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Abstract

In this paper, we study the existence of solution for some boundary value problems of functional integro-
differential equations with nonlocal boundary conditions.

Keywords: Nonlocal boundary value problems, schauder fixed point theorem, functional integral equation,
functional integro-differential equation, lebesgue dominated convergence theorem.
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1 Introduction

Mathematical modelling of real-life problems usually results in functional equations, like ordinary or
partial differential equations, integral and integro- differential equations, stochastic equations. Many
mathematical formulation of physical phenomena contain integro-differential equations, these equations
arises in many fields like fluid dynamics, biological models and chemical kinetics integro-differential
equations are usually difficult to solve analytically so it is required to obtain an efficient approximate
solution. Consider the following boundary value problems of functional integro-differential equations with
the nonlocal boundary conditions.

x′(t) = f (t,
∫ 1

0
k(t, s)x(s)ds), t ∈ (0, 1) (1.1)

x(τ) + α x(ξ) = 0, τ, ξ ∈ [0, 1], α 6= −1. (1.2)

x′′(t) = f (t,
∫ 1

0
k(t, s)x′(s)ds), t ∈ (0, 1) (1.3)

x(τ) + β x(ξ) = 0, β 6= − 1 (1.4)

x′(τ) + α x′(ξ) = 0, τ, ξ ∈ [0, 1], α 6= − 1. (1.5)

Here we study the existence of at least one solution of each of the boundary value problems (1.1)-(1.2) and
(1.3)-(1.5).
The existence of exactly one solution of them will be deduced.

∗Corresponding author.
E-mail address: amasayed@gmail.com (A. M. A. El-Sayed), mohdshaaban@yahoo.com(M. SH. Mohamed), kheriamsaik@gmail.com (K. M.
O. Msaik).
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2 Functional integral equation

Here we study the existence of at least one (and exactly one) continuous solution of the functional integral
equation.

y(t) = f (t,
∫ 1

0
k(t, s)[

∫ s

0
y(θ)dθ − 1

1 + α

∫ τ

0
y(θ)dθ − α

1 + α

∫ ξ

0
y(θ)dθ]ds) (2.6)

under the following assumptions

(1) f : I = [0, 1]× R→ R is measurable in t ∈ [0, 1] for all x ∈ R and continuous in x ∈ R for all t ∈ [0, 1]
and there exists integrable function a ∈ L1[0, 1] and positive constant b > 0 such that

| f (t, x) | ≤ a(t) + b|x| t ∈ I.

(2) a = sup
t
| a(t) |, t ∈ [0, 1]

(3) k :I = [0, 1]× [0, 1] → R is continuous t ∈ [0, 1] for every s ∈ [0, 1]
and measurable in s ∈ [0, 1] for all t ∈ [0, 1], such that

sup
t

∫ 1

0
k(t, s)dt ≤ M

Now for the existence of at least one continuous solution of the functional integral equation (2.6), we have
the following theorem.

Theorem 2.1. Let the assumptions (1)-(3) be satisfied. If 2Mb < 1, then the functional integral equation (2.6) has at
least one solution y ∈ C[0, 1].

Proof. let C = C[0, 1] and define the set Qr by

Qr = {y ∈ C : |y| ≤ r} ⊂ C[0, 1]

where r = a
1−2bM .

Define the operator F associated with the functional integral equation (2.6) by

Fy(t) = f (t,
∫ 1

0
k(t, s)[

∫ s

0
y(θ)dθ − 1

1 + α

∫ τ

0
y(θ)dθ − α

1 + α

∫ ξ

0
y(θ)dθ]ds)

To show that F : Qr → Qr, let y ∈ Qr, then

|Fy(t) | = | f (t,
∫ 1

0
k(t, s)[

∫ s

0
y(θ)dθ − 1

1 + α

∫ τ

0
y(θ)dθ − α

1 + α

∫ ξ

0
y(θ)dθ]ds) |

≤ | a(t) |+ b |
∫ 1

0
k(t, s)[

∫ s

0
y(θ)dθ − 1

1 + α

∫ τ

0
y(θ)dθ − α

1 + α

∫ ξ

0
y(θ)dθ] ds |

≤ | a(t) |+ b [ |
∫ 1

0
k(t, s)

∫ s

0
y(θ)dθds|+ |

∫ 1

0
k(t, s)[

−1
1 + α

∫ τ

0
y(θ)dθ − α

1 + α

∫ ξ

0
y(θ)dθ] ds| ]

≤ | a(t) | + b [
∫ 1

0
|k(t, s)| |y(s)| ds +

∫ 1

0
|k(t, s)|[ 1

1 + α
+

α

1 + α
] |y(s)| ds ]

≤ | a(t) | + b [
∫ 1

0
|k(t, s)| r ds +

∫ 1

0
|k(t, s)| r ds ]

≤ |a(t)|+ 2bMr = r.

≤ a + 2bMr = r.
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This proves that F : Qr → Qr and the class of functions {F(y)} is uniformly bounded.
Let t1, t2 ∈ [0, 1] and |t2 − t1| ≤ δ, then

|Fy(t2)− Fy(t1)| = | f (t2,
∫ 1

0
k(t2, s)[

∫ s

0
y(θ)dθ − 1

1 + α

∫ τ

0
y(θ)dθ − α

1 + α

∫ ξ

0
y(θ)dθ] ds)

− f (t1,
∫ 1

0
k(t1, s)[

∫ s

0
y(θ)dθ − 1

1 + α

∫ τ

0
y(θ)dθ − α

1 + α

∫ ξ

0
y(θ)dθ] ds)|

= | f (t2,
∫ 1

0
k(t2, s)[

∫ s

0
y(θ)dθ − 1

1 + α

∫ τ

0
y(θ)dθ − α

1 + α

∫ ξ

0
y(θ)dθ] ds)

− f (t1,
∫ 1

0
k(t1, s)[

∫ s

0
y(θ)dθ − 1

1 + α

∫ τ

0
y(θ)dθ − α

1 + α

∫ ξ

0
y(θ)dθ] ds)

+ f (t1,
∫ 1

0
k(t2, s)[

∫ s

0
y(θ)dθ − 1

1 + α

∫ τ

0
y(θ)dθ − α

1 + α

∫ ξ

0
y(θ)dθ] ds)

− f (t1,
∫ 1

0
k(t2, s)[

∫ s

0
y(θ)dθ − 1

1 + α

∫ τ

0
y(θ)dθ − α

1 + α

∫ ξ

0
y(θ)dθ] ds)|

≤ | f (t2,
∫ 1

0
k(t2, s)[

∫ s

0
y(θ)dθ − 1

1 + α

∫ τ

0
y(θ)dθ − α

1 + α

∫ ξ

0
y(θ)dθ] ds)

− f (t1,
∫ 1

0
k(t2, s)[

∫ s

0
y(θ)dθ − 1

1 + α

∫ τ

0
y(θ)dθ − α

1 + α

∫ ξ

0
y(θ)dθ] ds)|

+ | f (t1,
∫ 1

0
k(t1, s)[

∫ s

0
y(θ)dθ − 1

1 + α

∫ τ

0
y(θ)dθ − α

1 + α

∫ ξ

0
y(θ)dθ] ds)

− f (t1,
∫ 1

0
k(t2, s)[

∫ s

0
y(θ)dθ − 1

1 + α

∫ τ

0
y(θ)dθ − α

1 + α

∫ ξ

0
y(θ)dθ] ds)|

≤ | f (t2,
∫ 1

0
k(t2, s)[

∫ s

0
y(θ)dθ − 1

1 + α

∫ τ

0
y(θ)dθ − α

1 + α

∫ ξ

0
y(θ)dθ] ds)

− f (t1,
∫ 1

0
k(t2, s)[

∫ s

0
y(θ)dθ − 1

1 + α

∫ τ

0
y(θ)dθ − α

1 + α

∫ ξ

0
y(θ)dθ] ds)|

+ L |
∫ 1

0
k(t2, s)[

∫ s

0
y(θ)dθ − 1

1 + α

∫ τ

0
y(θ)dθ − α

1 + α

∫ ξ

0
y(θ)dθ] ds

−
∫ 1

0
k(t1, s)[

∫ s

0
y(θ)dθ − 1

1 + α

∫ τ

0
y(θ)dθ − α

1 + α

∫ ξ

0
y(θ)dθ] ds|

≤ | f (t2,
∫ 1

0
k(t2, s)[

∫ s

0
y(θ)dθ − 1

1 + α

∫ τ

0
y(θ)dθ − α

1 + α

∫ ξ

0
y(θ)dθ] ds)

− f (t1,
∫ 1

0
k(t2, s)[

∫ s

0
y(θ)dθ − 1

1 + α

∫ τ

0
y(θ)dθ − α

1 + α

∫ ξ

0
y(θ)dθ] ds)|

+ 2L||y||
∫ 1

0
|k(t2, s)− k(t1, s)|ds,

≤ | f (t2,
∫ 1

0
k(t2, s)[

∫ s

0
y(θ)dθ − 1

1 + α

∫ τ

0
y(θ)dθ − α

1 + α

∫ ξ

0
y(θ)dθ] ds)

− f (t1,
∫ 1

0
k(t2, s)[

∫ s

0
y(θ)dθ − 1

1 + α

∫ τ

0
y(θ)dθ − α

1 + α

∫ ξ

0
y(θ)dθ] ds)|

+ 2L r
∫ 1

0
|k(t2, s)− k(t1, s)|ds.

This means that the class of functions F{y} is equi-continuous on Qr.
Using Arzela-Ascoli Theorem (see[13]), we find that F is compact.
Now we prove that F : Qr → Qr is continuous.
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Let {yn} ⊂ Qr, and yn → y, then

Fyn(t) = f (t,
∫ 1

0
k(t, s)[

∫ s

0
yn(θ)dθ − 1

1 + α

∫ τ

0
yn(θ)dθ − α

1 + α

∫ ξ

0
yn(θ)dθ]ds)

lim
n→∞

Fyn(t) = lim
n→∞

f (t,
∫ 1

0
k(t, s)[

∫ s

0
yn(θ)dθ − 1

1 + α

∫ τ

0
yn(θ)dθ − α

1 + α

∫ ξ

0
yn(θ)dθ]ds)

Now

lim
n→∞

f (t,
∫ 1

0
k(t, s)yn(s)ds) = f (t, lim

n→∞

∫ 1

0
k(t, s)[

∫ s

0
yn(θ)dθ − 1

1 + α

∫ τ

0
yn(θ)dθ − α

1 + α

∫ ξ

0
yn(θ)dθ]ds)

then using Lebesgue dominated convergence Theorem (see[13]), we have

lim
n→∞

Fyn = lim
n→∞

f (t,
∫ 1

0
k(t, s) f (t,

∫ 1

0
k(t, s)[

∫ s

0
yn(θ)dθ

− 1
1 + α

∫ τ

0
yn(θ)dθ − α

1 + α

∫ ξ

0
yn(θ)dθ]ds)

= f (t,
∫ 1

0
k(t, s)[

∫ s

0
y(θ)dθ − 1

1 + α

∫ τ

0
y(θ)dθ − α

1 + α

∫ ξ

0
y(θ)dθ] ds)

Then Fyn(t)→ Fy(t).
Which means that the operator F is continuous.
Since all conditions of Schauder fixed point theorem [12] are satisfied, then the operator F has at least one
fixed point y ∈ C[0, 1], which completes the proof.

