of the following homogeneous equation
d
dt
Dvt = ADvt + L(vt), t ≥ 0,

v0 = ϕ ∈ C.
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Proposition 3.1. [2] (U (t))t≥0 is a strongly continuous semigroup of linear operators on C0.

Theorem 3.1. [2] Let AU defined on C0 by{
D(AU ) = {ϕ ∈ C1([−r, 0], X) : Dϕ ∈ D(A),Dϕ′ ∈ D(A) and Dϕ′ = ADϕ + L(ϕ)}
AU ϕ = ϕ′ for ϕ ∈ D(AU ).

Then AU is the infinitesimal generator of the semigroup (U (t))t≥0 on C0.

Let X0 be the space defined by
〈X0〉 = {X0c : c ∈ X}

where the function X0c is defined by

(X0c)(θ) =

{
0 if θ ∈ [−r, 0),

c if if θ = 0.

The space C0 ⊕ 〈X0〉 equipped with the norm |φ + X0c| = |φ|C + |c| for (φ, c) ∈ C0 × X is a Banach space and
consider the extension AU defined on C0 ⊕ 〈X0〉 by{

D(ÃU ) = {ϕ ∈ C1([−r, 0], X) : Dϕ ∈ D(A) and Dϕ′ ∈ D(A)}
ÃU ϕ = ϕ′ + X0(ADϕ + L(ϕ)−Dϕ′).

In order to compute the resolvent operator R(λ, ÃU ), we suppose the following assumption.

(H2) Deλc ∈ D(A) for all c ∈ D(A) and all complex λ, where eλc ∈ C is defined by

(eλc)(θ) = eλθc, for θ ∈ [−r, 0].

Lemma 3.2. [2] Assume that (H1)-(H2) hold, then ÃU satisfies the Hille-Yosida condition on C0 ⊗ 〈X0〉: there exists
M̃ ≥ 0, ω̃ ∈ R such that (ω̃,+∞) ⊂ ρ(ÃU ) and

|(λI − ÃU )−n| ≤ M̃
(λ− ω̃)n , for n ∈N, λ > ω̃.

Moreover, the part of ÃU on D(ÃU ) = C0 is exactly the operator AU .

Now, we can state the variation of constants formula associated to (3.2)

Theorem 3.2. [2] Assume that (H1) and (H2) hold, then for ϕ ∈ C0, the integral solution x of (3.2) is given by the
following variation of constants formula

ut = U (t)ϕ + lim
λ→+∞

∫ t

0
U (t− s)B̃λX0 f (s)ds for t ≥ σ,

where B̃λ = λ(λI − ÃU )−1 for λ > ω̃.

Definition 3.2. We say a semigroup (U (t))t≥0 is hyperbolic if

σ(AU ) ∩ iR = ∅.

Definition 3.3. The operator D is said to be stable if there exist positive constants η, ν such that the solution
of the homogenous equation {

Dyt = 0 for t ≥ 0

y0 = φ,

where φ ∈ {ψ ∈ C : Dψ = 0} satisfies

|yt(·, φ)| ≤ νe−ηt|φ| for t ≥ 0.
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Example 3.1. The operator D defined by

Dϕ = ϕ(0)− qϕ(−r)

is stable if and only if |q| < 1.

For the sequel, we make the following assumptions:

(H3) T0(t) is compact on D(A) for every t > 0.

(H4) The operator D is stable.

We get the following result on the spectral decomposition of the phase space C0.

Theorem 3.3. [2] Assume that (H1)-(H4) hold. If the semigroup (U (t))t≥0 is hyperbolic, then the space C0 is
decomposed as a direct sum

C0 = S⊕U

of two U (t) invariant closed subspaces S and U such that the restricted semigroup on U is a group and there exist
positive constants M, ω such that

|U (t)ϕ| ≤ Me−ωt|ϕ| for t ≥ 0, ϕ ∈ S,

|U (t)ϕ| ≤ Meωt|ϕ| for t ≤ 0, ϕ ∈ U,

where S and U are called the stable and unstable space respectively.

Theorem 3.4. [5] Assume that (H1)-(H4) hold and the semigroup (U (t))t≥0 is hyperbolic. If f ∈ BC(R, X), then
there exists a unique bounded integral solution u of (3.1) which is given by

ut = lim
λ→+∞

∫ t

−∞
U s(t− s)Πs(B̃λX0 f (s))ds

+ lim
λ→+∞

∫ t

+∞
Uu(t− s)Πu(B̃λX0 f (s))ds for t ∈ R, (3.3)

where U s(t), Uu(t) are the restrictions of U (t) on S, U respectively, Πs, Πu are the projections of C0 onto S, U,
respectively.

4 Partial neutral functional differential equations

In what follows, we will investigate the existence, uniqueness of µ-pseudo S-asymptotically periodic integral
solution of PNFDEs. First, consider following partial neutral functional differential equations

d
dt
Dut = ADut + L(ut) + f (t), t ∈ R, (4.1)

where A is a linear operator on Banach space X, satisfies the Hille-Yosida condition. ut ∈ C is defined by
ut(θ) = u(t + θ) for θ ∈ [−r, 0]. D ∈ B(C, X), L ∈ B(C, X), f ∈ PSAPω(R, X, µ), µ ∈ M.

Theorem 4.1. Assume that (H1)-(H4) hold, f ∈ PSAPω(R, X, µ), µ ∈ M and the semigroup (U (t))t≥0 is
hyperbolic, then (4.1) has a unique integral solution u ∈ PSAPω(R, X, µ) which is given by (3.3).

Proof. By Theorem 3.4, (4.1) has a unique bounded integral solution u which is given by (3.3). Let

ut = (Γs f )(t) + (Γu f )(t),

where

(Γs f )(t) = lim
λ→+∞

∫ t

−∞
U s(t− s)Πs(B̃λX0 f (s))ds,

(Γu f )(t) = lim
λ→+∞

∫ t

+∞
Uu(t− s)Πu(B̃λX0 f (s))ds.
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By (H1), there exists a constant K̃ > 0 such that

‖(Γs f )(t)‖ ≤ K̃
∫ t

−∞
e−ω(t−s)‖ f (s)‖ds. (4.2)

Let G : R→ R be the function defined by

G(t) = e−ωt for t ≥ 0 and G(t) = 0 for t < 0,

hence ∫ t

−∞
e−ω(t−s)‖ f (s)‖ds =

∫ ∞

0
e−ωs‖ f (t− s)‖ds =

∫ ∞

−∞
G(s)‖ f (t− s)‖ds.

Sine ‖ f (t)‖ ∈ PSAPω(R, R, µ), by Lemma 2.3, one has

∫ t

−∞
e−ω(t−s)‖ f (s)‖ds ∈ PSAPω(R, R, µ),

so Γs f ∈ PSAPω(R, X, µ) by (4.2). Proceeding in a similar manner, we have Γu f ∈ PSAPω(R, X, µ). The
proof is complete.

Next, consider the nonlinear equation

d
dt
Dut = ADut + L(ut),+ f (t, u(t− r)), t ∈ R, (4.3)

where A is a linear operator on Banach space X, satisfies the Hille-Yosida condition,D ∈ B(C, X), L ∈ B(C, X),
f : R× X → X is a function bounded on bounded sets of X.

We make the following assumption:

(H5) f ∈ PSAPω(R× X, X, µ), µ ∈ M and and satisfies the Lipschitz condition

‖ f (t, u)− f (t, v)‖ ≤ L f ‖u− v‖, u, v ∈ X, t ∈ R,

where L f > 0 is a constant.

Theorem 4.2. Assume that (H0)-(H5) hold and the semigroup (U (t))t≥0 is hyperbolic, then (4.3) has a unique integral
solution u(t) ∈ PSAPω(R, X, µ) if L f is small enough.

Proof. Let v ∈ PSAPω(R, X, µ), by Theorem 2.1, Lemma 2.2 and (H5), it is easy to see that f (·, v(· − r)) ∈
PSAPω(R, X, µ). Consider the equation

d
dt
Dut = ADut + L(ut) + f (t, v(t− r)), t ∈ R. (4.4)

By Theorem 4.1, we deduce that (4.4) has a unique integral solution Fv which is given by[
lim

λ→+∞

∫ t

−∞
U s(t− s)Πs(B̃λX0 f (s, v(s− r)))ds

+ lim
λ→+∞

∫ t

+∞
Uu(t− s)Πu(B̃λX0 f (s, v(s− r)))ds

]
(0).

The operator F is well defined on PSAPω(R, X, µ). By (H5), there exists a constant σ0 such that

sup
t∈R

|(Fv1)(t)− (Fv2)(t)| ≤ L f σ0 sup
t∈R

|v1(t)− v2(t)|.

If we choose L f σ0 < 1, by Banach contraction mapping principle, F has a unique fixed point in
PSAPω(R, X, µ), which is the µ-pseudo S-asymptotically periodic integral solution to (4.3).



Z. N. Xia / Pseudo Asymptotically Periodic Integral Solution of PNFDEs 531

5 Example

Consider the nonautonomous version of the model proposed in [26]
∂

∂t
[u(t, ξ)− qu(t− r, ξ)] =

∂2

∂ξ2 [u(t, ξ)− qu(t− r, ξ)] +
∫ 0

−r
γ(θ)u(t + θ, ξ)dθ

+ ϑ(u(t− r, ξ)) + φ(t)g(ξ) for t ∈ R, ξ ∈ [0, π],

u(t, 0)− qu(t− r, 0) = u(t, π)− qu(t− r, π) = 0 for t ∈ R,

(5.1)

where q ∈ (0, 1), γ ∈ C([−r, 0], R), g ∈ C([−r, 0], R), ϑ : R → R is a Lipschitzian continuous function with
Lipschitz constant Lϑ, and φ ∈ PSAPω(R, X, µ), µ ∈ M satisfying (H0).

Let X = C([0, π], R) and define the operator A by

D(A) = {u ∈ C2([0, π], R) : u(0) = u(π) = 0}, and Au := u′′, u ∈ D(A).

Lemma 5.1. [14] The operator A satisfies the Hille-Yosida condition on X:

(0,+∞) ⊂ ρ(A) and |(λI − A)−1| ≤ 1
λ

for λ > 0.

It is not difficult to see that (H1) holds by Lemma 5.1. Let A0 be the part of the operator A in D(A), A0 is
given by

D(A0) = {u ∈ C2([0, π], R) : u(0) = u(π) = u′′(0) = u′′(π) = 0},
Au := u′′, u ∈ D(A0).

A0 generates a strongly continuous compact semigroup (T0(t))t≥0 on D(A), which implies that (H3) holds
and D(A) = {u ∈ X : u(0) = u(π) = 0}.

Define the bounded linear operator D : C → X by

Dψ = ψ(0)− qψ(ψ− r).

Since 0 < q < 1, then D is stable and (H4) holds. Moreover, by definitions of the operators A,D, it follows
that (H2) is satisfied.

Let

L(ψ)(ξ) =
∫ 0

−r
γ(θ)ψ(θ)(ξ)dθ for ξ ∈ [0, π], ψ ∈ C.

f (t, y)(ξ) = ϑ(y(ξ)) + φ(t)g(ξ) for y ∈ X, t ∈ R, ξ ∈ [0, π],

then L ∈ B(C, X) and (H5) holds with the Lipschitz constant Lϑ. Let u(t) = u(t, ·), (5.1) can be rewritten as an
abstract system of the form (4.3). For the hyberbolicity, we suppose that

(H6)
∫ 0
−r |γ(θ)|dθ < 1− q.

Lemma 5.2. [16] Assume that (H6) holds, then the semigroup (U (t))t≥0 is hyperbolic.

By Theorem 4.2, one has

Theorem 5.1. Under the above assumptions, (5.1) has a unique integral solution u ∈ PSAPω(R, X, µ) if Lϑ is small
enough.
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Abstract

The purpose of this work is to prove results concerning the duality theory and to give detailed study on
the augmented Lagrangian algorithms and ε-proximal penalty method which are considered, today, as the
most strong algorithms to solve nonlinear differentiable and nondifferentiable problems of optimization. We
give an algorithm of primal-dual type, where we show that sequences

{
λk
}

k
and

{
xk
}

k
generated by this

algorithm converge globally, with at least the Slater condition, to λ and x. Numerical simulations are given.

Keywords: Convex programming, augmented Lagrangian, ε-proximal penalty method, duality, Perturbation,
Convergence of algorithms.
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1 Introduction

The augmented Lagrangian methods present a large inconvenience of point of view stability. If we have
a sequence

{
λk
}

k
who converges to an optimum λ of the dual function, the successive solutions xk obtained

converge to an optimal solution only if L(x, λ) has an unique minimum at x in a neighborhood of λ (it will be
the case for example if L(x, λ) is strictly convex at x).

So the methods of exterior penalties present the inconvenience that, to obtain a feasible point, we make
tighten the coefficient of penalty towards the infinity, then the penalized function becomes badly conditioned
for which the methods of gradients have a slow convergence

In the case of the equality constraints, Hestenes (1969) and Powell (1969) suggested combining previous
both approaches (penalties and dualities), and suggested solving a sequence of unconstrained problems of
the following shape:

Lr(x, λ) = f (x) +
m

∑
i=1

λigi(x) + r
m

∑
i=1

(gi(x))2 (1.1)

A generalization of Hestenes and Powell function to inequality constraints will be after given.
So, the general principle of these methods consists in determining a saddle point of Lr instead of solving

(P). The first component of the saddle point is, also, an optimal solution of the problem (P) .
The augmented Lagrangian method can be considered as an improvement of the penalty methods, because

it avoids having to use coefficients of penalties too big.
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Besides, the fact of adding the quadratic term r(g(x))2 in the classical Lagrangian will improve the
properties of convergence of Lagrangian algorithms because the augmented Lagrangian is strictly convex at
x. It is the case where we find an unique primal solution in the neighborhood of the dual solution.

We can say that the augmented Lagrangian has a much more fundamental interest. Today, it is widely
recognized that the algorithms of optimization based on the use of the augmented Lagrangian, are a part of
the most effective general methods to solve differentiable and nondifferentiable mathematical programming
problems.

The purpose of this work is to prove results concerning the duality theory and to give detailed study
on the augmented Lagrangian algorithms and ε-proximal penalty methods which are considered, today, as
the most strong algorithms to solve nonlinear differentiable and nondifferentiable problems of optimization.
Numerical experiments are given.

2 Main Results

2.1 Results on the Augmented Lagrangian

Consider the following mathematical programming problem :

(P)
{

α := In f f (x)
subject to x ∈ C

(2.2)

where

• f is a convex function with finite values and non necessarly differentiable.

• C := {x ∈ Rn : gi(x) ≤ 0, i = 1, ..., m} , gi (i = 1, ..., m) are C1-convex functions.

Suppose that
lim

(‖x‖−→+∞)
f (x) = +∞ (i.e., f is inf-compact) (2.3)

and there exists x0 such that
gi(x0) < 0, (i = 1, ..., m) (2.4)

Definition 2.1. The augmented Lagrangian associated to the problem (P) is defined as follows

Lr(x, λ) := f (x) +
1
2r

m

∑
i=1

(ψ+(λi + rgi(x))2 − λ2
i ) for all x ∈ Rn, λ ∈ Rm

+, (2.5)

where ψ+(t) = Max(0, t). Or still

Lr(x, λ) := f (x) +
m

∑
i=1


r
2 g2

i (x) + λigi(x) if gi(x) > − λi
r

− 1
2r λ2

i if gi(x) ≤ − λi
r .

(2.6)

Remark 2.1. Put
Lr(x, λ) = f (x) + ϕ(g(x), λ, r),

where

ϕ(u, λ, r) =
1
2r

m

∑
i=1

(ψ+(λi + rui)
2 − λ2

i ), u ∈ Rm, λ ∈ Rm
+, r > 0.

We notice well that

• if u ≤ 0, then ϕ(u, λ, r) ≤ 0;

• if u = 0, then ϕ(u, λ, r) = 0.

Corollary 2.1. We have lim
(r−→0)

Lr(x, λ) = L(x, λ).
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We have the following lemma :

Lemma 2.1. We have
In f

x∈Rn
Sup

(λ, r)∈T
Lr(x, λ) = α,

where T = Rm
+ ×R+.

Proof. At first, we notice that for all u and c ≥ 0 there is a couple (λ, r) ∈ T such that ϕ(u, λ, r) > c.
Indeed, we distinguish two cases :

• Ca se 1: If u � 0, there exists at least one component ui > 0. We note by

I :=
{

i ∈ {1, ..., m} : ui > −
λi
r

}
.

I 6= ∅. Then

ϕ(u, λ, r) = ∑
i∈I

(
r
2

u2
i + λiui)−∑

i/∈I

λ2
i

2r
.

If I = {1, ..., m} then ϕ(u, λ, r) −→ +∞, as (λ, r) −→ +∞.

Else, we have ϕ(u, 0, r) −→ +∞, as (r −→ +∞).

Then, in both cases there existe (λ, r) ∈ T such that

ϕ(u, λ, r) > c. (2.7)

• Case 2: If ui ≤ 0, for all i ∈ {1, ..., m} , one has

1
2r

(ψ+(λi + rui)
2 − λ2

i ) =


r
2 u2

i + λiui if ui > − λi
r

− 1
2r λ2

i if ui ≤ − λi
r

 ≤ 0

then
Sup

(λ, r)∈T
ϕ(u, λ, r) = 0 (2.8)

By means of formulae (2.6) and (2.7), one has

Sup
(λ, r)∈T

Lr(x, λ) =


f (x) if x ∈ C

+∞ else;

thus
In f

x∈Rn
Sup

(λ, r)∈T
Lr(x, λ) = In f

x∈C
f (x) = α.

By definition, we put
dr(λ) := In f

x∈Rn
Lr(x, λ), for all λ ∈ Rm

+.

We have the following Lemma:

Lemma 2.2. For all r > 0, we have

dr(λ) := Sup
z≥0

{
d(z)− 1

2r
‖z− λ‖2

}
for all λ ∈ Rm

+. (2.9)
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Proof. We have
dr(λ) := Sup

z≥0

{
d(z)− 1

2r ‖z− λ‖2
}

= Sup
z≥0

{
In f

x∈Rn

{
f (x) +

m
∑

i=1
zigi(x)

}
− 1

2r ‖z− λ‖2

}

= Sup
z≥0

{
In f

x∈Rn

{
f (x) +

m
∑

i=1
zigi(x)− 1

2r ‖z− λ‖2
}}

.

The function

(x, z) −→ δ(x, z) = f (x) +
m

∑
i=1

zigi(x)− 1
2r
‖z− λ‖2

admits a saddle point because it verifies the following conditions :
. δ(x, z) is convex for x an concave for z;
. δ(x, z) tends to +∞ as ‖x‖ −→ +∞ (at a point z = 0);
. δ(x, z) tends to −∞ as ‖z‖ −→ +∞ (at a point x0 : g(x0) < 0).
Then, we can invert SupIn f by In f Sup and we have

dr(λ) = Sup
z≥0

In f
x∈Rn

{
f (x) +

m
∑

i=1
zigi(x)− 1

2r ‖z− λ‖2
}

= In f
x∈Rn

Sup
z≥0

{
f (x) +

m
∑

i=1
zigi(x)− 1

2r ‖z− λ‖2
}

.

The Sup is reached at z where

zi =


rgi(x) + λi if gi(x) > − λi

r

0 if gi(x) ≤ − λi
r

 = ψ+(rgi(x) + λi).

For this notation, then the function dr(λ) spells

dr(λ) := In f
x∈Rn

{
f (x) +

m
∑

i=1
ψ+(rgi(x) + λi)gi(x)− 1

2r

m
∑

i=1
(ψ+(rgi(x) + λi)− λi)

2
}

= In f
x∈Rn

{
f (x) +

m
∑

i=1
(ψ+(rgi(x) + λi)gi(x)− 1

2r (ψ
+(rgi(x) + λi)− λi)

2)

}

= In f
x∈Rn

 f (x) +
m
∑

i=1


λigi(x) + r

2 g2
i (x) if gi(x) > − λi

r

− 1
2r λ2

i if gi(x) ≤ − λi
r


= In f

x∈Rn

{
f (x) + 1

2r

m
∑

i=1
(ψ+(rgi(x) + λi)

2 − λ2
i ))

}
= In f

x∈Rn
Lr(x, λ).

According to ([3], remark 2.1), dr is the regularized function of d. It is, thus, differentiable at λ and we have

∇dr(λ) = −
1
r
(λ− zλ)

where zλ realizes the Sup in the expression (2.8). We note, also, that dr has the same optimal solutions as
d.

Definition 2.2. The dual problem associated to the problem (P) is the following one :

(D) β := Sup
(λ, r)∈T

dr(λ), (2.10)

where T = Rm
+ ×R+.
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Definition 2.3. We call perturbation function of (P) the function p defined by

p(u) := In f
x∈Rn

F(x, u),

where

F(x, u) :=


f (x) if g(x) ≤ u,

+∞ else
(2.11)

Remark 2.2. . If u = 0 then p(0) = α

. If u1 ≥ u2 then p(u2) ≥ p(u1).

The following lemma shows the relation which exists between Lr and F.

Lemma 2.3. We have
Lr(x, λ) = In f

u∈Rm
{F(x, u) + ϕ(u, λ, r)} (2.12)

for all x ∈ Rn and (λ, r) ∈ T.

Proof. Let x ∈ Rn and u ∈ Rm.
. If g(x) ≤ u we have

F(x, u) = f (x) and ϕ(g(x), λ, r) ≤ ϕ(u, λ, r), ∀(λ, r) ∈ T.

. If g(x) � u we have F(x, u) = +∞. Then

Lr(x, λ) = f (x) + ϕ(g(x), λ, r) ≤ F(x, u) + ϕ(u, λ, r), ∀u ∈ Rm,

thus
Lr(x, λ) ≤ In f

u∈Rm
{F(x, u) + ϕ(u, λ, r)} ,

but
Lr(x, λ) = F(x, g(x)) + ϕ(g(x), λ, r) ≥ In f

u∈Rm
{F(x, u) + ϕ(u, λ, r)} .

Then both inequalities give the expression (2.11).

Lemma 2.4. We have
Lr(x, λ) = In f

u∈Rm

{
F(x, u)+ < λ, u > +

r
2
‖u‖2

}
, (2.13)

where F is given by the expression (2.11).

Proof. Indeed, let us put

ϕr(xk, λ) = In f
u∈Rm

{
F(xk, u)+ < λ, u > +

r
2
‖u‖2

}
The In f in the expression of ϕr(xk, λ) exists and unique (the function at u is strongly convex). For every x,

we indicate by Cx the following set :

Cx := {u ∈ Rm : u ≥ g(x)} .

Then, the expression (2.12) becomes

ϕr(xk, λ) = In f
u∈Cx

{
F(x, u)+ < λ, u > + r

2 ‖u‖
2
}
= In f

u∈Cx

{
f (x)+ < λ, u > + r

2 ‖u‖
2
}

= f (x) + In f
u∈Cx

{
< λ, u > + r

2 ‖u‖
2
}

.

To calculate the solution of In f
u∈Cx

{
< λ, u > + r

2 ‖u‖
2
}

we look for a minimization according to every i. Let

us put

w(u) =< λ, u > +
r
2
‖u‖2 ,
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then, ∇w(u) = λ + ru.
For all i, if gi(x) < − λi

r then, ui = − λi
r , else ui = gi(x). Thus

In f
x∈Cx

w(x) =
m

∑
i=1


λigi(x) + 1

2r (gi(x))2 if gi(x) ≥ − λi
r

− 1
2r λ2

i if gi(x) < − λi
r

= ϕ(g(x), λ, r).

Then ϕr(xk, λ) = Lr(x, λ).

We notice that Lr is convex at x and concave at (λ, r), consequently dr is concave.
We have the following weak duality theorem :

Theorem 2.1. (Weak duality) We have
β ≤ α. (2.14)

Proof. We always have
Sup

(λ,r)∈T
In f

x∈Rn
Lr(x, λ) ≤ In f

x∈Rn
Sup

(λ,r)∈T
Lr(x, λ),

thus
β ≤ α.

Another relation exists between dr and p is given by the following lemma :

Lemma 2.5. We have
dr(λ) = In f

u∈Rn
{p(u) + ϕ(u, λ, r)} , ∀ (λ, r) ∈ T. (2.15)

Proof. We have, according to the Lemma 2.4,

dr(λ) = In f
x∈Rn

Lr(x, λ) = In f
x∈Rn

In f
u∈Rn

{F(x, u) + ϕ(u, λ, r)}

= In f
u∈Rn

In f
x∈Rn

{F(x, u) + ϕ(u, λ, r)} = In f
u∈Rn

{p(u) + ϕ(u, λ, r)} .

Lemma 2.6. There is a function Φ such that for all (λ, r) ∈ T, (z, s) ∈ T, r > s, we have

ϕ(u, λ, r)− ϕ(u, z, s) ≥ −Φ(λ, z, s, r)

with
lim

(r−→+∞)
Φ(λ, z, s, r) = 0. (2.16)

Proof. We have

ϕ(u, λ, r)− ϕ(u, z, s) =
1
2r

m

∑
i=1

Ψ+(rui + λi)−
1
2s

m

∑
i=1

Ψ+(sui + zi).

We distinguish two cases :
Case 1:
. If ui ≤ − λi

r , then Ψ+(ui + λi) = 0.
. If ui ≤ − zi

s , then Ψ+(sui + zi) = 0, thus

1
2r

Ψ+(rui + λi)−
1
2s

Ψ+(sui + zi) = 0.

. If ui > − zi
s , then − zi

s < ui ≤ − λi
r , from hence

1
2s

Ψ+(sui + zi) =
s
2

u2
i + ziui ≤

s
2
(−λi

r
)2 + zi(−

λi
r
) ≤ s

2
λ2

i
r2 −

ziλi
r

.
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As r > s, then, we have
1
2s

Ψ+(su + z) ≤
λ2

i
2r
− ziλi

r
.

It holds that
1
2r

Ψ+(rui + λi)−
1
2s

Ψ+(sui + zi) ≥ −(−
λ2

i
2r

+
ziλi

r
) −→ 0, as r −→ +∞.

Case 2:
. If ui > − λi

r , then
1
2r

Ψ+(rui + λi) =
r
2

u2
i + λiui.

. If ui ≤ − zi
s , then

1
2s

Ψ+(sui + zi) = 0,

thus − λi
r < ui ≤ − zi

s , it holds that

1
2s Ψ+(rui + λi)− 1

2s Ψ+(sui + zi) =
r
2 u2

i + λiui ≥ −(− r
2 (−

zi
s )

2 − λi(− zi
s ))

≥ −(− z2
i

2r + λi
zi
r ) −→ 0, as r −→ +∞.

. If ui > − zi
s , then, we have

1
2r Ψ+(rui + λi)− 1

2s Ψ+(sui + zi) =
1
2 u2

i (r− s) + (λi − zi)ui

≥ 1
2 (

zi−λi
r−s )2 + (λi − zi)

(zi−λi)
r−s

≥ 1
2 (

zi−λi
r−s )2 + (zi−λi)

2

r−s −→ 0, as r −→ +∞.

Finally, in every cases there is a function Φ verifying

ϕ(u, λ, r)− ϕ(u, z, s) ≥ −Φ(λ, z, s, r), for all (λ, r) ∈ T, (z, s) ∈ T, r > s

with
lim

(r−→+∞)
Φ(λ, z, s, r) = 0.

It results from this lemma the following result :

Lemma 2.7. For all (λ, r) ∈ T, (r > 0), we have

dr(λ) ≥ Sup
(z,s)∈T, (r>s>0)

(ds(z)−Φ(λ, z, s, r)).

Proof. According to the Lemma 2.8, we have

ϕ(u, λ, r) ≥ ϕ(u, z, s)−Φ(λ, z, s, r).

Hence
p(u) + ϕ(u, λ, r) ≥ p(u) + ϕ(u, z, s)−Φ(λ, z, s, r) ∀ u ∈ Rm,

then
In f

u∈Rm
(p(u) + ϕ(u, λ, r)) ≥ In f

u∈Rm
(p(u) + ϕ(u, z, s)−Φ(λ, z, s, r)).

It holds that
dr(λ) ≥ ds(z)−Φ(λ, z, s, r), ∀(z, s) ∈ T, ∀r > s > 0

=⇒ dr(λ) ≥ Sup
(z,s)∈T, (r>s>0)

(ds(z)−Φ(λ, z, s, r)).
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We have the following theorem :

Theorem 2.2. We have
β = Sup

(z,s)∈T
ds(z) = lim

(r−→+∞)
dr(λ), for all λ ∈ Rm

+. (2.17)

Proof. For all (z, s) ∈ T, ε > 0 and λ ∈ Rm
+, it exists, according to the Lemma 2.8, r enough large, with (r > s)

such that Φ(λ, z, s, r) < ε. Then
dr(λ) ≥ ds(z)− ε, ∀ε > 0,

thus
lim

(r−→+∞)
dr(λ) ≥ ds(z)− ε, ∀ε > 0, ∀(z, s) ∈ T.

And then, for every ε > 0
lim

(r−→+∞)
dr(λ) ≥ Sup

(z,s)∈T
ds(z)− ε,

thus
lim

(r−→+∞)
dr(λ) ≥ Sup

(z,s)∈T
ds(z).

On the other hand,
Sup

(z,s)∈T
ds(z) ≥ dr(λ), ∀λ ∈ Rm

+

Sup
(z,s)∈T

ds(z) ≥ lim
(r−→+∞)

dr(λ),

where holds the result.

This theorem gives a technique of resolution of (D). Indeed; if we penalize the function d, by using the
term of penalty (− 1

2r ‖z− λ‖), then by making the resolution when (r −→ +∞), we are in front of a said
penalty method.

The following algorithm shows the necessary steps for the resolution :
Algorithm 1:
Step 1: (k = 0)
Fixe λ and we choose a factor of penalty r0 > 0 and z0 ∈ Rm

+, (k = 0).
Step 2: (k ≥ 0)
Find zk solution of

drk (λ) = Sup
z≥0

{
d(z)− 1

2rk
‖z− λ‖2

}
.

Step 3:
If zk do not verify the stop test one makes rk+1 > rk, k −→ k + 1 and we return to the step 1.

2.2 Augmented Lagrangian Algorithms

Let (P) be the following constrained mathematical programming problem :

(P) α := In f
x∈C

f (x),

where
. f is a non necessarely differentiable convex function with finite value ;
. C := {x ∈ Rn : gi(x) ≤ 0, i = 1, ..., m} ;
. gi (i = 1, ..., m) are C1-convex functions.
Suppose that lim

(‖x‖−→+∞)
f (x) = +∞ and there exists x0 such that

gi(x0) ≤ 0, i = 1, ..., m.

We give an algorithm with which we can calculate optimal solutions of (P).
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Algorithm 2:
Step 1: (k = 0)
Let us fix r > 0, let us determine one λ in which the function dr reaches its maximum on Rm.
Step 2:
Let us look for any point x which minimizes the convex function Lr(., λ) on Rn.

Remark 2.3. The essential difficulty in the previous method lies in the calculation of (x, λ). This couple is not
calculable with accuracy. But, if λ and x are approximately determined by the previous method, can we be sure that
x is, approximately, an optimal solution of (P)?

Another complication appears because of the non direct clarified of dr at the wished way.
However, we can calculate dr(λ) and ∇dr(λ), for every λ, by determining a point x which minimizes Lr(., λ) on

Rn. This operation is too expensive (from point of view cost) by repeating, every time, the process of iteration.
To by-pass this difficulty, let us suppose that for one λ given, we have one x ∈ Rn minimizing Lr(., λ) on Rn with

a precision ε ≥ 0, that is
Lr(x, λ)− dr(λ) ≤ ε.

We see that

dr(λ
′
) ≤ Lr(x, λ

′
) ≤ Lr(x, λ)+ < λ

′ − λ,∇λLr(x, λ) > ∀x ∈ Rn, λ
′ ∈ Rm

=⇒ dr(λ
′
) ≤ dr(λ)+ < λ

′ − λ,∇λLr(x, λ) > +ε.

It holds that ∇λLr(x, λ) is an ε -subgradient of dr at λ.

Definition 2.4. . A sequence
{

xk
}

k
of Rn is called asymptotically feasible for the problem (P) if

lim
(k−→+∞)

gi(xk) ≤ 0, i = 1, ..., m.

. A sequence which realizes the Sup of the problem (D) is a sequence
{

λk
}

k
of Rm such that

dr(λ
k) −→ Supdr, as (k −→ +∞).

. An asymptotically minimizing sequence of (P) is a sequence
{

xk
}

k
asymptotically feasible and such that

lim
(k−→+∞)

f (xk) = α.

Theorem 2.3. Let
{

λk
}

k
be a bounded sequence wich maximizes (D), let

{
xk
}

k
be a sequence satisfying

Lr(xk, λk)− In f
x∈Rn

Lr(x, λk) = Lr(xk, λk)− dr(λ
k) ≤ εk,

where εk −→ 0 as k −→ +∞.
Then

{
xk
}

k
is an asymptotically minimizing sequence of (P).

For the proof of this theorem, we need to the following three lemmas:

Lemma 2.8. The function dr satisfies, for all λ, λ
′ ∈ Rm

+

dr(λ
′
) ≤ dr(λ)+ < λ

′ − λ,∇dr(λ) >

dr(λ
′
) ≥ dr(λ)+ < λ

′ − λ,∇dr(λ) > − 1
2r

∥∥∥λ
′ − λ

∥∥∥2
(2.18)

Proof. The first inequality is immediate from the concavity of dr(λ).
For the second inequality, we have

dr(λ) = Sup
z∈Rn

+

{
d(z)− 1

2r
‖λ− z‖2

}
.
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It exists an unique zλ such that

dr(λ) = d(zλ)−
1
2r
‖λ− zλ‖2 .

Let us put

q(λ
′
) := d(zλ)−

1
2r

∥∥∥λ
′ − zλ

∥∥∥2
.

Or q(λ
′
) is quadratic, we shall have

q(λ
′
) = q(λ)+ < λ

′ − λ,∇q(λ) > +
1
2
(λ
′ − λ)t∇q(λ)(λ

′ − λ).

Because
q(λ) = dr(λ) and q(λ

′
) ≤ dr(λ

′
), ∀λ

′
,

it holds that
∇q(λ) = ∇dr(λ).

On the other hand,

∇2q(λ) = −1
r

Id (where Id is an identity matrix),

then
q(λ

′
) = dr(λ)+ < λ

′ − λ,∇dr(λ) > −
1
2r

∥∥∥λ
′ − λ

∥∥∥2
.

So
dr(λ)+ < λ

′ − λ,∇dr(λ) > −
1
2r

∥∥∥λ
′ − λ

∥∥∥2
≤ dr(λ

′
).

Lemma 2.9. We have
r
2

∥∥∥∇dr(λ
k)
∥∥∥2
≤ Supdr − dr(λ

k). (2.19)

Proof. According to Lemma 2.12, it holds that

Supdr ≥ Sup
λ
′∈Rm

+

{
dr(λk)+ < λ

′ − λ,∇dr(λk) > − 1
2r

∥∥∥λ
′ − λ

∥∥∥2
}

= dr(λk) + Sup
λ
′∈Rm

+

{
< λ

′ − λ,∇dr(λk) > − 1
2r

∥∥∥λ
′ − λ

∥∥∥2
}

= dr(λk) + r
2

∥∥∥∇dr(λk)
∥∥∥2

what gives
r
2

∥∥∥∇dr(λ
k)
∥∥∥2
≤ Supdr − dr(λ

k).

Lemma 2.10. Let us consider following both properties:
(a) Lr(xk, λk)− In f

x∈Rn
Lr(x, λk) = Lr(xk, λk)− dr(λk) ≤ εk,

where εk −→ 0, as k −→ +∞;

(b) r
2

∥∥∥∇λLr(xk, λk)−∇dr(λk)
∥∥∥2
≤ εk.

Then (a) =⇒ (b).

Proof. We use the Lemma 2.12 and the concavity of Lr(xk, .) then, we shall have for every w ∈ Rm

dr(w) ≤ Lr(xk, w) ≤ Lr(xk, λk)+ < w− λk,∇λLr(xk, λk) >

and
dr(w) ≥ dr(λ

k)+ < w− λk,∇dr(λ
k) > − 1

2r

∥∥∥w− λk
∥∥∥2
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what gives

Lr(xk, λk)− dr(λ
k) ≥< w− λk,∇dr(λ

k)−∇λLr(xk, λk) > − 1
2r

∥∥∥w− λk
∥∥∥2

.

That is

Lr(xk, λk)− dr(λk) ≥ Sup
w∈Rm

+

{
< w− λk,∇dr(λk)−∇λLr(xk, λk) > − 1

2r

∥∥∥w− λk
∥∥∥2
}

= r
∥∥∥∇dr(λk)−∇λLr(xk, λk)

∥∥∥2
− r

2

∥∥∥∇dr(λk)−∇λLr(xk, λk)
∥∥∥2

= r
2

∥∥∥∇dr(λk)−∇λLr(xk, λk)
∥∥∥2

.

Where, according to (a), we have

r
2

∥∥∥∇dr(λ
k)−∇λLr(xk, λk)

∥∥∥2
≤ εk.

Proof. (Theorem 2.11) According to the Lemma 2.14 we have

Lr(xk, λ) = In f
{

F(xk, u)+ < x, u > +
r
2
‖u‖2

}
,

where F is given by

F(x, u) =


f (x) if gi(x) ≤ ui, i = 1, ..., m

+∞ else.

For λ = λk, there is an unique point uk such that

Lr(xk, λk) = F(xk, uk)+ < λk, uk > +
r
2

∥∥∥uk
∥∥∥2

.

Let us put

q(λ) = F(xk, uk)+ < λ, uk > +
r
2

∥∥∥uk
∥∥∥2

.

We notice that
q(λ) ≥ Lr(xk, λ) ∀λ, and q(λk) = Lr(xk, λk),

thus
∇q(λk) = ∇λLr(xk, λk).

Then,
uk = ∇λLr(xk, λk).

We have by hypothesis
Lr(xk, λk)− dr(λ

k) ≤ εk

what implies that
lim

k
Lr(xk, λk) = lim

k
dr(λ

k) = Supdr.

According to the Lemma 2.13 and Lemma 2.14, we have

lim
k
∇dr(λk) = 0

lim
k

r
2

∥∥∥∇dr(λk)−∇λLr(xk, λk)
∥∥∥2

= 0

 =⇒ lim
k
∇dr(λ

k) = lim
k
∇λLr(xk, λk) = 0.

Then, lim
k

uk = 0.
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The sequence
{

λk
}

k
being bounded, then

F(xk, uk) = Lr(xk, λk)− < λk, uk > − r
2

∥∥∥uk
∥∥∥2

=⇒ lim
k

F(xk, uk) = lim
k
(Lr(xk, λk)− < λk, uk > − r

2

∥∥∥uk
∥∥∥2
) = Supdr.

We always have dr(λ) ≤ f (x), ∀λ, ∀x, thus

lim
k

F(xk, uk) = Supdr(λ) ≤ α.

On the other hand,

lim
k

F(xk, uk) = lim
k

f (xk) with lim
k

gi(xk) ≤ 0 (i = 1, ..., m).

Then
lim

k
f (xk) = Supdr(λ) ≤ α with lim

k
gi(xk) ≤ 0 (i = 1, ..., m).

It holds lim
k

f (xk) = α. Consequently
{

xk
}

k
is an asymtotically minimizing sequence of (P).

2.3 Study of the Convergence

We are going to give an algorithm of primal-dual type, where we show that sequences
{

λk
}

k
and

{
xk
}

k
generated by this algorithm converge globally, with at least the Slater condition, to λ and x.

The algorithm to be studied depends on the initial choice of r0 > 0, λ0 ∈ Rm and the sequence {εk}k with

εk ≥ 0 and lim
k

εk = 0.

Algorithm 3:
Step 0: (initialization) (k = 0)
Choose a factor of penalty rk > 0, a precision δ > 0, a multiplier λ0 and a sequence {εk}k with εk ≥ 0 and

lim
k

εk = 0

Step 1: (k ≥ 0)
Find xk such that

Lrk (xk, λk)− drk (λ
k) ≤ εk.

Step 2:
Define

λk+1
i = max

{
λk

i + rkgi(xk), 0
}

;

or
λk+1 = λk + rk∇λLrk (xk, λk).

Step 3:
If ∥∥∥∇λLrk (xk, λk)

∥∥∥ ≤ δ (2.20)

Stop and sets xk as solution of (P).
Else, rk+1 ≥ rk (if need be) return to the step 1.

Lemma 2.11. ([2]) Suppose that the sequence
{

λk
}

k
is bounded (bounded by M), then the expression (2.20) implies

f (x) ≥ f (xk)− σk,

where
σk = δ(M + (2εk +

3rk δ

2
)) + εk.
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Proof. Let x be a solution of (P). From the formula (2.17), we have

drk (λ
k+1) ≥ drk (λ

k)+ < λk+1 − λk,∇λdrk (λ
k) > − 1

2rk

∥∥∥λk+1 − λk
∥∥∥2

.

Thus
f (x) ≥ drk (λ

k+1)

≥ drk (λ
k)−

∥∥∥λk+1 − λk
∥∥∥ ∥∥∥∇λdrk (λ

k)
∥∥∥− 1

2rk

∥∥∥λk+1 − λk
∥∥∥2

.

According to the step 2 and the step 3 of the Algorithm 3, we have

f (x) ≥ drk (λ
k)− rk

∥∥∥∇λLr(xk, λk)
∥∥∥ ∥∥∥∇λdrk (λ

k)
∥∥∥− rk

2

∥∥∥∇λLr(xk, λk)
∥∥∥2

≥ drk (λ
k)− rkδ

∥∥∥∇λdrk (λ
k)
∥∥∥− rk

2 δ2.

From the Lemma 2.14, we have

rk
2

∥∥∥∇dr(λ
k)
∥∥∥− rk

2

∥∥∥∇λLr(xk, λk)
∥∥∥ ≤ rk

2

∥∥∥∇λLr(xk, λk)−∇dr(λ
k)
∥∥∥2
≤ εk.

What implies that ∥∥∥∇dr(λ
k)
∥∥∥ ≤ 2εk

rk
+ δ =⇒ −

∥∥∥∇λdrk (λ
k)
∥∥∥ ≥ −(2εk

rk
+ δ).

It results that
f (x) ≥ drk (λ

k)− rkδ( 2εk
rk

+ δ)− rk
2 δ2

= drk (λ
k)− δ(2εk +

3rk
2 δ).

On the other hand, according to the step 1 of the same Algorithm, we have

drk (λ
k) ≥ Lrk (xk, λk)− εk.

Then
drk (λ

k) ≥ f (xk) + 1
2rk

m
∑

i=1
(Ψ+(λk

i + rkgi(xk))2 − (λk
i )

2)− εk

≥ f (xk) + 1
2rk

m
∑

i=1
((λk+1

i )2 − (λk
i )

2)− εk

= f (xk) + 1
2rk

m
∑

i=1
(λk+1

i − λk
i )(λ

k+1
i + λk

i )− εk

namely,

drk (λ
k) ≥ f (xk) + 1

2rk

m
∑

i=1
rk

∂L(xk ,λk)
∂λi

(λk+1
i + λk

i )− εk

= f (xk) + 1
2

m
∑

i=1

∂L(xk ,λk)
∂λi

(λk+1
i + λk

i )− εk

= f (xk) + 1
2 < ∇λLr(xk, λk), λk+1 + λk > −εk.

Thus
drk (λ

k) ≥ f (xk)− 1
2

∥∥∥∇λLr(xk, λk)
∥∥∥ ∥∥∥λk+1 + λk

∥∥∥− εk

≥ f (xk)− δ
2

∥∥∥λk+1 + λk
∥∥∥− εk.

Finally, we have
f (x) ≥ drk (λ

k)− δ(2εk +
3rk
2 δ)

≥ f (xk)− δ
2

∥∥∥λk+1 + λk
∥∥∥− εk − δ(2εk +

3rk
2 δ),
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it holds that

f (x) ≥ f (xk)− δ(M + (2εk +
3rk
2

δ))− εk.

The general result is given by the following theorem :

Theorem 2.4. Let us suppose that (P) possesses a K-T vector and that

∑
k≥1

√
εk < +∞ (2.21)

Then, the following properties are satisfied :

(a) the sequence
{

λk
}

k
is bounded, and its cluster values are K-T vectors ;

(b) the sequence
{

xk
}

k
is an asymtotically minimizing of (P).

Proof. (a) According to the Lemma 2.14 and by hypothesis (step 1), we have

rk
2

∥∥∥∇λLrk (xk, λk)−∇drk (xk)
∥∥∥ ≤ εk.

According ([3], remark 2.2), we have

∇drk (λ
k) =

1
rk
(zλk − λk)

where zλk realizes the Sup in the definition of drk . But

λk+1 = λk + rk∇λLrk (xk, λk).

From which it holds

∇λLrk (xk, λk) =
1
rk
(λk+1 − λk).

Then
rk
2

∥∥∥∇λLrk (xk, λk)−∇drk (xk)
∥∥∥2

=
rk
2

∥∥∥∥ 1
rk
(λk+1 − λk)− 1

rk
(zλk − λk)

∥∥∥∥2
≤ εk

Namely
1

2rk

∥∥∥λk+1 − zλk

∥∥∥2
≤ εk.

Taking the limit on k we find
lim

k
(λk+1 − zλk ) = 0 (2.22)

Consider the application Prox defined by

z −→ Prox(z) = h(z) +
1
2
‖z− λ‖2

where h is a convex function. Let us put

Prox(h; λ) = arg min
z

{
h(z) +

1
2
‖z− λ‖2

}
.

We have, according ([5], Theo.31.5, p. 340),

‖Prox(h; u)− Prox(h; λ)‖ ≤ ‖u− λ‖ .

Let us put
h(z) = −rkd(z)
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(h is convex), then

Prox(h; λ) = arg min
z∈Rm

{
h(z) + 1

2 ‖z− λ‖2
}
= arg min

z∈Rm

{
−rkd(z) + 1

2 ‖z− λ‖2
}

= −rkarg min
z∈Rm

{
d(z)− 1

2rk
‖z− λ‖2

}
= −rkzλ.

It holds that
‖Prox(h; u)− Prox(h; λ)‖ = ‖−rkzu + rkzλ‖

=⇒ rk ‖zu − zλ‖ ≤ ‖u− λ‖ =⇒ ‖zu − zλ‖ ≤ 1
rk
‖u− λ‖ .

Let λ be any K-T vector, then

∇drk (λ) = 0 =⇒ rk∇drk (λ) = 0 =⇒ zλ = λ + rk∇drk (λ) = λ.

Thus ∥∥zλk+1 − λ
∥∥ =

∥∥zλk+1 − zλ

∥∥ ≤ 1
rk

∥∥∥λk+1 − λ
∥∥∥ .

Using the previous expressions, we shall have∥∥∥λk+1 − λ
∥∥∥ =

∥∥∥λk+1 − zλk + zλk − λ
∥∥∥ ≤ ∥∥∥λk+1 − zλk

∥∥∥+ ∥∥zλk − λ
∥∥

≤
√

2rkεk +
1
rk

∥∥∥λk − λ
∥∥∥ .

In particular ∥∥∥λk+1 − λ
∥∥∥ ≤ Φ(rk, εk) < +∞.

Hence,
{

λk
}

k
is a bounded sequence.

Let {λs}s be a convergent subsequence to λ, according to the expression (2.21), we have

lim
s
(λs+1 − zλs) = 0.

We know that

zλs = λs + rk∇drk (λ
s)

=⇒ lim
s
(λs+1 − λs − rk∇drk (λ

s)) = 0 =⇒ lim
s
∇drk (λ

s) = ∇drk (λ) = 0.

As drk is concave, then λ maximizes drk , namely, λ is a K-T vector.
(b) According to the Theorem 2.11, {xs}s is an asymtotically minimizing sequence of (P).

2.4 Numerical Experiments

In this paragraph, we propose some numerical experiments illustrating the methods of nondifferentiable
convex programming problems that we had studied above and in ([3]). We established a comparative study
with the results of ([3]).

Let us call back that the previous methods consist in solving a sequence of unconstrained problems. Every
problem of which must be solved by the Algorithm 4 of ([3]) by making the linear search given by the
expression (20) in ([3]).

Example 2.1. Consider the following mathematical programming problem :

(P)

 α := In f
{

f (x) =
3

max
i=1

(xt Aix + bt
i x + ci)

}
subject to x2

1 + 3x2 + 2x1 ≤ 0,
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where

A1 =

(
2 −1
1 4

)
, b1 =

(
2
−1

)
, c1 = 4;

A2 =

(
2 1
1 4

)
, b2 =

(
0
−2

)
, c2 = −5;

A3 =

(
2.5 2
0.5 2

)
, b3 =

(
4
−3

)
, c3 = 3;

x0

initial
k

k
total

xk f (xk) rk εk rkh(xk)
sk =

‖gk‖
∥∥∥xk+1 − xk

∥∥∥ time
s

(2, 0) 4 196 (−0.391, 0.210) 3.49 104 10−4 10−86.0 10−72.0 0.17
(4, 3) 6 268 (−0.460, 0.236) 3.49 106 10−6 10−8 10−22.0 0.22
(−2, 1) 5 379 (−0.404, 0.215) 3.48 105 10−5 10−92.0 10−87.0 0.28

Table 1
”-Proximal Penalty method : (δ = 10−6)

Figure 1: The objective function value at each step

λ0
initial

k
k

total
xk f (xk) rk εk s =

∥∥∇Lrk (xk, λk)
∥∥ time

s
5 14 79 (−0.402, 0.214) 3.49 14 10−14 10−55.0 0.11
0.5 7 31 (−0.402, 0.214) 3.49 7 10−7 10−57.0 0.06
12 15 90 (−0.402, 0.214) 3.49 15 10−15 10−56.0 0.11
−1 8 36 (−0.402, 0.214) 3.49 8 10−8 10−55.0 0.05
−8 2 13 (−0.402, 0.214) 3.49 2 10−2 0.0 0.06

Table 2
augmented Lagrangian method : (δ = 10−4)

-

Example 2.2. Consider the following mathematical programming problem :

(P)
{

α := In f f (x) = max(2x + 2, (x + 1)2, x2 + 1)
subject to 2x + 3 ≤ 0.
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Figure 2: The objective function value at each step

x0

initial
k

k
total

xk f (xk) rk εk rkh(xk) sk = ‖gk‖
∥∥∥xk+1 − xk

∥∥∥ time
s

5 4 15 −1.5 3.25 104 10−4 10−55.6 10−125.5 0.06
62 7 26 −1.5 3.25 107 10−7 10−85.6 10−125.5 0.06
−412 4 15 −1.5 3.25 104 10−4 10−55.6 10−125.5 0.05

Table 3
ε-Proximal Penalty method : (δ = 10−11)

Figure 3: The objective function value at each step
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λ0
initial

k
k

total
xk f (xk) rk εk s =

∥∥∇Lrk (xk, λk)
∥∥ time

s
2 16 47 −1.5 3.25 16 10−16 10−77.1 0.06
20 21 68 −1.5 3.25 21 10−21 10−79.1 0.05
35 22 72 −1.5 3.25 22 10−22 10−77.9 0.05
−1 19 65 −1.5 3.25 19 10−19 10−75 0.06
−5 19 67 −1.5 3.25 19 10−19 10−75.3 0.05

Table 4
augmented Lagrangian method : (δ = 10−6)

Figure 4: The objective function value at each step

Example 2.3. Consider the following mathematical programming problem :

(P)


α := In f { f (x) = max( f1(x), f2(x))}

subject to
{

x1 + 2x2 ≤ 0
x2 + 1 ≤ 0

,

where
f1(x) = x2

1 + x2
2 − x2 − x1 − 1,

f2(x) = 3x2
1 + 2x2

2 + 2x1x2 − 16x1 − 14x2 + 22

x0

initial
k

k
total

xk f (xk) rk εk rkh(xk)
sk =

‖gk‖
∥∥∥xk+1 − xk

∥∥∥ time
s

(2, 0) 6 20 (2,−1) 14 106 10−6 10−69.0 10−95.0 0.05
(−4, 3) 6 24 (2,−1) 14 106 10−6 10−69.0 10−93.0 0.05
(6,−7) 6 24 (2,−1) 14 106 10−6 10−69.0 10−93.0 0.06

Table 5
ε- Proximal Penalty method : (δ = 10−8)



552 N.Daili and K.Saadi. / Nondifferentiable Augmented Lagrangian ...

Figure 5: The objective function value at each step

λ0
initial

k
k

total
xk f (xk) rk εk s =

∥∥∇Lrk (xk, λk)
∥∥ time

s
(2, 6) 22 280 (2,−1) 14 22 10−22 10−56.0 0.16
(3, 0) 20 220 (2,−1) 14 20 10−22 10−57.0 0.11
(5, 3) 18 185 (2,−1) 14 18 1018 10−57.0 0.11
(−5,−1) 18 192 (2,−1) 14 18 1018 10−56.0 0.11
(−1, 0) 17 170 (2,−1) 14 17 10−17 10−58.0 0.11

Table 6
augmented Lagrangian method : (δ = 10−4)

Figure 6: The objective function value at each step

Example 2.4. Consider the following mathematical programming problem :

(P)


α := In f { f (x) = max( f1(x), f2(x), f3(x))}

subject to
{

x1 − x2 + 1 ≤ 0
2x2 − 1 ≤ 0

,
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where
f1(x) = x2

1 + x2
2,

f2(x) = (x1 + x2)
2

f3(x) = (2x1 + 3x2)
2

x0

initial
k

k
total

xk f (xk) rk εk rkh(xk)
sk =

‖gk‖
∥∥∥xk+1 − xk

∥∥∥ time
s

(3, 2) 6 35 (−0.5, 0.5) 0.5 106 10−6 10−76.7 10−75.7 0.06
(5, 4) 6 33 (−0.5, 0.5) 0.5 106 10−6 10−79.1 10−79.8 0.05
(−2,−4) 6 27 (−0.5, 05) 0.5 106 10−6 10−6 10−61.2 0.05

Table 7
ε-Proximal Penalty method : (δ = 10−5)

λ0
initial

k
k

total
xk f (xk) rk εk s =

∥∥∇Lrk (xk, λk)
∥∥ time

s
(3, 1) 11 119 (−0.5, 0.5) 0.5 11 10−11 10−57 0.11
(4, 3) 10 100 (−0.5, 0.5) 0.5 10 10−10 10−53 0.11
(2, 5) 10 134 (−0.5, 0.5) 0.5 10 10−10 10−58 0.11
(−1, 0) 11 126 (−0.5, 0.5) 0.5 11 10−11 10−53 0.11
(−2,−4) 12 140 (−0.5, 0.5) 0.5 12 10−12 10−52 0.11

Table 8
augmented Lagrangian method : (δ = 10−4)

Example 2.5. Consider the following mathematical programming problem :

(P)


α := In f

{
f (x) =

3
max
i=1

(xt Aix + bt
i x + ci)

}
subject to

{
x1 + x3 ≤ 0
2x1 + 1 ≤ 0

,

where

A1 =

 1 0 1
1 1 0
0 0 1

 , b1 =

 1
−1
0

 , c1 = 0;

A2 =

 1 0 0
−1 1 0
0 0 1

 , b1 =

 0
1
0

 , c2 = −2;

A3 =

 1 −1 0
0 1 0
0 0 1

 , b1 =

 0
0
0

 , c3 = 2;

x0

initial
k

k
total

xk f (xk) rk εk rkh(xk)
sk =

‖gk‖
∥∥∥xk+1 − xk

∥∥∥ time
s

(1, 2, 4) 8 36 (0,−0.5, 0) 2.25 109 10−9 10−116.3 10−103.4 0.11
(2, 8, 0) 3 19 (0,−0.5, 0) 2.25 104 10−4 10−66.3 10−101.4 0.06
(−2,−1, 5) 9 37 (0,−0.5, 0) 2.25 1010 10−10 10−101.4 10−136.9 0.11

Table 9
ε-Proximal Penalty method : (δ = 10−9)
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λ0
initial

k
k

total
xk f (xk) rk εk s =

∥∥∇Lrk (xk, λk)
∥∥ time

s
(3, 2) 9 57 (0,−0.5, 0) 2.25 9 10−9 10−63.4 0.06
(19, 2.58) 9 139 (0,−0.5, 0) 2.25 9 10−9 10−61.8 0.22
(4, 6) 9 69 (0,−0.5, 0) 2.25 9 10−9 10−66.9 0.11
(−1,−4) 9 59 (0,−0.5, 0) 2.25 9 10−9 10−64.1 0.11

Table 10
augmented Lagrangian method : (δ = 10−5)

Example 2.6. Consider the following mathematical programming problem :

(P)


α := In f

 f (x) =


−x + |x|+ e|x| if x ≤ 0

x2 + |x|+ e|x| else


subject to x + 1 ≤ 0.

x0

initial
k

k
total

xk f (xk) rk εk rkh(xk)
sk =

‖gk‖
∥∥∥xk+1 − xk

∥∥∥ time
s

1 11 33 −1 4.718 1011 10−11 10−115.6 10−124.3 0.05
−2 5 14 −1 4.718 105 10−5 10−55.6 10−124.3 0.06
−1.5 5 14 −1 4.718 105 10−5 10−55.6 10−124.3 0.05

Table 11
ε-Proximal Penalty method : (δ = 10−11)

λ0
initial

k
k

total
xk f (xk) rk εk s =

∥∥∇Lrk (xk, λk)
∥∥ time

s
3 21 63 −1 4.718 21 10−21 10−76.5 0.06
5 19 57 −1 4.718 19 10−19 10−76.9 0.06
9 23 83 −1 4.718 23 10−23 10−75.3 0.06
1.5 22 77 −1 4.718 22 10−22 10−76.3 0.05
0.6 22 80 −1 4.718 22 10−22 10−78.3 0.06

Table 12
augmented Lagrangian method : (δ = 10−6)

2.5 Comments and Conclusions

Basing itself on the results obtained in the previous numerical experiments, we can make the following
remarks :

1) for the ε-proximal penalty methods, we used the classical penalty functions :

h(x) =
m

∑
i=1

(gi(x))2

and the sequence (rk)k such that rk+1 = 10rk ;
2) for the augmented Lagrangian method, we use the sequence (rk)k such that

rk+1 = rk + 1.

and for the sequence (εk)k, we make it decrease in the following way :

εk+1 =
εk
10

.
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Generally, the obtained solutions are enough precise.
The number of iterations depends, on one hand of the algorithm used to solve the unconstrained

subproblems, on the other hand on initial points.
The two previous approaches possess the property of the global convergence.
From a theoretical point of view, both approaches use the proximal regularization. The first one makes the

regularity for the subproblems, the other one for the dual function associated with the ordinary Lagrangian.
So the idea to return the resolution of primal problem to a sequence of auxiliary problems.

The algorithm that we had used requiet the knowledge at least of a subgradient in every step, and the
value of the function to be minimized, then a difficulty concerning the determination of a subgradient which
is, generally, difficult in practice.

From point of comparative view, we notice according to the previous numerical experiments that number
of necessary iterations to obtain a minimum in the augmented Lagrangian method is higher than counts it of
iterations in the ε-proximal penalty method. As well as the run time.

We also notice that the penalty factor is too much large in the ε-proximal penalty method, and enough
small in the augmented Lagrangian method.

The stop test in the augmented Lagrangian method is more successful than the stop test in the ε-proximal
penalty method.

2.6 General Conclusions

The ε-proximal penalty method is a method of nondifferentiable optimization. It is a member of algorithms
whose the generated sequences are asymptotically minimizing. Thus, it is the technique which puts in
connection the classical optimization and the asymptotic analysis.

It has advantages for the perturbed problems and in fluid mechanics.
From theoretical point of view, we think that this technique will be widened in problems of positive

semidefinite optimization. Thing still is not made and raises open problems in this direction.
The augmented Lagrangien method is a well known technique by its efficiency in the theoretical and

practical cases. It applies to differentiable and nondifferentiable optimization problems.
This technique will be widened in positive semidefinite optimization problems with large-sized matrices,

thing still is not made and raises open problems still.
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In the present paper, we will introduce the concept of Cohen p-nuclear positive sublinear operators. We
give an analogue to “Pietsch’s domination theorem” and we study some properties concerning this notion.
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1 Introduction

For a Banach space X, X� will denote its topological dual and BX will denote its closed unit ball. For a
Banach lattice E, E+ will denote its positive cone. Throughout the paper, X, Y will be Banach spaces and E, F
will be Banach lattices. Let L(X; Y) denote the Banach space of all continuous linear operators from X to Y.
For 1 � p < ∞, let p� be its conjugate, that is, 1/p+ 1/p� = 1.

The notion of Cohen p-nuclear operators (1 � p � ∞) was initiated by Cohen in [9]. A linear operator u
between two Banach spaces X, Y is Cohen p-nuclear for (1 < p < ∞) if there is a positive constant C such that
for all n 2 N; x1, ..., xn 2 X and y1, ..., yn 2 Y we have����� n

∑
i=1



u (xi) , y�i

������ � C sup
x�2BX�

 
n

∑
i=1
jxi (x�)jp dµ1 (x

�)

! 1
p

�

� sup
y2BY

 
n

∑
i=1

��y�i (y)��p� dµ2 (y)

! 1
p�

.

The smallest constant C which is noted by np(u), such that the above inequality holds, is called the Cohen
p-nuclear norm on the spaceNp (X, Y) of all Cohen p-nuclear operators from X into Y which is a Banach space.
We have N1 (X, Y) = Π1 (X, Y) ( the Banach space of all 1-summing operators) and N∞ (X, Y) = D∞ (X, Y) (
the Banach space of all strongly ∞-summing operators).

In [9, Theorem 2.3.2], Cohen proves that, if u verifies a domination theorem then u is p-nuclear and he
asked if the statement of this theorem characterizes p-nuclear operators. In [6], Achour et al. generalized
this notion to the sublinear operators and they gave an analogue to “Pietsch’s domination theorem” for this
category of operators. Motivated by that, we study this notion with the positive sublinear maps and we
propose, among others, an analogue to “Pietsch’s domination theorem” for this category of operators which
is one of the main results of this paper and we also discuss some properties concerning this class. It remains
to prove the Pietsch’s factorization theorem.

�Corresponding author
E-mail address: a.belacel@mail.lagh-univ.dz (Amar Belacel)
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This paper is organized as follows: In the first section, we give some basic definitions and terminology
concerning Banach lattices. We also recall some standard notations. In the second section, we present some
definitions and properties concerning positive sublinear operators. We give the definition of positive p-
summing operators introduced by Blasco [7, 8] and we present the notion of strongly p-summing sublinear
operators initiated in [6]. In Section 3, we generalize the class of Cohen p-nuclear operators to the positive
sublinear operators. This category verifies a domination theorem, which is the principal result. We used
another Technics than the Ky Fan’s lemma. We end in Section 4, by studying a relation between some classes
of positive sublinear operators (p-nuclear and p-summing).

2 Preliminary

We start by recalling the abstract definition of Banach lattices. Let E be a Banach space. If E is a vector lattice
and kxk � kyk whenever jxj � jyj we say that E is a Banach lattice. If the lattice is complete, we say that E
is a complete Banach lattice and for all x in E, kxk = kjxjk . The dual E� of a Banach lattice E is a complete
endowed with the natural order x1, x2 2 E

x�1 � x�2 ()



x�1 , x
�
� hx�2 , xi , 8x 2 E+.

where h., .i denotes the bracket of duality. If we consider E as a Sublattice of E�� we have for

x1 � x2 () hx1, x�i � hx2, x�i , 8x� 2 E�+.

for more details on this, the interested reader can consult the references [11].
Given 1 � p < ∞ we will write `n

p(X) for the space of all sequences (xi)
n
i=1 in X with the norm



(xi)
n
i=1




p =

�
n
∑

i=1
kxikp

� 1
p
,

and `n,w
p (X) for the space of all sequences (xi)

n
i=1 in X with the norm



(xi)
n
i=1




p,w = sup

kφkX��1

 
n

∑
i=1
jφ (xi)jp

! 1
p

,

where X� denotes the topological dual of X. The closed unit ball of X will be denoted by BX . Let `p(X) be the
Banach space of all absolutely p-summable sequences (xi)

∞
i=1 in X with the norm



(xi)
∞
i=1




p =

 
∞

∑
i=1
kxikp

! 1
p

.

We denote by `w
p (X) the Banach space of all weakly p-summable sequences (xi)

∞
i=1 in X with the norm



(xi)
∞
i=1




p,w = sup

kφkX��1

 
∞

∑
i=1
jφ (xi)jp

! 1
p

,

Note that `w
p (X) = `p(X) for some 1 � p < ∞ if, and only if, X is finite dimensional. We continue in

specifying definitions of the convexity and the concavity.

Definition 2.1. Let 1 � p � ∞.
(i) A sublinear operator T : F �! E is called a p-convex if there exists a constant C such that for every n in N the

operators

Tn : `n
p (F) �! E

�
`n

p

�
(x1, ..., xn) 7�! (T (x1) , ..., T (xn))



558 Amar BELACEL / Cohen p-Nuclear ...

are uniformly bounded by C.
(ii) A sublinear operator T : E �! F is called a p-convex if there exists a constant C such that for every n in N the

operators

Tn : E
�
`n

p

�
�! `n

p (F)

(x1, ..., xn) 7�! (T (x1) , ..., T (xn))

are uniformly bounded by C.

The space E is p-convex (p-concave) if idE is p-convex (p-concave).

3 Positive sublinear operators

We give in this section some elementary definitions and fundamental properties relative to positive sublinear
operators, for example see [6].

Definition 3.1. An operator T from X into F is said to be positive sublinear if we have for all x, y in X and λ in R+.

i) T (λx) = λT (x) ,
ii) T (x+ y) � T (x) + T (y) ,
iii) T (x) � 0.

Let us denote by

SL+ (X, F) = fpositive sublinear operators, T : X �! Fg .

A positive sublinear operator is continuous if, and only if, there is C > 0 such that for all x 2 X, kT(x)k �
C kxk . In this case, we said that T is bounded and we write

kTk = sup
x2BX

kT(x)k

and we put

SB+ (X, F) = fbounded positive sublinear operators, T : X �! Fg .

Remark 3.2. If u : X �! F is a linear operator, then juj is a positive sublinear operator.
Proposition 3.3. Let T be a symmetric sublinear operator between X and F. Then, T is positive.
Proof. For every x in X

0 = T (x� x)

� T (x) + T (�x)

� 2T (x) . �

Lemma 3.4. Let T : E �! F be an increasing sublinear operator, if jTj exist, then

jT (x)j � jTj (jxj)

for all x 2 E.
Proof. As x � jxj and �x � jxj. Then by the monotonicity of T, we have

8x 2 E, T (x) � T (jxj) ,

and

8x 2 E,�T (x) � T (�x) � T (jxj) ,

and also
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jT (x)j � T (jxj) � jTj (jxj)

for all x 2 E. �

Now, we study the continuity of an increasing positive sublinear operator. We adapt the same
demonstration as in the linear case see [1, 12].

Theorem 3.5. Let T : E �! F be an increasing positive sublinear operator. Then, T is continuous.