Now for the uniqueness of the solution of the functional integral equation (2.6).
Consider following assumptions

(1∗) f : I = [0, 1]× R→ R is measurable in t ∈ [0, 1] for all x ∈ R and satisfies
the lipschitz such that

| f (t, x)− f (t, y)| ≤ b|x− y|, b > 0 (2.7)

(2∗) f (t, 0) ∈ L1[0, 1] sup
t
| f (t, 0)| ≤ a.

Theorem 2.2. Let the assumptions (1∗),(2∗) and (3) be satisfied. If 2Mb < 1, then the functional integral equation
(2.6) has a unique solution y ∈ C[0, 1].

Proof. From (2.7) we can obtain

| f (t, x)| ≤ | f (t, 0)|+ b |x|.

This shows that the assumptions of Theorem (2.1) are satisfied
Now let y1,y2 be two solution of functional integral equation (2.6)

y1(t) = f (t,
∫ 1

0
k(t, s)[

∫ s

0
y1(θ)dθ − 1

1 + α

∫ τ

0
y1(θ)dθ − α

1 + α

∫ ξ

0
y1(θ)dθ]ds)

y2(t) = f (t,
∫ 1

0
k(t, s)[

∫ s

0
y2(θ)dθ − 1

1 + α

∫ τ

0
y2(θ)dθ − α

1 + α

∫ ξ

0
y2(θ)dθ]ds)
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|y1(t)− y2(t)| = | f (t,
∫ 1

0
k(t, s)[

∫ s

0
y1(θ)dθ − 1

1 + α

∫ τ

0
y1(θ)dθ − α

1 + α

∫ ξ

0
y1(θ)dθ] ds)

− f (t,
∫ 1

0
k(t, s)[

∫ s

0
y2(θ)dθ − 1

1 + α

∫ τ

0
y2(θ)dθ − α

1 + α

∫ ξ

0
y2(θ)dθ] ds)|

≤ b |
∫ 1

0
k(t, s)[

∫ s

0
y1(θ)dθ − 1

1 + α

∫ τ

0
y1(θ)dθ − α

1 + α

∫ ξ

0
y1(θ)dθ]ds

−
∫ 1

0
k(t, s)[

∫ s

0
y2(θ)dθ − 1

1 + α

∫ τ

0
y2(θ)dθ − α

1 + α

∫ ξ

0
y2(θ)dθ]ds|

≤ b |
∫ 1

0
k(t, s)

∫ s

0
y1(θ)dθds−

∫ 1

0
k(t, s)[

1
1 + α

∫ τ

0
y1(θ)dθ +

α

1 + α

∫ ξ

0
y1(θ)dθ] ds

−
∫ 1

0
k(t, s)

∫ s

0
y2(θ)dθds +

∫ 1

0
k(t, s)[

1
1 + α

∫ τ

0
y2(θ)dθ +

α

1 + α

∫ ξ

0
y2(θ)dθ] ds|

≤ b |
∫ 1

0
k(t, s)[

∫ s

0
y1(θ)dθ −

∫ s

0
y2(θ)dθ]ds|

+ b |
∫ 1

0
k(t, s)[

1
1 + α

∫ τ

0
(y2(θ)− y1(θ))dθ +

α

1 + α

∫ ξ

0
(y2(θ)− y1(θ))dθ]ds |

≤ b |
∫ 1

0
k(t, s)

∫ s

0
(y1(θ)− y2(θ))dθds|

+ b |
∫ 1

0
k(t, s)[

1
1 + α

||y2 − y1|| +
α

1 + α
||y2 − y1||]ds |

≤ b ( ||y1 − y2||
∫ 1

0
|k(t, s)|ds + ||y1 − y2||

∫ 1

0
|k(t, s)|ds)

≤ 2bM ||y1 − y2||

then
||y1 − y2|| ≤ K||y1 − y2||

where K = 2bM < 1, then
||y1 − y2||(1− k) ≤ 0

and
||y1 − y2|| = 0

which implies that y1 = y2 then the functional integral equation (2.6) has a unique continuous solution.

3 Nonlocal boundary value problems

Here we study the existence of at least one (and exactly one) solution of each of the functional integro-
differential equations (1.1),(1.3).
Consider the functional integro differential equation

x′(t) = f (t,
∫ 1

0
k(t, s) x(s) ds) t ∈ (0, 1).

with the nonlocal boundary value condition

x(τ) + α x(ξ) = 0. τ, ξ ∈ [0, 1], α 6= − 1

Theorem 3.3. Let the assumptions of theorem (2.1) be satisfied, then the nonlocal boundary value problem (1.1)-(1.2)
has at least one continuous solution x ∈ C[0, 1].
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Proof. Let x′(t) = y(t). Integrating both sides we get

x(t) = x(0) +
∫ t

0
y(s)ds,

x(τ) = x(0) +
∫ τ

0
y(s)ds

and

x(ξ) = x(0) +
∫ ξ

0
y(s)ds

Using the nonlocal boundary condition (1.2) we obtain

x(0) +
∫ τ

0
y(s)ds = − α x(0)− α

∫ ξ

0
y(s)ds,

and

x(0) = − 1
1 + α

∫ τ

0
y(s)ds− α

1 + α

∫ ξ

0
y(s)ds,

then

x(t) =
∫ t

0
y(s)ds− 1

1 + α

∫ τ

0
y(s)ds− α

1 + α

∫ ξ

0
y(s)ds (3.8)

where y satisfies the functional integral equation

y(t) = f (t,
∫ 1

0
k(t, s)[

∫ s

0
y(θ)dθ − 1

1 + α

∫ τ

0
y(θ)dθ − α

1 + α

∫ ξ

0
y(θ)dθ]ds).

This complete the proof of equivalent between the nonlocal problem (1.1)-(1.2) and the functional integral
equation (2.6). This implies that there exists at least one solution x ∈ C[0, 1] of the nonlocal problem
(1.1)-(1.2).

Corollary 3.1. Let the assumptions (1∗),(2∗) and (3) be satisfied, then the solution of nonlocal boundary value problem
(1.1)-(1.2) has a unique continuous solution x ∈ C[0, 1].

Consider the functional integro-differential equation

x′′(t) = f (t,
∫ 1

0
k(t, s)x′(s)ds) t ∈ (0, 1)

with the nonlocal boundary conditions
x(τ) + β x(ξ) = 0,

x′(τ) + α x′(ξ) = 0.

Theorem 3.4. Let the assumptions of theorem (2.1) be satisfied then the boundary value problems (1.3)-(1.5) has at least
one continuous solution x ∈ C[0, 1].

Proof. Let x′′(t) = y(t) integrating both sides, we obtain

x′(t) = x′(0) +
∫ t

0
y(s) ds

and

x(t) = x(0) + tx′(0) +
∫ t

0
(t− s) y(s)ds.

then
x′(τ) = x′(0) +

∫ τ

0
y(s) ds,

and

x′(ξ) = x′(0) +
∫ ξ

0
y(s) ds.
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Using the nonlocal condition (1.5) we obtain

x′(0) = − 1
1 + α

∫ τ

0
y(s)ds− α

1 + α

∫ ξ

0
y(s) ds

and
x(τ) = x(0) + τ x′(0) +

∫ τ

0
(τ − s) y(s) ds,

x(ξ) = x(0) + ξ x′(0) +
∫ ξ

0
(ξ − s) y(s) ds,

x′(0) = − 1
1 + α

∫ τ

0
y(s)ds− α

1 + α

∫ ξ

0
y(s) ds.

Using Boundary condition (1.4) we obtain

x(0) =
−βξ − τ

1 + β
x′(0)− 1

1 + α

∫ τ

0
(τ − s)y(s)ds− 1

1 + β

∫ ξ

0
(ξ − s)y(s)ds,

x(t) =
−βξ − τ

1 + β
[− 1

1 + β

∫ τ

0
y(s)ds− 1

1 + α

∫ ξ

0
y(s)ds]

− 1
1 + β

∫ τ

0
(τ − s)y(s)ds− 1

1 + β

∫ ξ

0
(ξ − s)ds

+ t[− 1
1 + α

∫ τ

0
y(s)ds− α

1 + α

∫ ξ

0
y(s)ds] +

∫ t

0
(t− s)y(s)ds, (3.9)

x′(t) = − 1
1 + α

∫ τ

0
y(s)ds− α

1 + α

∫ ξ

0
y(s)ds +

∫ t

0
y(s)ds,

and y satisfies the functional integral equation

y(t) = f (t,
∫ 1

0
k(t, s)[

∫ s

0
y(θ)dθ − 1

1 + α

∫ τ

0
y(θ)dθ − α

1 + α

∫ ξ

0
y(θ)dθ]ds).

This complete the proof of equivalent between the nonlocal problem (1.3)-(1.5) and the functional integral
equation (2.6). This implies that there exists at least one solution x ∈ C[0, 1] of the nonlocal problem (1.3)-
(1.5).

Corollary 3.2. Let the assumptions (1∗),(2∗) and (3) be satisfied, then the solution of nonlocal boundary value problem
(1.3)-(1.5) has a unique continuous solution x ∈ C[0, 1].
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Abstract

In this paper, the authors introduce a new class of functions called almost contra pre generalized b -
continuous function (briefly almost contra pgb-continuous) in topological spaces. Some characterizations and
several properties concerning almost contra pgb-continuous functions are obtained.
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1 Introduction

In 2002, Jafari and Noiri introduced and studied a new form of functions called contra-pre continuous
functions. The purpose of this paper is to introduce and study almost contra pgb-continuous functions via
the concept of pgb-closed sets. Also, properties of almost contra pgb-continuity are discussed. Moreover, we
obtain basic properties and preservation theorems of almost contra pgb-continuous functions and
relationships between almost contra pgb-continuity and pgb-regular graphs.

Through out this paper (X, τ) and (Y, σ) represent the non-empty topological spaces on which no
separation axioms are assumed, unless otherwise mentioned. Let A ⊆ X, the closure of A and interior of A
will be denoted by cl(A) and int(A) respectively, union of all pgb-open sets X contained in A is called
pgb-interior of A and it is denoted by pgbint(A), the intersection of all pgb-closed sets of X containing A is
called pgb-closure of A and it is denoted by pgbcl(A) [9].

2 Preliminaries

Definition 2.1. Let a subset A of a topological space (X, τ), is called
1) a pre-open set [8] if A ⊆ int(cl(A)).
2) a semi-open set [6] if A ⊆ cl(int(A)).
3) a b -open set [3] if A ⊆ cl(int(A)) ∪ int(cl(A)).
4) a generalized b- closed set (briefly gb- closed) [1] if bcl(A) ⊆ U whenever A ⊆ U and U is open in X.
5) a generalized αb- closed set (briefly gαb- closed) [11] if bcl(A) ⊆ U whenever A ⊆ U and U is α open in X.
6) a regular generalized b- closed set (briefly rgb- closed) [7] if bcl(A) ⊆ U whenever A ⊆ U and U is regular open in
X.
7) a pre generalized b- closed set (briefly pgb- closed) [9] if bcl(A) ⊆ U whenever A ⊆ U and U is pre-open in X.