Proof. We assume that T is not continuous. Then there exists a sequence (xn)n in E with kxnk = 1 such
that kT (xn)k � n3 for all n 2 N. We have jT (xn)j � T (jxnj), one can take xn � 0 for all n. As ∑

n�1

kxnk
n2 < ∞

and E is complete, then the serie ∑
n�1

xn
n2 converges in norm in E. Let x = ∑

n�1

xn
n2 . Then, it is clear that 0 � xn

n2 � x

for all n, and T
�

xn
n2

�
� T (x) for all n, since T is increasing, we write n �




T
�

xn
n2

�


 � kT (x)k < ∞, for all n
by the monotonicity of the norm of F, contradiction. Then T is continuous. �

Remark 3.6. Without increase, we not know the answer. But we conjucture it’s true.

Definition 3.7. We said that a positive sublinear operator T between X, F is p-regular, 1 � p < ∞, if there exist a
constant C > 0 such that for all (xi)

n
1 � X, we have






 

n

∑
i=1
jT (xi)jp

! 1
p








F

� C








 

n

∑
i=1
jxijp

! 1
p








X

(3.1)

if p < +∞, and if p = +∞, we take the sup.

We note by

ρp (X, F) = fp-regular positive sublinear operators T : X �! Fg

and
ρp (T) = inf fC, verifying the inequality (3.1)g .

The above proposition is not true for positive sublinear operators.
Proposition 3.8 [11, Proposition 1.d.9]. Let T : E �! F be a positive operator. Then, for every 1 � p � ∞, T is

p-regular.

The following counterexample (communicated by Gilles Godefroy, 2002), shows that the positive sublinear
operator T isn’t 2-regular..

We define a function Sr by

Sr : L2 (T) �! L1 (Ω, µ) ; T = R/2πZ

f �! Sr ( f ) = 1
2r
R x+r

x�r j f (y)j
2 dy, 8x 2 R et 0 < r � π.

We put Tr f =
p

Sr f , hence the operator Tr is sublinear, and the operator T defined by

T f = sup fTr f : 0 < r < πg .

For more details, see [4].
Proposition 3.9. Let 1 � p < ∞. Then i)() ii). Such that:
i) F is p-concave.
ii) Every p-regular positive sublinear operators T : X �! F, is p-concave.
Proof.
ii) =) i) We put X = F and T = IdX .
i) =) ii) We suppose that F is p-concave, i.e.,
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8 f1, ..., fn 2 F,

 
n

∑
i=1
k fikp

! 1
p

� K








 

n

∑
i=1
j fijp

! 1
p






 .

For all x1, ..., xn in X,

 
n

∑
i=1
kT (xi)kp

! 1
p

� K








 

n

∑
i=1
jT (xi)jp

! 1
p








� K
0








 

n

∑
i=1
jxijp

! 1
p






 , K

0
= K kTk .

Then T is concave. �

Corollary 3.10. Every p-regular positive sublinear operators T : X �! Lp, 1 � p < ∞, is bounded.

Proof. It is easy.

Proposition 3.11. Let 1 < p < ∞. Then i)() ii). Such that:
i) E is p-convex.
ii) Every p-regular positive sublinear operators T : E �! Y, is p-convex.

Proof.
i) =) ii) We have, for all x1, ..., xn in E







 
n

∑
i=1
jT (xi)jp

! 1
p








Y

� kTk








 

n

∑
i=1
jxijp

! 1
p








E

, p-regular

� C kTk
 

n

∑
i=1
kxik

p
E

! 1
p

.

Then T is p-convex. The converse is obvious. �

4 Cohen p-nuclear positive sublinear operators

To conclude this section, we recall the definition of positive p-summing sublinear operators, which was first
stated in the linear case by Blasco in [7].

Definition 4.1. Let T : X �! F be a positive sublinear operator. We will say that T is “p-summing” (1 � p <
+∞) (we write T 2 SΠ+

p (X, F)), if there exists a positive constant C such that for all n 2 N and all fx1, ..., xng � X,
we have

k(T (xi))k`n
p(F) � C k(xi)k`nw

p (X) . (4.2)

We put π+p (T) = inffC verifying the inequality (4.2)g.

We introduce the following extension of the class of Cohen p-nuclear operators. We give the domination
theorem for such a category.

Definition 4.2. Let 1 < p < ∞. A positive sublinear operator T between X and F is p-nuclear if there is C > 0
such that for all n 2 N and x1, ..., xn in X, y�1 , ..., y�n in F�+ we have:
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����� n

∑
i=1



T (xi) , y�i

������ � C sup
x�2B+X�

 
n

∑
i=1
(jxij (x�))p dµ1 (x

�)

! 1
p

�

� sup
y��2B+F��

 
n

∑
i=1

�
y�i (y

��)
�p� dµ2 (y

��)

! 1
p�

(I)

We denote by n+p (T) the smallest constant C which verified the inequality (I), called p-nuclear norm on
SN+

p (X, F), the Banach space of all p-nuclear positive sublinear operators. If p = 1, we obtain the Banach
space of all 1-summing positive sublinear operators.

Theorem 4.3. (Composition theorem). Let X be a Banach space, E and F two Banach lattices. Let T be in
SB+ (X, E), u a positive operator in L (E, F) and v in L (Y, X) .

i) If T is Cohen p-nuclear, then u � T is p-nuclear positive sublinear operator and n+p (u � T) � kuk n+p (T) .
ii) If T is Cohen p-nuclear, then T � v is p-nuclear positive sublinear operator and n+p (T � v) � kvk n+p (T) .

Theorem 4.4. A positive sublinear operator between X, F is p-summing (1 � p < +∞), if, and only if, there exists
a positive constant C > 0 and a Borel probability µ on B+X� such that

kT (x)k � π+p (T)

0B@ Z
B+E�

(jxj (x�))p dµ (x�)

1CA
1
p

(4.3)

for every x 2 X. Moreover, in this case π+p (T) = inffC > 0: for all C verifying the inequality (4.3)g.
Proof. It is similar to the linear case (see [7]).

The main result of this section is the next theorem.

Theorem 4.5. Let T be a bounded positive sublinear operator from X into F. Then the two following properties are
equivalent.

1) The operator T is in SN+
p (X, F) .

2) There are some Banach space Z, a positive p-summing sublinear operator u : X �! Z and a positive strongly
p-summing operator v : Z �! F such that T = vu.

Proof. 1) =) 2) We consider the operator u0 : x 2 X �! hjxj , .i 2 Lp
�

B+X� , µ
�

, we notice that kTxk �
C ku0 (x)k, for all x 2 X, let Z be a closed subspace of Lp (µ) such that Z = u0 (X), and let u : X �! Z the
induite operator. Notice that u is a positive p-summing sublinear operator from X into Z with π+p (u) � 1.
We write T = vu, for some v 2 L (Z, F) . If y� 2 F�+, then

kv� (y�)k = sup fjhu (x) , v� (y�)ijg : ku (x)kp � 1

= sup jhT (x) , y�ij :
Z

B+X�

jhx�, jxjijp dµ (x�) � 1

� C

0B@ Z
B+F��

jhy��, y�ijp
�

dλ (y��)

1CA
1

P�

.

by Pietsch’s domination theorem for positive p-summing operators, v� 2 Π+
p� (F

�, Z�) and π+p� (v
�) � C. This

implies that v is a positive strongly p-summing operator, see [2, Theorem 4.6].

2) =) 1) It’s clear. �
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5 Applications

The main result of this section is the next extension of the Pietsch’s domination theorem to this class of
operators. For proof, we will use Theorem 4.5. In [6], Achour et al. used Ky Fan’s lemma to prove the
domination theorem.

Theorem 5.1. The following two conditions are equivalent.
1) T : X �! F is Cohen p-nuclear positive sublinear operator and n+p (T) � C.
2) There exists a constant C � 0 and two positives Radon measures µ1 on B+X� and µ2 on B+F�� , such that for all

x 2 E and y� 2 F�+, we have

jhT (x) , y�ij �

C

0B@ Z
B+X�

(jxj (x�))p dµ1 (x
�)

1CA
1
p
0B@ Z

B+F��

(y� (y��))p� dµ2 (y
��)

1CA
1

p�

(J)

in this case

np (T) = inf fC > 0, for all C, verifying the inequality (J)g .

Proof. 2) =) 1) Letting x1, ..., xn 2 X and y�1 , ..., y�n 2 F�+ according to (J), we have

��
T (xi) , y�i
��� � C

0B@ Z
B+X�

(jxij (x�))p dµ1 (x
�)

1CA
1
p
0B@ Z

B+F��

�
y�i (y

��)
�p� dµ2 (y

��)

1CA
1

p�

.

We deduce, ����� n

∑
i=1



T (xi) , y�i

������ �
� C

n

∑
i=1

0B@ Z
B+X�

(jxij (x�))p dµ1 (x
�)

1CA
1
p
0B@ Z

B+F��

�
y�i (y

��)
�p� dµ2 (y

��)

1CA
1

p�

� C

0B@ n

∑
i=1

Z
B+X�

(jxij (x�))p dµ1 (x
�)

1CA
1
p
0B@ n

∑
i=1

Z
B+F��

�
y�i (y

��)
�p� dµ2 (y

��)

1CA
1

p�

� C sup
x�2B+X�

 
n

∑
i=1
(jxij (x�))p dµ1 (x

�)

! 1
p

sup
y��2B+F��

 
n

∑
i=1

�
y�i (y

��)
�p� dµ2 (y

��)

! 1
p�

This implies that T is a p-nuclear positive sublinear operator.
1) =) 2) If T 2 SN+

p (E, F) , thus, according to the above T = vu where u 2 SΠ+
p (E, Z) and v 2

D+p (Z, F)
h
v� 2 π+p� (F

�, Z�)
i

. by [6, Thm 2.4] and [2, Theorem 4.13] there exist a constant C > 0, two positive

Radon measures µ1 on B+E� and µ2 on B+F�� , endowed with their weak� topologies, such that for all x 2 E and
y� 2 F�+,

jhT (x) , y�ij = jhvu (x) , y�ij
= jhu (x) , v�(y�)ij
� ku (x)k kv� (y�)k

� C

0B@ Z
B+E�

(hjxj , x�i)p dµ1 (x
�)

1CA
1
p
0B@ Z

B+F��

hy�, y��ip� dµ2 (y
��)

1CA
1

p�

.
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This was proven. �

Now we are ready to use the Grothendieck–Maurey theorem in the positive sublinear case.
Theorem 5.2. Let E, F and G be three Banach lattices where G is 2-concave space. Let T : C (K) �! E be 2-regular

positive sublinear operator, w : E �! F a positive 2-concave operator and a positive strongly p-summing operator
v : F �! G. Then vwT is Cohen 2-nuclear positive sublinear operator and n+2 (vwT) � d+2 (v)C+2 (w) ρ2 (T).

Proof. The operator wT is positive 2-summing sublinear [5, Theorem 3.6] and by Theorem 4.5, the operator
vwT is Cohen 2-nuclear positive sublinear. �

Proposition 5.3. We have

SN+
p (E, F) � SΠ+

p (E, F) and π+p (T) � n+p (T) .

Proof. Let T be an operator in SN+
p (E, F). For all x 2 E, we have

kT (x)k = sup
y�2B+F�

jhT (x) , y�ij

� sup
y�2B+F�

n+p (T)

0B@ Z
B+E�

(jxj (x�))p dµ1 (x
�)

1CA
1
p
0B@ Z

B+F��

(y� (y��))p� dµ2 (y
��)

1CA
1

p�

� n+p (T)

0B@ Z
B+E�

(jxj (x�))p dµ1 (x
�)

1CA
1
p

sup
y�2B+F�

ky�k

� n+p (T)

0B@ Z
B+E�

(jxj (x�))p dµ1 (x
�)

1CA
1
p

.

Then, T is a positive p-summing sublinear operator and π+p (T) � n+p (T) . �
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Abstract

The third Hankel determinant, H3(1) for subclass of analytic functions satisfying geometric condition

Re
z f ′(z)

f (z)
f (z)α−1 f ′(z)

zα−1 > 0

for nonnegative real number α, in the open unit disk U = {z ∈ C : |z| < 1} is derived in line with a method
of classical analysis devised by Libera and Zlotkiewicz [9].

Keywords: Hankel determinant, caratheodory functions, product of geometric expression, analytic functions.
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1 Introduction

Let A denote the class of functions

f (z) = z + a2z2 + a3z3 + ... (1.1)

which are analytic in the open unit disk U = {z ∈ C : |z| < 1} and satisfy the condition f (0) = f
′
(0)− 1 = 0.

By S, S∗, C and R, we mean the well known subclasses of A which consist of univalent, starlike, convex and
bounded turning functions respectively. In [8], Jimoh et-al introduced a subclass of analytic functions denoted
by Jα which satisfy the geometric condition:

Re
z f ′(z)

f (z)
f (z)α−1 f ′(z)

zα−1 > 0. (1.2)

for non negative real number α,where estimates on the bounds of some coefficients were investigated. Also
in [6], Ganiyu et-al obtained the bound on the second Hankel determinant, H2(2) for this same subclass of
analytic functions, Jα. In [10], Noonan and Thomas defined the qth Hankel determinant of f for q ≥ 1, n ≥ 0
by:

Hq(n) =

∣∣∣∣∣∣∣∣∣∣∣

an an+1 . . . an+q−1

an+1 · · · . . .
...

... · · · . . .
...

an+q−1 · · · . . . an+2(q−1)

∣∣∣∣∣∣∣∣∣∣∣
This determinant has been considered for specific choices of q and n by several authors with subject of inquiry
ranging from rate of growth of Hq(n) as n → ∞ to the determination of precise bounds on Hq(n) for some
subclasses of analytic functions. It is well known that the Fekete-Szego functional is |a3 − a2

2|=H2(1). The
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second Hankel determinant defined by H2(2) = |a2a4 − a2
3| also received a lot of attention by researchers

among which is the notable work of Janteng, et-al, [7] where they obtained the second Hankel determinant
for some subclasses of analytic functions. Other contributors in this regard include Abubaker [1], Al-Refai [2],
Norlyda et-al [11], Vamshee [13].

Babalola [4], Shanmungam et-al [12], Vamshee et-al [14] have studied the third Hankel determinant, H3(1)
for various classes of analytic and univalent functions. In the present investigation, our focus is on the third
Hankel determinant, H3(1) for the subclass Jα given by:

H3(1) =

∣∣∣∣∣∣
a1 a2 a3
a2 a3 a4
a3 a4 a5

∣∣∣∣∣∣
For f ∈ A, a1 = 1 so that

H3(1) = a3(a2a4 − a2
3)− a4(a4 − a2a3) + a5(a3 − a2

2)

and by using the triangle inequality, we have

|H3(1)| ≤ |a3||a2a4 − a2
3|+ |a4||a2a3 − a4|+ |a5||a3 − a2

2| (1.3)

In this paper, we seek to find the sharp upper bound on |a2a3 − a4|, |a3 − a2
2| and |H3(1)| respectively for the

functions belonging to the subclass Jα. We shall make use of our earlier results on the bounds on each of the
coefficients and the functional |a2a4 − a2

3|=H2(2).

2 Preliminary Lemmas.

To prove the main results in the next section, we need the following lemmas. Let P denote the class of
Caratheodory functions p(z) = 1 + c1z + c2z2 + · · · which are analytic and satisfy p(0) = 1, Re p(z) > 0 in
open unit disk U.

Lemma 2.1. [5] Let p ∈ P. Then |ck| ≤ 2, k = 1, 2, 3.... Equality is attained by the moebius function

L0(z) =
1 + z
1− z

.

Lemma 2.2. [9] Let p ∈ P, then
2c2 = c2

1 + x(4− c2
1) (2.1)

and
4c3 = c3

1 + 2(4− c2
1)c1x− c1(4− c2

1)x2 + 2(4− c2
1)(1− |x|2)z (2.2)

for some value of x,z such that |x| ≤ 1 and |z| ≤ 1.

Lemma 2.3. [3] Let p ∈ P. Then we have sharp inequalities∣∣∣∣∣c2 − σ
c2

1
2

∣∣∣∣∣ ≤


2(1− σ), if σ ≤ 0,
2, if 0 ≤ σ ≤ 2,
2(σ− 1), if σ ≥ 2.

Lemma 2.4. [6] Let f ∈ Jα. Then

|H2(2)| ≤
4

(α + 4)2

Lemma 2.5. [8] Let f ∈ Jα. Then

|a2| ≤
2

α + 2

|a3| ≤
{ 2(α+6)

(α+2)2(α+4) if 0 < α ≤ −3+
√

17
2 ,

2
α+4 if α ≥ −3+

√
17

2 .

|a4| ≤


52α4+472α3+1208α2+896α+288

6(α+2)3(α+4)(α+6) if α ≤ −5+
√

33
2 ,

14α2+96α+232
3(α+2)(α+4)(α+6) if α ≥ −5+

√
33

2 .

|a5| ≤


14α5+236α4+1348α3+2976α2+2160α+1024

(α+2)2(α+4)2(α+6)(α+8) if α ≤ −7+
√

57
2 ,

4α4+74α3+584α2+2152α+3072
(α+2)(α+4)2(α+6)(α+8) if α ≥ −7+

√
57

2 .
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3 Main Results.

Theorem 3.1. let f ∈ Jα. Then we have

|a2a3 − a4| ≤
2(α2 + 6α + 16)

3(α + 2)(α + 4)(α + 6)

√
α3 + 8α2 + 28α + 32
α3 + 8α2 + 25α + 18

, 0 ≤ α < 1

Proof. Using the results obtained earlier in [8], we have that if f ∈ Jα, then

a2 =
c1

α + 2
(3.1)

a3 =
c2

α + 4
− α2 + 3α− 2

2(α + 2)2(α + 4)
c2

1 (3.2)

a4 =
c3

α + 6
+

2− 5α− α2

(α + 2)(α + 4)(α + 6)
c1c2 +

2α4 + 17α3 + 31α2 − 8α + 12
6(α + 2)3(α + 4)(α + 6)

c3
1 (3.3)

so that

|a2a3 − a4| =
∣∣∣∣ α2 + 6α + 4
(α + 2)(α + 4)(α + 6)

c1c2 −
α4 + 10α3 + 29α2 + 20α− 12

3(α + 2)3(α + 4)(α + 6)
c3

1 −
c3

α + 6

∣∣∣∣ (3.4)

substituting c2 and c3 in Lemma 2.2 into equation (3.4), we have

|a2a3 − a4| =
∣∣∣∣∣48− 8α− 32α2 − 10α3 − α4

12(α + 2)3(α + 4)(α + 6)
c3

1 −
2(4− c2

1)

(α + 2)(α + 4)(α + 6)
c1x

+
(4− c2

1)

4(α + 6)
c1x2 −

(4− c2
1)(1− |x|2)z

2(α + 6)

∣∣∣∣∣
By Lemma 2.1, |c1| ≤ 2. Suppose that c1 = c, we may assume without restriction that c ∈ [0, 2]. By the use of
triangle inequality with ξ = |x| and noting that 48− 8α− 32α2 − 10α3 − α4 ≥ 0 for 0 ≤ α < 1, we obtain

|a2a3 − a4| ≤
48− 8α− 32α2 − 10α3 − α4

12(α + 2)3(α + 4)(α + 6)
c3 +

2(4− c2)

(α + 2)(α+)(α + 6)
cξ

+
(c− 2)(4− c2)

4(α + 6)
ξ2 +

4− c2

2(α + 6)

= F(c, ξ)

(3.5)

we assume the upper bound for equation (3.5) occurs at an interior point of the set {(ξ, c) : ξ ∈ [0, 1] and
c ∈ [0, 2]}. Differentiating F(c, ξ) partially with respect to ξ, we get

F′(c, ξ) =
2(4− c2)c

(α + 2)(α + 4)(α + 6)
+

(c− 2)(4− c2)ξ

2(α + 6)

For 0 < ξ < 1 and for fixed c with 0 < c < 2, we observe that F′(c, ξ) > 0. Therefore, F′(c, ξ) is an increasing
function of ξ, which contracdicts our assumption that the maximum value of it occurs at an interior point of
the set {(ξ, c) : ξ ∈ [0, 1] and c ∈ [0, 2]}. Also for fixed c ∈ [0, 2], we have

max
0≤ξ≤1

F(c, ξ) = F(c, 1) = G(c), say

replacing ξ by 1 in equation (3.5), we obtain

G(c) = F(c, 1) =
α2 + 6α + 16

(α + 2)(α + 4)(α + 6)
c− α4 + 10α3 + 41α2 + 68α + 36

3(α + 2)3(α + 4)(α + 6)
c3

so that

G′(c) =
α2 + 6α + 16

(α + 2)(α + 4)(α + 6)
− α4 + 10α3 + 41α2 + 68α + 36

(α + 2)3(α + 4)(α + 6)
c2
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G′(c) = 0 implies

c = ±

√
(α + 2)(α2 + 6α + 16)
α3 + 8α2 + 25α + 18

since c ∈ [0, 2], we have c =
√

α3+8α2+28α+32
α3+8α2+25α+18 as the maximum point of G(c). Therefore

G(c) ≤ 2(α2 + 6α + 16)
3(α + 2)(α + 4)(α + 6)

√
α3 + 8α2 + 28α + 32
α3 + 8α2 + 25α + 18

That is the upper bound of equation (3.5) correspounds to ξ = 1 and c =
√

α3+8α2+28α+32
α3+8α2+25α+18 .

Theorem 3.2. Let f ∈ Jα.Then

|a3 − a2
2| ≤

2
α + 4

Proof. Using equations (3.1) and (3.2),

|a3 − a2
2| =

1
α + 4

∣∣∣∣∣c2 −
(

α + 3
α + 2

)
c2

1
2

∣∣∣∣∣
Applying Lemma 2.3, with σ = α+3

α+2 , we obtain∣∣∣∣∣c2 −
(

α + 3
α + 2

)
c2

1
2

∣∣∣∣∣ ≤ 2

hence the result.

Corollary 3.1. Let f ∈ Jα.Then

|H3(1)| ≤


J1+J2

√
J5

(α+2)2 J6
, if 0 ≤ α ≤ −3+

√
17

2 ,
J3+J4

√
J5

J6
, if α ≥ −3+

√
17

2 .

where,

J1 = 252α11 + 8784α10 + 134316α9 + 1188072α8 + 6737328α7

+ 25615584α6 + 66411072α5 + 117846144α4 + 143325504α3

+ 41925888α2 + 64143360α + 16920576,

J2 = 52α8 + 1408α7 + 15944α6 + 99248α5 + 369248α4 + 818240α3

+ 997120α2 + 569344α + 147456,

J3 = 72α8 + 2304α7 + 31176α6 + 233442α5 + 1057248α4 + 2945178α3

+ 4854420α2 + 4258872α + 1496880,

J4 = 28α6 + 696α5 + 7280α4 + 42144α3 + 143744α2 + 276480α + 237568,

J5 = α6 + 16α5 + 117α4 + 474α3 + 1100α2 + 1304α + 576,

J6 = 9(α + 2)2(α + 4)3(α + 6)2(α + 8)(α3 + 8α2 + 25α + 18).
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Proof. By equation (1.3), we have

|H3(1)| ≤ |a3||a2a4 − a2
3|+ |a4||a2a3 − a4|+ |a5||a3 − a2

2|

using Lemma 4, the first inequality of the result in Lemma 5 together with the results obtained in Theorems
3.1 and 3.2,

|H3(1)| ≤
8(α + 6)

(α + 2)2(α + 4)3 +
2(14α5 + 236α4 + 1348α3 + 2976α2 + 2160α + 1024)

(α + 2)2(α + 4)3(α + 6)(α + 8)

+

(
(α2 + 6α + 16)(52α4 + 472α3 + 1208α2 + 896α + 288)

9(α + 2)4(α + 4)2(α + 6)2(α3 + 8α2 + 25α + 18)

)
(√

(α3 + 8α2 + 28α + 32)(α3 + 8α2 + 25α + 18)
)

simplifying, we have the first inequality.
Also by using Lemma 2.4, the second inequality of the result in Lemma 2.5 together with the results obtained
in Theorems 3.1 and 3.2,

|H3(1)| ≤
8

(α + 4)3 +
2(4α4 + 74α3 + 584α2 + 2152α + 3072)

(α + 2)(α + 4)3(α + 6)(α + 8)

+
2(α2 + 6α + 16)(14α2 + 96α + 232)

9(α + 2)2(α + 4)2(α + 6)2

√
α3 + 8α2 + 28α + 32
α3 + 8α2 + 25α + 18

By simplification, we obtain the other inequality.

4 Conclusion

We have been able to find the sharp upper bound on functionals |a2a3 − a4|, |a3 − a2
2| and the third Hankel

determinant, |H3(1)| for the functions belonging to the subclass Jα.
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Abstract

In this manuscript, we study the approximate controllability results for nonlocal impulsive fractional
neutral stochastic integro-differential equations with state-dependent delay conditions in Hilbert spaces
under the assumptions that the corresponding linear system is approximately controllable. The results are
obtained by using fractional calculus, semigroup theory, stochastic analysis and fixed point theorem. An
example is provided to show the application of our result.

Keywords: Fractional differential equations, approximate controllability, stochastic differential system,
nonlocal condition, state-dependent delay, fixed point theorem, semigroup theory.
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1 Introduction

In this manuscript, we set up the approximate controllability of mild solutions for nonlocal impulsive
fractional neutral stochastic integro-differential systems (abbreviated, NIFNSIDS) with state-dependent
delay (abbreviated, SDD) in Hilbert spaces through the utilization of the fixed point theorem thanks to
Schauder [30]. We discuss the neutral integro-differential equations of fractional-order with SDD of the
model

CDα
t [u(t)− G (t, u$(t,ut))] = A u(t) + Bv(t) +F

(
t, u$(t,ut),

∫ t

0
e1(t, s, u$(s,us))ds

)
+ Σ

(
t, u$(t,ut),

∫ t

0
e2(t, s, u$(s,us))ds

)
dw(t)

dt
, t 6= tk, k = 1, 2, · · · , n, (1.1)

∆u(tk) = Ik(u(t−k )), k = 1, 2, · · · , n, (1.2)

u(0) + h(u) = ϕ ∈ B, (1.3)

where CDα
t is the Caputo fractional derivative of order α, α ∈ (0, 1), the state variable u takes values in

a Hilbert space H; ∆u(tk) = u(t+k ) − u(t−k ), k = 1, 2, . . . , n are impulsive function, which the solution is
jump at impulsive point tk, 0 < t1 < t2 < · · · < tn < T; A : D(A ) ⊂ H → H is the infinitesimal
generator of a strongly continuous semigroup of a bounded linear operator {T(t) : t ≥ 0}. That is to say,
‖T(t)‖ ≤ M for some constantM ≥ 1 and every t ≥ 0; the control function v is given in L2(I , U), U
is a Hilbert space, B is a bounded linear operator from U into H. The time history ut: (−∞, 0] → H,
ut(θ) = u(t + θ) belongs to some abstract phase space B described axiomatically in section 2 and $ :
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I × B → (−∞, T] is a continuous function. Let K be a another Hilbert space, suppose {W(t)}t≥0 is a
given K-valued Brownian motion or wiener process with a finite trace nuclear covariance operator Q ≥ 0
defined on a complete probability space (Ω,F ,P). Denote PC(I ,L2(Ω,F ,P ;H)) = {u(t) is continuous
everywhere except for some tk at which u(t−k ) and u(t+k ) exist and u(t−k ) = u(tk)} be the Banach space
of piece-wise continuous function from I into L2(Ω,F ,P ;H) with the norm ‖u‖PC = sup

t∈I
|u(t)| < ∞,

PC(I ,L2) is the closed subspace of PC(I ,L2(Ω,F ,P ;H)) consisting of a measurable and Ft-adapted
H-valued process u(·) ∈ PC(I ,L2(Ω,F ,P ;H)) with the norm defined ‖u‖2 = sup{E‖u(t)‖2, t ∈ I }.
The functions G , F , Σ, ei, i = 1, 2; Ik and h are suitable functions to be specified later.

The emergence of fractional calculus arise new questions in fundamental physics, which provides
great challenging interest for the mathematicians and physicists in the theory of fractional calculus. The
fractional differential equations (abbreviated, FDEs) have been considered to be the valuable tool, which
can describe dynamical behavior of real life phenomena more accurately. For instance, the nonlinear
oscillation of earthquake can be well modeled with fractional derivatives. We can find the numerous
applications of FDEs in control theory, nonlinear oscillation of earthquake, the fluid-dynamic traffic model,
aerodynamics and in almost every field of science and engineering. For more points of interest on this
concept, we allude the reader to Pazy [27]. There has been a lot of enthusiasm toward the solutions of
fractional differential equations in systematic and mathematical thoughts. For fundamental certainties
about fractional systems, one can make reference to the books [6, 13, 38], and the papers [11, 15], and the
references cited therein.

FDEs with delay features happen in several areas such as medical and physical with SDD or non-
constant delay. These days, existence and controllability results of mild solutions for such problems
became very attractive and several researchers working on it. As of late, few number of papers have
been published on the fractional order problems with SDD [1, 2, 9, 20, 30, 35] and references therein.
Especially, in [1], the authors analyzed the existence results for fractional integro-differential equations
whereas Benchohra et al. [2] examined the existence of mild solutions for fractional integro-differential
equations in Banach spaces.

An important feature of real-world dynamic processes that has attracted considerable interest by
scientists is the effect of abrupt changes. Hereby, ”abrupt” is meant in the sense of a multi-scale problem,
i.e. the state of a system changes only slowly for a long time interval, and then undergoes a drastic
change within a very short time interval. For example, a football may be flying through the air for several
seconds before it changes its flight direction within milliseconds during a collision with a goal post. For
the mathematical description of this system, the specification of two sets of equations is appropriate: one
for the flight phase, and one for the collision phase.

Several mathematical models can be developed for the football example. In a simplified setting, the
motion of the football could be described by the position and velocity of its center of mass, and the
encounter with the goal post could be treated as an inelastic collision (i.e. by an immediate change of
the football’s velocity).

For the description of the collision of the ball with the goal post leads to differential equations in which
the velocity experiences, at the time of the collision, a so-called impulse. There is really a noteworthy
improvement in impulsive concept, particularly in the region of impulsive differential frameworks having
fixed times; for the additional purposes of enthusiasm on this concept and on its uses, see for example the
treatise by Lakshmikantham et al. [22], Ivanka M. Stamova [34], Bainov et al. [4], Benchohra et al. [7] and
the papers [3, 8, 10, 15], and the references cited therein.

In addition, the investigation of stochastic differential comparisons has pulled in awesome enthusiasm
because of its applications in portraying numerous issues in material science, biology, chemistry,
mechanics, etc. As a matter of fact, the accurate analysis or assessment subjected to a realistic environment
has to take into account the potential randomness in the system properties, such as fluctuations in the
stock market or noise in a communication network. All these problems in mathematics are modeled and
depicted by stochastic differential equations or stochastic integro-differential equations with delay and
impulses.

On the other hand, controllability is one of the important fundamental concepts in mathematical
control theory and plays an important role in both deterministic and stochastic control system. In many
dynamical systems, the control does not affect the complete state of the dynamical system but only a
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part on it. Further, very often in real industrial processes it is possible to observe only a certain part of
the complete state of the dynamical system. This, the dynamical systems must be treated by the weaker
concept of controllability, namely approximate controllability.

The existence, controllability and other qualitative and quantitative attributes of stochastic FDEs are
the most progressing area of pursuit, for instance, see [5, 12, 16, 17, 25, 39–44]. In particular, Toufik
Guendouzi et al. [16, 17] reviewed existence and approximate controllability of different types of fractional
stochastic differential and integro-differential systems with SDD in Hilbert spaces under different suitable
fixed point theorems. Lately, Zhang et al. [44] derived a new set of sufficient conditions for approximate
controllability of impulsive fractional stochastic differential equations with state-dependent delay in
Hilbert spaces with the help of fractional calculus and stochastic analysis. Moreover, Yan et al. [39, 40]
investigated for approximate controllability of impulsive partial neutral stochastic functional integro-
differential inclusion with infinite delay. Recently, Sakthivel et al. [29, 31] reviewed the approximate
controllability of fractional neutral stochastic differential inclusions with nonlocal conditions and infinite
delay by utilizing the Krasnoselskii’s fixed point theorem. Very recently, Vijayakumar et al. [24, 36, 37]
derived the controllability and approximate controllability results for abstract neutral integro-differential
inclusions with infinite delay in Hilbert spaces.

The best of our knowledge, it appears that little is thought about approximate controllability results for
IFNSIDS with non-local and SDD conditions in Hilbert spaces. The point of this manuscript is to analyze
this fascinating model (1.1)- (1.3).

The rest of this paper is organized as follows. In Section 2 is focused on call to mind of some crucial
perspectives that will be utilized in this work to accomplish our primary results. In Section 3, we declare
and present the existence results about by proposes of Schauder fixed point theorem. In Section 4, an
example is given to illustrate our results.

2 Preliminaries

Let (H, ‖ · ‖H) and (K, ‖ · ‖K) denote two real separable Hilbert spaces. For our convenience, we will
use the same notation ‖ · ‖ to denote the norms in H,K and (·, ·) to denote the inner product without
any confusion. Let (Ω,F ,P) be a complete probability space furnished with a normal filtration Ft, t ∈ I

satisfying the usual conditions (i.e., right continuous and F0 containing all P-null sets), and E(·) denotes
the expectation with respect to the measure P . AnH-valued random variable is anF measurable function
u(t): Ω→ H, and a collection of random variableW = {u(t, ω): Ω→ H|t∈T} is called a stochastic process.
We suppress the dependence on ω ∈ Ω and write u(t) instead of u(t, ω) and u(t): I → H in the place of
W . Assume that {βn}n≥1 be a sequence of real valued independent Brownian motions, defined by W(t)

=
∞
∑

n=1

√
λnβn(t)χn, t ≥ 0, where {χn}n≥1 is complete orthonormal system in K and λn ≥ 0 (n = 1, 2, . . . )

are non-negative real numbers. Let Q ∈ L(K,K) be an operator satisfying Qχn = λnχn with tr(Q) =
∞
∑

n=1
λn < ∞. Then, the above K-valued stochastic process W(t) is a Q-wiener process. Let us assume Ft =

σ(W(s) : 0 ≤ s ≤ t) is the σ-algebra generated by W and FT = F .
Let L(K,H) denote the space of all bounded linear operators from K into H equipped with the usual

operator norm ‖ · ‖. For ϕ ∈ L(K,H) and define

‖ϕ‖2
Q = tr(ϕQϕ∗) =

∞

∑
n=1
‖
√

λn ϕχn‖
2
.