∗Corresponding author.
E-mail address: sekar nitt@rediffmail.com (S. Sekar), brindhaaramasamy@gmail.com (R. Brindha).
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Definition 2.2. A function f : (X, τ)→ (Y, σ), is called
1) almost contra continuous [1] if f−1(V) is closed in (X, τ) for every regular-open set V of (Y, σ).
2) almost contra b-continuous [2] if f−1(V) is b-closed in (X, τ) for every regular-open set V of (Y, σ). 3) almost contra
pre-continuous [5] if f−1(V) is pre-closed in (X, τ) for every regular-open set V of (Y, σ).
4) almost contra semi-continuous [4] if f−1(V) is semi-closed in (X, τ) for every regular-open set V of (Y, σ).
5) almost contra rgb-continuous [10] if f−1(V) is rgb-closed in (X, τ) for every regular-open set V of (Y, σ).

3 Almost Contra Pre Generalized b - Continuous Functions

In this section, we introduce almost contra pre generalized b - continuous functions and investigate some
of their properties.

Definition 3.3. A function f : (X, τ)→ (Y, σ) is called almost contra pre generalized b - continuous if f−1(V) is pgb
- closed in (X, τ) for every regular open set V in (Y, σ).

Example 3.1. Let X = Y = {a, b, c} with τ = {X, ϕ, {a}, {b}, {a, b}} and σ = {Y, ϕ, {b}, {c}, {b, c}}. Define a
function f : (X, τ)→ (Y, σ) by f (a) = b, f (b) = a, f (c) = c. Clearly f is almost contra pgb - continuous.

Theorem 3.1. If f : X → Y is contra pgb - continuous then it is almost contra pgb - continuous.

Proof. Obvious, because every regular open set is open set.

Remark 3.1. Converse of the above theorem need not be true in general as seen from the following example.

Example 3.2. Let X = Y = {a, b, c} with τ = {X, ϕ, {a}, {b}, {a, b}} and σ = {Y, ϕ, {a}, {b}, {a, b}, {a, c}}.
Define a function f : (X, τ) → (Y, σ) by f (a) = c, f (b) = a, f (c) = b. Then f is almost contra pgb - continuous
function but not contra pgb - continuous, because for the open set {a, c} in Y and f−1{a, c} = {a, b} is not pgb - closed
in X.

Theorem 3.2. 1) Every almost contra b - continuous function is almost contra pgb - continuous function.
2) Every almost contra gα - continuous function is almost contra pgb - continuous function.
3) Every almost contra gα∗ - continuous function is almost contra pgb - continuous function.
4) Every almost contra g - continuous function is almost contra pgb - continuous function.
5) Every almost contra rgb - continuous function is almost contra pgb - continuous function.
6) Every almost contra gαb - continuous function is almost contra pgb - continuous function.

Remark 3.2. Converse of the above statements is not true as shown in the following example.

Example 3.3. i) Let X = Y = {a, b, c} with τ = {X, ϕ, {a}, {b}, {a, b}, {b, c}} and σ = {Y, ϕ, {b}, {c}, {b, c}}.
Define a function f : (X, τ) → (Y, σ) by f (a) = a, f (b) = c, f (c) = b. Clearly f is almost contra pgb - continuous
but f is not almost contra b - continuous. Because f−1({b}) = {c} is not b - closed in (X, τ) where {b} is regular -
open in (Y, σ).
ii) Let X = Y = {a, b, c} with τ = {X, ϕ, {a}, {c}, {a, c}} and σ = {Y, ϕ, {a}, {b}, {a, b}}. Define a function
f : (X, τ)→ (Y, σ) by f (a) = b, f (b) = a, f (c) = c. Clearly f is almost contra pgb - continuous but f is not almost
contra gα - continuous. Because f−1({b}) = {a} is not gα - closed in (X, τ) where {a} is regular - open in (Y, σ).
iii) Let X = Y = {a, b, c} with τ = {X, ϕ, {c}, {a, c}} and σ = {Y, ϕ, {a}, {b}, {a, b}, {a, c}}. Define a function
f : (X, τ)→ (Y, σ) by f (a) = a, f (b) = b, f (c) = c. Clearly f is almost contra pgb - continuous but f is not almost
contra gα∗ - continuous. Because f−1({b}) = {b} is not gα∗ - closed in (X, τ) where {b} is regular - open in (Y, σ).
iv) Let X = Y = {a, b, c} with τ = {X, ϕ, {a}, {c}, {a, c}} and σ = {Y, ϕ, {a}, {b}, {a, b}}. Define a function
f : (X, τ)→ (Y, σ) by f (a) = b, f (b) = a, f (c) = c. Clearly f is almost contra pgb - continuous but f is not almost
contra g - continuous. Because f−1({b}) = {a} is not g - closed in (X, τ) where {b} is regular - open in (Y, σ).
v) Let X = Y = {a, b, c} with τ = {X, ϕ, {a}, {b}, {a, b}} and σ = {Y, ϕ, {b}, {c}, {b, c}}. Define a function
f : (X, τ)→ (Y, σ) by f (a) = c, f (b) = a, f (c) = b. Clearly f is almost contra pgb - continuous but f is not almost
contra rgb - continuous. Because f−1({c}) = {a} is not rgb - closed in (X, τ) where {c} is regular - open in (Y, σ).
vi) Let X = Y = {a, b, c} with τ = {X, ϕ, {a}, {b}, {a, b}, {b, c}} and σ = {Y, ϕ, {a}, {c}, {a, c}}. Define a
function f : (X, τ) → (Y, σ) by f (a) = a, f (b) = b, f (c) = c. Clearly f is almost contra pgb - continuous but f is
not almost contra gαb - continuous. Because f−1({a}) = {a} is not gαb - closed in (X, τ) where {b} is regular - open
in (Y, σ).
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Theorem 3.3. The following are equivalent for a function f : X → Y,
(1) f is almost contra pgb - continuous.
(2) for every regular closed setFofY, f−1(F) is pgb - open set ofX.
(3) for each x ∈ X and each regular closed set F of Y containing f (x), there exists pgb - openU containing x such that
f (U)⊂F.
(4) for each x ∈ X and each regular open set V of Y not containing f (x), there exists pgb - closed set K not containing
x such that f−1(V) ⊂ K.

Proof. (1)⇒ (2) : Let F be a regular closed set in Y, then Y− F is a regular open set in Y. By (1), f−1(Y− F) =
X− f−1(F) is pgb - closed set in X. This implies f−1(F) is pgb - open set in X. Therefore, (2) holds.
(2)⇒ (1) : Let G be a regular open set of Y. Then Y− G is a regular closed set in Y. By (2), f−1(Y− G) is pgb -
open set in X. This implies X − f−1(G) is pgb - open set in X, which implies f−1(G) is pgb - closed set in X.
Therefore, (1) hold.
(2) ⇒ (3) : Let F be a regular closed set in Y containing f (x), which implies x ∈ f−1(F). By (2), f−1(F)
is pgb - open in X containing x. Set U = f−1(F), which implies U is pgb - open in X containing x and
f (U) = f ( f−1(F)) ⊂ F. Therefore (3) holds.
(3)⇒ (2) : Let F be a regular closed set in Y containing f (x), which implies x ∈ f−1(F). From (3), there exists
pgb - open Ux in X containing x such that f (Ux) ⊂ F. That is Ux ⊂ f−1(F). Thus f−1(F) = {∪Ux : x ∈ f−1(F),
which is union of pgb - open sets. Therefore, f−1(F) is pgb - open set of X.
(3) ⇒ (4) : Let V be a regular open set in Y not containing f (x). Then Y − V is a regular closed set in Y
containing f (x). From (3), there exists a pgb - open set U in X containing x such that f (U) ⊂ Y − V .This
implies U ⊂ f−1(Y − V) = X − f−1(V). Hence, f−1(V) ⊂ X −U. Set K = X − V, then K is pgb - closed set
not containing x in X such that f−1(V) ⊂ K.
(4) ⇒ (3) : Let F be a regular closed set in Y containing f (x). Then Y − F is a regular open set in Y not
containing f (x). From (4), there exists pgb - closed set K in X not containing x such that f−1(Y− F) ⊂ K. This
implies X − f−1(F) ⊂ K. Hence, X − K ⊂ f−1(F), that is f (X − K) ⊂ F. Set U = X − K, then U is pgb - open
set containing x in X such that f (U) ⊂ F.

Theorem 3.4. The following are equivalent for a function f : X → Y,
(1) f is almost contra pgb - continuous.
(2) f−1(Int(Cl(G))) is pgb - closed set in X for every open subset G of Y.
(3) f−1(Cl(Int(F))) is pgb - open set in X for every closed subset F of Y.

Proof. (1)⇒ (2) : Let G be an open set in Y. Then Int(Cl(G)) is regular open set in Y. By (1), f−1(Int(Cl(G)) ∈
pgb− C(X).
(2)⇒ (1) : Proof is obvious.
(1) ⇒ (3) : Let F be a closed set in Y. Then Cl(Int(G)) is regular closed set in Y. By (1), f−1(Cl(Int(G)) ∈
pgb−O(X).
(3)⇒ (1) : Proof is obvious.

Definition 3.4. A function f : X → Y is said to be R - map if f−1(V) is regular open in X for each regular open set V
of Y.

Definition 3.5. A function f : X → Y is said to be perfectly continuous if f−1(V) is clopen in X for each open set V
of Y.

Theorem 3.5. For two functions f : X → Y and g : Y → Z, let g ◦ f : X → Z be a composition function. Then, the
following properties hold.
(1) If f is almost contra pgb - continuous and g is an R - map, then g ◦ f is almost contra pgb - continuous.
(2) If f is almost contra pgb - continuous and g is perfectly continuous, then g ◦ f is contra pgb - continuous.
(3) If f is contra pgb - continuous and g is almost continuous, then g ◦ f is almost contra pgb - continuous.

Proof. (1) Let V be any regular open set in Z. Since g is an R - map, g−1(V) is regular open in Y. Since f is
almost contra pgb - continuous, f−1(g−1(V)) = (g ◦ f )−1(V) is pgb - closed set in X. Therefore g ◦ f is almost
contra pgb - continuous.
(2) Let V be any regular open set in Z. Since g is perfectly continuous, g−1(V) is clopen in Y. Since f is almost
contra pgb - continuous, f−1(g−1(V)) = (g ◦ f )−1(V) is pgb - open and pgb - closed set in X. Therefore g ◦ f
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is pgb continuous and contra pgb - continuous.
(3) Let V be any regular open set in Z. Since g is almost continuous, g−1(V) is open in Y. Since f is almost
contra pgb - continuous, f−1(g−1(V)) = (g ◦ f )−1(V) is pgb - closed set in X. Therefore g ◦ f is almost contra
pgb - continuous.

Theorem 3.6. Let f : X → Y be a contra pgb - continuous and g : Y → Z be pgb - continuous. If Y is Tpgb - space,
then g ◦ f : X → Z is an almost contra pgb - continuous.

Proof. Let V be any regular open and hence open set in Z. Since g is pgb - continuous g−1(V) is pgb - open
in Y and Y is Tpgb - space implies g−1(V) open in Y. Since f is contra pgb - continuous, f−1(g−1(V)) =

(g ◦ f )−1(V) is pgb - closed set in X. Therefore, g ◦ f is an almost contra pgb - continuous.

Theorem 3.7. If f : X → Y is surjective strongly pgb - open (or strongly pgb - closed) and g : Y → Z is a function
such that g ◦ f : X → Z is an almost contra pgb - continuous, then g is an almost contra pgb - continuous.

Proof. Let V be any regular closed (resp. regular open) set in Z. Since g ◦ f is an almost contra pgb - continuous,
(g ◦ f )−1(V) = f−1(g−1(V)) is pgb - open (resp. pgb - closed) in X. Since f is surjective and strongly pgb -
open (or strongly pgb - closed), f ( f−1(g−1(V))) = g−1(V) is pgb - open(or pgb - closed). Therefore g is an
almost contra pgb - continuous.

Definition 3.6. A function f : X → Y is called weakly pgb - continuous if for each x ∈ X and each open set V of Y
containing f (x), there exists U ∈ pgb−O(X; x) such that f (U) ⊂ cl(V).

Theorem 3.8. If a function f : X → Y is an almost contra pgb - continuous, then f is weakly pgb - continuous
function.

Proof. Let x ∈ X and V be an open set in Y containing f (x). Then cl(V) is regular closed in Y containing f (x).
Since f is an almost contra pgb - continuous function by Theorem 3.4 (2), f−1(cl(V)) is pgb - open set in X
containing x. Set U = f−1(cl(V)), then f (U) ⊂ f ( f−1(Cl(V))) ⊂ cl(V). This shows that f is weakly pgb -
continuous function.

Definition 3.7. A space X is called locally pgb - indiscrete if every pgb - open set is closed in X.

Theorem 3.9. If a function f : X → Y is almost contra pgb - continuous and X is locally pgb - indiscrete space, then
f is almost continuous.

Proof. Let U be a regular open set in Y. Since f is almost contra pgb - continuous f−1(U) is pgb - closed set
in X and X is locally pgb - indiscrete space, which implies f−1(U) is an open set in X. Therefore f is almost
continuous.

Lemma 3.1. Let A and X0 be subsets of a space X. If A ∈ pgb−O(X) and X0 ∈ τα, then A ∩ X0 ∈ pgb−O(X0).

Theorem 3.10. If f : X → Y is almost contra pgb - continuous and X0 ∈ τα then the restriction f /X0 : X0 → Y is
almost contra pgb - continuous.

Proof. Let V be any regular open set of Y. By Theorem, we have f−1(V) ∈ pgb − O(X) and hence
( f /X0)

−1(V) = f−1(V) ∩ X0 ∈ pgb − O(X0). By Lemma 3.1, it follows that f /X0 is almost contra pgb -
continuous.

Theorem 3.11. If f : X → ∏ Yλ is almost contra pgb - continuous, then Pλ ◦ f : X → Yλ is almost contra pgb -
continuous for each λ ∈ ∇, where Pλ is the projection of ∏ Yλ onto Yλ.

Proof. Let Yλ be any regular open set of Y. Since Pλ is continuous open, it is an R - map and hence (Pλ)
−1 ∈

RO(∏ Yλ).
By theorem, f−1(P−1

λ (V)) = (Pλ ◦ f )−1 ∈ pgb−O(X). Hence Pλ ◦ f is almost contra pgb - continuous.
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4 Pre Generalized b - Regular Graphs and Strongly Contra Pre Generalized b - Closed
Graphs

Definition 4.8. A graph G f of a function f : X → Y is said to be pgb - regular (strongly contra pgb - closed) if
for each (x, y) ∈ (X × Y)\G f , there exist a pgb - closed set U in X containing x and V ∈ R − O(Y) such that
(U ×V) ∩ G f = ϕ.

Theorem 4.12. If f : X → Y is almost contra pgb - continuous and Y is T2, then G f is pgb - regular in X×Y.

Proof. Let (x, y) ∈ (X × Y)\G f ). It is obvious that f (x) 6= y. Since Y is T2, there exists V, W ∈ RO(Y) such
that f (x) ∈ V, y ∈W and V ∩W = ϕ. Since f is almost contra pgb - continuous, f−1(V) is a pgb - closed set in
X containing x. If we take U = f−1(V), we have f (U) ⊂ V. Hence, f (U)∩W = ϕ and G f is pgb - regular.

Theorem 4.13. Let f : (X, τ)→ (Y, σ) be a function and g : (X, τ)→ (X×Y, τ × σ) the graph function defined by
g(x) = (x, f (x)) for every x ∈ X. Then f is almost pgb - continuous if and only if g is almost pgb - continuous.

Proof. Necessary : Let x ∈ X and V ∈ pgb − O(Y) containing f (x). Then, we have g(x) = (x, f (x)) ∈
R−O(X × Y). Since f is almost pgb - continuous, there exists a pgb - open set U of X containing x such that
g(U) ⊂ X×Y. Therefore, we obtain f (U) ⊂ V. Hence f is almost pgb continuous.
Sufficiency : Let x ∈ X and w be a regular open set of X × Y containing g(x). There exists U1 ∈ RO(X, τ)

and V ∈ RO(Y, σ) such that (x, f (x)) ∈ (U1 × V) ⊂ W. Since f is almost pgb - continuous, there exists
U2 ∈ pgb−O(X, τ) such that x ∈ U2 and f (U2) ⊂ V. Set U = U1 ∩U2. We have x ∈ Ux ∈ pgb−O(X, τ) and
g(U) ⊂ (U1 ×V) ⊂W. This shows that g is almost pgb - continuous.

Theorem 4.14. If a function f : X → Y be a almost contra pgb - continuous and almost continuous, then f is regular
set - connected.

Proof. Let V ∈ RO(Y). Since f is almost contra pgb - continuous and almost continuous, f−1(V) is pgb -
closed and open. So f−1(V) is clopen. It turns out that f is regular set - connected.

5 Connectedness

Definition 5.9. A space X is called pgb - connected if X cannot be written as a disjoint union of two non - empty pgb
- open sets.

Theorem 5.15. If f : X → Y is an almost contra pgb - continuous surjection and X is pgb - connected, then Y is
connected.

Proof. Suppose that Y is not a connected space. Then Y can be written as Y = U0 ∪V0 such that U0 and V0 are
disjoint non - empty open sets. Let U = int(cl(U0)) and V = int(cl(V0)). Then U and V are disjoint nonempty
regular open sets such that Y = U ∪ V. Since f is almost contra pgb - continuous, then f−1(U) and f−1(V)

are pgb - open sets of X. We have X = f−1(U) ∪ f−1(V) such that f−1(U) and f−1(V) are disjoint. Since f is
surjective, this shows that X is not pgb - connected. Hence Y is connected.

Theorem 5.16. The almost contra pgb - continuous image of pgb - connected space is connected.

Proof. Let f : X → Y be an almost contra pgb - continuous function of a pgb - connected space X onto a
topological space Y. Suppose that Y is not a connected space. There exist non - empty disjoint open sets V1
and V2 such that Y = V1 ∪V2. Therefore, V1 and V2 are clopen in Y. Since f is almost contra pgb - continuous,
f−1(V1) and f−1(V2) are pgb - open in X. Moreover, f−1(V1) and f−1(V2) are non - empty disjoint and
X = f−1(V1) ∪ f−1(V2). This shows that X is not pgb - connected. This is a contradiction and hence Y is
connected.

Definition 5.10. A topological space X is said to be pgb - ultra connected if every two non - empty pgb - closed subsets
of X intersect.

A topological space X is said to be hyper connected if every open set is dense.

Theorem 5.17. If X is pgb - ultra connected and f : X → Y is an almost contra pgb - continuous surjection, then Y
is hyper connected.
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Proof. Suppose that Y is not hyperconnected. Then, there exists an open set V such that V is not dense in Y.
So, there exist non - empty regular open subsets B1 = int(cl(V)) and B2 = Y − cl(V) in Y. Since f is almost
contra pgb - continuous, f−1(B1) and f−1(B2) are disjoint pgb - closed. This is contrary to the pgb - ultra -
connectedness of X. Therefore, Y is hyperconnected.

6 Separation axioms

Definition 6.11. A topological space X is said to be pgb− T1 space if for any pair of distinct points x and y, there exist
a pgb - open sets G and H such that x ∈ G, y /∈ G and x /∈ H, y ∈ H.

Theorem 6.18. If f : X → Y is an almost contra pgb - continuous injection and Y is weakly Hausdorff, then X is
pgb− T1.

Proof. Suppose Y is weakly Hausdorff. For any distinct points x and y in X, there exist V and W regular
closed sets in Y such that f (x) ∈ V , f (y) /∈ V , f (y) ∈ W and f (x) /∈ W. Since f is almost contra pgb -
continuous, f−1(V) and f−1(W) are pgb - open subsets of X such that x ∈ f−1(V), y /∈ f−1(V), y ∈ f−1(W)

and x /∈ f−1(W). This shows that X is pgb− T1.

Corollary 6.1. If f : X → Y is a contra pgb - continuous injection and Y is weakly Hausdorff, then X is pgb− T1.

Definition 6.12. A topological space X is called Ultra Hausdorff space, if for every pair of distinct points x and y in X,
there exist disjoint clopen sets U and V in X containing x and y, respectively.

Definition 6.13. A topological space X is said to be pgb− T2 space if for any pair of distinct points x and y, there exist
disjoint pgb - open sets G and H such that x ∈ G and y ∈ H.

Theorem 6.19. If f : X → Y is an almost contra pgb - continuous injective function from space X into a Ultra
Hausdorff space Y, then X is pgb− T2.

Proof. Let x and y be any two distinct points in X. Since f is an injective f (x) 6= f (y) and Y is Ultra Hausdorff
space, there exist disjoint clopen sets U and V of Y containing f (x) and f (y) respectively. Then x ∈ f−1(U)

and y ∈ f−1(V), where f−1(U) and f−1(V) are disjoint pgb - open sets in X. Therefore X is pgb− T2.

Definition 6.14. A topological space X is called Ultra normal space, if each pair of disjoint closed sets can be separated
by disjoint clopen sets.

Definition 6.15. A topological space X is said to be pgb - normal if each pair of disjoint closed sets can be separated by
disjoint pgb - open sets.

Theorem 6.20. If f : X → Y is an almost contra pgb - continuous closed injection and Y is ultra normal, then X is
pgb - normal.

Proof. Let E and F be disjoint closed subsets of X. Since f is closed and injective f (E) and f (F) are disjoint
closed sets in Y . Since Y is ultra normal there exists disjoint clopen sets U and V in Y such that f (E) ⊂ U and
f (F) ⊂ V . This implies E ⊂ f−1(U) and F ⊂ f−1(V). Since f is an almost contra pgb - continuous injection,
f−1(U) and f−1(V) are disjoint pgb - open sets in X. This shows X is pgb - normal.

Theorem 6.21. If f : X → Y is an almost contra pgb - continuous and Y is semi - regular, then f is pgb - continuous.

Proof. Let x ∈ X and V be an open set of Y containing f (x). By definition of semi - regularity of Y, there exists
a regular open set G of Y such that f (x) ∈ G ⊂ V. Since f is almost contra pgb - continuous, there exists
U ∈ pgb−O(X, x) such that f (U) ⊂ G. Hence we have f (U) ⊂ G ⊂ V. This shows that f is pgb - continuous
function.
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7 Compactness

Definition 7.16. A space X is said to be:
(1) pgb - compact if every pgb - open cover of X has a finite subcover.
(2) pgb - closed compact if every pgb - closed cover of X has a finite subcover.
(3) Nearly compact if every regular open cover of X has a finite subcover.
(4) Countably pgb - compact if every countable cover of X by pgb - open sets has a finite subcover.
(5) Countably pgb - closed compact if every countable cover of X by pgb - closed sets has a finite sub cover.
(6) Nearly countably compact if every countable cover of X by regular open sets has a finite sub cover.
(7) pgb - Lindelof if every pgb - open cover of X has a countable sub cover.
(8) pgb - Lindelof if every pgb - closed cover of X has a countable sub cover.
(9) Nearly Lindelof if every regular open cover of X has a countable sub cover.
(10) S - Lindelof if every cover of X by regular closed sets has a countable sub cover.
(11) Countably S - closed if every countable cover of X by regular closed sets has a finite sub - cover.
(12) S - closed if every regular closed cover of x has a finite sub cover.