If ‖ϕ‖2
Q < ∞, then ϕ is called a Q-Hilbert-Schmidt operator. Let LQ(K,H) denote the space of all Q-

Hilbert-Schmidt operators ϕ. The completion LQ(K,H) of L(K,H) with respect to the topology induced
by the norm ‖ · ‖Q where ‖ϕ‖2

Q= < ϕ, ϕ > is a Hilbert space with the above norm topology.
Without loss of generality, we assume that 0 ∈ ℘(A ), the resolvent set of A . Then for 0 < η ≤ 1, it is

possible to define the fractional power A η as a closed linear operator on its domain D(A η), being dense
inH, and we denote byHη the Banach space of D(A η) endowed with the norm ‖u‖η = ‖A ηu‖, which is
equivalent to the graph norm of A η .

Lemma 2.1. [27] Suppose that the preceding conditions are satisfied.
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(i) Let 0 < η ≤ 1, thenHη is a Banach space.

(ii) If 0 < ν ≤ η, then the embeddingHν ⊂ Hη is compact whenever the resolvent operator of A is compact.

(iii) For every η ∈ (0, 1], there exists a positive constant Cη such that

‖A ηT(t)‖ ≤
Cη

tη , t > 0.

It needs to be outlined that, once the delay is infinite, then we should talk about the theoretical phase
space B in a beneficial way.

We assume that the phase space (B, ‖ · ‖B) is a semi-normed linear space of F0-measurable functions
mapping (−∞, 0] into H and fulfilling the subsequent elementary adages as a result of Hale and Kato (
see the case in point in [15, 18, 19]).

If u : (−∞, T] → H, T > 0, is continuous on I and u0 ∈ B, then for every t ∈ I the accompanying
conditions hold:

(P1) ut is in B;

(P2) ‖u(t)‖ ≤ H‖ut‖B ;

(P3) ‖ut‖B ≤ E1(t) sup{‖u(s)‖ : 0 ≤ s ≤ t} + E2(t)‖u0‖B , where H > 0 is a constant and E1(·) :
[0,+∞) → [0,+∞) is continuous, E2(·) : [0,+∞) → [0,+∞) is locally bounded and E1, E2 are
independent of u(·).

(P4) The function t→ ϕt is well described and continuous from the set

R($−) = {$(s, ψ) : (s, ψ) ∈ I ×B},

into B and there is a continuous and bounded function Jϕ : R($−) → (0, ∞) to ensure that
E‖ϕt‖2

B ≤ Jϕ(t)E‖ϕ‖2
B for every t ∈ R($−).

(P5) The space B is complete.

Let u : (−∞, T]→ H be an Ft-adapted measurable process such that we have the F0-adapted process
u0 = ϕ(t) ∈ L2(Ω,B), then

E‖ut‖2
B ≤ E ∗1

2 sup
0≤s≤T

{E‖u(s)‖2}+ E ∗2
2
E‖ϕ‖2

B ,

where E ∗1 = sup
s∈I

E1(s) and E ∗2 = sup
s∈I

E2(s).

Lemma 2.2. [14] Let u: (−∞, T] → H be a function in a way that u0 = ϕ and u ∈ PC(I ,L2) and if (P4) hold,
then

E‖us‖2
B ≤ E ∗1

2 sup{E‖u(θ)‖2
H : θ ∈ [0, max{0, s}]}+ (E ∗2 + Jϕ)2E‖u0‖2

B , s ∈ R($−) ∪I ,

where Jϕ = sup
t∈R($−)

Jϕ(t).

Recognize the space

BT =
{

u : (−∞, T]→ H such that u0 ∈ B and the constraint u|I ∈ PC(I ,L2)
}

.

The function ‖ · ‖BT to be a seminorm in BT , it is described by

‖u‖BT = ‖ϕ‖B + sup
{(

E‖u(s)‖2
) 1

2 : s ∈ [0, T]
}

, u ∈ BT .

Now, we provide some fundamental definitions and results of the fractional calculus theory that
happen to be utilized additionally within this manuscript.
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Definition 2.1. [21] The fractional integral of order γ with the lower limit zero for a function f is determined as

Iγ
t f (t) =

1
Γ(γ)

∫ t

0

f (s)
(t− s)1−γ

ds, t > 0, γ > 0,

offered the right part is point-wise described on [0,+∞), where Γ(·) is the gamma function.

Definition 2.2. [21] The Riemann-Liouville derivative of order γ with the lower limit zero for a function
f ∈ L1(I ,H) is characterized as

Dγ
t f (t) =

1
Γ(n− γ)

dn

dtn

∫ t

0

f (s)
(t− s)1−n+γ

ds, t > 0, n− 1 < γ < n.

Definition 2.3. [21, 28] The Caputo derivative of order γ for a function f ∈ L1(I ,H) could be consisting as

CDγ
t f (t) = Dγ

t ( f (t)− f (0)), t > 0, 0 < γ < 1.

Definition 2.4. [45, Definition 4.59] The Mittag-Leffler function is defined by

Eα,β(z) =
∞

∑
n=0

zn

Γ(αn + β)
, α, β > 0, z ∈ C̃,

where C̃ denotes the complex plane. When β = 1, fix Eα(z) = Eα,1(z).

Definition 2.5. [45] The Mainardi’s function has the form

φα(z) =
∞

∑
n=0

(−z)n

n!Γ(−αn− α + 1)
, 0 < α < 1, z ∈ C̃.

Presently, we are in a position to characterize the mild solution for the system (1.1)-(1.3). For this, first
we assume that the approximate controllability of its linear fractional differtial system

CDα
t x(t) = A x(t) + Bv(t) +F (t)

dw(t)
dt

, (2.1)

x(0) = x0, (2.2)

where CDα
t and A are defined in (1.1)-(1.3). Now, we first consider the classical solutions to the

problem (2.1)-(2.2). Then, based on the expression of such solutions, we define the mild solutions of
the problem (2.1)-(2.2). At last, the relations between the analytic semigroup {T(t)}t≥0 and some solution
operators is obtained.

For our convenient at this position to introduce the controllability operator associated with (2.1)-(2.2),
thus

ΓT
0 =

∫ T

0
Sα(T − s)BB∗S∗α (T − s)ds,

where B∗ and S∗α are the adjoint of B and Sα respectively. It is straightforward that the operator ΓT
0 is a

linear bounded operator.
Let u(T; u0, v) be the state value of (1.1)-(1.3) at teriminal time T corresponding to the control v

and the intial value u0. Introduce the set R(T, u0) = {u(T; u0, v) : v ∈ L2(I , U)}, which is called the
reachable set of the system (1.1)-(1.3) at terminal time T, its closure inH is denoted by R(T, u0).

Definition 2.6. [44] The system (1.1)-(1.3) is said to be approximately controllable on I if R(T, u0) = L2(Ω,H),
that is, given an arbitrary ε > 0, it is possible to steer from the point u0 to within a distance ε from all points in the
state spaceH at time T.

Lemma 2.3. [44] The linear fractional control system (2.1)-(2.2) is approximately controllable on I if and only if
µ(µI + ΓT

0 )→ 0 as µ→ 0+ in the strong operator topology.
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Lemma 2.4. ([31, Lemma 3.2]) For any ũT ∈ L2(FT ,H), there exists φ̃ ∈ L2
F (Ω;L2(0, T;L0

2)) such that ũT =

EũT +
∫ T

0
φ̃(s)dw(s).

Now for any µ > 0 and ũT ∈ L2(FT ,H), we define the control function

vµ(t) =



B∗S∗α(T − t)(µI + ΓT
0 )
−1
[

EũT +
∫ T

0
φ̃(s)dw(s)− Tα(T)[ϕ(0)− h(uT)− G (0, ϕ)]

]
−B∗S∗α (T − t)(µI + ΓT

0 )
−1G (T, u$(T,uT)

)

−B∗S∗α (T − t)
∫ T

0
(µI + ΓT

s )
−1A Sα(T − s)G

(
s, u$(s,us)

)
ds

−B∗S∗α (T − t)
∫ T

0
(µI + ΓT

s )
−1Sα(T − s)F

(
s, u$(s,us),

∫ s

0
e1(s, τ, u$(τ,uτ))dτ

)
ds

−B∗S∗α(T − t)
∫ T

0
(µI + ΓT

s )
−1Sα(T − s)Σ

(
s, u$(s,us),

∫ s

0
e2(s, τ, u$(τ,uτ))dτ

)
dw(s)

−B∗S∗α(T − t)(µI + ΓT
0 )
−1 ∑

0<tk<t
Tα(T − tk)Ik(u(t−k )).

Lemma 2.5. [33, Lemma 6] Using A to denote the infinitesimal generator of an analytic semigroup {T(t)}t≥0,
then if F satisfies a uniform Hölder condition with exponent β ∈ (0, 1], the solution of the Cauchy system (2.1)-
(2.2) are fixed points of the subsequent operator equation:

Ψx(t) = Tα(t)x0 +
∫ t

0
Sα(t− s)Bv(s)ds +

∫ t

0
Sα(t− s)F (s)dw(s), (2.3)

where
Tα(t) =

1
2πi

∫
C

eλtλα−1R(λα, A )dλ and Sα(t) =
1

2πi

∫
C

eλtR(λα, A )dλ.

Here C is a suitable path satisfying λα /∈ µ + Sθ for some λ ∈ C.

Proof. According to the Definitions of 2.1 and 2.2, we modify the Cauchy system (2.1)-(2.2) in the
equivalent integral equation

x(t) = x0 +
1

Γ(α)

∫ t

0

A x(s)
(t− s)1−α

ds +
1

Γ(α)

∫ t

0

Bv(s)
(t− s)1−α

ds +
1

Γ(α)

∫ t

0

F (s)
(t− s)1−α

dw(s). (2.4)

Let λ > 0. Making use of the Laplace transform

(L x)(λ) =
∫ ∞

0
e−λsx(s)ds, (L v(t))(λ) =

∫ ∞

0
e−λsv(s)ds,

and (L F (t))(λ) =
∫ ∞

0
e−λsF (s)dw(s)

to (2.4) we receive

(L x)(λ) =
∫ ∞

0
e−λs

[
x0 +

1
Γ(α)

∫ s

0

A x(θ)
(s− θ)1−α

dθ +
1

Γ(α)

∫ s

0

Bv(θ)
(s− θ)1−α

dθ

+
1

Γ(α)

∫ s

0

F (θ)

(s− θ)1−α
dw(θ)

]
ds

=
∫ ∞

0
e−λsx0ds +

∫ ∞

0
e−λs

[
1

Γ(α)

∫ s

0

A x(θ)
(s− θ)1−α

dθ

]
ds

+
∫ ∞

0
e−λs

[
1

Γ(α)

∫ s

0

Bv(θ)
(s− θ)1−α

dθ

]
ds

+
∫ ∞

0
e−λs

[
1

Γ(α)

∫ s

0

F (θ)

(s− θ)1−α
dw(θ)

]
ds

=
1
λ

[
e−λs]0

∞x0 +
1

λα
A (L x)(λ) +

1
λα

B(L v(t))(λ) +
1

λα
(L F (t))(λ)
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(L x)(λ)− 1
λα

A (L x)(λ) =
1
λ

x0 ++
1

λα
B(L v(t))(λ) +

1
λα

(L F (t))(λ)

(λα I −A )(L x)(λ) =
λα

λ
x0 + B(L v(t))(λ) + (L F (t))(λ)

(L x)(λ) = λα−1(λα I −A )−1x0 + (λα I −A )−1B(L v(t))(λ)

+ (λα I −A )−1(L F (t))(λ).

Using λα(λα − A )−1 = I + A (λα − A )−1, the above equation is then inverse Laplace transformed to
obtain

x(t) = Tα(t)x0 +
∫ t

0
Sα(t− s)Bv(s)ds +

∫ t

0
Sα(t− s)F (s)dw(s).

It is noted that F satisfy a uniform Hölder condition with exponent β ∈ (0, 1). Hence, the classical
solutions of Cauchy system (2.1)-(2.2) are fixed points of the operator equation (2.3).

In view of Lemma 2.5, we determine the mild solutions of the system (2.1)-(2.2).

Definition 2.7. A function x : I → H is considered to be a mild solution of problem (2.1)-(2.2) if x ∈ C(I ,H)

fulfills the accompanying integral equation:

x(t) = Tα(t)x0 +
∫ t

0
Sα(t− s)Bv(s)ds +

∫ t

0
Sα(t− s)F (s)dw(s), t ∈ I .

Remark 2.1. It is straightforward to confirm that the classical solution of the system (2.1)-(2.2) is a mild solution
of the same system. Thus, Definition 2.7 is well defined (see [23, 27]).

Lemma 2.6. [33, Lemma 9] Assuming A is the infinitesimal generator of an analytic semigroup, given by
{T(t)}t≥0 and 0 ∈ ℘(A ), then we have

Sα(t) = α
∫ ∞

0
rφα(r)tα−1T(tαr)dr and Tα(t) =

∫ ∞

0
φα(r)T(tαr)dr. (2.5)

Here φα(r) is the probability density function characterized on (0, ∞) in such a way that its Laplace transform has
the form ∫ ∞

0
e−rxφα(r)dr =

∞

∑
j=0

(−x)j

Γ(1 + αj)
, x > 0,

which fulfills ∫ ∞

0
φα(r)dr = 1 and

∫ ∞

0
rηφα(r)dr ≤ 1, 0 ≤ η ≤ 1.

Proof. For all x ∈ D(A ) ⊂ H, we have

(λ−A )−1x =
∫ ∞

0
e−λsT(s)xds.

Let ∫ ∞

0
e−λrψα(r)dr = e−λα

,

where α ∈ (0, 1), ψα(r) = 1
π ∑

1≤n<∞
(−1)nr−αn−1 Γ(nα+1)

n! sin(nπα), and r ∈ (0, ∞)(see[26] ). Thus, we get

(λα −A )−1x =
∫ ∞

0
e−λαsT(s)xds

=
∫ ∞

0
αtα−1e−(λt)α

T(tα)xdt

=
∫ ∞

0
αtα−1

[ ∫ ∞

0
e−λtrψα(r)dr

]
T(tα)xdt

=
∫ ∞

0
α

[ ∫ ∞

0
e−λtψα(r)dr

]
T

(
tα

rα

)
x

tα−1

rα
dt

=
∫ ∞

0
e−λt

(
α
∫ ∞

0
rφα(r)tα−1T(tαr)xdr

)
dt, (2.6)
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where φα(r) =
( 1

α

)
r−1− 1

α ψα

(
r
−1
α
)

is the probability density function outlined on (0, ∞) in such a way that∫ ∞

0
φα(r)dr = 1 and

∫ ∞

0
rηφα(r)dr ≤ 1, 0 ≤ η ≤ 1.

In perspective of Lemma 2.5 and equation (2.6), we sustain

Sα(t) =
1

2πi

∫
C

eλtR(λα, A )dλ

=
∫ ∞

0
eλt(λα −A )−1dt

= α
∫ ∞

0
rφα(r)tα−1T(tαr)dr.

Further, we calculate the estimation of Sα(t):

‖Sα(t)‖ =
wwwwα

∫ ∞

0
rφα(r)tα−1T(tαr)dr

wwww
≤ α

[ ∫ ∞

0
rφα(r)dr

]
tα−1‖T(tαr)‖

≤ α
Γ(2)

Γ(1 + α)
tα−1M

≤ M
Γ(α)

tα−1,

where
∫ ∞

0
rβφα(r)dr =

Γ(1 + β)

Γ(1 + αβ)
.

Then again, for all x ∈ D(A ) ⊂ H, we notice that

λα−1(λα −A )−1x =
∫ ∞

0
λα−1e−λαsT(s)xds

=
∫ ∞

0
α(λt)α−1e−(λt)α

T(tα)xdt

=
∫ ∞

0

−1
λ

d
dt
[
e−(λt)α]

T(tα)xdt

=
∫ ∞

0

−1
λ

d
dt

[ ∫ ∞

0
e−λtrψα(r)dr

]
T(tα)xdt

=
∫ ∞

0

[ ∫ ∞

0

−1
λ

[
− λre−λtr]ψα(r)dr

]
T(tα)xdt

=
∫ ∞

0

∫ ∞

0
re−λtrψα(r)drT(tα)xdt

=
∫ ∞

0
e−λt

[ ∫ ∞

0
ψα(r)T

(
tα

rα

)
xdr
]

dt

=
∫ ∞

0
e−λt

[ ∫ ∞

0
φα(r)T(tαr)xdr

]
dt.

Thus,

Tα(t) =
1

2πi

∫
C

eλtλα−1R(λα, A )dλ

=
∫ ∞

0
eλtλα−1(λα −A )−1dt

=
∫ ∞

0
φα(r)T(tαr)dr.
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Moreover, the estimation of Tα(t) is

‖Tα(t)‖ =
wwww ∫ ∞

0
φα(r)T(tαr)dr

wwww
≤
( ∫ ∞

0
φα(r)dr

)
‖T(tαr)‖

≤ M,

where
∫ ∞

0
φα(r)dr = 1.

Before we characterize the mild solution for the system (1.1)-(1.3), finally, we treat the following system:

CDα
t
[
x(t)− G (t, x(t))

]
= A x(t) + Bv(t) +F (t, x(t)) + Σ(t, x(t))

dw(t)
dt

, t 6= tk, (2.7)

∆x(tk) = Ik(x(t−k )), k = 1, 2, · · · , n, (2.8)

x(0) + h(x) = ϕ(0), (2.9)

where CDα
t , B, v(t) and A are defined in (1.1)-(1.3) and F , Σ, G are appropriate functions.

From the Definition of 2.1 and 2.2, the general integral equation of the system (2.7)-(2.9) can be
expressed as

x(t) = ϕ(0)− G (0, ϕ)− h(x) + G (t, x(t)) +
n

∑
k=1
Ik(x(t−k )) +

1
Γ(α)

∫ t

0
(t− s)α−1A x(s)ds

+
1

Γ(α)

∫ t

0
(t− s)α−1Bv(s)ds +

1
Γ(α)

∫ t

0
(t− s)α−1F (s, x(s))ds

+
1

Γ(α)

∫ t

0
(t− s)α−1Σ(s, x(s))dw(s). (2.10)

Presently, we take after the thought utilized as a part of the paper [46] and apply the Laplace
transformation for (2.10), we get

u(λ) = λα−1(λα I −A )−1[ϕ(0)− G (0, ϕ)− h(x)] + λα(λα I −A )−1w(λ) + (λα I −A )−1v(λ)

+ (λα I −A )−1By(λ) + (λα I −A )−1z(λ) + λα−1(λα I −A )−1
n

∑
k=1
Ik(x(t−k )),

where

u(λ) =
∫ ∞

0
e−λsx(s)ds, v(λ) =

∫ ∞

0
e−λsF (s, x(s))ds, w(λ) =

∫ ∞

0
e−λsG (s, x(s))ds,

y(λ) =
∫ ∞

0
e−λsv(s)ds, z(λ) =

∫ ∞

0
e−λsΣ(s, x(s))dw(s).

At that point by the same calculations in [46] and the properties of the Laplace transform, we obtain the
mild solution of the system (2.7)-(2.9) as

x(t) =



Tα(t)[ϕ(0)− G (0, ϕ)− h(x)] + G (t, x(t)) +
∫ t

0
A Sα(t− s)G (s, x(s))ds

+
∫ t

0
Sα(t− s)Bv(s)ds +

∫ t

0
Sα(t− s)F (s, x(s)) ds

+
∫ t

0
Sα(t− s)Σ (s, x(s)) dw(s) + ∑

0<tk<t
Tα(t− tk)Ik(x(t−k )).

(2.11)

where Tα and Sα are same as defined in (2.5).
Next, we shall show that this mild solution satisfy the system (2.7)-(2.9). To prove this, first we prove

the following crucial lemma.
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Lemma 2.7. [32, Lemma 3.3] Assuming A is the infinitesimal generator of an analytic semigroup, given by
{T(t)}t≥0 and if 0 < α < 1, then

CDα
t [Tα(t)x0] = A [Tα(t)x0],

and

CDα
t

( ∫ t

0
Sα(t− s)

[
A G (s, x(s)) + Bv(s) +F (s, x(s)) + Σ(s, x(s))

dw(s)
ds

]
ds
)

= A
∫ t

0
Sα(t− s)

[
A G (s, x(s)) + Bv(s) +F (s, x(s)) + Σ(s, x(s))

dw(s)
ds

]
ds

+A G (t, x(t)) + Bv(t) +F (t, x(t)) + Σ(t, x(t))
dw(t)

dt
,

where Tα(t) and Sα(t) are same as defined in equation (2.5).

Proof. By the well known result from [32, Lemma 3.3], we have

CDα
t [Tα(t)x0] = A [Tα(t)x0].

Furthermore,

L

( ∫ t

0
Sα(t− s)

[
A G (s, x(s)) + Bv(s) +F (s, x(s)) + Σ(s, x(s))

dw(s)
ds

]
ds
)

= L (Sα(t))L
(

A G (t, x(t)) + Bv(t) +F (t, x(t)) + Σ(t, x(t))
dw(t)

dt

)
= R(λα, A )L

(
A G (t, x(t)) + Bv(t) +F (t, x(t)) + Σ(t, x(t))

dw(t)
dt

)
(2.12)

and

L

(
CDα

t

( ∫ t

0
Sα(t− s)

[
A G (s, x(s)) + Bv(s) +F (s, x(s)) + Σ(s, x(s))

dw(s)
ds

]
ds
))

= λα

[
R(λα, A )L

(
A G (t, x(t)) + Bv(t) +F (t, x(t)) + Σ(t, x(t))

dw(t)
dt

)]
− λα−1.0

= (λα I −A +A )R(λα, A )L

(
A G (t, x(t)) + Bv(t) +F (t, x(t)) + Σ(t, x(t))

dw(t)
dt

)
= (λα I −A )R(λα, A )L

(
A G (t, x(t)) + Bv(t) +F (t, x(t)) + Σ(t, x(t))

dw(t)
dt

)
+A R(λα, A )L

(
A G (t, x(t)) + Bv(t) +F (t, x(t)) + Σ(t, x(t))

dw(t)
dt

)
. (2.13)

Thus, it follows from (2.12) and (2.13) that

CDα
t

( ∫ t

0
Sα(t− s)

[
A G (s, x(s)) + Bv(s) +F (s, x(s)) + Σ(s, x(s))

dw(s)
ds

]
ds
)

= A
∫ t

0
Sα(t− s)

[
A G (s, x(s)) + Bv(s) +F (s, x(s)) + Σ(s, x(s))

dw(s)
ds

]
ds

+A G (t, x(t)) + Bv(t) +F (t, x(t)) + Σ(t, x(t))
dw(t)

dt
.

Now, it is time to show that the mild solution satisfy the model (2.7)-(2.9). From the equation (2.11),
we have

x(t)− G (t, x(t)) = Tα(t)[ϕ(0)− G (0, ϕ)− h(x)] +
∫ t

0
Sα(t− s)

[
A G (s, x(s)) + Bv(s)

+F (s, x(s)) + Σ(s, x(s))
dw(s)

ds

]
ds + ∑

0<tk<t
Tα(t− tk)Ik(x(t−k )).
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Taking Caputo derivative on both sides and with regard of above Lemma 2.7 , we have

CDα
t

(
x(t)− G (t, x(t))

)
= CDα

t

(
Tα(t)[ϕ(0)− G (0, ϕ)− h(x)]

)
+C Dα

t

( ∫ t

0
Sα(t− s)

[
A G (s, x(s))

+ Bv(s) +F (s, x(s)) + Σ(s, x(s))
dw(s)

ds

]
ds
)

+C Dα
t

(
∑

0<tk<t
Tα(t− tk)Ik(x(t−k ))

)
= A Tα(t)[ϕ(0)− G (0, ϕ)− h(x)] +A

( ∫ t

0
Sα(t− s)

[
A G (s, x(s)) + Bv(s)

+F (s, x(s)) + Σ(s, x(s))
dw(s)

ds

]
ds
)
+A G (t, x(t)) + Bv(t) +F (t, x(t))

+ Σ(t, x(t))
dw(t)

dt
+A

(
∑

0<tk<t
Tα(t− tk)Ik(x(t−k ))

)
= A

(
Tα(t)[ϕ(0)− G (0, ϕ)− h(x)] + G (t, x(t)) +

∫ t

0
Sα(t− s)

[
A G (s, x(s))

+ Bv(s) +F (s, x(s)) + Σ(s, x(s))
dw(s)

ds

]
ds + ∑

0<tk<t
Tα(t− tk)Ik(x(t−k ))

)
+ Bv(t) +F (t, x(t)) + Σ(t, x(t))

dw(t)
dt

= A x(t) + Bv(t) +F (t, x(t)) + Σ(t, x(t))
dw(t)

dt
.

That is
CDα

t
(

x(t)− G (t, x(t))
)
= A x(t) + Bv(t) +F (t, x(t)) + Σ(t, x(t))

dw(t)
dt

.

From the above discussion, we observe that our definition of a mild solution satisfies the given system
(2.7)-(2.9).

In accordance with the above discussion, we determine the mild solution of the model (1.1)-(1.3).

Definition 2.8. [44, Definition 2.1] A stochastic process u : (−∞, T] → H is called a mild solution of the system
(1.1)-(1.3) if

(i) u(t) is measurable and Ft-adapted for each t ∈ I ;

(ii) ∆u(tk) = u(t+k )− u(t−k ) = Ik(x(t−k )), k = 1, 2, . . . n;

(iii) u(0) + h(u) = ϕ;

(iv) u(t) is continuous on I , the function A Sα(t − s)G (s, u$(s,us)) is integrable and the following stochastic
integral equation is satisfied,

u(t) =



Tα(t)[ϕ(0)− h(u)− G (0, ϕ)] + G (t, u$(t,ut)) +
∫ t

0
A Sα(t− s)G (s, u$(s,us))ds

+
∫ t

0
Sα(t− s)Bvµds +

∫ t

0
Sα(t− s)F

(
s, u$(s,us),

∫ s

0
e1(s, τ, u$(τ,uτ))dτ

)
ds

+
∫ t

0
Sα(t− s)Σ

(
s, u$(s,us),

∫ s

0
e2(s, τ, u$(τ,uτ))dτ

)
dw(s)

+ ∑
0<tk<t

Tα(t− tk)Ik(u(t−k )).

(2.14)

(v) u0(·) = ϕ ∈ B on (−∞, 0] satisfying ‖ϕ‖2
B < ∞.
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3 The main results

In this segment, we show and demonstrate the controllability of solutions for the model (1.1)-(1.3)
under Schauder [30] fixed point theorem together with operator semigroups and fractional calculus.

Presently, we itemizing the subsequent suppositions:

(H0) Sα(t), t > 0 is compact.

(H1) The function G : I × B → H is continuous and there exist some constants β ∈ (0, 1) andMG > 0
such that G isHβ-valued and it satisfies the following conditions.

E‖A βG (t, x)‖2 ≤MG (1 + ‖x‖2
B), t ∈ I , x ∈ B.

(H2) The function F : I × B × H → H is continuous and there exist two continuous functions
F1, F2 : I → (0, ∞) such that

E‖F (t, x, φ)‖2
H ≤ F1(t)‖x‖2

B +F2(t)E‖φ‖2
H, (t, x, φ) ∈ I ×B ×H,

and F ∗1 = sup
s∈[0,t]

F1(s), F ∗2 = sup
s∈[0,t]

F2(s).

(H3) The function ei : D ×B → H, where D = {(t, s) ∈ I ×I ; 0 ≤ s ≤ t ≤ T} satisfies:

(i) For each (t, s) ∈ D, the function ei(t, s, .) : B → H is continuous, and for each φ ∈ B, the
function ei(·, ·, φ) : D → H is strongly measurable.

(ii) There exist constants M̃0, M̃1 > 0 such that for all t, s ∈ I and x ∈ B,

E‖ei(t, s, x)‖2 ≤ M̃j(1 + ‖x‖2
B), for i = 1, 2 and j = 0, 1.

(H4) The function Σ: I × B × H → L(K,H) is continuous and there exist two continuous functions
Σ1, Σ2 : I → (0, ∞) such that

E‖Σ(t, x, φ)‖2
H ≤ Σ1(t)‖x‖2

B + Σ2(t)E‖φ‖2
H, (t, x, φ) ∈ I ×B ×H,

and Σ∗1 = sup
s∈[0,t]

Σ1(s), Σ∗2 = sup
s∈[0,t]

Σ2(s).

(H5) The function Ik : B → H, k = 1, 2, . . . , n are continuous and there exist non-decreasing continuous
functionsMIk : R+ → R+ such that for each x ∈ B,

E‖Ik(x)‖2 ≤MIk (E‖x‖
2
B), lim inf

r→∞

MIk (r)
r

= γk < ∞.

(H6) The function h : B → H is continuous and there exists a constantMh > 0 such that for each x ∈ B,
we sustain

E‖h(x)‖2 ≤Mh‖x‖2
B .

Presently, we are in a position to derive the controllability results for the model (1.1)-(1.3).

Theorem 3.1. Assume that the assumptions (H0)-(H6) hold. Then the system (1.1)-(1.3) has a mild solution on
I provided that

32

(
1 +

10
µ2

(
αMMB
Γ(1 + α)

)4 T4α−2

α2

)[
M2

(
Mh + H2n

n

∑
k=1

γk

)
+MG

(
N0

2 +

(C1−βΓ(1 + β)Tαβ

βΓ(1 + αβ)

)2)

+

(
MTα

Γ(1 + α)

)2 [
F ∗1 + tr(Q)Σ∗1 +

(
F ∗2 M̃0 + Σ∗2tr(Q)M̃1

)
T
]]

E ∗1
2 < 1 (3.1)

where N0 = ‖A −β‖.
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Proof. We will transform the model (1.1)-(1.3) into a fixed-point problem. Recognize the operator Υ :
BT → BT specified by

(Υu)(t) =



ϕ(t), t ∈ (−∞, 0],

Tα(t)[ϕ(0)− h(u)− G (0, ϕ)] + G (t, u$(t,ut)) +
∫ t

0
A Sα(t− s)G (s, u$(s,us))ds

+
∫ t

0
Sα(t− s)Bvµ(s)ds +

∫ t

0
Sα(t− s)F

(
s, u$(s,us),

∫ s

0
e1(s, τ, u$(τ,uτ))dτ

)
ds

+
∫ t

0
Sα(t− s)Σ

(
s, u$(s,us),

∫ s

0
e2(s, τ, u$(τ,uτ))dτ

)
dw(s)

+ ∑
0<tk<t

Tα(t− tk)Ik(u(t−k )), t ∈ I .

In perspective of Lemma 2.1 and for any u ∈ H and β ∈ (0, 1), we have

‖A Sα(t− s)G (s, u$(s,us))‖
2
H

= ‖A 1−βSα(t− s)A βG (s, u$(s,us))‖
2
H

≤
wwww[α

∫ ∞

0
rφα(r)(t− s)α−1A 1−βT((t− s)αr)dr

]
A βG (s, u$(s,us))

wwww2

H

≤
(

αC1−β(t− s)αβ−1
)2[ ∫ ∞

0
rβφα(r)dr

]2

‖A βG (s, u$(s,us))‖
2
H. (3.2)

On the other hand, from
∫ ∞

0
r−qψα(r)dr = Γ(1+ q

α )
Γ(1+q) , for all q ∈ [0, 1] (see [46, Lemma 3.2]), we have∫ ∞

0
rβφα(r)dr =

∫ ∞

0

1
rβα

ψα(r)dr =
Γ(1 + β)

Γ(1 + αβ)
. (3.3)

Then, by (3.2) and (3.3) , it is easy to see that

‖A Sα(t− s)G (s, u$(s,us))‖
2
H ≤

(
αC1−βΓ(1 + β)

Γ(1 + αβ)(t− s)1−αβ

)2

‖A βG (s, u$(s,us))‖
2
H. (3.4)

It is obvious that the function s→ A Sα(t− s)G (s, u$(s,us)) is integrable on [0, t) for every t > 0.
It is evident that the fixed points of the operator Υ are mild solutions of the model (1.1)-(1.3). We

express the function x(·) : (−∞, T]→ H by

x(t) =

{
ϕ(t), t ≤ 0;

Tα(t)ϕ(0), t ∈ I ,

then x0 = ϕ. For every function z ∈ C(I ,R+) with z(0) = 0, we allocate as z is characterized by

z(t) =

{
0, t ≤ 0;

z(t), t ∈ I .

If u(·) fulfills (2.14), we are able to split it as u(t) = z(t) + x(t), t ∈ I , which suggests ut = zt + xt, for
each t ∈ I and also the function z(·) fulfills

z(t) =



Tα(t)[−h(zt + xt)− G (0, ϕ)] + G (t, z$(t,zt+xt) + x$(t,zt+xt))

+
∫ t

0
A Sα(t− s)G

(
s, z$(s,zs+xs) + x$(s,zs+xs)

)
ds +

∫ t

0
Sα(t− s)Bvµ(s)ds

+
∫ t

0
Sα(t− s)

(×)F
(

s, z$(s,zs+xs) + x$(s,zs+xs),
∫ s

0
e1(s, τ, z$(τ,zτ+xτ) + x$(τ,zτ+xτ))dτ

)
ds

+
∫ t

0
Sα(t− s)

(×)Σ
(

s, z$(s,zs+xs) + x$(s,zs+xs),
∫ s

0
e2(s, τ, z$(τ,zτ+xτ) + x$(τ,zτ+xτ))dτ

)
dw(s)

+ ∑
0<tk<t

Tα(t− tk)Ik(z(t−k ) + x(t−k )), t ∈ I .
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Let B0
T = {z ∈ BT : z0 = 0 ∈ B}. Let ‖ · ‖B0

T
be the seminorm in B0

T described by

‖z‖B0
T
= sup

s∈I

(
E‖z(s)‖2

) 1
2
+ ‖z0‖B = sup

s∈I

(
E‖z(s)‖2

) 1
2 , z ∈ B0

T ,

as a result (B0
T , ‖ · ‖B0

T
) is a Banach space. Set Br = {z ∈ B0

T : ‖z‖2 ≤ r} for some r ≥ 0; then for each

r, Br ⊂ B0
T is clearly a bounded closed convex set. For z ∈ Br, from Lemma 2.2 and along with the above

discussion, we get

E‖z$(t,zt+xt) + x$(t,zt+xt)‖
2
B

≤ 2
(

E‖z$(t,zt+xt)‖
2
B + E‖x$(t,zt+xt)‖

2
B

)
≤ 4

(
E ∗1

2 sup
0≤s≤max(0,t)
t∈R($−)∪I

E‖z(s)‖2 + (E ∗2 + Jϕ)2E‖z0‖2
B + E ∗1

2 sup
0≤s≤max(0,t)
t∈R($−)∪I

E‖x(s)‖2

+ (E ∗2 + Jϕ)2E‖x0‖2
B

)
≤ 4

(
E ∗1

2r + (E ∗2 + Jϕ)2
E‖x0‖2

B + E ∗1
2
E‖Tα(t)ϕ(0)‖2

)
≤ 4

(
E ∗1

2r + (E ∗2 + Jϕ)2
E‖x0‖2

B + E ∗1
2
wwww ∫ ∞

0
φα(r)T(tαr)dr

wwww2

E‖ϕ(0)‖2
H

)
≤ 4E ∗1

2
(

r +M2E‖ϕ(0)‖2
H

)
+ 4(E ∗2 + Jϕ)2E‖ϕ‖2

B

≤ 4E ∗1
2r + cn = r∗, (3.5)

where cn = 4
[
E ∗1

2M2E‖ϕ(0)‖2
H + (E ∗2 + Jϕ)2E‖ϕ‖2

B

]
and

E‖zt + xt‖2
B ≤ 2(E‖zt‖2

B + E‖xt‖2
B)

≤ 4

(
E ∗2

2
E‖z0‖2

B + E ∗1
2 sup

s∈I
E‖z(s)‖2 + E ∗2

2
E‖x0‖2

B + E ∗1
2 sup

s∈I
E‖x(s)‖2

)
≤ 4

(
E ∗1

2r + E ∗2
2
E‖x0‖2

B + E ∗1
2
E‖Tα(t)ϕ(0)‖2

)
≤ 4

(
E ∗1

2r + E ∗2
2
E‖x0‖2

B + E ∗1
2
wwww ∫ ∞

0
φα(r)T(tαr)dr

wwww2

E‖ϕ(0)‖2
H

)
≤ 4

(
E ∗1

2(r +M2E‖ϕ(0)‖2
H) + E ∗2

2
E‖ϕ‖2

B

)
≤ 4E ∗1

2r + c̃n = r̃, (3.6)

where c̃n = 4
[
E ∗1

2M2E‖ϕ(0)‖2
H + E ∗2

2E‖ϕ‖2
B

]
. We delimit the operator Υ : B0

T → B0
T by

(Υz)(t) = Tα(t)[−h(zt + xt)− G (0, ϕ)] + G (t, z$(t,zt+xt) + x$(t,zt+xt))

+
∫ t

0
A Sα(t− s)G

(
s, z$(s,zs+xs) + x$(s,zs+xs)

)
ds +

∫ t

0
Sα(t− s)Bvµ(s)ds

+
∫ t

0
Sα(t− s)

(×)F
(

s, z$(s,zs+xs) + x$(s,zs+xs),
∫ s

0
e1(s, τ, z$(τ,zτ+xτ) + x$(τ,zτ+xτ))dτ

)
ds

+
∫ t

0
Sα(t− s)

(×)Σ
(

s, z$(s,zs+xs) + x$(s,zs+xs),
∫ s

0
e2(s, τ, z$(τ,zτ+xτ) + x$(τ,zτ+xτ))dτ

)
dw(s)

+ ∑
0<tk<t

Tα(t− tk)Ik(z(t−k ) + x(t−k )), t ∈ I .
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It is vindicated that the operator Υ has a fixed point if and only if Υ has a fixed point. Thus, let us
demonstrate that Υ has a fixed point.

The facts of the theorem is lengthy and technical. Therefore it is practical to split it into several steps.
Step 1: Υ(Br) ⊂ Br for some r > 0.

We assert that there exists a positive integer r in ways that Υ(Br) ⊂ Br. If it is not true, then for each
positive number r, we can find a function zr(·) ∈ Br, but Υ(zr) /∈ Br, i.e., E‖Υ(zr)(t)‖2 > r for some t ∈ I ,
we sustain

E‖vµ(s)‖2

≤ 10E

wwwwB∗S∗α (T − t)(µI + ΓT
0 )
−1
[

EũT +
∫ T

0
φ̃(s)dw(s)− Tα(T)[ϕ(0)− h(zT + xT)]

]wwww2

+ 10E

wwwwB∗S∗α (T − t)(µI + ΓT
0 )
−1Tα(T)G (0, ϕ)

wwww2

+ 10E

wwwwB∗S∗α (T − t)(µI + ΓT
0 )
−1G (T, z$(T,zT+xT)

+ x$(T,zT+xT)
)

wwww2

+ 10E

wwwwB∗S∗α (T − t)
∫ T

0
(µI + ΓT

s )
−1A Sα(T − s)G

(
s, z$(s,zs+xs) + x$(s,zs+xs)

)
ds
wwww2

+ 10E

wwwwB∗S∗α (T − t)
∫ T

0
(µI + ΓT

s )
−1Sα(T − s)

(×)F
(

s, z$(s,zs+xs) + x$(s,zs+xs),
∫ s

0
e1(s, τ, z$(τ,zτ+xτ) + x$(τ,zτ+xτ))dτ

)
ds
wwww2

+ 10E

wwwwB∗S∗α (T − t)
∫ T

0
(µI + ΓT

s )
−1Sα(T − s)

(×)Σ
(

s, z$(s,zs+xs) + x$(s,zs+xs),
∫ s

0
e2(s, τ, z$(τ,zτ+xτ) + x$(τ,zτ+xτ))dτ

)
dw(s)

wwww2

+ 10E

wwwwB∗S∗α (T − t)(µI + ΓT
0 )
−1 ∑

0<tk<t
Tα(T − tk)Ik(z(t−k ) + x(t−k ))

wwww2

=
7

∑
i=1

Ji. (3.7)

By using (3.4), (3.5), (3.6),(H1)-(H6) and Holder’s inequality, we receive

J1 = 10E

wwwwB∗S∗α (T − t)(µI + ΓT
0 )
−1
[

EũT +
∫ T

0
φ̃(s)dw(s)− Tα(T)[ϕ(0)− h(zT + xT)]

]wwww2

≤ 10M2
B

wwwwα
∫ ∞

0
rφα(r)(T − t)α−1T((T − t)αr)dr

wwww2 1
µ2

[
E‖ũT‖2 +

∫ T

0
E‖φ̃(s)‖2ds

+

wwww ∫ ∞

0
φα(r)T(Tαr)dr

wwww2[
E‖ϕ(0)‖2 + E‖h(zT + xT)‖2]]

≤ 10M2
B

(
αMTα−1

Γ(1 + α)

)2 1
µ2

[
E‖ũT‖2 +

∫ T

0
E‖φ̃(s)‖2ds +M2[E‖ϕ(0)‖2 + E‖h(zT + xT)‖2]]

≤ 10
µ2

(
αMMBTα−1

Γ(1 + α)

)2

(×)
[

E‖ũT‖2 +
∫ T

0
E‖φ̃(s)‖2ds +M2[E‖ϕ(0)‖2 +Mh r̃

]]
,

where‖B∗‖ =MB.

J2 = 10E

wwwwB∗S∗α (T − t)(µI + ΓT
0 )
−1Tα(T)G (0, ϕ)

wwww2

≤ 10M2
B

(
αMTα−1

Γ(1 + α)

)2 1
µ2 E‖G (0, ϕ)‖2
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≤ 10
(

αMMBTα−1

Γ(1 + α)

)2 1
µ2 ‖A

−β‖2E‖A βG (0, ϕ)‖2

≤ 10
µ2

(
αMMBTα−1

Γ(1 + α)

)2

(×)M2N 2
0MG (1 + ‖ϕ‖2

B).

J3 = 10E

wwwwB∗S∗α (T − t)(µI + ΓT
0 )
−1G (T, z$(T,zT+xT)

+ x$(T,zT+xT)
)

wwww2

≤ 10
µ2

(
αMMBTα−1

Γ(1 + α)

)2

E
wwG (T, z$(T,zT+xT)

+ x$(T,zT+xT)
)
ww2

≤ 10
µ2

(
αMMBTα−1

Γ(1 + α)

)2

‖A−β‖2E
wwAβG (T, z$(T,zT+xT)

+ x$(T,zT+xT)
)
ww2

≤ 10
µ2

(
αMMBTα−1

Γ(1 + α)

)2

(×)N 2
0MG (1 + r∗).

J4 = 10E

wwwwB∗S∗α (T − t)
∫ T

0
(µI + ΓT

s )
−1A Sα(T − s)G

(
s, z$(s,zs+xs) + x$(s,zs+xs)

)
ds
wwww2

≤ 10
µ2

(
αMMBTα−1

Γ(1 + α)

)2wwww ∫ T

0
A 1−βSα(T − s)ds

wwww2

E‖A βG
(

s, z$(s,zs+xs) + x$(s,zs+xs)

)
‖2

≤ 10
µ2

(
αMMBTα−1

Γ(1 + α)

)2(αC1−βΓ(1 + β)

Γ(1 + αβ)

)2 ∫ T

0
(T − s)αβ−1ds

∫ T

0
(T − s)αβ−1MG (1 + r∗)ds

≤ 10
µ2

(
αMMBTα−1

Γ(1 + α)

)2

(×)
(C1−βΓ(1 + β)

Γ(1 + αβ)

Tαβ

β

)2

MG (1 + r∗).

J5 = 10E

wwwwB∗S∗α (T − t)
∫ T

0
(µI + ΓT

s )
−1Sα(T − s)

(×)F
(

s, z$(s,zs+xs) + x$(s,zs+xs),
∫ s

0
e1(s, τ, z$(τ,zτ+xτ) + x$(τ,zτ+xτ))dτ

)
ds
wwww2

≤ 10
µ2

(
αMMBTα−1

Γ(1 + α)

)2 Tα

α

(
αM

Γ(1 + α)

)2 ∫ T

0
(T − s)α−1

[
F1(s)‖z$(s,zs+xs) + x$(s,zs+xs)‖

2
B

+F2(s)E
wwww ∫ s

0
e1(s, τ, z$(τ,zτ+xτ) + x$(τ,zτ+xτ))dτ

wwww2

H

]
ds

≤ 10
µ2

(
αMMBTα−1

Γ(1 + α)

)2

(×)
(
MTα

Γ(1 + α)

)2[
F ∗1 r∗ +F ∗2 M̃0(1 + r∗)T

]
.

J6 = 10E

wwwwB∗S∗α (T − t)
∫ T

0
(µI + ΓT

s )
−1Sα(T − s)

(×)Σ
(

s, z$(s,zs+xs) + x$(s,zs+xs),
∫ s

0
e2(s, τ, z$(τ,zτ+xτ) + x$(τ,zτ+xτ))dτ

)
dw(s)

wwww2

≤ 10
µ2

(
αMMBTα−1

Γ(1 + α)

)2 Tα

α

(
αM

Γ(1 + α)

)2 ∫ T

0
(T − s)α−1tr(Q)

[
Σ1(s)‖z$(s,zs+xs) + x$(s,zs+xs)‖

2
B

+ Σ2(s)E
wwww ∫ s

0
e2(s, τ, z$(τ,zτ+xτ) + x$(τ,zτ+xτ))dτ

wwww2

H

]
ds

≤ 10
µ2

(
αMMBTα−1

Γ(1 + α)

)2

(×)
(
MTα

Γ(1 + α)

)2

tr(Q)

[
Σ∗1r∗ + Σ∗2M̃1(1 + r∗)T

]
.

J7 = 10E
wwB∗S∗α (T − t)(µI + ΓT

0 )
−1 ∑

0<tk<t
Tα(T − tk)Ik(z(t−k ) + x(t−k ))

ww2
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≤ 10
µ2

(
αMMBTα−1

Γ(1 + α)

)2wwTα(T − tk)
ww2n

n

∑
k=1

E
wwIk(z(t−k ) + x(t−k ))

ww2

≤ 10
µ2

(
αMMBTα−1

Γ(1 + α)

)2

M2n
n

∑
k=1
MIk H2‖zt + xt‖2

≤ 10
µ2

(
αMMBTα−1

Γ(1 + α)

)2

(×)M2H2n
n

∑
k=1
MIk r̃.

By combining the estimations (J1)− (J7) together with (3.7), we sustain

E
wwvµ(s)

ww2 ≤ 10
µ2

(
αMMBTα−1

Γ(1 + α)

)2

(×)
[

E‖ũT‖2 +
∫ T

0
E‖φ̃(s)‖2ds +M2[E‖ϕ(0)‖2 +Mh r̃

]]
+

10
µ2

(
αMMBTα−1

Γ(1 + α)

)2

(×)M2N 2
0MG (1 + ‖ϕ‖2

B)

+
10
µ2

(
αMMBTα−1

Γ(1 + α)

)2

(×)N 2
0MG (1 + r∗)

+
10
µ2

(
αMMBTα−1

Γ(1 + α)

)2

(×)
(C1−βΓ(1 + β)

Γ(1 + αβ)

Tαβ

β

)2

MG (1 + r∗)

+
10
µ2

(
αMMBTα−1

Γ(1 + α)

)2

(×)
(
MTα

Γ(1 + α)

)2[
F ∗1 r∗ +F ∗2 M̃0(1 + r∗)T

]
+

10
µ2

(
αMMBTα−1

Γ(1 + α)

)2

(×)
(
MTα

Γ(1 + α)

)2

tr(Q)

[
Σ∗1r∗ + Σ∗2M̃1(1 + r∗)T

]
+

10
µ2

(
αMMBTα−1

Γ(1 + α)

)2

(×)M2H2n
n

∑
k=1
MIk r̃.

r ≤ E‖Υ(zr)(t)‖2

≤ 8E‖Tα(t)[−h(zr
t + xt)− G (0, ϕ)]‖2 + 8E‖G (t, zr

$(t,zr
t+xt)

+ x$(t,zr
t+xt))‖

2

+ 8E

wwwww
∫ t

0
A Sα(t− s)G

(
s, zr

$(s,zr
s+xs)

+ x$(s,zr
s+xs)

)
ds

wwwww
2

+ 8E

wwwww
∫ t

0
Sα(t− s)Bvµ(s)ds

wwwww
2

+ 8E

wwwww
∫ t

0
Sα(t− s)

(×)F
(

s, zr
$(s,zr

s+xs)
+ x$(s,zr

s+xs),
∫ s

0
e1(s, τ, zr

$(τ,zr
τ+xτ)

+ x$(τ,zr
τ+xτ))dτ

)
ds

wwwww
2

+ 8E

wwwww
∫ t

0
Sα(t− s)

(×)Σ
(

s, zr
$(s,zr

s+xs)
+ x$(s,zr

s+xs),
∫ s

0
e2(s, τ, zr

$(τ,zr
τ+xτ)

+ x$(τ,zr
τ+xτ))dτ

)
dw(s)

wwwww
2

+ 8E‖ ∑
0<tk<t

Tα(t− tk)Ik(zr(t−k ) + x(t−k ))‖
2

=
14

∑
i=8

Ji. (3.8)

J8 = 8E‖Tα(t)[−h(zr
t + xt)− G (0, ϕ)]‖2

≤ 8‖Tα(t)‖2
[
E‖h(zr

t + xt)‖2
B + E‖G (0, ϕ)‖2

]
≤ 8

wwww ∫ ∞

0
φα(r)T(tαr)dr

wwww2 [
E‖h(zr

t + xt)‖2
B + E‖G (0, ϕ)‖2

]
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≤ 8M2
[
Mh‖zr

t + xt‖2
B + ‖A −β‖2

E‖A βG (0, ϕ)‖2]
≤ 8M2

[
Mh

(
4E ∗1

2r + c̃n

)
+N 2

0MG (1 + ‖ϕ‖2
B)
]

≤ 32M2MhE
∗

1
2r + C1,

where N0 = ‖A−β‖ and C1 = 8M2Mh c̃n + 8M2N 2
0MG (1 + ‖ϕ‖2

B).

J9 = 8E‖G (t, zr
$(t,zr

t+xt)
+ x$(t,zr

t+xt))‖
2

≤ 8‖A −β‖2
E‖A βG (t, zr

$(t,zr
t+xt)

+ x$(t,zr
t+xt))‖

2

≤ 8‖A −β‖2MG

(
1 + ‖zr

$(t,zr
t+xt)

+ x$(t,zr
t+xt)‖

2
B

)
≤ 32N 2

0MG E ∗1
2r + C2,

where C2 = 8N 2
0MG (1 + cn).

J10 = 8E

wwwww
∫ t

0
A Sα(t− s)G

(
s, zr

$(s,zr
s+xs)

+ x$(s,zr
s+xs)

)
ds

wwwww
2

≤ 8
wwww ∫ t

0

{
α
∫ ∞

0
rφα(r)(t− s)α−1A 1−βT((t− s)αr)dr

}
ds
wwww2

(×)E
wwwwA βG

(
s, zr

$(s,zr
s+xs)

+ x$(s,zr
s+xs)

)wwww2

≤ 8MG

(
αC1−βΓ(1 + β)

Γ(1 + αβ)

)2 ∫ t

0
(t− s)αβ−1ds

∫ t

0
(t− s)αβ−1

(
1 + ‖zr

$(s,zr
s+xs)

+ x$(s,zr
s+xs)‖

2
B

)
ds

≤ 8MG

(C1−βΓ(1 + β)

Γ(1 + αβ)

Tαβ

β

)2 (
1 + 4E ∗1

2r + cn

)
≤ 32MG E ∗1

2r
(C1−βΓ(1 + β)

Γ(1 + αβ)

Tαβ

β

)2

+ C3,

where C3 = 8MG

( C1−βΓ(1+β)

Γ(1+αβ)
Tαβ

β

)2
(1 + cn).

J11 = 8E

wwww ∫ t

0
Sα(t− s)Bvµ(s)ds

wwww2

≤ 8
wwwwα

∫ ∞

0
rφα(r)(t− s)α−1T((t− s)αr)dr

wwww2

E

wwww ∫ t

0
Bvµ(s)ds

wwww2

≤ 8
(

αM
Γ(1 + α)

)2

M2
B

Tα

α

∫ t

0
(t− s)α−1E‖vµ(s)‖2ds

≤ 8
(

αMMB
Γ(1 + α)

)2 T2α

α2 (×) 10
µ2

(
αMMBTα−1

Γ(1 + α)

)2

Mv,

where

Mv =E‖ũT‖2 +
∫ T

0
E‖φ̃(s)‖2ds +M2[E‖ϕ(0)‖2 +Mh r̃

]
+M2N 2

0MG (1 + ‖ϕ‖2
B) +N 2

0MG (1 + r∗)

+

(C1−βΓ(1 + β)

Γ(1 + αβ)

Tαβ

β

)2

MG (1 + r∗) +
(
MTα

Γ(1 + α)

)2[
F ∗1 r∗ +F ∗2 M̃0(1 + r∗)T

]
+

(
MTα

Γ(1 + α)

)2

tr(Q)

[
Σ∗1r∗ + Σ∗2M̃1(1 + r∗)T

]
+M2H2n

n

∑
k=1
MIk r̃.



S. Selvarasu et al. / Approximate controllability ... 589

J12 = 8E

wwww ∫ t

0
Sα(t− s)

(×)F
(

s, zr
$(s,zr

s+xs)
+ x$(s,zr

s+xs),
∫ s

0
e1(s, τ, zr

$(τ,zr
τ+xτ)

+ x$(τ,zr
τ+xτ))dτ

)
ds
wwww2

≤ 8
wwwwα

∫ ∞

0
rφα(r)(t− s)α−1T((t− s)αr)dr

wwww2

(×)E
wwww ∫ t

0
F

(
s, zr

$(s,zr
s+xs)

+ x$(s,zr
s+xs),

∫ s

0
e1(s, τ, zr

$(τ,zr
τ+xτ)

+ x$(τ,zr
τ+xτ))dτ

)
ds
wwww2

≤ 8
(

αM
Γ(1 + α)

)
Tα

α

∫ t

0
(t− s)α−1

[
F1(s)‖zr

$(s,zr
s+xs)

+ x$(s,zr
s+xs)‖

2
B

+F2(s)
∫ s

0
E‖e1(s, τ, zr

$(τ,zr
τ+xτ)

+ x$(τ,zr
τ+xτ))‖

2
Hdτ

]
ds

≤ 32
(
MTα

Γ(1 + α)

)2
E ∗1

2r(F ∗1 +F ∗2 M̃0T) + C4,

where C4 = 8
(
MTα

Γ(1+α)

)2
(

F ∗1 cn +F ∗2 M̃0(1 + cn)T
)

.

J13 = 8E

wwww ∫ t

0
Sα(t− s)

(×)Σ
(

s, zr
$(s,zr

s+xs)
+ x$(s,zr

s+xs),
∫ s

0
e2(s, τ, zr

$(τ,zr
τ+xτ)

+ x$(τ,zr
τ+xτ))dτ

)
dw(s)

wwww2

≤ 8
wwwwα

∫ ∞

0
rφα(r)(t− s)α−1T((t− s)αr)dr

wwww2

tr(Q)

(×)E
wwww ∫ t

0
Σ
(

s, zr
$(s,zr

s+xs)
+ x$(s,zr

s+xs),
∫ s

0
e2(s, τ, zr

$(τ,zr
τ+xτ)

+ x$(τ,zr
τ+xτ))dτ

)
ds
wwww2

≤ 8
(

αM
Γ(1 + α)

)
Tα

α

Tα

α
tr(Q)

[
Σ∗1(4E ∗1

2 + cn) + Σ∗2M̃1(1 + 4E ∗1
2 + cn)T

]
≤ 32

(
MTα

Γ(1 + α)

)2
tr(Q)E ∗1

2r(Σ∗1 + Σ∗2M̃1T) + C5,

where C5 = 8
(
MTα

Γ(1+α)

)2
tr(Q)

(
Σ∗1cn + Σ∗2M̃1(1 + cn)T

)
.

J14 = 8n
n

∑
k=1
‖Tα(t− tk)‖2

E‖Ik(zr(t−k ) + x(t−k ))‖
2

≤ 8n
n

∑
k=1

wwww ∫ ∞

0
T((t− tk)

αr)φα(r)dr
wwww2

E‖Ik(zr(t−k ) + x(t−k ))‖
2

≤ 8M2n
n

∑
k=1
MIk E‖(zr(t−k ) + x(t−k ))‖

2

≤ 8M2n
n

∑
k=1
MIk

(
sup
t∈I

E‖zr(t) + x(t)‖2

)

≤ 8M2H2n
n

∑
k=1
MIk E‖zr

t + xt‖2
B

≤ 8M2H2n
n

∑
k=1
MIk

[
4E ∗1

2r + c̃n

]
≤ 32M2H2E ∗1

2n
n

∑
k=1
MIk r + C6,

where C6 = 8M2H2 c̃nn
n
∑

k=1
MIk .
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By combining the estimations (J8)− (J14) together with (3.8), we sustain

r ≤ E‖Υ(zr)(t)‖2

≤ 32M2MhE
∗

1
2r + C1 + 32N 2

0MG E ∗1
2r + C2 + 32MG E ∗1

2r
(C1−βΓ(1 + β)

Γ(1 + αβ)

Tαβ

β

)2

+ C3

+ 8
(

αMMB
Γ(1 + α)

)2 T2α

α2 (×) 10
µ2

(
αMMBTα−1

Γ(1 + α)

)2

Mv + 32
(
MTα

Γ(1 + α)

)2
E ∗1

2r(F ∗1 +F ∗2 M̃0T)

+ C4 + 32
(
MTα

Γ(1 + α)

)2
tr(Q)E ∗1

2r(Σ∗1 + Σ∗2M̃1T) + C5 + 32M2H2E ∗1
2n

n

∑
k=1
MIk r + C6,

where C1 − C6 are independent of r. Dividing both sides by r and taking the limit as r → ∞, we sustain

32

(
1 +

10
µ2

(
αMMB
Γ(1 + α)

)4 T4α−2

α2

)[
M2

(
Mh + H2n

n

∑
k=1

γk

)
+MG

(
N0

2 +

(C1−βΓ(1 + β)Tαβ

βΓ(1 + αβ)

)2)

+

(
MTα

Γ(1 + α)

)2 [
F ∗1 + tr(Q)Σ∗1 +

(
F ∗2 M̃0 + Σ∗2tr(Q)M̃1

)
T
]]

E ∗1
2 ≥ 1

which is a contradiction to (3.1). For this reason for some positive number r in a way that Υ(Br) ⊂ Br.
Step 2: Now we prove that for each µ > 0, the operator Υ maps Br into a relatively compact subset of Br.
First we prove that the set V(t) = {(Υz)(t) : z ∈ Br} is relatively compact in H for every t ∈ I . The case
t = 0 is obvious. For 0 < ε < t ≤ T, define (Υεz)(t) = Sα(ε)Q(t− ε) , where

Q(t− ε) = Tα(t)[−h(zt + xt)− G (0, ϕ)] + G (t, z$(t,zt+xt) + x$(t,zt+xt))

+
∫ t−ε

0
A Sα(t− ε− s)G (s, z$(s,zs+xs) + x$(s,zs+xs))ds +

∫ t−ε

0
Sα(t− ε− s)Bvµ(s)ds

+
∫ t−ε

0
Sα(t− ε− s)F

(
s, z$(s,zs+xs) + x$(s,zs+xs), e1(s, τ, z$(τ,zτ+xτ) + x$(τ,zτ+xτ))

)
ds

+
∫ t−ε

0
Sα(t− ε− s)Σ

(
s, z$(s,zs+xs) + x$(s,zs+xs), e2(s, τ, z$(τ,zτ+xτ) + x$(τ,zτ+xτ))

)
dw(s)

+ ∑
0<tk<t

Tα(t− tk)Ik(z(t−k ) + x(t−k )).

Since Sα(t) is compact and Q(t− ε) is bounded on Br, the set Vε(t) = {(Υ
εz)(t) : z(·) ∈ Br} is relatively

compact inH. Also for every z ∈ Br, we have

E‖(Υz)(t)− (Υεz)(t)‖2
H

≤ 4E

wwww ∫ t

t−ε
A Sα(t− s)G (s, z$(s,zs+xs) + x$(s,zs+xs))ds

wwww2

+ 4E

wwww ∫ t

t−ε
Sα(t− s)Bvµ(s)ds

wwww2

+ 4E

wwww ∫ t

t−ε
Sα(t− s)

(×)F
(

s, z$(s,zs+xs) + x$(s,zs+xs),
∫ s

0
e1(s, τ, z$(τ,zτ+xτ) + x$(τ,zτ+xτ))dτ

)
ds
wwww2

+ 4E

wwww ∫ t

t−ε
Sα(t− s)

(×)Σ
(

s, z$(s,zs+xs) + x$(s,zs+xs),
∫ s

0
e2(s, τ, z$(τ,zτ+xτ) + x$(τ,zτ+xτ))dτ

)
dw(s)

wwww2

≤ 4
(

αC1−βΓ(1 + β)

Γ(1 + αβ)

)2
εαβ

αβ

∫ t

t−ε
(t− s)αβ−1MG (1 + r∗)ds + 4

(
αMMB
Γ(1 + α)

)2
εα

α

(×)
∫ t

t−ε
(t− s)α−1Mvds + 4

(
αM

Γ(1 + α)

)2
εα

α

∫ t

t−ε
(t− s)α−1[F1r∗ +F ∗2 (1 + M̃0)T

]
ds
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+ 4
(

αM
Γ(1 + α)

)2
εα

α
tr(Q)

∫ t

t−ε
(t− s)α−1[Σ1r∗ + Σ∗2(1 + M̃1)T

]
ds

→ 0, as ε→ 0+.

This implies that there are relatively compact sets arbitrarily close to the set V(t), t > 0. As a result,
V(t) = {(Υz)(t) : z ∈ Br} is also relatively compact inH.
Step 3: Next we shall show that V(t) = {(Υz)(t) : z ∈ Br} is equicontinuous in [0, T]. For 0 ≤ t1 ≤ t2 ≤ T
such that ‖T(tα

1)−T(tα
2)‖ < ε, we get

E‖(Υz)(t2)− (Υz)(t1)‖
2

≤ 16E
ww[T(tα

2r)−T(tα
1r)
][
− h(zt + xt)− G (0, ϕ)

]ww2

+ 16E
wwG

(
t2, z$(t2,zt2+xt2 )

+ x$(t2,zt2+xt2 )

)
− G

(
t1, z$(t1,zt1+xt1 )

+ x$(t1,zt1+xt1 )

)ww2

+ 16E

wwww( α

Γ(1 + α)

)2 ∫ t1

0
(t1 − s)α−1A

[
T((t2 − s)αr)−T((t1 − s)αr)

]
(×)G

(
s, z$(s,zs+xs) + x$(s,zs+xs)

)
ds
wwww2

+ 16E

wwww( α

Γ(1 + α)

)2 ∫ t1

0

[
(t2 − s)α−1 − (t1 − s)α−1]A T((t2 − s)αr)

(×)G
(

s, z$(s,zs+xs) + x$(s,zs+xs)

)
ds
wwww2

+ 16E

wwww( α

Γ(1 + α)

)2 ∫ t2

t1

(t2 − s)α−1A T((t2 − s)αr)

(×)G
(

s, z$(s,zs+xs) + x$(s,zs+xs)

)
ds
wwww2

+ 16E

wwww( α

Γ(1 + α)

) ∫ t1

0
(t1 − s)α−1[T((t2 − s)αr)−T((t1 − s)αr)

]
Bvµ(s)ds

wwww2

+ 16E

wwww( α

Γ(1 + α)

) ∫ t1

0

[
(t2 − s)α−1 − (t1 − s)α−1]T((t2 − s)αr)Bvµ(s)ds

wwww2

+ 16E

wwww( α

Γ(1 + α)

)∫ t2

t1

(t2 − s)α−1T((t2 − s)αr)Bvµ(s)ds
wwww2

+ 16E

wwww( α

Γ(1 + α)

) ∫ t1

0
(t1 − s)α−1[T((t2 − s)αr)−T((t1 − s)αr)

]
(×)F

(
s, z$(s,zs+xs) + x$(s,zs+xs),

∫ s

0
e1(s, τ, z$(τ,zτ+xτ) + x$(τ,zτ+xτ))dτ

)
ds
wwww2

+ 16E

wwww( α

Γ(1 + α)

) ∫ t1

0
[(t2 − s)α−1 − (t1 − s)α−1]T((t2 − s)αr)

(×)F
(

s, z$(s,zs+xs) + x$(s,zs+xs),
∫ s

0
e1(s, τ, z$(τ,zτ+xτ) + x$(τ,zτ+xτ))dτ

)
ds
wwww2

+ 16E

wwww( α

Γ(1 + α)

) ∫ t2

t1

(t2 − s)α−1T((t2 − s)αr)

(×)F
(

s, z$(s,zs+xs) + x$(s,zs+xs),
∫ s

0
e1(s, τ, z$(s,zs+xs) + x$(τ,zτ+xτ))dτ

)
ds
wwww2
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+ 16E

wwww( α

Γ(1 + α)

) ∫ t1

0
(t1 − s)α−1[T((t2 − s)αr)−T((t1 − s)αr)

]
(×)Σ

(
s, z$(s,zs+xs) + x$(s,zs+xs),

∫ s

0
e2(s, τ, z$(τ,zτ+xτ) + x$(τ,zτ+xτ))dτ

)
dw(s)

wwww2

+ 16E

wwww( α

Γ(1 + α)

) ∫ t1

0
[(t2 − s)α−1 − (t1 − s)α−1]T((t2 − s)αr)

(×)Σ
(

s, z$(s,zs+xs) + x$(s,zs+xs),
∫ s

0
e2(s, τ, z$(τ,zτ+xτ) + x$(τ,zτ+xτ))dτ

)
dw(s)

wwww2

+ 16E

wwww( α

Γ(1 + α)

) ∫ t2

t1

(t2 − s)α−1T((t2 − s)αr)

(×)Σ
(

s, z$(s,zs+xs) + x$(s,zs+xs),
∫ s

0
e2(s, τ, z$(s,zs+xs) + x$(τ,zτ+xτ))dτ

)
dw(s)

wwww2

+ 16E

wwww ∑
0<tk<t1

[
T((t2 − tk)

αr)−T((t1 − tk)
αr)
]
E
[
Ik(z(t−k ) + x(t−k ))

]wwww2

+ 16E

wwww ∑
t1<tk<t2

T((t2 − tk)
αr)E

[
Ik(z(t−k ) + x(t−k ))

]wwww2

≤ 32ε2[Mh r̃ +N 2
0MG (1 + ‖ϕ‖2

B)
]
+ 16N 2

0 E

wwwwA βG
(
t2, z$(t2,zt2+xt2 )

+ x$(t2,zt2+xt2 )

)
−A βG

(
t1, z$(t1,zt1+xt1 )

+ x$(t1,zt1+xt1 )

)wwww2

+ 16
(

α

Γ(1 + α)

)2 tα
1
α
MG (1 + r∗)

∫ t1

0
(t1 − s)α−1wwA 1−β

[
T((t2 − s)αr)−T((t1 − s)αr)

]ww2ds

+ 16
(

α

Γ(1 + α)

)2

‖A 1−βT((t2 − s)αr)‖2
∫ t1

0
[(t2 − s)α−1 − (t1 − s)α−1]ds

(×)
∫ t1

0
[(t2 − s)α−1 − (t1 − s)α−1]MG (1 + r∗)ds

+ 16
(

α

Γ(1 + α)

)2
(t2 − t1)

α

α

∫ t2

t1

(t2 − s)α−1‖A 1−βT((t2 − s)αr)‖2MG (1 + r∗)ds

+ 16
(

αεMB
Γ(1 + α)

)2 tα
1
α

∫ t1

0
(t1 − s)α−1E‖vµ(s)‖2ds

+ 16
(

αMMB
Γ(1 + α)

)2 ∫ t1

0

[
(t2 − s)α−1 − (t1 − s)α−1]ds

∫ t1

0

[
(t2 − s)α−1 − (t1 − s)α−1]E‖vµ(s)‖2ds

+ 16
(

αMMB
Γ(1 + α)

)2 (t2 − t1)
α

α

∫ t2

t1

(t2 − s)α−1E‖vµ(s)‖2ds

+ 16
(

αε

Γ(1 + α)

)2 tα
1
α

∫ t1

0
(t1 − s)α−1[F ∗1 r∗ +F ∗2 M̃0(1 + r∗)T

]
ds

+ 16
( αM

Γ(1 + α)

)2[
F ∗1 r∗ +F ∗2 M̃0(1 + r∗)T

] ∫ t1

0

[
(t2 − s)α−1 − (t1 − s)α−1]ds

(×)
∫ t1

0

[
(t2 − s)α−1 − (t1 − s)α−1]ds

+ 16
(

αM
Γ(1 + α)

)2 (t2 − t1)
α

α

[
F ∗1 r∗ +F ∗2 M̃0(1 + r∗)T

] ∫ t2

t1

(t2 − s)α−1ds

+ 16
(

αε

Γ(1 + α)

)2 tα
1
α

tr(Q)
[
Σ∗1r∗ + Σ∗2M̃1(1 + r∗)T

] ∫ t1

0
(t1 − s)α−1ds

+ 16
( αM

Γ(1 + α)

)2
tr(Q)

[
Σ∗1r∗ + Σ∗2M̃1(1 + r∗)T

] ∫ t1

0

[
(t2 − s)α−1 − (t1 − s)α−1]ds

(×)
∫ t1

0

[
(t2 − s)α−1 − (t1 − s)α−1]ds
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+ 16
(

αM
Γ(1 + α)

)2 (t2 − t1)
α

α
tr(Q)

[
Σ∗1r∗ + Σ∗2M̃1(1 + r∗)T

] ∫ t2

t1

(t2 − s)α−1ds

+ 16ε2H2n
n

∑
k=1
MIk r̃ + 16M2H2n

n

∑
k=1
MIk r̃.