Theorem 7.22. Let f : X → Y be an almost contra pgb - continuous surjection. Then, the following properties hold:
(1) If X is pgb - closed compact, then Y is nearly compact.
(2) If X is countably pgb - closed compact, then Y is nearly countably compact.
(3) If X is pgb - Lindelof, then Y is nearly Lindelof.

Proof. (1) Let {Vα : α ∈ I} be any regular open cover of Y. Since f is almost contra pgb - continuous, { f−1(Vα) :
α ∈ I} is pgb - closed cover of X. Since X is pgb - closed compact, there exists a finite subset I0 of I such that
X = ∪{ f−1(Vα) : α ∈ I0}. Since f is surjective, Y = ∪{(Vα) : α ∈ I0} which is finite sub cover of Y, therefore
Y is nearly compact.
(2) Let {Vα : α ∈ I} be any countable regular open cover of Y . Since f is almost contra pgb - continuous,
{ f−1(Vα) : α ∈ I} is countable pgb - closed cover of X. Since X is countably pgb - closed compact, there exists
a finite subset I0 of I such that X = ∪{ f−1(Vα) : α ∈ I0}. Since f is surjective, Y = ∪{(Vα) : α ∈ I0} is finite
subcover for Y . Hence Y is nearly countably compact.
(3) Let {Vα : α ∈ I} be any regular open cover of Y. Since f is almost contra pgb - continuous, { f−1(Vα) :
α ∈ I} is pgb - closed cover of X. Since X is pgb - Lindelof, there exists a countable subset I0 of I such that
X = { f−1(Vα) : α ∈ I0}. Since f is surjective, Y = ∪{(Vα) : α ∈ I0} is finite sub cover for Y . Therefore, Y is
nearly Lindelof.

Theorem 7.23. Let f : X → Y be an almost contra pgb - continuous surjection. Then, the following properties hold:
(1) If X is pgb - compact, then Y is S - closed.
(2) If X is countably pgb - closed, then Y is is countably S - closed.
(3) If X is pgb - Lindelof, then Y is S - Lindelof.

Proof. (1) Let {Vα : α ∈ I} be any regular closed cover of Y. Since f is almost contra pgb - continuous,
{ f−1(Vα) : α ∈ I} is pgb - open cover of X. Since X is pgb - compact, there exists a finite subset I0 of I such
that X = ∪{ f−1(Vα) : α ∈ I0}. Since f is surjective, Y = ∪{Vα : α ∈ I0} is finite sub cover for Y. Therefore, Y
is S - closed.
(2) Let {Vα : α ∈ I} be any countable regular closed cover of Y. Since f is almost contra pgb - continuous,
{ f−1(Vα) : α ∈ I} is countable pgb - open cover of X. Since X is countably pgb - compact, there exists a finite
subset I0 of I such that X = ∪{ f−1(Vα) : α ∈ I0}. Since f is surjective, Y = ∪{Vα : α ∈ I0} is finite sub cover
for Y. Hence, Y is countably S - closed.
(3) Let {Vα : α ∈ I} be any regular closed cover of Y. Since f is almost contra pgb - continuous, { f−1(Vα) :
α ∈ I} is pgb - open cover of X. Since X is pgb - Lindelof, there exists a countable sub - set I0 of I such that
X = ∪{ f−1(Vα) : α ∈ I0}. Since f is surjective, Y = ∪{Vα : α ∈ I0} is finite sub cover for Y. Hence, Y is S -
Lindelof.
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Abstract

In this paper, we achieve the general solution and generalized Ulam - Hyers stability of a n− dimensional
additive-quadratic-cubic-quartic (AQCQ) functional equation

f

(
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)
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(
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)
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(
n−1
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i=1

vi

)
+ f (2vn) + f (−2vn)− 4 f (vn)− 4 f (−vn)

where n is a positive integer with n ≥ 3 in Banach Space (BS) via direct and fixed point methods. The stability
results are discussed in two different ways by assuming n is an odd positive integer and n is an even positive
integer.

Keywords: AQCQ functional equation, generalized Ulam - Hyers stability, Banach space, fixed point.
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1 Introduction

The education of stability problems for functional equations is tied to a question of Ulam [61] regarding the sta-
bility of group homomorphisms and certainly answered for a additive functional equation on Banach spaces
by Hyers [30] and Aoki [3]. It was further generalized and marvelous outcome obtained by number of authors
[24, 44, 53, 58].

The general solution and the generalized Hyers-Ulam-Rassias stability of the generalized mixed type of
functional equation

f (x + ay) + f (x− ay) = a2 [ f (x + y) + f (x− y)] + 2
(
1− a2) f (x)

+

(
a4 − a2)

12
[ f (2y) + f (−2y)− 4 f (y)− 4 f (−y)] .

(1.1)

for fixed integers a with a 6= 0,±1 having solution additive, quadratic, cubic and quartic was discussed by K.
Ravi et. al., [59] . Its generalized Ulam-Hyers stability in multi-Banach spaces and non-Archimedean normed
spaces via fixed point approach was respectively investigated by T.Z. Xu et. al [62, 63].

Very recently, Choonkil Park and Jung Rye Lee [42] proved the Hyers - Ulam stability of the following
additive - quadratic - cubic - quartic functional equation

f (x + 2y) + f (x− 2y) = 4 f (x + y) + 4 f (x− y)− 6 f (x) + f (2y) + f (−2y)− 4 f (y)− 4 f (−y) (1.2)
∗Corresponding author.
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in paranormed spaces.
During the last seven decades, the stability problems of various functional equations in several spaces have

been broadly investigated by number of mathematicians [4] - [18], [20] - [23], [25] - [29], [32] - [34], [39, 40, 43],
[48] - [52], [56, 57].

Now, we will recall the fundamental results in fixed point theory [36].

Theorem 1.1. (Banach’s contraction principle) Let (X, d) be a complete metric space and consider a mapping T : X →
X which is strictly contractive mapping, that is

(A1) d(Tx, Ty) ≤ Ld(x, y) for some (Lipschitz constant) L < 1. Then,
(i) The mapping T has one and only fixed point x∗ = T(x∗);
(ii)The fixed point for each given element x∗ is globally attractive, that is

(A2) limn→∞Tnx = x∗, for any starting point x ∈ X;
(iii) One has the following estimation inequalities:

(A3) d(Tnx, x∗) ≤ 1
1−L d(Tnx, Tn+1x), ∀ n ≥ 0, ∀ x ∈ X;

(A4) d(x, x∗) ≤ 1
1−L d(x, x∗), ∀ x ∈ X.

Theorem 1.2. Suppose that for a complete generalized metric space (Ω, δ) and a strictly contractive mapping T : Ω→
Ω with Lipschitz constant L. Then, for each given x ∈ Ω , either

d(Tnx, Tn+1x) = ∞ ∀ n ≥ 0,

or there exists a natural number n0 such that
(FP1) d(Tnx, Tn+1x) < ∞ for all n ≥ n0 ;
(FP2) The sequence (Tnx) is convergent to a fixed to a fixed point y∗ of T
(FP3) y∗ is the unique fixed point of T in the set ∆ = {y ∈ Ω : d(Tn0 x, y) < ∞};
(FP4) d(y∗, y) ≤ 1

1−L d(y, Ty) for all y ∈ ∆.

In this paper, we established the generalized Ulam - Hyers stability of a n− dimensional additive-quadratic-
cubic-quartic (AQCQ) functional equation

f
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+ f
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)
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)
− 6 f

(
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)
+ f (2vn) + f (−2vn)− 4 f (vn)− 4 f (−vn) (1.3)

where n is a positive integer with n ≥ 3 in Banach Space (BS) via direct and fixed point methods. The stability
results are discussed in two different ways by assuming n is an odd positive integer and n is an even positive
integer.

In section 2, the general solution of (1.3) is present.
In Sections 3 and 4, the generalized Ulam-Hyers stability of the functional equation (1.3) where n is an

odd positive integer and n is an even positive integer in Banach space using direct method are discussed,
respectively.

In Sections 5 and 6, we investigate the generalized Ulam-Hyers stability of the functional equation (1.3)
where n is an odd positive integer and n is an even positive integer in Banach space using fixed point methods,
respectively.

In Section 7, we conclude with the non stable cases for the functional equation (1.3).

2 General Solution

In this section, we provide the general solution of the function equation (1.3). To prove this, let us take I and
J be real vector spaces.

Lemma 2.1. If a function f : I → J fulfills (1.3) for all v1, · · · , vn ∈ I if and only if f : I → J satisfies (1.2) for all
x, y ∈ I .
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Proof. Let f : I → J be a function fulfills (1.3). Replacing (v1, v2, v3 · · · , vn−1, vn) by (x, 0, 0, · · · , 0, y) in
(1.3), we get (1.2) as desired. Conversely, let f : I → J be a function satisfying (1.2). Changing (x, y) by
(v1 + v2 + v3 · · ·+ vn−1, vn) in (1.2), we arrive (1.3) as desired.

Lemma 2.2. If f : I → J be an odd mapping fulfills (1.3) and let a : I → J be a mapping given by

a(v) = f (2v)− 8 f (v) (2.1)

for all v ∈ I then
a(2v) = 2a(v) (2.2)

for all v ∈ I such that a is additive.

Proof. Using oddness of f in (1.3), we arrive

f
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(2.3)

for all v1, · · · , vn ∈ I . Letting (v1, · · · , vn) by (0, · · · , 0) in (2.3), we find that

f (0) = 0. (2.4)

Also, replacing (v2, v3, · · · , vn−1) by (0, 0, · · · , 0) in (2.3), we get

f (v1 + 2vn) + f (v1 − 2vn) = 4 f (v1 + vn) + 4 f (v1 − vn)− 6 f (v1) (2.5)

for all v1, vn ∈ I . Changing (v1, vn) by (v, v) in (2.5), we obtain

f (3v) = 4 f (2v)− 5 f (v) (2.6)

for all v ∈ I . Again changing (v1, vn) by (2v, v) in (2.5) and using (2.4), (2.6), we arrive

f (4v) = 4 f (3v)− 6 f (2v) + 4 f (v) (2.7)

for all v ∈ I . Using (2.6) in (2.7), we get

f (4v) = 10 f (2v)− 16 f (v) (2.8)

for all v ∈ I . From (2.1), we have

a(2v)− 2a(v) = f (4v)− 10 f (2v) + 16 f (v) (2.9)

for all v ∈ I . Using (2.8) in (2.9), we desired our result.

Lemma 2.3. If f : I → J be an odd mapping fulfills (1.3) and let c : I → J be a mapping given by

c(v) = f (2v)− 2 f (v) (2.10)

for all v ∈ I then
c(2v) = 8c(v) (2.11)

for all v ∈ I such that c is cubic.

Proof. It follows from (2.11) that

c(2v)− 8c(v) = f (4v)− 10 f (2v) + 16 f (v) (2.12)

for all u ∈ I . Using (2.8) in (2.12), we desired our result.