Therefore, for ε sufficiently small, the right-hand side of the above inequality tends to zero as t1 → t2.
Since the compactness of Tα(t) for t > 0 implies the continuity in the uniform operator topology. This
proves that V is right equicontinuous at t ∈ (0, T). Similarly, we can prove that the right equicontinuity at
zero and the left equicontinuity at t ∈ (0, T]. Thus (Υz) is equicontinuous on [0, T]. By using a procedure
similar to that used in [1], we can easily prove that the map (Υz) is continuous on z which completes the
proof that Υ(·) is completely continuos. Hence from the schauder fixed point theorem Υ has a fixed point
and consequently the systems (1.1) -(1.3) has a mild solution on [0, T].

Theorem 3.2. Assume that the conditions of above theorem hold and, in addition, the function G , F , Σ, ei, {i =
1, 2} and h are uniformly bounded on their respective domains. If T(t) is compact, then the impulsive fractional
neutral stochastic integro-differential equations (1.1)-(1.3) is approximately controllable on I

Proof. Let uµ(·) be fixed point of Υ. By using the stochastic Fubini theorem, any fixed point of Υ is a mild
solution of (1.1)-(1.3), if the control vµ(t) satisfies

uµ(T) = ũT − µΦ(vµ(·)), (3.9)

where

Φvµ(t) =



(µI + ΓT
0 )
−1
[

EũT +
∫ T

0
φ̃(s)dw(s)− Tα(T)[ϕ(0)− h(zT + xT)− G (0, ϕ)]

]
−(µI + ΓT

0 )
−1G (T, z$(T,zT+xT)

+ x$(T,zT+xT)
)

−
∫ T

0
(µI + ΓT

s )
−1(T − s)α−1A Sα(T − s)G

(
s, z$(s,zs+xs) + x$(s,zs+xs)

)
ds

−
∫ T

0
(µI + ΓT

s )
−1(T − s)α−1Sα(T − s)

(×)F
(

s, z$(s,zs+xs) + x$(s,zs+xs),
∫ s

0
e1(s, τ, z$(τ,zτ+xτ) + x$(τ,zτ+xτ))dτ

)
ds

−
∫ T

0
(µI + ΓT

s )
−1(T − s)α−1Sα(T − s)

(×)Σ
(

s, z$(s,zs+xs) + x$(s,zs+xs),
∫ s

0
e2(s, τ, z$(τ,zτ+xτ) + x$(τ,zτ+xτ))dτ

)
dw(s)

−(µI + ΓT
0 )
−1 ∑

0<tk<t
Tα(T − tk)Ik(z(t−k ) + x(t−k )).

Further, by assumption, G , F , Σ, ei, {i = 1, 2} and h are uniformly bounded on I . Then there are
subsequences still denoted by{

A βG (s, uµ

$(s,us)
), F

(
s, uµ

$(s,us)
,
∫ s

0
e1(s, τ, uµ

$(τ,uτ)
)dτ

)
, Σ
(

s, uµ

$(s,us)
,
∫ s

0
e2(s, τ, uµ

$(τ,uτ)
)dτ

)}
,

which converge weakly to {G (s), F (s), Σ(s)}, respectively. Thus from the (3.9), we have

E‖uµ(T)− ũT‖2

≤ 9E

wwwwµ(µI + ΓT
0 )
−1
[

EũT +
∫ T

0
φ̃(s)dw(s)− Tα(T)[ϕ(0)− h(zT + xT)− G (0, ϕ)]

]wwww2

+ 9E

wwwwµ(µI + ΓT
0 )
−1G (T, z$(T,zT+xT)

+ x$(T,zT+xT)
)

wwww2



S. Selvarasu et al. / Approximate controllability ... 594

+ 9E

wwww ∫ T

0
µ(µI + ΓT

s )
−1(T − s)α−1A Sα(T − s)

[
G
(

s, z$(s,zs+xs) + x$(s,zs+xs)

)
− G (s)

]
ds
wwww2

+ 9E

wwww ∫ T

0
µ(µI + ΓT

s )
−1(T − s)α−1A Sα(T − s)G (s)ds

wwww2

+ 9E

wwww ∫ T

0
µ(µI + ΓT

s )
−1(T − s)α−1Sα(T − s)

(×)
[
F

(
s, z$(s,zs+xs) + x$(s,zs+xs),

∫ s

0
e1(s, τ, z$(τ,zτ+xτ) + x$(τ,zτ+xτ))dτ

)
−F (s)

]
ds
wwww2

+ 9E

wwww ∫ T

0
µ(µI + ΓT

s )
−1(T − s)α−1Sα(T − s)F (s)ds

wwww2

+ 9E

wwww ∫ T

0
µ(µI + ΓT

s )
−1(T − s)α−1Sα(T − s)

(×)
[

Σ
(

s, z$(s,zs+xs) + x$(s,zs+xs),
∫ s

0
e2(s, τ, z$(τ,zτ+xτ) + x$(τ,zτ+xτ))dτ

)
− Σ(s)

]
dw(s)

wwww2

+ 9E

wwww ∫ T

0
µ(µI + ΓT

s )
−1(T − s)α−1Sα(T − s)Σ(s)dw(s)

wwww2

+ 9E

wwwwµ(µI + ΓT
0 )
−1 ∑

0<tk<t
Tα(T − tk)Ik(z(t−k ) + x(t−k ))

wwww2

.

On the other hand, by lemma 2.3 for all 0 ≤ s ≤ T, the operator µ(µI + ΓT
s )
−1 → 0 strongly as

µ → 0+, and moreover ‖µ(µI + ΓT
0 )
−1‖ ≤ 1. Thus, by the Lebesgue dominated convergence theorem

and the compactness of Sα(t), we obtain E‖uµ(T)− ũT‖2 → 0 as µ → 0+. This gives the approximate
controllability of (1.1)-(1.3). The proof is now completed.

4 Application

In this section an illustration is provided for the existence results to the following IFNSIDS with SDD
of the structure

Dα
t

[
u(t, x)−

∫ t

−∞
µ1(s− t)u(s− $1(t)$2(‖u(t)‖), x)ds

]

=
∂2

∂x2 u(t, x) + µ(t, x) +
∫ t

−∞
µ2(t, x, s− t)P1

(
u(s− $1(t)$2(‖u(t)‖), x)

)
ds

+
∫ t

0

∫ s

−∞
k1(s− τ)P2

(
u(τ − $1(τ)$2(‖u(τ)‖), x)

)
dτds

+

[ ∫ t

−∞
µ3(t, x, s− t)Q1

(
u(s− $1(t)$2(‖u(t)‖), x)

)
ds

+
∫ t

0

∫ s

−∞
k2(s− τ)Q2

(
u(τ − $1(τ)$2(‖u(τ)‖), x)

)
dτds

]
dβ(t)

dt
, x ∈ [0, π], 0 ≤ t ≤ T, (4.1)

u(t, 0) = 0 = u(t, π), t ≥ 0, (4.2)

u(0, x) +
∫ π

0
k3(x, z)u(t, z)dz = ϕ(t, x), t ∈ (−∞, 0], 0 ≤ x ≤ π, (4.3)

∆u(tk, x) =
∫ tk

−∞
ηk(s− tk)u(s, x)ds, k = 1, 2, . . . , n, (4.4)

where β(t) is a standard cylindrical Wiener process in H defined on a stochastic space (Ω,F , {Ft},P);
Dα

t is Caputo’s fractional derivative of order 0 < α < 1; ϕ is continuous; and 0 < t1 < t2 < · · · < tn < T
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are prefixed numbers. We consider H = K = L2[0, π] having the norm ‖ · ‖L2 and define the operator
A : D(A ) ⊂ H → H by A w = w′′ with the domain

D(A ) = {w ∈ H : w, w′ are absolutely continuous, w′′ ∈ H, w(0) = w(π) = 0}.

Then

A w =
∞

∑
n=1

n2〈w, wn〉wn, w ∈ D(A ),

in which wn(s) =
√

2
π sin(ns), n = 1, 2, . . . , . is the orthogonal set of eigenvectors of A . It is long familiar

that A is the infinitesimal generator of an analytic semigroup {T(t)}t≥0 inH and is provided by

T(t)w =
∞

∑
n=1

e−n2t〈w, wn〉wn, for all w ∈ H, and every t > 0.

If we fix β = 1
2 , then the operator (A )

1
2 is given by

(A )
1
2 w =

∞

∑
n=1

n〈w, wn〉wn, w ∈ (D(A )
1
2 ),

in which (D(A )
1
2 ) =

{
ω(·) ∈ H :

∞

∑
n=1

n〈ω, wn〉wn ∈ H
}

and ‖(A )−
1
2 ‖ = 1. Let γ < 0, define the phase

space

B =

{
ϕ ∈ C((−∞, 0],H) : lim

θ→−∞
eγθ ϕ(θ) exists in H

}
,

and let ‖ϕ‖B = sup
θ∈(−∞,0]

{
eγθ‖ϕ(θ)‖L2

}
, then (B, ‖ · ‖B) is a Banach space satisfies (P1) − (P3) with

H = 1, E1(t) = max{1, e−γt}, E2(t) = e−γt. Therefore, for (t, ϕ) ∈ [0, T] × B, where ϕ(θ)(x) =

ϕ(θ, x), (θ, x) ∈ (−∞, 0]× [0, π]. Set

u(t)(x) = u(t, x), $(t, ϕ) = $1(t)$2(‖ϕ(0)‖),

we have

G (t, ϕ)(x) =
∫ 0

−∞
µ1(θ)ϕ(θ)(x)dθ,

F (t, ϕ, H ϕ)(x) =
∫ 0

−∞
µ2(t, x, θ)P1(ϕ(θ)(x))dθ +H ϕ(x),

Σ(t, ϕ, H ϕ)(x) =
∫ 0

−∞
µ3(t, x, θ)Q1(ϕ(θ)(x))dθ +H ϕ(x)

and

Ik(ϕ)(x) =
∫ 0

−∞
ηk(θ)ϕ(θ)(x)dθ, k = 1, 2, . . . , n,

where

H ϕ(x) =
∫ t

0

∫ 0

−∞
k1(s− θ)P2(ϕ(θ)(x))dθds, H ϕ(x) =

∫ t

0

∫ 0

−∞
k2(s− θ)Q2(ϕ(θ)(x))dθds.

Further, define the bounded linear operator B : U → H by Bv(t)(x) = µ(t, x), 0 ≤ x ≤ π, u ∈ U, where
µ : [0, 1]× [0, π] → [0, π] is continuous. Now, under the above conditions, we can represent the system
(4.1) - (4.4) in the abstract form (1.1) - (1.3) . Hence , according to Theorem 3.2, system (4.1) - (4.4) is
approximately controllable on [0, T].
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5 Conclusion

In this manuscript, we have studied the approximate controllability results for impulsive stochastic
fractional neutral integro-differential systems with non-local and state-dependent delay conditions in
Hilbert space. More precisely, by utilizing the stochastic analysis theory, fractional powers of operators
and Schauder fixed point theorem, we investigate the IFNSIDS with NLCs and SDD in Hilbert space. To
validate the obtained theoretical results, one example is analyzed. The FDEs are very efficient to describe
the real-life phenomena; thus, it is essential to extend the present study to establish the other qualitative
and quantitative properties such as stability and controllability.

There are two direct issues which require further study. First, we will investigate the approximate
controllability of fractional neutral stochastic integro-differential systems with state-dependent delay both
in the case of a Poisson jumps and a normal topological space. Secondly, we will be devoted to studying
the approximate controllability of a new class of impulsive fractional stochastic differential equations with
state-dependent delay and non-instantaneous impulses as discussed in [15].
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Abstract

In this paper, we will establish some oscillation criteria for the even-order nonlinear dynamic equation

(
a
(

x∆n−2
)γ)∆2

(t) + f (t, xα (t)) = 0, t ∈ [t0, ∞)T

on a time scales T with n is an even integer ≥ 3, where γ and α are the ratios of positive odd integer and a is
areal valued rd-continuous function defined on T.

Keywords: Time scale, Oscillation, Neutral delay differential equation.
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1 Introduction

The theory of time scales was introduced by Hilger [1] in order to unify, extend and generalize ideas from
discrete calculus, quantum calculus and continuous calculus to arbitrary time scale calculus. The books on the
subjects of time scale, that is, measure chain, by Bohner and Peterson [2], [3], summarize and organize much
of time scale calculus.

The theory of oscillations is an important branch of the applied theory of dynamic equations related to the
study of oscillatory phenomena in technology and natural and social sciences. In recent years, there has been
much research activity concerning the oscillation of solutions of various dynamic equations on time scales.

In this paper, we deal with the oscillation of all solutions of the even-order nonlinear delay dynamic
equation (

a
(

x∆n−2
)γ)∆2

(t) + f (t, xα (t)) = 0, t ∈ [t0,+∞)T (1.1)

on a time scale T with sup T = ∞, n is an even integer ≥ 3. Where α, γ are a quotient of odd positive integer,
a ∈ C1 (T, R+) such that a∆ (t) > 0 for t ∈ [t0, ∞)T and f satisfies the following conditions:

(H1) f : T×R −→ R is continuous,

(H2) f (t,−x) = − f (t, x) for all t ∈ [t0, ∞)T , x ∈ R,

∗Corresponding author.
E-mail address : amine.banche@gmail.com (Amine Benaissa Cherif), f.z.ladrani@gmail.com (Fatima Zohra Ladrani),
Hymmed@hotmail.com (Ahmed Hammoudi).
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(H3) There exist a function r : T −→ R positive and rd-continuous, such that

f (t, x)
x

≥ r(t), for all t ∈ [t0, ∞)T , x ∈ R− {0} . (1.2)

In order to prove our theorems we shall need the following two lemmas.

Lemma 1.1. [4] If n ∈N, sup T = ∞ and f ∈ Cn
rd ([t0, ∞)T , R) then the following statements are true.

1. lim inf
t→∞

f ∆n
(t) > 0 implies lim

t→∞
f ∆k

(t) = ∞ for all k ∈ [0, n)Z .

2. lim sup
t→∞

f ∆n
(t) < 0 implies lim

t→∞
f ∆k

(t) = −∞ for all k ∈ [0, n)Z .

Lemma 1.2. [7] Assume that sup T = ∞, f ∈ C1
rd ([t0, ∞)T , R+) and λ > 0. Then

f ∆ ( f σ)−λ ≤
(

f 1−λ
)∆

1− λ
≤ f ∆ f−λ, on [t0, ∞)T .

2 Main results

In this section, we establish some sufficient conditions which guarantee that every solution x of (1.1)
oscillates on [t0, ∞)T .

Before stating the main results, we begin with the following lemma.

Lemma 2.3. Suppose that x is an eventually positive solution of (1.1) and

lim
t→∞

1
a (t)

∈ R∗+, lim
t→∞

t
a (t)

∞∫
t

r (s)∆s = ∞. (2.3)

Then there exists t1 ∈ [t0, ∞)T such that(
a
(

x∆n−2
)γ)∆

(t) > 0, x∆n−2
(t) > 0, for all t ∈ [t1, ∞)T . (2.4)

Lemma 2.4. Assume that x is an eventually positive solution of (1.1) and (2.3) hold. Suppose there exists a sequence
functions φ1, φ2, · · · , φn−2 ∈ C1

rd ([t0, ∞)T , R+) . Let A1, A2, · · · An−2 are functions defined by

A1 (t, t1) :=
{

a (t)
φ1 (t)

} 1
γ
∫ t

t1

{
φ1 (s)
a (s)

} 1
γ

∆s, for t ∈ [t1, ∞)T ,

and

Ak (t, t1) :=
1

φk (t)

t∫
t1

φk (s)∆s, for all t ∈ [t1, ∞)T and all k ∈ [2, n− 1)Z .

where t1 ∈ [t0, ∞)T . Moreover, suppose that

φ1 (t)− φ∆
1 (t) (t− t1) ≤ 0, for t ∈ [t1, ∞)T , (2.5)

and
φk (t)− φ∆

k (t) Ak−1 (t, t1) ≤ 0, for all t ∈ [t1, ∞)T and all k ∈ [2, n− 1)Z . (2.6)

Then
x∆k

(t) ≥ Ek (t, t1) x∆n−2
(t) , for all t ∈ [t1, ∞)T and all k ∈ [0, n− 2)Z ,

where

Ek (t, t1) :=
m=n−k−2

∏
m=1

Am (t, t1) , for all t ∈ [t1, ∞)T .
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Theorem 2.1. Let (2.3) hold and α > γ. Assume that there exist sufficiently large t1 ∈ [t0, ∞)T , such that

∞∫
t1

E1 (t, t1)

 t− t1

a (t)

∞∫
σ(t)

r (u)∆u


1
γ

∆t = ∞, (2.7)

where E1 is defined as in Lemma 2.4.
Then equation (1.1) is oscillatory.

Proof. Suppose the contrary, that x (t) is a nonoscillatory solution of (1.1). Without loss of generality, we may
assume that x (t) is an eventually positive solution of (1.1), since the substitution y (t) = −x (t) transforms
equation (1.1) into an equation of the same form. Say x (t) > 0 for t ≥ t1 ≥ t0.

By (1.2) , we get (
a
(

x∆n−2
)γ)∆2

(t) ≤ −r (t) xa (t) , for t ∈ [t1, ∞)T . (2.8)

Integrating (2.8) form t to ∞, we have

(
a
(

x∆n−2
)γ)∆

(t) ≥
∞∫

t

r (s) xα (s)∆s, for t ∈ [t1, ∞)T . (2.9)

By (2.8), we have that
(

a
(

x∆n−2
)γ)∆

is nonincreasing in [t1, ∞)T. Then, for all t ∈ [t1, ∞)T, we obtain

a (t)
(

x∆n−2
(t)
)γ
≥

t∫
t1

(
a
(

x∆n−2
)γ)∆

(s)∆s ≥ (t− t1)
(

a
(

x∆n−2
)γ)∆

(t) .

As above we see that

x∆n−2
(t) ≥

 t− t1

a (t)

∞∫
t

r (s) xα (s)∆s

 1
γ

, for t ∈ [t1, ∞)T .

By lemma 2.4, we have

x∆ (t) ≥

 t− t1

a (t)

∞∫
t

r (s) xα (s)∆s

 1
γ

E1 (t, t1) , for t ∈ [t1, ∞)T .

Clearly x∆ (t)> 0, for t ∈ [t1, ∞)T , then

x∆ (t) x
−α
γ (σ (t)) ≥

 t− t1

a (t)

∞∫
σ(t)

r (s)∆s


1
γ

E1 (t, t1) , for t ∈ [t1, ∞)T .

By lemma 1.2, we get

γ

γ− α

(
x

1− α
γ

)∆
(t) ≥

 t− t1

a (t)

∞∫
σ(t)

r (s)∆s


1
γ

E1 (t, t1) , for t ∈ [t1, ∞)T . (2.10)

Integrating (2.10) from t1 to t and letting t→ ∞, we have

∞∫
t1

E1 (t, t1)

 t− t1

a (t)

∞∫
σ(t)

r (s)∆s


1
γ

∆t ≤ − γ

γ− α
x1− α

γ (t1) .

This result is in contradiction with (2.7) .
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Theorem 2.2. Let (2.3) holds and α = γ ≥ 1. Assume that there exist positive function δ ∈ C1
rd ([t0, ∞)T , R) such

that for all sufficiently large t1 ∈ [t0, ∞)T , for some t2 ∈ [t1, ∞)T such that

∞∫
t2

δ (t) r (t)− γγ

(γ + 1)γ+1

(
δ∆
+ (t)

)γ+1 a (t)
δγ (t) Eγ

1 (t, t1) (t− t1)
∆t = ∞, (2.11)

where δ∆
+(t) = max

(
0, δ∆(t)

)
and E1 is defined as in Lemma 2.4.

Then equation (1.1) is oscillatory.

Proof. Suppose that (1.1) has a nonoscillatory solution x on [t0, ∞)T. We may assume without loss of
generality that there exists t1 ∈ [t0, ∞)T such that x (t) > 0 for t ∈ [t1, ∞)T.
We define the function w (t) by

w (t) = δ (t)

(
a
(

x∆n−2
)γ)∆

(t)

xγ (t)
, t ∈ [t1, ∞)T .

Then w (t) > 0 for t ∈ [t1, ∞)T and by (2.8) which implies that

w∆ (t) ≤ −δ (t) r (t) +
wσ (t)
δσ (t)

xγ (σ (t))

{
δ∆ (t) xγ (t)− δ (t) (xγ)∆ (t)

xγ (t) xγ (σ (t))

}

≤ −δ (t) r (t) +
δ∆ (t)
δσ (t)

wσ (t)− wσ (t)
δ (t) (xγ)∆ (t)
δσ (t) xγ (t)

. (2.12)

By Pötzsche’s chain rule [2], we get

(xγ(t))∆ = γx∆(t)
1∫

0

(hx (t) + (1− h)xσ (t))γ−1 dh

≥ x∆(t)xγ−1 (t) . (2.13)

Substituting (2.13) in (2.12), we find

w∆ (t) ≤ −δ (t) r (t) +
δ∆ (t)
δσ (t)

wσ (t)− wσ (t)
δ (t) x∆ (t)
δσ (t) x (t)

. (2.14)

By lemma 2.4, we find

x∆ (t) ≥ E1 (t, t1)

(a (t))
1
γ

[
a (t)

(
x∆n−2

(t)
)γ] 1

γ

≥ E1 (t, t1)

[
t− t1

a (t)

] 1
γ
[(

a
(

x∆n−2
)γ)∆

(t)
] 1

γ

≥ E1 (t, t1) x (t)
(

t− t1

a (t) δσ (t)

) 1
γ

(wσ (t))
1
γ . (2.15)

Substituting (2.15) in (2.14), we get

w∆ (t) ≤ −δ (t) r (t) +
δ∆ (t)
δσ (t)

wσ (t)− δ (t) E1 (t, t1)

δσ (t)

(
t− t1

a (t) δσ (t)

) 1
γ

(wσ (t))1+ 1
γ .

Using the inequality [10]

By− Ay1+ 1
β ≤ ββBβ+1

(β + 1)β+1 Aβ
, A > 0, B > 0 and β > 0.

which yields

w∆ (t) ≤ −δ (t) r (t) +
γγ

(γ + 1)γ+1

(
δ∆
+ (t)

)γ+1 a (t)
δγ (t) Eγ

1 (t, t1) (t− t1)
.
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Integrating the last inequality from t2 to t, we have

t∫
t2

δ (s) r (s)−
γγ
(
δ∆
+ (s)

)γ+1 a (s)

(γ + 1)γ+1 δγ (s) Eγ
1 (s, t1) (s− t1)

∆s ≤ w (t2)− w (t) ≤ w (t2) .

which contradicts (2.11). This completes the proof.

Theorem 2.3. Let (2.3) holds and γ > α. Assume that there exist positive function δ ∈ C1
rd ([t0, ∞)T , R) such that

for all sufficiently large t1 ∈ [t0, ∞)T , such that

∞∫
t1

δσ (t) r (t) Eα
0 (t, t1)

(
t− t1

a (t) δ (t)

) α
γ

∆t = ∞, (2.16)

where δ∆ (t) ≤ 0, for all t ∈ [t1, ∞)T and E0 is defined as in Lemma 2.4.
Then every solution of (1.1) is either oscillatory.

Proof. Suppose that (1.1) has a nonoscillatory solution x on [t0, ∞)T. We may assume without loss of
generality that there exists t1 ∈ [t0, ∞)T such that x (t) > 0 for t ∈ [t1, ∞)T.
Let

w (t) = δ (t)
(

a
(

x∆n−2
)γ)∆

(t) , t ∈ [t1, ∞)T .

Then w (t) > 0 for t ∈ [t1, ∞)T and by (1.2) , we obtain

w∆ (t) ≤ −δσ (t) r (t) xα (t) . (2.17)

By lemma 2.4, we get

x (t) ≥ E0 (t, t1) x∆n−2
(t)

≥ E0 (t, t1)

(
t− t1

a (t) δ (t)

) 1
γ

w
1
γ (t) . (2.18)

Substituting (2.18) in (2.17), we find

−w∆ (t)w
−α
γ (t) ≥ δσ (t) r (t) Eα

0 (t, t1)

(
t− t1

a (t) δ (t)

) α
γ

.

By Lemma 1.2 we have

− γ

γ− α

(
w1− α

γ

)∆
(t) ≥ δσ (t) r (t) Eα

0 (t, t1)

(
t− t1

a (t) δ (t)

) α
γ

.

Integrating this inequality from t1 to t we obtain

t∫
t1

δσ (s) r (s) Eα
0 (s, t1)

(
s− t1

a (s) δ (s)

) α
γ

∆s ≤ γ

γ− α
w1− α

γ (t1) ,

for all large t. This result is in contradiction with (2.16). This completes the proof.

3 Example

As some application of the main results, we present the following example.

Example 3.1. On the quantum set T =2Z. Consider the following n-order neutral differential equation

x∆n
(t) + t−

3
2 xα (t) = 0, t ∈ [1, ∞) 2Z . (3.19)
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where n ≥ 3 is even integer. Here a (t) = 1, r (t) = t−
3
2 , γ = 1 and α is a quotient of odd positive integer.

It is easy to see that (2.3) hold.
Set

φ1 (t) := hk (t, t1) , for all k ∈ [1, n− 1)Z and for t ∈ [t1, ∞)2Z .

Then (2.6) and (2.5) holds.
Moreover, for all k ∈ [1, n− 1)Z, we have

Ak (t, t1) =
hk+1 (t, t1)

hk (t, t1)
, for all t ∈ [t1, ∞)2Z .

Then

E1 (t, t1)

 (t− t1)

a (t)

∞∫
σ(t)

r (u)∆u


1
γ

≥ hn−2 (t, t1)√
t

, for all t ∈ [t1, ∞)2Z .

By Theorem 2.1, every solution x of (3.19) is either oscillatory.
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Abstract

In accordance with semigroup theory, fractional powers of operators, approximation techniques and
Banach contraction principle fixed point theorem, this manuscript is primarily involved with the existence
results for an impulsive non-autonomous neutral integro-differential systems with nonlocal conditions in
Banach space E.
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1 Introduction

The dynamics of many processes in engineering, physics, population dynamics, biology, medicine and
other fields are subject to sudden changes just like shocks or perturbations. These perturbations may be
considered as impulses. In particular, in the periodic treatment of some diseases, impulses correspond to the
administration of a drug treatment or a missing product. In environmental sciences, impulses correspond to
seasonal changes of the water level of artificial reservoirs. This sort of models can be defined by impulsive
differential equations. For more details on this theory and its applications, we suggest the reader to refer the
books [1, 2] and the papers [3–8], and the references cited therein. These days, impulsive integro-differential
equations have become an significant area of research because of their uses to numerous problems arising in
communications, control technology, impact mechanics and electrical engineering, etc.

The nonlocal condition, which is a speculation of the standard initial condition, was inspired by physical
issues. On many instances, problems under consideration, primarily coming up from physics phenomena,
advise that the initial condition is an estimation via solving the problem in some finite sequence of times,
and then we say that the initial condition is nonlocal. Evolution problems with nonlocal initial conditions in
Banach spaces are now perfectly realized due to the fact it was initiated by Byszewski [9, 10], where the author
demonstrated the existence and uniqueness of mild, strong and classical solution to the first-order initial value
problem by utilizing the techniques of semigroups and the Banach fixed point theorem. For the importance
of nonlocal conditions in diverse areas, we suggest [9, 10] and references cited therein.

Moreover, a class of equations depends on past as well as present values but which involve derivatives
with delays as well as the function itself. Such equations historically have been referred to as neutral functional
differential equations. For systems with neutral type, the existence of the solution has been investigated in
Tsoi [11]. A great information to the literature for neutral functional differential equations is the book by Hale
and Lunel [12] and the references therein.

∗Corresponding author.
E-mail: abinaya.muthucholan@gmail.com (M. Abinaya) and vmohana31.maths@gmail.com (V. Mohana).
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The existence, controllability and other qualitative and quantitative properties of non-autonomous
differential and integro-differential equations with impulsive conditions) are the most advancing area of
pursuit, in particular, see [13–15]. In [13], the authors studied the existence of the mild solutions to a class of
abstract non-autonomous impulsive functional integro-differential equations. The existence and Ulam-Hyers-
Rassias stability of mild solution of impulsive non-autonomous differential equations are studied by authors
in [14]. In particular, in [15], author has demonstrated the controllability of a system of impulsive semilinear
non-autonomous differential equations via Rothe’s type fixed-point theorem. By applying approximation
techniques and fractional operator, the existence of the mild solution for different class of impulsive
functional integro-differential equations have been established by many authors[16–21]. Recently, in [19],
the authors investigate the existence of a mild solution for an impulsive nonlocal non-autonomous neutral
functional differential equation in Banach space by utilizing the approximation techniques, fractional powers
of operators and Krasnoselskii’s fixed-point theorem.

Motivated by above mentioned works [13, 19], the main purpose of this paper is to prove the existence of
mild solutions for the following impulsive non-autonomous neutral partial integro-differential equations in a
Banach space E:

d
dt

[
z(t)−F

(
t, z(h1(t)),

∫ t

0
a1(t, s, z(h2(s)))ds

) ]
= −B(t)z(t) + G

(
t, z(h3(t)),

∫ t

0
a2(t, s, z(h4(s)))ds

)
+H

(
t, z(h5(t)),

∫ t

0
a3(t, s, z(h6(s)))ds

)
, t ∈ I , t 6= ti, (1.1)

z(0) = z0 + g(z) ∈ E, (1.2)

∆z(ti) = Ii(z(ti)), i = 1, 2, . . . , q, q ∈N, (1.3)

where I = [0, T], 0 < T < ∞,−B(t) : D(B(t)) ⊆ E → E, t ≥ 0 is a closed densely defined linear
operator. Here, hj : I → I , j = 1, 2, . . . , 6 and 0 = t0 < t1 < t2 < · · · < tq < tq+1 = T are fixed
numbers, ∆z|t=ti = z(t+i ) − z(t−i ) and z(t−i ) = lim

ε→0−
z(ti + ε) and z(t+i ) = lim

ε→0+
z(ti + ε) denotes the left

and right limits of z(t) at t = ti, respectively. Let B(t) be the infinitesimal generator of a compact analytic
semigroup of bounded linear operators on a Banach space E. The functions F , G , H , ai, i = 1, 2, 3 and
Ii : E→ E(i = 1, 2, . . . , q) are appropriate functions fulfilling some suitable conditions to be specified later.