Lemma 2.4. If f : I → J be an even mapping fulfills (1.3) and let q2 : I → J be a mapping given by

q2(v) = f (2v)− 16 f (v) (2.13)

for all v ∈ I then
q2(2v) = 4q2(v) (2.14)

for all v ∈ I such that q2 is quadratic.
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Proof. Using evenness of f in (1.3), we get
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n−1

∑
i=1

vi − 2vn

)
= 4 f

(
n

∑
i=1

vi

)
+ 4 f

(
n−1

∑
i=1

vi − vn

)
− 6 f

(
n−1

∑
i=1

vi

)
+ 2 f (2vn)− 8 f (vn) (2.15)

for all v1, · · · , vn ∈ I . Letting (v1, · · · , vn) by (0, · · · , 0) in (2.15), we obtain

f (0) = 0. (2.16)

Replacing (v2, v3, · · · , vn−1) by (0, 0, · · · , 0) in (2.15), we arrive

f (v1 + 2vn) + f (v1 − 2vn) = 4 f (v1 + vn) + 4 f (v1 − vn)− 6 f (v1) + 2 f (2vn)− 8 f (vn) (2.17)

for all v1, vn ∈ I . Setting (v1, vn) by (v, v) in (2.17), we have

f (3v) = 6 f (2v)− 15 f (v) (2.18)

for all v ∈ I . Again setting (v1, vn) by (2v, v) in (2.17) and using (2.16), (2.18), we arrive

f (4v) = 4 f (3v)− 4 f (2v)− 4 f (v) (2.19)

for all v ∈ I . Using (2.18) in (2.19), we get

f (4v) = 20 f (2v)− 64 f (v) (2.20)

for all v ∈ I . From (2.13), we establish

q2(2v)− 4q2(v) = f (4v)− 20 f (2v) + 64 f (v) (2.21)

for all v ∈ I . Using (2.20) in (2.21), we desired our result.

Lemma 2.5. If f : I → J be an even mapping fulfills (1.3) and let q4 : I → J be a mapping given by

q4(v) = f (2v)− 4 f (v) (2.22)

for all v ∈ I then
q4(2v) = 16q4(v) (2.23)

for all v ∈ I such that q4 is quartic.

Proof. It follows from (2.23) that

q4(2v)− 4q4(v) = f (4v)− 20 f (2v) + 64 f (v) (2.24)

for all v ∈ I . Using (2.20) in (2.24), we desired our result.

Remark 2.1. If f : I → J be a mapping fulfills (1.3) then there exists fo, fe : I → J and let a, q2, c, q4 : I → J be a
mapping defined in (2.1), (2.10), (2.13) and (2.22), we have

fe(v) =
1

12
(q4(v)− q2(v)) (2.25)

and
fo(v) =

1
6
(c(v)− a(v)) (2.26)

for all v ∈ I . Also if we define
f (v) = fe(v) + fo(v) (2.27)

we arrive
f (v) =

1
12

(q4(v)− q2(v)) +
1
6
(c(v)− a(v)) (2.28)

for all v ∈ I .
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Throughout this paper, let we consider Y be a normed space and Z be a Banach space. Define a mapping
D faqcq : Y → Z by

D faqcq(v1, · · · , vn) = f

(
n−1

∑
i=1

vi + 2vn

)
+ f

(
n−1

∑
i=1

vi − 2vn

)

− 4 f

(
n

∑
i=1

vi

)
− 4 f

(
n−1

∑
i=1

vi − vn

)
+ 6 f

(
n−1

∑
i=1

vi

)
− f (2vn)− f (−2vn) + 4 f (vn) + 4 f (−vn)

for all v1, · · · , vn ∈ Y .

3 Stability Results - Direct Method: n Odd Positive Integer

In this section, we investigate the generalized Ulam-Hyers stability of the functional equation (1.3) where n is
an odd positive integer in Banach space using direct method.

3.1 f IS AN ODD FUNCTION

Theorem 3.3. Let q = ±1 and ω, Ω : Yn → [0, ∞) be functions such that

lim
p→∞

ω (2pqv1, · · · , 2pqvn)

2pq = 0 (3.1)

for all v1, · · · , vn ∈ Y . Let D faqcq : Y → Z be an odd function satisfying the inequality∥∥D faqcq(v1, · · · , vn)
∥∥ ≤ ω (v1, · · · , vn) (3.2)

for all v1, · · · , vn ∈ Y . Then there exists a unique additive function A : Y → Z which satisfies (1.3) and

‖A(v)− a(v)‖ = ‖A(v)− { f (2v)− 8 f (v)}‖ ≤ 1
2

∞

∑
r= 1−q

2

Ω(2rqv, 2rqv, · · · ,−2rqv, 0, 2rqv)
2rq (3.3)

where Ω(2rqv, 2rqv, · · · ,−2rqv, 0, 2rqv) and A(v) are defined by

Ω(2rqv, 2rqv, · · · ,−2rqv, 0, 2rqv)

= 4ω1(2rqv, 2rqv, · · · ,−2rqv, 0, 2rqv) + ω1(2 · 2rqv, 2rqv, · · · ,−2rqv, 0, 2rqv)

= 4ω

2rqv, 2rqv, 2rqv, · · · , 2rqv︸ ︷︷ ︸
n−3

2 times

,−2rqv,−2rqv, · · · ,−2rqv︸ ︷︷ ︸
n−3

2 times

, 0, 2rqv



+ ω

2 · 2rqv, 2rqv, 2rqv, · · · , 2rqv︸ ︷︷ ︸
n−3

2 times

,−2rqv,−2rqv, · · · ,−2rqv︸ ︷︷ ︸
n−3

2 times

, 0, 2rqv

 (3.4)

and

A(v) = lim
p→∞

a(2pqv)
2pq = lim

p→∞

f (2 · 2pqv)− 8 f (2pqv)
2pq (3.5)

for all v ∈ Y , respectively.

Proof. Case (i): Assume q = 1.
Given, f is an odd function. Using oddness of f in (3.2), we arrive∥∥∥∥∥ f

(
n−1

∑
i=1

vi + 2vn

)
+ f

(
n−1

∑
i=1

vi − 2vn

)
− 4 f

(
n

∑
i=1

vi

)

−4 f

(
n−1

∑
i=1

vi − vn

)
+ 6 f

(
n−1

∑
i=1

vi

)∥∥∥∥∥ ≤ ω (v1, · · · , vn) (3.6)
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for all v1, v2, v3, v4, · · · , vn−1, vn ∈ Y . Replacing

(v1, v2, v3, v4, · · · , vn−1, vn) =

v, v, v, · · · , v︸ ︷︷ ︸
n−3

2 times

,−v,−v, · · · ,−v︸ ︷︷ ︸
n−3

2 times

, 0, v


in (3.6), we get

∥∥∥ f (3v)− 4 f (2v) + 5 f (v)
∥∥∥ ≤ ω

v, v, v, · · · , v︸ ︷︷ ︸
n−3

2 times

,−v,−v, · · · ,−v︸ ︷︷ ︸
n−3

2 times

, 0, v


= ω1(v, v, · · · ,−v, 0, v) (3.7)

for all v ∈ Y . Again replacing

(v1, v2, v3, v4, · · · , vn−1, vn) =

2v, v, v, · · · , v︸ ︷︷ ︸
n−3

2 times

,−v,−v, · · · ,−v︸ ︷︷ ︸
n−3

2 times

, 0, v


in (3.6), we obtain

∥∥∥ f (4v)− 4 f (3v) + 6 f (2v)− 4 f (v)
∥∥∥ ≤ ω

2v, v, v, · · · , v︸ ︷︷ ︸
n−3

2 times

,−v,−v, · · · ,−v︸ ︷︷ ︸
n−3

2 times

, 0, v


= ω1(2v, v, · · · ,−v, 0, v) (3.8)

for all v ∈ Y . It follows from (3.7) and (3.8),∥∥∥ f (4v)− 10 f (2v) + 16 f (v)
∥∥∥

=
∥∥∥ f (4v)− 4 f (3v) + 4 f (3v) + 6 f (2v)− 16 f (2v) + 20 f (v)− 4 f (v)

∥∥∥
≤ 4

∥∥∥ f (3v)− 4 f (2v) + 5 f (v)
∥∥∥+ ∥∥∥ f (4v)− 4 f (3v) + 6 f (2v)− 4 f (v)

∥∥∥
≤ 4ω1(v, v, · · · ,−v, 0, v) + ω1(2v, v, · · · ,−v, 0, v) (3.9)

for all v ∈ Y . Define

Ω(v, v, · · · ,−v, 0, v) = 4ω1(v, v, · · · ,−v, 0, v) + ω1(2v, v, · · · ,−v, 0, v) (3.10)

for all v ∈ Y . Using (3.10) in (3.9), we have∥∥∥ f (4v)− 10 f (2v) + 16 f (v)
∥∥∥ ≤ Ω(v, v, · · · ,−v, 0, v) (3.11)

for all v ∈ Y . It follows from (3.11), we reach∥∥∥{ f (4v)− 8 f (2v)
}
− 2
{

f (2v)− 8 f (v)
}∥∥∥ ≤ Ω(v, v, · · · ,−v, 0, v) (3.12)

for all v ∈ Y . Using (2.1) in (3.12), we land∥∥∥a(2v)− 2a(v)
∥∥∥ ≤ Ω(v, v, · · · ,−v, 0, v) (3.13)

for all v ∈ Y . It follows from (3.13) that∥∥∥ a(2v)
2
− a(v)

∥∥∥ ≤ Ω(v, v, · · · ,−v, 0, v)
2

(3.14)
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for all v ∈ Y . Now, replacing v by 2v and dividing by 2 in (3.14), we have∥∥∥ a(22v)
22 − a(2v)

2

∥∥∥ ≤ Ω(2v, 2v, · · · ,−2v, 0, 2v)
22 (3.15)

for all v ∈ Y . From (3.14) and (3.15), we obtain∥∥∥∥ a(22v)
22 − a(v)

∥∥∥∥ ≤ ∥∥∥ a(22v)
22 − a(2v)

2

∥∥∥+ ∥∥∥ a(2v)
2
− a(v)

∥∥∥
≤ 1

2

[
Ω(v, v, · · · ,−v, 0, v) +

Ω(2v, 2v, · · · ,−2v, 0, 2v)
2

]
(3.16)

for all v ∈ Y . Generalizing, for a positive integer p, we reach∥∥∥∥ a(2pv)
2p − a(v)

∥∥∥∥ ≤ 1
2

p−1

∑
r=0

Ω(2rv, 2rv, · · · ,−2rv, 0, 2rv)
2r (3.17)

for all v ∈ Y . Thus, the sequence
{

a(2pv)
2p

}
is a Cauchy in Z and so it converges.

Indeed, to prove the convergence of the sequence
{

a(2pv)
2p

}
, replacing v by 2sv and dividing by 2s in

(3.17), for any p, s > 0 , we get∥∥∥∥ a(2p+sv)
2(p+s)

− a(2sv)
2s

∥∥∥∥ =
1
2s

∥∥∥∥ a(2p · 2sv)
2p − a(2sv)

∥∥∥∥
≤ 1

2s
1
2

p−1

∑
r=0

Ω(2r · 2sv, 2r · 2sv, · · · ,−2r · 2sv, 0, 2r · 2sv)
2r

≤ 1
2

∞

∑
r=0

Ω(2r · 2sv, 2r · 2sv, · · · ,−2r · 2sv, 0, 2r · 2sv)
2r · 2s

→ 0 as s→ ∞

for all v ∈ Y . Since Z is complete, we see that a mapping A(v) : Y → Z defined by

A(v) = lim
p→∞

a(2pv)
2p

for all v ∈ Y . Letting p → ∞ in (3.17), we see that (3.3) holds for all v ∈ Y . In order to show that A satisfies
(1.3), replacing (v1, · · · , vn) by (2pv1, · · · , 2pvn) and dividing by 2p in (3.2), we have

‖A(v1, · · · , vn)‖ = lim
p→∞

1
2

∥∥D faqcq(2pv1, · · · , 2pvn)
∥∥ ≤ lim

p→∞

1
2

ω(2pv1, · · · , 2pvn)

for all v1, · · · , vn ∈ Y and so the mapping A is additive. Hence, A satisfies (1.3), for all v1, · · · , vn ∈ Y .
To prove that A is unique, we assume now that there is A′ as another additive mapping satisfying (1.3)

and the inequality (3.3). Then it follows easily that

A(2sv) = 2sA(v), A′(2sv) = 2sA′(v)

for all v ∈ Y and all s ∈N. Thus∥∥A(v)−A′(v)∥∥ =
1
2s

∥∥A(2sv)−A′(2sv)
∥∥

=
1
2s

{∥∥A(2sv)− a(2sv) + a(2sv)−A′(2sv)
∥∥}

≤ 1
2s

{
‖A(2sv)− a(2sv)‖+

∥∥a(2sv)−A′(2sv)
∥∥}

≤
∞

∑
r=0

Ω(2r · 2sv, 2r · 2sv, · · · ,−2r · 2sv, 0, 2r · 2sv)
2(r+s)
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for all v ∈ Y . Letting s → ∞, in the above inequality, we achieve uniqueness of A. Hence the theorem holds
for q = 1.
Case (ii): Assume q = −1.

Now replacing v by
v
2

in (3.13), we get∥∥∥a(v)− 2a
(v

2

)∥∥∥ ≤ Ω
(v

2
,

v
2

, · · · ,−v
2

, 0,
v
2

)
(3.18)

for all v ∈ Y . Now, replacing v by v
2 and multiply by 2 in (3.18), we have∥∥∥2a

(v
2

)
− 22a

( v
22

) ∥∥∥ ≤ 2Ω
( v

22 ,
v
22 , · · · ,− v

22 , 0,
v
22

)
(3.19)

for all v ∈ Y . From (3.18) and (3.19), we obtain∥∥∥a(v)− 22a
( v

22

)∥∥∥ ≤ ∥∥∥a(v)− 2a
(v

2

)∥∥∥+ ∥∥∥2a
(v

2

)
− 22a

( v
22

) ∥∥∥
≤ Ω

(v
2

,
v
2

, · · · ,−v
2

, 0,
v
2

)
+ 2Ω

( v
22 ,

v
22 , · · · ,− v

22 , 0,
v
22

)
(3.20)

for all v ∈ Y . Generalizing, for a positive integer p, we reach∥∥∥a(v)− 2pa
( v

2p

)∥∥∥ ≤ p−1

∑
r=1

2rΩ
( v

2r ,
v
2r , · · · ,− v

2r , 0,
v
2r

)
(3.21)

for all v ∈ Y . The rest of the proof is similar to that of case q = 1. Hence for q = −1 also the theorem holds.
This completes the proof of the theorem.

The following corollary is an immediate consequence of Theorem 3.3 concerning the Hyers - Ulam, Hyers
- Ulam - Rassias and Ulam - JMRassias stabilities of (1.3).

Corollary 3.1. Let D faqcq : Y → Z be an odd mapping. If there exists real numbers b and d such that

∥∥D faqcq(v1, · · · , vn)
∥∥ ≤


b,

b
n
∑

i=1
||vi||d, d 6= 1;

b
{

n
∏
i=1
||vi||d +

n
∑

i=1
||vi||nd

}
, nd 6= 1;

(3.22)

for all v1, · · · , vn ∈ Y , then there exists a unique additive function A : Y → Z such that

‖a(v)−A(v)‖ ≤


5b,
b||v||d(5n− 6 + 2rd)

|2− 2d|
,

b||v||nd(5n− 6 + 2rnd)

|2− 2nd|

(3.23)

for all v ∈ Y .

Theorem 3.4. Let q = ±1 and ω, Ω : Yn → [0, ∞) be functions such that

lim
p→∞

ω (2pqv1, · · · , 2pqvn)

23pq = 0 (3.24)

for all v1, · · · , vn ∈ Y . Let D faqcq : Y → Z be an odd function satisfying the inequality∥∥D faqcq(v1, · · · , vn)
∥∥ ≤ ω (v1, · · · , vn) (3.25)

for all v1, · · · , vn ∈ Y . Then there exists a unique cubic function C : Y → Z which satisfies (1.3) and

‖C(v)− c(v)‖ = ‖C(v)− { f (2v)− 2 f (v)}‖ ≤ 1
8

∞

∑
r= 1−q

2

Ω(2rqv, 2rqv, · · · ,−2rqv, 0, 2rqv)
2rq (3.26)

where Ω(2rqv, 2rqv, · · · ,−2rqv, 0, 2rqv) is defined in (3.4) and C(v) is defined by

C(v) = lim
p→∞

c(2pqv)
23pq = lim

p→∞

f (2 · 2pqv)− 2 f (2pqv)
23pq (3.27)

for all v ∈ Y , respectively.
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Proof. It follows from (3.11), we reach∥∥∥{ f (4v)− 2 f (2v)
}
− 8
{

f (2v)− 2 f (v)
}∥∥∥ ≤ Ω(v, v, · · · ,−v, 0, v) (3.28)

for all v ∈ Y . Using (2.10) in (3.28), we land∥∥∥c(2v)− 8c(v)
∥∥∥ ≤ Ω(v, v, · · · ,−v, 0, v) (3.29)

for all v ∈ Y . The rest of the proof is similar to that of Theorem 3.3 . This completes the proof of the theorem.

The following corollary is an immediate consequence of Theorem 3.4 concerning the Hyers - Ulam, Hyers
- Ulam - Rassias and Ulam - JMRassias stabilities of (1.3).

Corollary 3.2. Let D faqcq : Y → Z be an odd mapping. If there exists real numbers b and d such that

∥∥D faqcq(v1, · · · , vn)
∥∥ ≤


b,

b
n
∑

i=1
||vi||d, d 6= 3;

b
{

n
∏
i=1
||vi||d +

n
∑

i=1
||vi||nd

}
, nd 6= 3;

(3.30)

for all v1, · · · , vn ∈ Y , then there existss a unique cubic function C : Y → Z such that

‖c(v)− C(v)‖ ≤



5b
|7| ,

b||v||d(5n− 6 + 2rd)

|8− 2d|
,

b||v||nd(5n− 6 + 2rnd)

|8− 2nd|

(3.31)

for all v ∈ Y .

Theorem 3.5. Let q = ±1 and ω, Ω : Yn → [0, ∞) be functions satisfying (3.1) and (3.24) for all v1, · · · , vn ∈ Y .
Let D faqcq : Y → Z be an odd function satisfying the inequality∥∥D faqcq(v1, · · · , vn)

∥∥ ≤ ω (v1, · · · , vn) (3.32)

for all v1, · · · , vn ∈ Y . Then there exists a unique additive function A : Y → Z and a unique cubic function
C : Y → Z which satisfies (1.3) and

‖ f (v)−A(v)− C(v)‖ ≤ 1
6

1
2

∞

∑
r= 1−q

2

Ω(2rqv, 2rqv, · · · ,−2rqv, 0, 2rqv)
2rq

+
1
8

∞

∑
r= 1−q

2

Ω(2rqv, 2rqv, · · · ,−2rqv, 0, 2rqv)
2rq

 (3.33)

where Ω(2rqv, 2rqv, · · · ,−2rqv, 0, 2rqv), A(v) and C(v) is defined in (3.4), (3.5) and (3.27) for all v ∈ Y , respectively.

Proof. Case (i): For q = 1. Given f is an odd function.
If f : Y → Z satisfies (3.32) then by Theorem 3.3, there exists a unique additive function A′ : Y → Z such

that ∥∥A′(v)− ( f (2v)− 8 f (v))
∥∥ ≤ 1

2

∞

∑
r=0

Ω(2rv, 2rv, · · · ,−2rv, 0, 2rv)
2r (3.34)

for all v ∈ Y .
Also, if f : Y → Z satisfies (3.32) then by Theorem 3.4, there exists a unique cubic function C ′ : Y → Z

such that ∥∥C ′(v)− ( f (2v)− 2 f (v))
∥∥ ≤ 1

8

∞

∑
r=0

Ω(2rv, 2rv, · · · ,−2rv, 0, 2rv)
2r (3.35)
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for all v ∈ Y . Combining (3.34) and (3.35), we achieve∥∥∥∥1
6
A′(v)− 1

6
C ′(v)− f (v)

∥∥∥∥
=

∥∥∥∥1
6
A′(v)− 1

6
f (2v)− 8

6
f (v)− 1

6
C ′(v) + 1

6
f (2v)− 2

6
f (v)

∥∥∥∥
≤
∥∥∥∥1

6
A′(v)− 1

6
( f (2v)− 8 f (v))

∥∥∥∥+ ∥∥∥∥1
6
C ′(v)− 1

6
( f (2v) + 2 f (v))

∥∥∥∥
≤ 1

6
{∥∥A′(v)− ( f (2v)− 8 f (v))

∥∥+ ∥∥C ′(v)− ( f (2v)− 2 f (v))
∥∥}

≤ 1
6

{
1
2

∞

∑
r=0

Ω(2rv, 2rv, · · · ,−2rv, 0, 2rv)
2r +

1
8

∞

∑
r=0

Ω(2rv, 2rv, · · · ,−2rv, 0, 2rv)
2r

}
for all v ∈ Y . Defining

A(v) = 1
6
A′(v); C(v) = −1

6
C(v)

we arrive (3.33) as desired. Similarly, we can prove for j = −1. Hence the proof is complete.

The following corollary is an immediate consequence of Theorem 3.5 concerning the Hyers - Ulam, Hyers
- Ulam - Rassias and Ulam - JMRassias stabilities of (1.3).

Corollary 3.3. Let D faqcq : Y → Z be an odd mapping. If there exists real numbers b and d such that

∥∥D faqcq(v1, · · · , vn)
∥∥ ≤


b,

b
n
∑

i=1
||vi||d, d 6= 1, 3;

b
{

n
∏
i=1
||vi||d +

n
∑

i=1
||vi||nd

}
, nd 6= 1, 3;

(3.36)

for all v1, · · · , vn ∈ Y , then there exists a unique additive functionA : Y → Z and a unique cubic function C : Y → Z
such that

‖ f (v)−A(v)− C(v)‖ ≤



5b
6

(
1 +

1
|7|

)
,

b||v||d(5n− 6 + 2rd)

6

(
1

|2− 2d|
+

1
|8− 2d|

)
,

b||v||nd(5n− 6 + 2rnd)

6

(
1

|2− 2nd|
+

1
|8− 2nd|

) (3.37)

for all v ∈ Y .