The rest of this paper is organized as follows: In section 2, we recall some basic definitions and preliminary
facts which will be utilized throughout this paper. Existence theorems and their proofs are given in section 3.
Finally, in Section 4 an example is presented to illustrate the application of the obtained results.

2 Preliminaries

In this section, we recall some basic definitions, preliminaries, theorems and lemmas and assumptions
required for establishing our results.

Throughout this manuscript, we assume that (E, ‖ · ‖) is a Banach space and the notation C([0, T], E)

stands for the space of E-valued continuous functions on [0, T] with the norm ‖y‖ = sup{‖y(τ)‖, τ ∈ [0, T]}
and L 1([0, T], E) denotes the space of E-valued Bochner integrable functions on [0, T] endowed with the

norm ‖F‖L 1 =
∫ T

0
‖F (t)‖dt,F ∈ ([0, T], E). We denote by Cβ([0, T], E) the space of all uniformly Holder

continuous functions from [0, T] into E with exponent β > 0. We can easily confirm that Cβ([0, T], E) is a
Banach space with the norm

‖z‖Cβ([0,T],E) = sup
0≤t≤T

‖z(t)‖+ sup
0≤t,s≤T,t 6=s

‖z(t)− z(s)‖
|t− s|β

.

To be able to define the mild solution for the impulsive problem, we define the space PC([0, T]; E) =

{z : [0, T] → E : y is continuous at t 6= ti and left continuous at t = ti and z(t+i ) exists, for all
i = 1, 2, · · · , q}. Clearly, PC([0, T]; E) is a Banach space endowed the norm ‖z‖PC = sup

t∈[0,T]
‖z(s)‖. For a
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function z ∈ PC([0, T]; E) and i ∈ {0, 1, · · · , q}, we define the function z̃i ∈ C([ti, ti+1], E) such that

z̃i(t) =

{
z(t), for t ∈ (ti, ti+1],

z(t+i ), for t = ti.

For W ⊂ PC([0, T], E) and i ∈ {0, 1, · · · , q}, we have W̃i = {z̃i : z ∈ W} and following Accoli-Arzela type
criteria.

Lemma 2.1. [18] A set W ⊂ PC([0, T]; E) is relatively compact in PC([0, T]; E) if and only if each set W̃j(j =

1, 2, · · · , q) is relatively compact in C([tj, tj+1], E)(j = 0, 1, 2, · · · , q).

Let {B(t) : 0 ≤ t ≤ T}, 0 < T < ∞ be a family of closed linear operators on the Banach space E. We
impose following restrictions ([22]) as:

(P1) The domain D(B) of {B(t) : t ∈ [0, T]} is dense in E and D(B) is independent of t.

(P2) For each 0 ≤ t ≤ T and Re λ ≤ 0, the resolvent R(λ; B(t)) exists and there exists a positive constant K
(independent of t and λ ) such that

‖R(λ; B(t))‖ ≤ K
(|λ|+ 1)

, Reλ ≤ 0, t ∈ [0, T].

(P3) For each fixed ξ ∈ [0, T], there exists a constant K > 0 and 0 < µ ≤ 1 such that

‖[B(τ)− B(s)]B−1(ξ)‖ ≤ K|τ − s|µ, for any τ, s ∈ [0, T],

where µ and K are independent of τ, s and ξ.

(P4) For every t ∈ [0, T], the resolvent set of B(t), the resolvent R(λ, B(t)), is a compact operator for some
λ ∈ ρ(B(t)).

The assumptions (P1) − (P3) permit that there is a unique linear evolution system (linear evolution
operator) S(t, s), 0 ≤ s ≤ t ≤ T which is generated by family {B(t) : t ∈ [0, T]} and there exists a family

of bounded linear operators {Φ(t, s) : 0 ≤ t ≤ s ≤ T} such that ‖Φ(t, s)‖ ≤ K
|t− s|1−µ

. We also have that

S(t, s) can be written as

S(t, s) = e−(t−s)B(t) +
∫ t

0
e−(t−τ)B(τ)Φ(τ, s)dτ.

The assumption (P2) guarantees that −B(s), s ∈ [0, T] is the infinitesimal generator of a strongly continuous
compact analytic semigroup {e−tB(s) : t ≥ 0} in B(E), where the symbol B(E) stands for the Banach algebra
of all bounded linear operators on E.

By the assumptions (P1)− (P4) see [[22]], it follows that there is a unique fundamental solution {S(t, s) :
0 ≤ t ≤ s ≤ T} for the homogeneous Cauchy problem such that

(i) S(t, s) ∈ B(E) and the mapping (t, s) → S(t, s)y is continuous for y ∈ E, i.e S(t, s) is strongly
continuous in t, s for all 0 ≤ s ≤ t ≤ T.

(ii) For each y ∈ E,S(t, s)y ∈ D(B), for all 0 ≤ s ≤ t ≤ T.

(iii) S(t, τ)S(τ, s) = S(t, s) for all 0 ≤ s ≤ τ ≤ t ≤ T.

(iv) For each 0 ≤ s < t ≤ T, the derivative
∂S(t, s)

∂t
exists in the stong operator topology and an element of

B(E), and strongly continuous in t, where s < t ≤ T.

(v) S(t, t) = I.

(vi)
∂S(t, s)

∂t
+ B(t)S(t, s) = 0 for all 0 ≤ s < t ≤ T.
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Further, we have also the following assumptions:

‖e−tB(τ)‖ ≤ Ke−dt, t ≥ 0;

‖B(τ)e−tB(t)‖ ≤ Ke−dt

t
, t > 0;

‖B(t)S(t, τ)‖ ≤ K|t− τ|−1, 0 ≤ s ≤ t ≤ T,

for all τ ∈ [0, T], where d is a positive constant. For α > 0, we may define negative fractional powers B(t)−α

as

B(t)−α =
1

Γ(α)

∫ ∞

0
sα−1e−sB(t)ds.

Then, the operator B(t)−α is bounded linear and one to one operator on E and B−α(t)B−β(t) = B−(α+β)(t).
Therefore, it implies that there exists an inverse of the operator B(t)−α. We can define B(t)α ≡ [B(t)−α]−1

which is the positive fractional powers of B(t). The operator B(t)α ≡ [B(t)−α]−1 is closed densely defined
linear operator with domain D(B(t)α) ⊂ E and for α < β, we get D(B(t)β) ⊂ D(B(t)α). Let Eα(t0) =

D(B(t0)
α) be a Banach space with a norm ‖z‖α = ‖B(t0)

αz‖, t0 ∈ [0, T]. For 0 < ω1 ≤ ω2, we have that
embedding Eω2(t0) ↪→ Eω1(t0) is continuous and dense. For each α > 0, we may define E−α(t0) = (Eα)∗(t0),
which is the dual space of Eα(t0) . The dual space is a Banach space with natural norm ‖z‖−α = ‖B(t0)

−αz‖.
In particular, by the assumption (P3), we conclude a constant K > 0, such that

‖B(t)B(s)−1‖ ≤ K, for all 0 ≤ s, t ≤ T. (2.1)

Now, we also have following results:

‖Bα(t)B−β(s)‖ ≤ Nα,β, (2.2)

‖Bβ(t)e−sB(t)‖ ≤
Nβ

sβ
e−ws, t > 0, β ≤ 0, w > 0, (2.3)

‖Bβ(t)S(t, s)‖ ≤ Nβ|t− s|−β, 0 < β < µ + 1, (2.4)

‖Bβ(t)S(t, s)B−β(s)‖ ≤ N ′β, 0 < β < µ + 1, (2.5)

for s, t ∈ [0, T], 0 ≤ α < β and t > 0, where Nα,β is a constant related to T and µ and Nα,β,Nβ,N ′β show their
dependence on the constants α, β. We also have following results.

Lemma 2.2. ([23, Lemma II.14.1]) Suppose that (P1)− (P3) are satisfied. If 0 ≤ γ ≤ 1, 0 ≤ β ≤ α < 1 + µ, 0 <

α− γ ≤ 1, then for any 0 ≤ τ < t < t + ∆t ≤ t0, 0 ≤ ς ≤ t0,

‖Bγ(ς)[S(t + ∆t, τ)− S(t, τ)]B−β(τ)‖ ≤ Nγ,β,α(∆t)α−γ|t− τ|β−α.

For additional details about the above mentioned concept, we refer to monographs [22–24].
Our main existence results are based on Banach contraction principle and the Kransnoselskii’s fixed point

theorem.

Lemma 2.3. If E is a Banach space and Γ : E→ E is a contraction mapping, then Γ has a unique fixed point.

3 Existence Results

In this section, we present and prove the existence results for the problem (1.1)-(1.3) under different fixed
point theorem. Initially, we prove the existence and uniqueness for the problem (1.1)-(1.3) on the Banach
subspace Eα(t0) for some 0 < α < 1 and t0 ∈ [0, T] under Banach fixed point theorem. To be able to use this
theorem, we need to list the following conditions:

(H1) F : I × Eα(t0)× Eα(t0) → E is a Lipschitz continuous function then there exists LF , L ∗
F > 0 and for

all t, s,∈ [0, T] and x, y, x, y ∈ Eα(t0) such that

‖B(t)F (t, x, y)− B(t)F (s, x, y)‖ ≤ LF
[
|t− s|+ ‖x− x‖α + ‖y− y‖α

]
,
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‖B(t)F (t, x, 0)‖ ≤ LF ‖x‖+L ∗
F , x ∈ Eα(t0),

and
L ∗

F = sup
t∈I
‖B(t)F (t, 0, 0)‖.

(H2) The nonlinear function G : I × Eα(t0) × Eα(t0) → E is a Lipschitz continuous function with
G (I × Eα(t0) × Eα(t0)) ⊂ D(B). Then there exist constants LG , L ∗

G > 0 and for all t, s,∈ [0, T] and
x, y, x, y ∈ Eα(t0), such that

‖G (t, x, y)− G (s, x, y)‖ ≤ LG
[
|t− s|+ ‖x− x‖α + ‖y− y‖α

]
,

and
L ∗

G = sup
t∈I
‖G (t, 0, 0)‖.

(H3) The nonlinear function H : I × Eα(t0) × Eα(t0) → E is a Lipschitz continuous function with
H (I × Eα(t0) × Eα(t0)) ⊂ D(B). Then there exist constants LH , L ∗

H > 0 and for all t, s,∈ [0, T]
and x, y, x, y ∈ Eα(t0), such that

‖H (t, x, y)−H (s, x, y)‖ ≤ LH
[
|t− s|+ ‖x− x‖α + ‖y− y‖α

]
,

and
L ∗

H = sup
t∈I
‖H (t, 0, 0)‖.

(H4) The map ai : D × Eα(t0) → Eα(t0), i = 1, 2, 3; where D = {(t, s) ∈ I ×I : t ≥ s} and i = 1, 2, 3 are
continuous and there exist positive constants Lai , L

∗
ai
> 0 such thatwwww ∫ t

0
[ai(t, s, x)− ai(t, s, y)]ds

wwww
α

≤ Lai‖x− y‖α, x, y ∈ Eα(t0),

and

L ∗
ai
= sup

t∈[0,T]

∫ t

0
‖a1(t, s, 0)‖ds.

(H5) The functions Ii : Eα(t0) → Eα(t0), i = 1, 2, · · · , q are continuous functions and there exists a positive
constant LI > 0 such that

‖B(t)Iix− B(t)Iix‖ ≤ LI‖x− x‖α.

(H6) The function g : PC([0, T], Eα(t0)) → D(B) is a nonlinear function which satisfies that B(t)g is
continuous on PC([0, T], Eα(t0)) and there exists a constant Lg such that

‖B(t)g(z)− B(t)g(z)‖ ≤ Lg‖z− z‖PC,

‖B(t)g(z)‖ ≤ Lg‖z‖PC(Eα(t0))
, for each z ∈ PC(I , Eα(t0)).

Consider the sets Br = {z ∈ Eα(t0) : ‖z‖α ≤ r} and Wr = {z ∈ PC([0, T], Eα(t0)) : z(t) ∈ Br, for all t ∈
[0, T]} for each finite constant r > 0.

Now, we are in a position to define the mild solution for the problem (1.1)-(1.3).

Definition 3.1. A PC fucntion z(·) : I → E is called a mild solution for the problem if z(0) = z0 + g(z) and the
following integral equation

z(t) =



S(t, 0)
[
z0 + g(z)−F (0, z(h1(0)), 0)

]
+F

(
t, z(h1(t)),

∫ t

0
a1(t, s, z(h2(s))ds

)
−
∫ t

0
S(t, τ)B(τ)F

(
τ, z(h1(τ)),

∫ τ

0
a1(τ, ξ, z(h2(ξ))dξ

)
dτ

+
∫ t

0
S(t, τ)G

(
τ, z(h3(τ)),

∫ τ

0
a2(τ, ξ, z(h4(ξ)))dξ

)
dτ

+
∫ t

0
S(t, τ)H

(
τ, z(h5(τ)),

∫ τ

0
a3(τ, ξ, z(h6(ξ))dξ

)
dτ

+ ∑
0<ti<t

S(t, ti)Ii(z(t−i )), t ∈ [0, T].
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is fulfilled.

Theorem 3.1. Let (H1)-(H6) holds, z0 ∈ Eβ(t0) for some β ∈ (0, 1] and

Υ =

[
Nα,βN ′βNβ,1[LF + KqLI ] +Nα,βN ′1Lg +Nα,1LF (1 +La1) +Nα,βNβ

T1−β

1− β

{
LF (1 +La1)

+LG (1 +La2) +LH (1 +La3)
}]

< 1 (3.1)

then the impulsive problem (1.1)-(1.3) has a unique mild solution x ∈ E.

Proof. First, we will transform the problem (1.1)-(1.3) into a fixed point problem. Recognize the operator
Γ : PC(J, Eα(t0))→ PC(J, Eα(t0)) by

(Γz)(t) =



S(t, 0)
[
z0 + g(z)−F (0, z(h1(0)), 0)

]
+F

(
t, z(h1(t)),

∫ t

0
a1(t, s, z(h2(s))ds

)
−
∫ t

0
S(t, τ)B(τ)F

(
τ, z(h1(τ)),

∫ τ

0
a1(τ, ξ, z(h2(ξ))dξ

)
dτ

+
∫ t

0
S(t, τ)G

(
τ, z(h3(τ)),

∫ τ

0
a2(τ, ξ, z(h4(ξ)))dξ

)
dτ

+
∫ t

0
S(t, τ)H

(
τ, z(h5(τ)),

∫ τ

0
a3(τ, ξ, z(h6(ξ))dξ

)
dτ

+ ∑
0<ti<t

S(t, ti)Ii(z(t−i )), t ∈ [0, T].

It is evident that the fixed points of the operator Γ are mild solutions of the model (1.1)-(1.3).

Now, let us demonstrating that Γ has a unique fixed point. Initially, we show that Γ maps Wr into Wr. For
any z(·) ∈ Wr, we have

‖(Γz)(t)‖α ≤ ‖S(t, 0)z0‖α + ‖S(t, 0)g(z)‖α + ‖S(t, 0)F (0, z(h1(0)), 0)‖α

+

∥∥∥∥F(t, z(h1(t)),
∫ t

0
a1(t, s, z(h2(s))ds

)∥∥∥∥
α

+

∥∥∥∥∫ t

0
S(t, τ)B(τ)F

(
τ, z(h1(τ)),

∫ τ

0
a1(τ, ξ, z(h2(ξ))dξ

)
dτ

∥∥∥∥
α

+

∥∥∥∥∫ t

0
S(t, τ)G

(
τ, z(h3(τ)),

∫ τ

0
a2(τ, ξ, z(h4(ξ)))dξ

)
dτ

∥∥∥∥
α

+

∥∥∥∥∫ t

0
S(t, τ)H

(
τ, z(h5(τ)),

∫ τ

0
a3(τ, ξ, z(h6(ξ))dξ

)
dτ

∥∥∥∥
α

+

∥∥∥∥∥ ∑
0<ti<t

S(t, ti)Ii(z(t−i ))

∥∥∥∥∥
α

≤
8

∑
k=1

Ik. (3.2)
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Now, with the help of the above discussions along with (2.1)-(2.5), we can find the following estimations:

I1 = ‖S(t, 0)z0‖α

≤ ‖Bα(t0)B−β(t)‖‖Bβ(t)S(t, 0)B−β(0)‖‖Bβ(0)z0‖
≤ Nα,βN ′β‖Bβ(0)z0‖

I2 = ‖S(t, 0)g(z)‖α

≤ ‖Bα(t0)B−β(t)‖Bβ(t)S(t, 0)B−1(0)‖‖B(0)g(z)‖
≤ Nα,βN ′1Lg‖z‖
≤ Nα,βN ′1Lgr

I3 = ‖S(t, 0)F (0, z(h1(0)), 0)‖α

≤ ‖Bα(t0)B−β(t)‖‖Bβ(t)S(t, 0)B−β(0)‖‖Bβ(0)B−1(t)‖[‖B(t)F (0, z(h1(0)), 0)‖]
≤ Nα,βN ′βNβ,1(LF r +L ∗

F )

I4 =

∥∥∥∥F(t, z(h1(t)),
∫ t

0
a1(t, s, z(h2(s))ds

)∥∥∥∥
α

≤ ‖Bα(t0)B−1(t)‖
[wwwwB(t)F

(
t, z(h1(t)),

∫ t

0
a1(t, s, z(h2(s))ds

)wwww]
≤ ‖Bα(t0)B−1(t)‖

[wwwwB(t)F
(

t, z(h1(t)),
∫ t

0
a1(t, s, z(h2(s))ds

)
− B(t)F (t, 0, 0) + B(t)F (t, 0, 0)

wwww]
≤ Nα,1

[
LF

(
‖z(h1(t))‖+

wwww ∫ t

0
a1(t, s, z(h2(s)))ds

wwww)+L ∗
F

]
≤ Nα,1

[
LF

(
‖z(h1(t))‖+

wwww ∫ t

0
a1(t, s, z(h2(s)))ds−

∫ t

0
a1(t, s, 0)ds

wwww
+

wwww ∫ t

0
a1(t, s, 0)ds

wwww)+L ∗
F

]
≤ Nα,1

[
LF

(
‖z(h1(t))‖+La1‖z(h2(s)

)
‖+L ∗

a1
) +L ∗

F

]
≤ Nα,1

[
LF [(1 +La1)r +L ∗

a1
] +L ∗

F

]
I5 =

∥∥∥∥∫ t

0
S(t, τ)B(τ)F

(
τ, z(h1(τ)),

∫ τ

0
a1(τ, ξ, z(h2(ξ))dξ

)
dτ

∥∥∥∥
α

≤
∫ t

0
‖Bα(t0)B−β(t)‖‖Bβ(t)S(t, τ)‖

[wwwwF

(
τ, z(h1(τ)),

∫ τ

0
a1(τ, ξ, z(h2(ξ))dξ

)wwww] dτ

≤ Nα,βNβ
T1−β

1− β

[
LF (1 +La1)r +LF L ∗

a1
+L ∗

F

]
I6 =

∥∥∥∥∫ t

0
S(t, τ)G

(
τ, z(h3(τ)),

∫ τ

0
a2(τ, ξ, z(h4(ξ)))dξ

)
dτ

∥∥∥∥
α

≤
∫ t

0
‖Bα(t0)B−β(t)‖‖Bβ(t)S(t, τ)‖

[wwwwG

(
τ, z(h3(τ)),

∫ τ

0
a2(τ, ξ, z(h4(ξ)))dξ

)wwww] dτ

≤ Nα,βNβ
T1−β

1− β

[
LG (1 +La2)r +LG L ∗

a2
+L ∗

G

]
I7 =

∥∥∥∥∫ t

0
S(t, τ)H

(
τ, z(h5(τ)),

∫ τ

0
a3(τ, ξ, z(h6(ξ))dξ

)
dτ

∥∥∥∥
α

≤
∫ t

0
‖Bα(t0)B−β(t)‖‖Bβ(t)S(t, τ)‖

[wwwwH

(
τ, z(h5(τ)),

∫ τ

0
a3(τ, ξ, z(h6(ξ))dξ

)wwww] dτ

≤ Nα,βNβ
T1−β

1− β

[
LH (1 +La3)r +LH L ∗

a3
+L ∗

H

]
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I8 =

∥∥∥∥∥ ∑
0<ti<t

S(t, ti)Ii(z(t−i ))

∥∥∥∥∥
α

≤ ∑
0<ti<t

‖Bα(t0)B−β(t)‖‖Bβ(t)S(t, ti)B−β(ti)‖‖Bβ(ti)B−1(0)‖[‖B(0)B−1(t)‖‖B(t)Ii(z(t−i ))‖]

≤
q

∑
i=1
Nα,βN ′βNβ,1KLI(‖z(ti)‖)

≤ Nα,βN ′βNβ,1KqLIr.

Now, we substitute the estimations (I1)− (I8) in (3.2), we obtain

‖(Γz)(t)‖α

≤ Nα,βN ′β‖Bβ(0)z0‖+ [Nα,βN ′βNβ,1 +Nα,1]L
∗
F +Nα,1LF L ∗

a1
+Nα,βNβ

T1−β

1− β

[
LF L ∗

a1
+LG L ∗

a2

+LH L ∗
a3
+L ∗

F +L ∗
G +L ∗

H

]
+ r
[
Nα,βN ′βNβ,1[LF + KqLI ] +Nα,βN ′1Lg +Nα,1LF (1 +La1)

+Nα,βNβ
T1−β

1− β

{
LF (1 +La1) +LG (1 +La2) +LH (1 +La3)

}]
≤ r.

Therefore, the operator Γ maps Wr into Wr. Finally, we show that Γ is a contraction on PC([0, T], Eα(t0)).

Remark 3.1. For better readability, we find the contraction estimations are below:

Let us consider z, z ∈ PC([0, T], Eα(t0)) and t ∈ [0, T], then we obtain

‖Γz(t)− Γz(t)‖α =
16

∑
k=9

Ik,

where

I9 = ‖S(t, 0)z0 − S(t, 0)z0‖α

≤ 0

I10 = ‖S(t, 0)g(z)− S(t, 0)g(z)‖α

≤ ‖Bα(t0)B−β(t)‖‖Bβ(t)S(t, 0)B−β(0)‖
[
‖Bβ(0)B−1(0)‖‖B(0)[g(z)− g(z)]‖

]
≤ Nα,βN ′βNβ,1Lg‖z− z‖PC([0,T],Eα(t0))

I11 = ‖S(t, 0)F (0, z(h1(0)), 0)− S(t, 0)F (0, z(h1(0)), 0)‖α

≤ ‖Bα(t0)B−β(t)‖‖Bβ(t)S(t, 0)B−β(0)‖‖Bβ(0)B−1(t)‖
[
‖B(t)F (0, z(h1(0)), 0)− B(t)F (0, z(h1(0)), 0)‖

]
≤ Nα,βN 1

βNβ,1LF ‖z− z‖PC([0,T],Eα(t0))

I12 =

wwwwF

(
t, z(h1(t)),

∫ t

0
a1(t, s, z(h2(s))ds

)
−F

(
t, z(h1(t)),

∫ t

0
a1(t, s, z(h2(s))ds

)wwww
α

≤ ‖Bα(t0)B−1(t)‖
wwwwB(t)F

(
t, z(h1(t)),

∫ t

0
a1(t, s, z(h2(s))ds

)
− B(t)F

(
t, z(h1(t)),

∫ t

0
a1(t, s, z(h2(s))ds

)wwww
≤ Nα,1LF (1 +La1)‖z− z‖PC([0,T],Eα(t0))
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I13 =

wwww ∫ t

0
S(t, τ)B(τ)F

(
τ, z(h1(τ)),

∫ τ

0
a1(τ, ξ, z(h2(ξ))dξ

)
−
∫ t

0
S(t, τ)B(τ)F

(
τ, z(h1(τ)),

∫ τ

0
a1(τ, ξ, z(h2(ξ))dξ

)wwww
α

≤
∫ t

0
‖Bα(t0)B−β(t)‖‖Bβ(t)S(t, τ)‖

[wwwwB(τ)F
(

τ, z(h1(τ)),
∫ τ

0
a1(τ, ξ, z(h2(ξ))dξ

)
− B(τ)F

(
τ, z(h1(τ)),

∫ τ

0
a1(τ, ξ, z(h2(ξ))dξ

)wwww]dτ

≤
∫ t

0
Nα,βNβ(t− τ)−βLF

[
‖z(h1(τ))− z(h1(τ))‖+

wwww ∫ τ

0
a1(τ, ξ, z(h2(ξ)))dξ −

∫ τ

0
a1(τ, ξ, z(h2(ξ)))dξ

wwww]dτ

≤ Nα,βNβ

∫ t

0
(t− s)−βLF

(
‖z− z‖+La1‖z− z‖

)
dτ

≤ Nα,βNβ
T1−β

1− β
LF (1 +La1)‖z− z‖PC([0,T],Eα(t0))

I14 =

wwww ∫ t

0
S(t, τ)G

(
τ, z(h3(τ)),

∫ τ

0
a2(τ, ξ, z(h4(ξ)))dξ

)
dτ

−
∫ t

0
S(t, τ)G

(
τ, z(h3(τ)),

∫ τ

0
a2(τ, ξ, z(h4(ξ)))dξ

)
dτ

wwww
α

≤
∫ t

0
‖Bα(t0)B−β(t)‖‖Bβ(t)S(t, τ)‖

[wwwwG

(
τ, z(h3(τ)),

∫ τ

0
a2(τ, ξ, z(h4(ξ)))dξ

)
− G

(
τ, z(h3(τ)),

∫ τ

0
a2(τ, ξ, z(h4(ξ)))dξ

)wwww]dτ

≤ Nα,βNβ
T1−β

1− β
LG (1 +La2)‖z− z‖PC([0,T],Eα(t0))

I15 =

wwww ∫ t

0
S(t, τ)H

(
τ, z(h5(τ)),

∫ τ

0
a3(τ, ξ, z(h6(ξ))dξ

)
dτ

−
∫ t

0
S(t, τ)H

(
τ, z(h5(τ)),

∫ τ

0
a3(τ, ξ, z(h6(ξ))dξ

)wwww
α

≤
∫ t

0
‖Bα(t0)B−β(t)‖‖Bβ(t)S(t, τ)‖

[wwwwH

(
τ, z(h5(τ)),

∫ τ

0
a3(τ, ξ, z(h6(ξ))dξ

)
−H

(
τ, z(h5(τ)),

∫ τ

0
a3(τ, ξ, z(h6(ξ))dξ

)wwww]dτ

≤ Nα,βNβ
T1−β

1− β
LH (1 +La3)‖z− z‖PC([0,T],Eα(t0))

I16 =

wwww ∑
0<ti<t

S(t, ti)[Ii(z(t−i ))− Ii(z(t−i ))]
wwww

α

≤
q

∑
i=1
‖Bα(t0)B−β(t)‖‖Bβ(t)S(t, ti)B−β(ti)‖‖Bβ(ti)B−1(0)‖

[
‖B(0)B−1(t)‖‖B(t)[Ii(z(t−i ))− Ii(z(t−i ))]‖

]
≤ Nα,βN ′βNβ,1KqLI‖z− z‖PC([0,T],Eα(t0))

.

Now, we enter into the main proof of this theorem. From Remark 3.1, we obtain

‖Γz(t)− Γz(t)‖α

≤
[
Nα,βN ′βNβ,1[LF + KqLI ] +Nα,βN ′1Lg +Nα,1LF (1 +La1) +Nα,βNβ

T1−β

1− β

{
LF (1 +La1)

+LG (1 +La2) +LH (1 +La3)
}]
‖z− z‖PC([0,T],Eα(t0))

Therefore, we take the supremum of t over [0, T] and we have

‖Γz− Γz‖PC([0,T],Eα(t0))
≤ Υ‖z− z‖PC([0,T],Eα(t0))

.
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Since Υ < 1 by the inequality (3.1), it indicates that the map Γ is contraction on PC([0, T], Eα(t0)). Hence,
by Banach contraction principle, there exists a unique fixed point z ∈ PC([0, T], Eα(t0)) such that Γz(t) = z(t)
which is a mild solution of the problem (1.1)-(1.3). The proof is now completed.
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Abstract

In this paper, the extended tanh method is used to construct exact solutions of the generalized combined
sinh-cosh-Gordon equations and the generalized double combined sinh-cosh-Gordon equations which arises
in mathematical physics and has a wide range of scientific applications that range from chemical reactions to
water surface gravity waves. The extended tanh method is an efficient method for obtaining exact solutions
of nonlinear partial differential equations. This method can be applied to nonintegrable equations as well as
to integrable ones.

Keywords: Extended tanh method, Combined sinh-cosh-Gordon equations, Double combined sinh-cosh-Gordon
equation, soliton.
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1 Introduction

Phenomena in physics and other fields are often described by nonlinear evolution equations. When we
want to understand the physical mechanism of phenomena in nature, described by nonlinear evolution equa-
tions, exact solutions for the nonlinear evolution equations have to be explored. For example, the wave phe-
nomena observed in fluid dynamics, plasma and elastic media and optical fibers, etc.
Thus, the methods for deriving exact solutions for the governing equations have to be developed. Recently,
many powerful methods have been established and improved. Among these methods, we cite the tanh and
extended tanh methods [1-9], (G′

G )-expansion method [10-13], the homogeneous balance method [14], the
Jacobi elliptic function method [15, 16], the exp-function method [17], the first-integral method [18-20], the
sine-cosine method [21] and so on.

The pioneer work Malfiet in [2, 3] introduced the powerful tanh method for a reliable treatment of the
nonlinear wave equations. The useful tanh method is widely used by many work and by the references
therein. Later, the extended tanh method, developed by Wazwaz [4, 5], is a direct and effective algebraic
method for handling nonlinear equations. Various extensions of the method were developed as well.
The aim of this paper is to find exact soliton solutions of the generalized combined and the generalized double
combined sinh-cosh-Gordon equations [22], by using the extended tanh method.
The paper is arranged as follows. In Section 2, we describe briefly the extended tanh method. In Section 3
and 4, we apply this method to find exact soliton solutions of the generalized combined and the generalized
double combined sinh-cosh-Gordon equations. In Section 5, some conclusions are given.

∗Corresponding author.
E-mail address: taghizadeh@guilan.ac.ir (Nasir Taghizadeh), moosavinoori@gmail.com(Seyedeh Roodabeh Moosavi Noori), moosavi-
noori.edu@gmail.com (Seyedeh Bahareh Moosavi Noori).
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2 The extended tanh method and tanh method

A PDE
F(u, ux, ut, uxx, uxt, uxxx, ....) = 0, (2.1)

can be converted to an ODE

G(u, u′, u′′, u′′′, ....) = 0, (2.2)

upon using a wave variable ξ = x − ct. Eq. (2.2) is then integrated as long as all terms contain derivatives
where integration constants are considered zeros.
Introducing a new independent variable

Y = tanh(µξ), ξ = x− ct, (2.3)

leads to the change of derivatives:
d

dξ
= µ(1−Y2)

d
dY

,

d2

dξ2 = −2µ2Y(1−Y2)
d

dY
+ µ2(1−Y2)2 d2

dY2 . (2.4)

The extended tanh method admits the use of the finite expansion

u(µξ) = S(Y) =
M

∑
k=0

akYk +
M

∑
k=1

bkY−k, (2.5)

where M is a positive integer, in most cases, that will be determined. Expansion (2.5) reduces to the standard
tanh method for bk = 0, (k = 1, ..., M). Substituting (2.5) into the ODE (2.2) results in an algebraic equation in
powers of Y.

To determine the parameter M, we usually balance the linear terms of highest order in the resulting equa-
tion with the highest order nonlinear terms. We then collect all coefficients of powers of Y in the resulting
equation where these coefficients have to vanish. This will give a system of algebraic equations involving
the parameters ak(k = 0, .., M), bk(k = 1, .., M), µ and c. Having determined these parameters we obtain an
analytic solution u(x, t) in a closed form.

3 The generalized combined sinh-cosh-Gordon equation

Let us consider the generalized combined sinh-cosh-Gordon equations

utt − kuxx + α sinh(nu) + β cosh(nu) = 0. (3.6)

Using the variable u(x, t) = u(µξ), ξ = x− ct, carries Eq. (3.6) into the ODE

(c2 − k)u′′ + α sinh(nu) + β cosh(nu) = 0. (3.7)

We use the Painleve property
v = enu, (3.8)

or equivalently

u =
1
n

lnv, (3.9)

from which we find

u′ =
1
n

v′

v
, u′′ =

1
n

vv′′ − (v′)2

v2 . (3.10)

The transformation (3.8) also gives

sinh(nu) =
v− v−1

2
, cosh(nu) =

v + v−1

2
, (3.11)
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that also gives

u =
1
n

arccosh[
v + v−1

2
]. (3.12)

Substituting the transformations introduced above into Eq. (3.7) gives the ODE

(α + β)nv3 − (α− β)nv + 2(c2 − k)vv′′ − 2(c2 − k)(v′)2 = 0. (3.13)

Balancing vv′′ with v3 in Eq. (3.13) gives
2M + 2 = 3M,

then
M = 2.

In this case, the extended tanh method the form (2.5) admits the use of the finite expansion

v(x, t) = S(Y) = a0 + a1Y + a2Y2 +
b1

Y
+

b2

Y2 . (3.14)

Substituting the form (3.14) into Eq. (3.13) and using (2.4), collecting the coefficients of Y we obtain:

Coefficient of Y6: n(α + β)a3
2 + 4(c2 − k)µ2a2

2.

Coefficient of Y5: 3n(α + β)a1a2
2 + 8(c2 − k)µ2a1a2.

Coefficient of Y4: 3n(α + β)(a0a2
2 + a2

1a2) + 2(c2 − k)µ2(6a0a2 + a2
1).

Coefficient of Y3: n(α + β)(3b1a2
2 + 6a0a1a2 + a3

1) + 4(c2 − k)µ2(a0a1 − a1a2 + 5a2b1).

Coefficient of Y2: 3n(α + β)(a0a2
1 + a2

0a2 + 2a1a2b1 + b2a2
2)− n(α− β)a2

+ 4(c2 − k)µ2(2a1b1 − 4a0a2 + 8a2b2 − a2
2).

Coefficient of Y1: 3n(α + β)(a2
0a1 + a2

1b1 + 2a0a2b1 + 2a1a2b2)− n(α− β)a1
+ 4(c2 − k)µ2(−a0a1 − a1a2 + 4a1b2 − 9a2b1).

Coefficient of Y0: 3n(α + β)(a2
1b2 + a2b2

1 + 2a0a1b1 + 2a0a2b2) + n(α + β)a3
0 − n(α− β)a0

2(c2 − k)µ2(2a0a2 + 2a0b2 − 32a2b2 − a2
1 − 8a1b1 − b2

1).

Coefficient of Y−1: 3n(α + β)(a2
0b1 + a1b2

1 + 2a0a1b1 + 2a2b1b2)− n(α− β)b1
+ 4(c2 − k)µ2(−a0b1 − b1b2 + 4a2b1 − 9a1b2).

Coefficient of Y−2: 3n(α + β)(a0b2
1 + a2

0b2 + 2a1b1b2 + a2b2
2)− n(α− β)b2

+ 4(c2 − k)µ2(2a1b1 − 4a0b2 + 8a2b2 − b2
2).

Coefficient of Y−3: n(α + β)(3a1b2
2 + 6a0b1b2 + b3

1) + 4(c2 − k)µ2(a0b1 − b1b2 + 5a1b2).

Coefficient of Y−4: 3n(α + β)(a0b2
2 + b2

1b2) + 2(c2 − k)µ2(6a0b2 + b2
1).

Coefficient of Y−5: 3n(α + β)b1b2
2 + 8(c2 − k)µ2b1b2.

Coefficient of Y−6: n(α + β)b3
2 + 4(c2 − k)µ2b2

2.

Setting these coefficients equal to zero, and solving the resulting system, by using Maple, we find the fol-
lowing sets of solutions:

a0 = 0, a1 = 0, a2 = −
√

α− β

α + β
, b1 = 0, b2 = 0, µ =

√
n

2

4
√

α2 − β2
√

c2 − k
. (3.15)
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a0 = 0, a1 = 0, a2 = 0, b1 = 0, b2 = −
√

α− β

α + β
, µ =

√
n

2

4
√

α2 − β2
√

c2 − k
. (3.16)

a0 =
1
2

√
α− β

α + β
, a1 = 0, a2 =

1
4

√
α− β

α + β
, b1 = 0, b2 =

1
4

√
α− β

α + β
, (3.17)

µ =

√
n

4

4
√

α2 − β2
√

c2 − k
.

Recall that

u =
1
n

arccosh[
v + v−1

2
].

The sets (3.15)-(3.17) give the solitons solutions for α > β, c2 > k

u1(x, t) =
1
n

arccosh{−(α− β) tanh2[µ(x− ct)]− (α + β) coth2[µ(x− ct)]
2
√

α2 − β2
}, (3.18)

u2(x, t) =
1
n

arccosh{−(α− β) coth2[µ(x− ct)]− (α + β) tanh2[µ(x− ct)]
2
√

α2 − β2
}, (3.19)

where µ =
√

n
2

4
√

α2−β2
√

c2−k
,

u3(x, t) =
1
n

arccosh{ (α− β)(2 + tanh2[µ(x− ct)] + coth2[µ(x− ct)])2 + 16(α + β)

8
√

α2 − β2(2 + tanh2[µ(x− ct)] + coth2[µ(x− ct)])
}, (3.20)

where µ =
√

n
4

4
√

α2−β2
√

c2−k
.

However for c2 < k, we obtain the travelling wave solutions

u4(x, t) =
1
n

arccosh{ (α− β) tan2[µ(x− ct)] + (α + β) cot2[µ(x− ct)]
2
√

α2 − β2
}, (3.21)

u5(x, t) =
1
n

arccosh{ (α− β) cot2[µ(x− ct)] + (α + β) tan2[µ(x− ct)]
2
√

α2 − β2
}, (3.22)

where µ =
√

n
2

4
√

α2−β2
√

c2−k
,

u6(x, t) =
1
n

arccosh{ (α− β)(2 + tan2[µ(x− ct)] + cot2[µ(x− ct)])2 + 16(α + β)

8
√

α2 − β2(2 + tan2[µ(x− ct)] + cot2[µ(x− ct)])
}, (3.23)

where µ =
√

n
4

4
√

α2−β2
√

c2−k
.

4 The generalized double combined sinh-cosh-Gordon equation

In this section we study the generalized double combined sinh-cosh-Gordon equation

utt − kuxx + α sinh(nu) + α cosh(nu) + β sinh(2nu) + β cosh(2nu) = 0. (4.24)

We take the transformation
u(x, t) = u(µξ), ξ = x− ct.

The substitution of the transformation into (4.24) yields the ODE

(c2 − k)u′′ + α sinh(nu) + α cosh(nu) + β sinh(2nu) + β cosh(2nu) = 0. (4.25)

We use the Painleve property
v = enu, (4.26)
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or equivalently

u =
1
n

lnv, (4.27)

from which we find

u′ =
1
n

v′

v
, u′′ =

1
n

vv′′ − (v′)2

v2 . (4.28)

The transformation (4.26) also gives

sinh(nu) =
v− v−1

2
, cosh(nu) =

v + v−1

2
, sinh(2nu) =

v2 − v−2

2
, (4.29)

cosh(2nu) =
v2 + v−2

2
,

that also gives

u =
1
n

arccosh[
v + v−1

2
]. (4.30)

Substituting the transformations introduced above into Eq. (4.25) gives the ODE

2βnv4 + 2αnv3 + 2(c2 − k)vv′′ − 2(c2 − k)(v′)2 = 0. (4.31)

Balancing vv′′ with v4 in Eq. (4.31) gives
2M + 2 = 4M,

then
M = 1.

In this case, the extended tanh method the form (2.5) admits the use of the finite expansion

v(x, t) = S(Y) = a0 + a1Y +
b1

Y
. (4.32)

Substituting the form (4.32) into Eq. (4.31) and using (2.4), collecting the coefficients of Y we obtain:

Coefficient of Y4: 2nβa4
1 + 2(c2 − k)µ2a2

1.

Coefficient of Y3: 2na3
1(4βa0 + α) + 4(c2 − k)µ2a0a1.

Coefficient of Y2: 8nβa3
1b1 + 6na0a2

1(2βa0 + α) + 8(c2 − k)µ2a1b1.

Coefficient of Y1: 6na2
1b1(4βa0 + α) + 2na2

0a1(4βa0 + 3α)− 4(c2 − k)µ2a0a1.

Coefficient of Y0: 2na3
0(βa0 + α)− 2(c2 − k)µ2(a2

1 + b2
1 + 8a1b1) + 12nβa1b1(2a2

0 + a1b1 + αna0).

Coefficient of Y−1: 6na1b2
1(4βa0 + α) + 2na2

0b1(4βa0 + 3α)− 4(c2 − k)µ2a0b1.

Coefficient of Y−2: 8nβb3
1a1 + 6na0b2

1(2βa0 + α) + 8(c2 − k)µ2a1b1.

Coefficient of Y−3: 2nb3
1(4βa0 + α) + 4(c2 − k)µ2a0b1.

Coefficient of Y−4: 2nβb4
1 + 2(c2 − k)µ2b2

1.

Setting these coefficients equal to zero, and solving the resulting system, by using Maple, we find the fol-
lowing sets of solutions:

a0 = − α

2β
, a1 = 0, b1 = ± α

2β
, µ = ±α

2

√
n

β(k− c2)
. (4.33)

a0 = − α

2β
, a1 = ± α

2β
, b1 = 0, µ = ±α

2

√
n

β(k− c2)
. (4.34)
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a0 = − α

2β
, a1 = ± α

4β
, b1 = ± α

4β
, µ = ±α

4

√
n

β(k− c2)
. (4.35)

Recall that

u =
1
n

arccosh[
v + v−1

2
].

The sets (4.33)-(4.35) give the soliton solutions

u1(x, t) =
1
n

arccosh{−α2(1± coth[µ(x− ct)])2 − 4β2

4αβ(1± coth[µ(x− ct)])
}, (4.36)

u2(x, t) =
1
n

arccosh{−α2(1± tanh[µ(x− ct)])2 − 4β2

4αβ(1± tanh[µ(x− ct)])
}, (4.37)

where µ = ± α
2

√
n

β(k−c2)
, k > c2.

u3(x, t) =
1
n

arccosh{−α2(2± tanh[µ(x− ct)]± coth[µ(x− ct)])2 − 16β2

8αβ(2± tanh[µ(x− ct)]± coth[µ(x− ct)])
}, (4.38)

where µ = ± α
4

√
n

β(k−c2)
.

However, for k < c2, complex solutions can be obtained that are not needed in this work.

5 Conclusion

In this paper, the extended tanh method has been successfully applied to find the exact solutions for the
generalized combined and the generalized double combined sinh-cosh-Gordon equations. The results indi-
cate the efficiency and reliability of the method. Thus, we can say that the proposed method can be extended
to solve the problems of nonlinear partial differential equations which arising in the theory of solitons and
other areas.
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Abstract

In this paper, intuitionistic fuzzy planar graphs are defined and various properties are studied. The
intuitionistic fuzzy graphs are more efficient than fuzzy graphs, since it was found that one component is
not sufficient to illustrate some special types of information. The notion of intuitionistic fuzzy dual graph
and one of its close association namely intuitionistic fuzzy combinatorial dual graph is presented here. Some
properties on intuitionistic fuzzy combinatorial dual graphs are investigated here.
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1 Introduction

Graph theory has a numerous applications in different research areas to structuring and designing of
several models, its structures are used to represent various networking problems namely traffic network,
telephone network, railway network, communication problems etc. The notion of fuzzy set (FS) was first
introduced by Zadeh [11] (1965) to handle uncertainty in real life problems. After that it was found that one
component is not sufficient to represent some special types of information. In this situations, a component
namely non-membership value is needed to illustrate the information completely. To overcome this
limitation of FS Atanassov [2] (1986) introduced the notion of intuitionistic fuzzy set (IFS) in addition to a
new component known as degree of non-membership. Fuzzy graph (FG) theory was introduced by
Rosenfeld [5] in 1975. Samanta et al. [6–8] defined fuzzy planar graph (FPG) in a different way where
crossing between edges are allowed. Some related works are also found in [3, 4]. The idea of intuitionistic
fuzzy graph (IFG) discussed by Shannon et al. [10]. Alshehri et al. [1] introduced the notion of intuitionistic
fuzzy planar graphs (IFPG). Shriram et al. [9] defined fuzzy combinatorial dual graph.

In this work, we present IFPG, intuitionistic fuzzy faces, intuitionistic fuzzy dual graphs (IFDG),
intuitionistic fuzzy combinatorial dual graphs (IFCDG) which is one of the classification of IFDGs. Also,
introduced the terms strong (weak) IFPGs, strength of an edge, intersecting value between the edges. The
IFMGs, IFPGs, IFDGs and IFCDGs are illustrated by an examples and lot of are presented of these graphs.

2 Preliminaries

This section, we give some related terminologies and results.

Definition 2.1. [5] A FG is of the form ζ = (Ṽ, σ, µ) where Ṽ is the vertex set, σ : Ṽ → [0, 1] and µ : Ṽ × Ṽ → [0, 1]
denote the degree of membership of r ∈ Ṽ and edge (r, s) ∈ ζ, respectively such that µ(r, s) ≤ min(σ(r), σ(s)) ∀
r, s ∈ Ṽ.

*Corresponding author.
E-mail address: tuban22@gmail.com (Sankar Das).
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Definition 2.2. [2] Let χ be the universe. Then a IFS Ã is defined on X as Ã = {r, (µÃ(r), νÃ(r)) : r ∈ X}, where
µÃ(r) and νÃ(r) are independent denote the degree of membership (DMS) and degree of non-membership (DNS) of
r ∈ Ã, respectively with 0 ≤ µÃ(r) + νÃ(r) ≤ 1 ∀ r ∈ X. Also ∀ r ∈ X, DÃ(r) = 1− (µÃ(r) + νÃ(r)) represent
denial degree of r in Ã.

Definition 2.3. [1] A intuitionistic fuzzy relation (IFR) R is a intuitionistic fuzzy (IF) subset of X × Y is given by
R = {(r, s), µR(r, s), νR(r, s)|(r, s) ∈ X × Y}, where µR, νR : X × Y → [0, 1] denote DMS and DNS of an edge (r, s)
in R, respectively with 0 ≤ µR(r, s) + νR(r, s) ≤ 1 for every (r, s) ∈ X×Y.

Definition 2.4. [1] A IFG is of the form G̃ = (Ṽ, Ã, B̃) where Ã = (µÃ, νÃ), B̃ = (µB̃, νB̃) and
(i) Ṽ = {r1, r2, .., rn} such that that µÃ, νÃ : Ṽ → [0, 1] denote the DMS and DNS of ri ∈ Ṽ, respectively with
0 ≤ µÃ(ri) + νÃ(ri) ≤ 1 ∀ri ∈ Ṽ, (i = 1, 2, .., n).
(ii) µB̃, νB̃ : Ṽ × Ṽ → [0, 1] denote the DMS and DNS of an edge (ri, rj), respectively such that µB̃(ri, rj) ≤
min{µÃ(ri), µÃ(rj)} and νB̃(ri, rj) ≤ max{νÃ(ri), νÃ(rj)} with µB̃(ri, rj) + νB̃(ri, rj) ≤ 1 for every (ri, rj), (i, j =
1, 2, .., n).

Figure 1: Example of a IFG

Definition 2.5. [1] A intuitionistic fuzzy multiset (IFMS) M is given by M = {(r, µi
M(r), νi

M(r)) : i = 1, 2, .., n|r ∈
Ṽ}, where n = max{i : µi

M(r) 6= 0 or νi
M(r) 6= 0} and µi

M(r), νi
M(r) ∈ [0, 1] are the DMS and DNS of r ∈ Ṽ,

respectively with 0 ≤ µi
M(r) + νi

M(r) ≤ 1 ∀ r ∈ Ṽ.

Now, we introduce the notion of IFPG, for that it needs to define Intuitionistic fuzzy multigraph (IFMG)
using the concept of IFMS.

Definition 2.6. [1] Let Ã = (µÃ, νÃ) be a IFS on a non-empty set Ṽ and B̃ = {(rs, µi
B̃(rs), νi

B̃(rs)) : i =

1, 2, . . . , nrs|rs ∈ Ṽ× Ṽ} be a IFMS on Ṽ× Ṽ such that µi
B̃(rs) ≤ min{µÃ(r), µÃ(s)}, νi

B̃(rs) ≤ max{νÃ(r), νÃ(s)}
for all i = 1, 2, . . . , nrs, where nrs = max{i : µi

B̃(rs) 6= 0 or νi
B̃(rs) 6= 0} is the number of edges between r and s. Then

G̃ = (Ṽ, Ã, B̃) is called IFMG where µÃ(r), νÃ(r) and µi
B̃(rs), νi

B̃(rs) represent the DMS and DNS of vertex r and the
ith edge between r and s in G̃, respectively.

Definition 2.7. [1] Let G̃ = (Ṽ, Ã, B̃) be IFMG, where B̃ = {(rs, µi
B̃(rs), νi

B̃(rs)) : i = 1, 2, . . . , nrs|rs ∈ Ṽ × Ṽ}
and nrs = max{i : µi

B̃(rs) 6= 0 or νi
B̃(rs) 6= 0}. A multiedge rs is strong in G̃ if 1

2 min{µÃ(r), µÃ(s)} ≤ µi
B̃(rs),

1
2 max{νÃ(r), νÃ(s)} ≤ νi

B̃(rs) for all i = 1, 2, . . . , nrs.

Example 2.1. Consider a MG G̃∗ = (Ṽ, E), where Ṽ = {r, s, u, v} and E = {rs, su, sv, sv, uv}. Let Ã = (µÃ, νÃ) be
a IFS on Ṽ and B̃ = (µB̃, νB̃) be a IFMS on Ṽ × Ṽ given in Table 1 and 2. Fig.2 is a IFMG.

Table 1: IFS Ã
Ã r s u v

µÃ 0.4 0.45 0.3 0.3
νÃ 0.4 0.1 0.25 0.4

Table 2: IFMS B̃
B̃ rs su sv sv uv

µB̃ 0.35 0.3 0.3 0.2 0.3
νB̃ 0.2 0.25 0.3 0.4 0.25

Here, rs and uv be two strong edges as 1
2 min{0.4, 0.45} ≤ 0.35, 1

2 max{0.4, 0.1} = 0.2 and 1
2 min{0.3, 0.3} ≤ 0.3,

1
2 max{0.25, 0.4} ≤ 0.25.
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Figure 2: Example of IFMG

Definition 2.8. [1] Let in G̃, P is the intersecting point between the edges (rs, µi
B̃(rs), νi

B̃(rs)) and

(uv, µ
j
B̃(uv), ν

j
B̃(uv)), where i, j are fixed integers. The strength of the edge rs is defined as

Irs = (trs, frs) =

(
µi

B̃(rs)
min(µÃ(r),µÃ(s))

,
νi

B̃(rs)
max(νÃ(r),νÃ(s))

)
. The edge rs is strong if trs ≥ 0.5 and frs ≥ 0.5 otherwise weak.

At P the intersecting value is ĨP = (tp, fp) =
(

trs+tuv
2 , frs+ fuv

2

)
.

Example 2.2. In Fig.3, strength of the edges (r, u) and (s, v) are Iru = (0.8, 0.8) and Isv = (0.66, 0.88), respectively.
Thus at P intersecting value is ĨP = (0.73, 0.84).

Figure 3: Intersecting value between two edges

Definition 2.9. [1] Let P1, P2, . . . , Pk be k (integer) intersecting points between the edges of IFMG G̃. Then G̃ is IFPG
with DP f = ( ft, f f ), where ft =

1
1+{tP1+tP2+...+tPk

} and f f = 1
1+{ fP1+ fP2+...+ fPk

} . Clearly, f = ( ft, f f ) is bounded

as 0 < ft ≤ 1 and 0 < f f ≤ 1. DP increases if intersecting points decreases.

Example 2.3. Consider a IFMG G̃∗ = (Ṽ, E), where Ṽ = (r, s, u, v) and E = {rs, ru, ru, su, sv, sv,
rv, uv}. Let Ã = (µÃ, νÃ) be a IFS of Ṽ and B̃ = (µB̃, νB̃) be a IFMS of Ṽ × Ṽ given in Table 3 and 4.

Table 3: IFS Ã
Ã r s u v

µÃ 0.5 0.4 0.6 0.3
νÃ 0.2 0.3 0.1 0.4

Table 4: IFMS B̃
B̃ rs ru ru su sv sv rv uv

µB̃ 0.4 0.3 0.3 0.4 0.2 0.2 0.2 0.2
νB̃ 0.2 0.1 0.2 0.1 0.3 0.2 0.2 0.3

In Fig.4, a IFPG is considered with two intersecting points P1 and P2, between the edges (ru, (0.3, 0.1)),
(sv, (0.2, 0.3)) and (ru, (0.3, 0.2)), (sv, (0.2, 0.2)), respectively. The strength of (ru, (0.3, 0.1)), (sv, (0.2, 0.3)),
(ru, (0.3, 0.2)) and (sv, (0.2, 0.2)) are respectively Iru = (0.6, 0.5), Isv = (0.66, 0.75), Iru = (0.6, 1) and
Isv = (0.66, 0.5). At P1, intersecting value is ĨP1 = (0.63, 0.62) and at P2, ĨP2 = (0.63, 0.75). Thus, the DP of G̃∗ is
f = (0.44, 0.42).

Definition 2.10. [1] A IFPG G̃ is strong if its DP f = ( ft, f f ) is such that ft > 0.5 and f f > 0.5. Otherwise weak.
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Figure 4: Example of IFPG

Now we present a special type of IFPG called 0.67-IFPG with DP f = ( ft, f f ), where ft ≥ 0.67 and f f ≥
0.67. When DP is (1, 1), its geometrical representation is like as crisp planar graph. The above theorem state
that, if DP is f = ( ft, f f ), where ft ≥ 0.67 and f f ≥ 0.67, then two strong edges not intersect in G̃ and if
there is any crossing, this is the crossing between the edges except both are strong. Thus any IFPG having no
intersecting point between the edges is a IFPG with DP (1, 1). Therefore, it is a 0.67-IFPG.

3 Intuitionistic fuzzy dual graph (IFDG)

At first we present intuitionistic fuzzy face (IFF) of a IFPG. Face is a region bounded by IF edges in a IFG.
The presence of a IFF depending on minimum strength of its boundary edges. Because if all boundary edges
of a IFF have DMS and DNS 1 and 0, respectively, it turn out crisp face but if we removed one of such edge or
has membership degrees 0 and 1, respectively, the IFF does not exit. A IFF with its membership degrees are
defined below.

Definition 3.11. Let G̃ be a IFPG and B̃ = {(rs, µi
B̃(rs), νi

B̃(rs)), i = 1, 2, . . . , nrs|rs ∈ Ṽ× Ṽ}, where nrs = max{i :
µi

B̃(rs) 6= 0 or νi
B̃(rs) 6= 0}. A IFF of G̃ is a region, enclosed by the set of IF edges E′ ⊂ E. The DMS and DNS of IFF

are, respectively min{ µi
B̃(rs)

min(µÃ(r),µÃ(s))
, i = 1, 2, . . . , nrs|rs ∈ E′} and max{ νi

B̃(rs)
max(νÃ(r),νÃ(s))

, i = 1, 2, . . . , nrs|rs ∈ E′}.

Definition 3.12. A IFF strong if its DMS > 0.5 and DNS < 0.5 and weak otherwise. Each IFPG has an outer face
with an infinite region and inner faces with finite region.

Example 3.4. In Fig.5, the IFPG has the faces: F̃1 (inner face) is enclosed by the edges (r1r2, 0.4, 0.1), (r2r3, 0.6, 0.1)
and (r1r3, 0.4, 0.1). F̃2 (outer face) is enclosed by the edges (r1r4, 0.4, 0.1),
(r1r3, 0.4, 0.1), (r2r3, 0.6, 0.1) and (r2r4, 0.5, 0.1). F̃3 (inner face) is enclosed by the edges (r1r2, 0.4, 0.1),
(r1r4, 0.4, 0.1) and (r2r4, 0.5, 0.1). The IFFs F̃1, F̃2 and F̃3 are strong as all have same DMS and DNS 0.8 and 0.33,
respectively.

Figure 5: Example of faces in IFPG

Now we introduce dual of IFPG with DP (1, 1). The vertices of IFDG are imposed corresponding to strong
IFFs and edges are imposed corresponding to common border edges of IFFs.
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Definition 3.13. Let G̃ = (Ṽ, Ã, B̃) be a 0.67-IFPG and F̃1, F̃2, . . . , F̃n be its strong IFFs. The IFDG of G̃ is a IFPG
G̃1 = (Ṽ1, Ã1, B̃1), where Ṽ1 = {ti, i = 1, 2, . . . , n} and each ti in G̃1 is considered corresponding to the face F̃i of G̃.
The DMS and DNS of vertices are given by the mapping Ã1 = (µÃ1

, νÃ1
) : Ṽ1 → [0, 1]× [0, 1] such that

µÃ1
(ti) = max{µi

B̃(rs), i = 1, 2, . . . , nrs|rs is the border edge of F̃i},
νÃ1

(ti) = min{νi
B̃(rs), i = 1, 2, . . . , nrs|rs is the border edge of F̃i}.

In IFDG G̃1, may exists more than one edge between ti and tj as two faces F̃i and F̃j of G̃ may exists more than one
common edge. Let µl

B̃(titj) and νl
B̃(titj) denotes the DMS and DNS of the l-th edge between ti and tj, respectively. The

DMS and DNS of IF edges in IFDG are given by µl
B̃1
(titj) = µi

B̃(rs)l and νl
B̃1
(titj) = νi

B̃(rs)l , where (rs)l is border

edge between F̃i and F̃j and l = 1, 2, . . . , p, where p is the number of common border edges between F̃i and F̃j or the edges
between ti and tj. If in a IFDG present any strong pendent edge, then for that there is a self-loop in G̃1. The DMS and
DNS of the self-loop of G̃1 and pendent edge of G̃ are same.

Example 3.5. In Fig.6, consider a IFPG G̃ = (Ṽ, Ã, B̃), where Ṽ = {r, s, u, v}, Ã = {(r, 0.4, 0.3),
(s, 0.6, 0.2), (u, 0.7, 0.3), (v, 0.3, 0.3)} and B̃ = {(rs, 0.4, 0.1), (ru, 0.3, 0.1), (rv, 0.3, 0.1), (su, 0.6, 0.1),
(uv, 0.3, 0.1), (rv, 0.2, 0.1)}.

Figure 6: Example of IFDG

This graph has four faces F̃1, F̃2, F̃3 and F̃4, where F̃1 is enclosed by the edges (rs, 0.4, 0.1), (ru, 0.3, 0.1) and
(su, 0.6, 0.1), F̃2 is enclosed by (ru, 0.3, 0.1), (rv, 0.3, 0.1) and (uv, 0.3, 0.1), F̃3 is enclosed by
(rv, 0.3, 0.1), (rv, 0.2, 0.1) and outer face F̃4 is enclosed by (rs, 0.4, 0.1), (su, 0.6, 0.1),
(uv, 0.3, 0.1) and (rv, 0.2, 0.1). Since IFFs are strong, the vertex set of IFDG is Ṽ1 = {t1, t2, t3, t4}, where each ti is
assigned corresponding to each F̃i, i = 1, 2, 3, 4. Thus µÃ1

(t1) = 0.6, νÃ1
(t1) = 0.1, µÃ1

(t2) = 0.3, νÃ1
(t2) = 0.1,

µÃ1
(t3) = 0.3, νÃ1

(t3) = 0.1, µÃ1
(t4) = 0.6, νÃ1

(t4) = 0.1.
It is seen that rs and su are the common edges between F̃1 and F̃4. So in IFDG G̃1 there exists two edges between t1 and
t4. The DMS and DNS of these edges are given by
µB̃1

(t1t4) = µB̃(rs) = 0.4, νB̃1
(t1t4) = νB̃(rs) = 0.1,

µB̃1
(t1t4) = µB̃(su) = 0.6, νB̃1

(t1t4) = νB̃(su) = 0.1.
Also,
µB̃1

(t1t2) = µB̃(ru) = 0.3, νB̃1
(t1t2) = νB̃(ru) = 0.1,

µB̃1
(t2t3) = µB̃(rv) = 0.3, νB̃1

(t2t3) = νB̃(rv) = 0.1,
µB̃1

(t2t4) = µB̃(uv) = 0.3, νB̃1
(t2t4) = νB̃(uv) = 0.1,

µB̃1
(t3t4) = µB̃(rv) = 0.2, νB̃1

(t3t4) = νB̃(rv) = 0.1.
Therefore, the edge set of IFDG is B̃1 = {(t1t4, 0.4, 0.1), (t1t4, 0.6, 0.1), (t1t2, 0.3, 0.1), (t2t3, 0.3, 0.1),
(t2t4, 0.3, 0.1), (t3t4, 0.2, 0.1)}. The IFDG G̃1 of G̃ is drawn by dotted line in Fig.6.

4 Intuitionistic fuzzy combinatorial dual graph (IFCDG)

In this section, we define one of the classification of IFDG known as IFCDG and give some theorems of it.
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Definition 4.14. Let G̃ = (Ṽ, Ã, B̃) be a 0.67-IFPG. The IFCDG of G̃ is G̃′1 = (Ṽ′1, Ã′1, B̃′1), where Ṽ′1 = {t′i, i =

1, 2, ..., n} is the vertex set of G̃′1. The DMS and DNS of the vertices of G̃′1 are given by the mapping Ã′1 = (µÃ′1
, νÃ′1

) :

Ṽ′1 → [0, 1]× [0, 1] such that
µÃ′1

(t′i) = max{µr(t′it
′
j), r = 1, 2, ..., nt′i t

′
j
|t′it′j is an edge adjacent to t′i},

νÃ′1
(t′i) = min{νr(t′it

′
j), r = 1, 2, ..., nt′i t

′
j
|t′it′j is an edge adjacent to t′i}.

Between the edges of G̃ and G̃′1 there is a one-to-one correspondence such that the DMS and DNS of the edges of G̃′1 are
the DMS and DNS of the edges in G̃ with the condition each cycle of G̃ is cut set of G̃′1.

Example 4.6. Consider a 0.67-IFPG G̃ = (Ṽ, Ã, B̃), where Ṽ = {r, s, u, v, w}, Ã = {(r, 0.5, 0.3),
(s, 0.4, 0.2), (u, 0.6, 0.3), (v, 0.3, 0.2), (w, 0.5, 0.3)} and B̃ = {(e1, 0.4, 0.3), (e2, 0.4, 0.3), (e3, 0.3, 0.3),
(e4, 0.3, 0.3), (e5, 0.4, 0.3), (e6, 0.3, 0.2)} (see Fig.7). The cycles of G̃ are {e1, e2, e3, e4, e5}, {e2, e3, e6} and
{e1, e6, e4, e5} form cut sets in IFCDG G̃′1 = (Ṽ′1, Ã′1, B̃′1), where Ṽ′1 = {t′1, t′2, t′3}, Ã′1 = {(t′1, 0.4, 0.2), (t′3, 0.4, 0.3)}
and B̃′1 = {(e′1, 0.4, 0.3), (e′2, 0.4, 0.3), (e′3, 0.3, 0.3), (e′4, 0.3, 0.3),
(e′5, 0.4, 0.3), (e′6, 0.3, 0.2)}.

Figure 7: (a) A IFPG G̃ and (b) its IFCDG G̃′1

Theorem 4.1. Every 0.67-IFPG has a IFCDG.

Proof. Let G̃ be 0.67-IFPG and G̃′ be the IFCDG. Then between the edges of G̃ and G̃′1 there is a one-to-one
correspondence such that the DMS and DNS of the edges of G̃′1 are known. Let C̃ be a cycle of G̃ and it divides
G̃ into two regions. Then we isolate the vertices of G̃′1 into two non-empty subsets Ã′ and B̃′ (say), both are
determined by the boundary of the cycle inside and outside C̃, respectively in G̃.
Let corresponding to the edges of C̃, we have a set of edges Ç̃ in G̃′1 and removal of Ç̃ two subsets Ã′ and B̃′

becomes disjoint and G̃′1 is disconnected. Thus Ç̃ is a cut set of G̃′1.
Hence, each cycle of G̃ forms a cut set in G̃′1. This proves the theorem.

Example 4.7. Consider a 0.67-IFPG G̃ = (Ṽ, Ã, B̃), where Ṽ = {r, s, u, v, w}, Ã = {(r, 0.6, 0.1),
(s, 0.5, 0.4), (u, 0.4, 0.3), (v, 0.3, 0.4), (w, 0.7, 0.2)} and B̃ = {(e1, 0.5, 0.4), (e2, 0.4, 0.3), (e3, 0.3, 0.4),
(e4, 0.4, 0.4), (e5, 0.3, 0.4), (e6, 0.5, 0.4), (e7, 0.3, 0.4), (e8, 0.3, 0.4)} and its IFCDG is G̃′1 = (Ṽ′1, Ã′1, B̃′1), where Ṽ′1 =

{t′1, t′2, t′3, t′4, t′5}, Ã′1 = {(t′1, 0.5, 0.3), (t′2, 0.5, 0.4), (t′3, 0.4, 0.4), (t′4, 0.5, 0.3), (t′5, 0.5, 0.4)} and
B̃′1 = {(e′1, 0.5, 0.4), (e′2, 0.4, 0.3), (e′3, 0.3, 0.4), (e′4, 0.4, 0.4), (e′5, 0.3, 0.4), (e′6, 0.5, 0.4), (e′7, 0.3, 0.4),

(e′8, 0.3, 0.4)} (see Fig.8). Let C̃ = {e1, e2, e3, e4} be any cycle of G̃ such that Ã′ = {t′1, t′3} and and B̃′ = {t′2, t′4, t′5} in
G̃′. If we remove the corresponding edges of C̃, then G̃′1 becomes disconnected. Hence, cycles of G̃ forms the cut sets in
G̃′1.

Theorem 4.2. Every IFCDG of a IFG has a 0.67-IFPG.

Proof. Let K5 or K3,3 has a IFCDG. Both graphs has finite number of edges and one intersecting point can not
be avoid for any representation of them.
Case-I: Let K5 or K3,3 has at least one weak edge in G̃ and this edge is not considered in IFG G̃. Then G̃ has no
intersecting point between its edges and has a IFCDG G̃′1. Thus K5 or K3,3 is a 0.67-IFPG.
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Figure 8: (a) A IFPG G̃ and (b) its IFCDG G̃′1

Case-II: Let in K5 or K3,3 all edges are strong and there is only one intersecting point between strong edges.
Then the DP is f = ( ft, f f ), where ft < 0.67, f f < 0.67. Thus no dual graph can be drawn. Therefore, K5 or
K3,3 does not have any 0.67-IFPG and IFCDG.

Theorem 4.3. A 0.67-IFPG is planar iff it has a IFCDG.

Proof. Combining theorem 7.3 and theorem 7.5, we conclude it.

5 Conclusion

This study relates the IFPGs and discussed its important consequences known as IFDGs and IFCDGs both
are closely associated. For the 0.67-IFPG we define IFDG. But, when DP of IFPG is less than 0.67, then some
modifications are needed to define it. IFMG, DP of a IFPG and IFF have also been introduced here and some
corresponding results have been studied. This work can be viewed as the generalization of the study on fuzzy
combinatorial dual graph.
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