3.2 f IS AN EVEN FUNCTION

Theorem 3.6. Let q = ±1 and ω, Ω : Yn → [0, ∞) be functions such that

lim
p→∞

ω (2pqv1, · · · , 2pqvn)

22pq = 0 (3.38)

for all v1, · · · , vn ∈ Y . Let D faqcq : Y → Z be an even function satisfying the inequality∥∥D faqcq(v1, · · · , vn)
∥∥ ≤ ω (v1, · · · , vn) (3.39)

for all v1, · · · , vn ∈ Y . Then there exists a unique quadratic function Q2 : Y → Z which satisfies (1.3) and

‖Q2(v)− q2(v)‖ = ‖Q2(v)− { f (2v)− 16 f (v)}‖ ≤ 1
4

∞

∑
r= 1−q

2

Ω(2rqv, 2rqv, · · · ,−2rqv, 0, 2rqv)
2rq (3.40)

where Ω(2rqv, 2rqv, · · · ,−2rqv, 0, 2rqv) is defined in (3.4) and Q2(v) are defined by

Q2(v) = lim
p→∞

q2(2pqv)
22pq = lim

p→∞

f (2 · 2pqv)− 16 f (2pqv)
22pq (3.41)

for all v ∈ Y , respectively.
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Proof. Given, f is an even function. Using evenness of f in (3.39), we arrive∥∥∥∥∥ f

(
n−1

∑
i=1

vi + 2vn

)
+ f

(
n−1

∑
i=1

vi − 2vn

)
− 4 f

(
n

∑
i=1

vi

)
− 4 f

(
n−1

∑
i=1

vi − vn

)

+6 f

(
n−1

∑
i=1

vi

)
− 2 f (2vn) + 8 f (vn)

∥∥∥∥∥ ≤ ω (v1, · · · , vn) (3.42)

for all v1, v2, v3, v4, · · · , vn−1, vn ∈ Y . Replacing

(v1, v2, v3, v4, · · · , vn−1, vn) =

v, v, v, · · · , v︸ ︷︷ ︸
n−3

2 times

,−v,−v, · · · ,−v︸ ︷︷ ︸
n−3

2 times

, 0, v


in (3.42), we get

∥∥∥ f (3v)− 6 f (2v) + 15 f (v)
∥∥∥ ≤ ω

v, v, v, · · · , v︸ ︷︷ ︸
n−3

2 times

,−v,−v, · · · ,−v︸ ︷︷ ︸
n−3

2 times

, 0, v


= ω1(v, v, · · · ,−v, 0, v) (3.43)

for all v ∈ Y . Again replacing

(v1, v2, v3, v4, · · · , vn−1, vn) =

2v, v, v, · · · , v︸ ︷︷ ︸
n−3

2 times

,−v,−v, · · · ,−v︸ ︷︷ ︸
n−3

2 times

, 0, v


in (3.42), we obtain

∥∥∥ f (4v)− 4 f (3v) + 4 f (2v) + 4 f (v)
∥∥∥ ≤ ω

2v, v, v, · · · , v︸ ︷︷ ︸
n−3

2 times

,−v,−v, · · · ,−v︸ ︷︷ ︸
n−3

2 times

, 0, v


= ω1(2v, v, · · · ,−v, 0, v) (3.44)

for all v ∈ Y . It follows from (3.43) and (3.44),∥∥∥ f (4v)− 20 f (2v) + 64 f (v)
∥∥∥

=
∥∥∥ f (4v)− 4 f (3v) + 4 f (3v) + 4 f (2v)− 24 f (2v) + 60 f (v) + 4 f (v)

∥∥∥
≤ 4

∥∥∥ f (3v)− 6 f (2v) + 15 f (v)
∥∥∥+ ∥∥∥ f (4v)− 4 f (3v) + 4 f (2v) + 4 f (v)

∥∥∥
≤ 4ω1(v, v, · · · ,−v, 0, v) + ω1(2v, v, · · · ,−v, 0, v) (3.45)

for all v ∈ Y . Define

Ω(v, v, · · · ,−v, 0, v) = 4ω1(v, v, · · · ,−v, 0, v) + ω1(2v, v, · · · ,−v, 0, v) (3.46)

for all v ∈ Y . Using (3.46) in (3.45), we have∥∥∥ f (4v)− 20 f (2v) + 64 f (v)
∥∥∥ ≤ Ω(v, v, · · · ,−v, 0, v) (3.47)

for all v ∈ Y . It follows from (3.47), we reach∥∥∥{ f (4v)− 16 f (2v)
}
− 4
{

f (2v)− 16 f (v)
}∥∥∥ ≤ Ω(v, v, · · · ,−v, 0, v) (3.48)

for all v ∈ Y . Using (2.13) in (3.48), we land∥∥∥q2(2v)− 4q2(v)
∥∥∥ ≤ Ω(v, v, · · · ,−v, 0, v) (3.49)

for all v ∈ Y . The rest of the proof is similar to that of Theorem 3.3 . This completes the proof of the theorem.
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The following corollary is an immediate consequence of Theorem 3.6 concerning the Hyers - Ulam, Hyers
- Ulam - Rassias and Ulam - JMRassias stabilities of (1.3).

Corollary 3.4. Let D faqcq : Y → Z be an even mapping. If there exists real numbers b and d such that

∥∥D faqcq(v1, · · · , vn)
∥∥ ≤


b,

b
n
∑

i=1
||vi||d, d 6= 2;

b
{

n
∏
i=1
||vi||d +

n
∑

i=1
||vi||nd

}
, nd 6= 2;

(3.50)

for all v1, · · · , vn ∈ Y , then there exists a unique quadratic function Q2 : Y → Z such that

‖q2(v)−Q2(v)‖ ≤



5b
|3| ,

b||v||d(5n− 6 + 2rd)

|4− 2d|
,

b||v||nd(5n− 6 + 2rnd)

|4− 2nd|

(3.51)

for all v ∈ Y .

Theorem 3.7. Let q = ±1 and ω, Ω : Yn → [0, ∞) be functions such that

lim
p→∞

ω (2pqv1, · · · , 2pqvn)

24pq = 0 (3.52)

for all v1, · · · , vn ∈ Y . Let D faqcq : Y → Z be an even function satisfying the inequality∥∥D faqcq(v1, · · · , vn)
∥∥ ≤ ω (v1, · · · , vn) (3.53)

for all v1, · · · , vn ∈ Y . Then there exists a unique quartic function Q4 : Y → Z which satisfies (1.3) and

‖Q4(v)− q4(v)‖ = ‖Q4(v)− { f (2v)− 4 f (v)}‖ ≤ 1
16

∞

∑
r= 1−q

2

Ω(2rqv, 2rqv, · · · ,−2rqv, 0, 2rqv)
2rq (3.54)

where Ω(2rqv, 2rqv, · · · ,−2rqv, 0, 2rqv) is defined in (3.4) and Q4(v) is defined by

Q4(v) = lim
p→∞

q4(2pqv)
24pq = lim

p→∞

f (2 · 2pqv)− 4 f (2pqv)
24pq (3.55)

for all v ∈ Y , respectively.

Proof. It follows from (3.47), we reach∥∥∥{ f (4v)− 4 f (2v)
}
− 16

{
f (2v)− 4 f (v)

}∥∥∥ ≤ Ω(v, v, · · · ,−v, 0, v) (3.56)

for all v ∈ Y . Using (2.22) in (3.56), we land∥∥∥q4(2v)− 16q4(v)
∥∥∥ ≤ Ω(v, v, · · · ,−v, 0, v) (3.57)

for all v ∈ Y . The rest of the proof is similar to that of Theorem 3.3 . This completes the proof of the theorem.

The following corollary is an immediate consequence of Theorem 3.7 concerning the Hyers - Ulam, Hyers
- Ulam - Rassias and Ulam - JMRassias stabilities of (1.3).

Corollary 3.5. Let D faqcq : Y → Z be an even mapping. If there exists real numbers b and d such that

∥∥D faqcq(v1, · · · , vn)
∥∥ ≤


b,

b
n
∑

i=1
||vi||d, d 6= 4;

b
{

n
∏
i=1
||vi||d +

n
∑

i=1
||vi||nd

}
, nd 6= 4;

(3.58)
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for all v1, · · · , vn ∈ Y , then there exists a unique quartic function Q4 : Y → Z such that

‖q4(v)−Q4(v)‖ ≤



5b
|15| ,

b||v||d(5n− 6 + 2rd)

|16− 2d|
,

b||v||nd(5n− 6 + 2rnd)

|16− 2nd|

(3.59)

for all v ∈ Y .

Theorem 3.8. Let q = ±1 and ω, Ω : Yn → [0, ∞) be functions satisfying (3.38) and (3.52) for all v1, · · · , vn ∈ Y .
Let D faqcq : Y → Z be an even function satisfying the inequality∥∥D faqcq(v1, · · · , vn)

∥∥ ≤ ω (v1, · · · , vn) (3.60)

for all v1, · · · , vn ∈ Y . Then there exists a unique quadratic function Q2 : Y → Z and a unique quartic function
Q4 : Y → Z which satisfies (1.3) and

‖ f (v)−Q2(v)−Q4(v)‖ ≤
1

12

1
4

∞

∑
r= 1−q

2

Ω(2rqv, 2rqv, · · · ,−2rqv, 0, 2rqv)
22rq

+
1

16

∞

∑
r= 1−q

2

Ω(2rqv, 2rqv, · · · ,−2rqv, 0, 2rqv)
24rq

 (3.61)

where Ω(2rqv, 2rqv, · · · ,−2rqv, 0, 2rqv), Q2(v) and Q4(v) is defined in (3.4), (3.41) and (3.55) for all v ∈ Y , respec-
tively.

Proof. Case (i): For q = 1. Given f is an even function.

If f : Y → Z satisfies (3.60) then by Theorem 3.6, there exists a unique quadratic function Q′2 : Y → Z
such that ∥∥Q′2(v)− ( f (2v)− 4 f (v))

∥∥ ≤ 1
4

∞

∑
r=0

Ω(2rv, 2rv, · · · ,−2rv, 0, 2rv)
22r (3.62)

for all v ∈ Y .
Also, if f : Y → Z satisfies (3.60) then by Theorem 3.7, there exists a unique cubic function Q′4 : Y → Z

such that ∥∥Q′4(v)− ( f (2v)− 16 f (v))
∥∥ ≤ 1

16

∞

∑
r=0

Ω(2rv, 2rv, · · · ,−2rv, 0, 2rv)
24r (3.63)

for all v ∈ Y . Combining (3.62) and (3.63), we achieve∥∥∥∥ 1
12
Q′2(v)−

1
12
Q′4(v)− f (v)

∥∥∥∥
=

∥∥∥∥ 1
12
Q′2(v)−

1
12

f (2v)− 16
12

f (v)− 1
12
Q′4(v) +

1
12

f (2v)− 4
12

f (v)
∥∥∥∥

≤
∥∥∥∥ 1

12
Q′2(v)−

1
12

( f (2v)− 16 f (v))
∥∥∥∥+ ∥∥∥∥ 1

12
Q′4(v)−

1
12

( f (2v) + 4 f (v))
∥∥∥∥

≤ 1
12
{∥∥Q′2(v)− ( f (2v)− 16 f (v))

∥∥+ ∥∥Q′4(v)− ( f (2v)− 4 f (v))
∥∥}

≤ 1
12

{
1
2

∞

∑
r=0

Ω(2rv, 2rv, · · · ,−2rv, 0, 2rv)
22r +

1
8

∞

∑
r=0

Ω(2rv, 2rv, · · · ,−2rv, 0, 2rv)
24r

}

for all v ∈ Y . Defining

Q2(v) =
1

12
Q′2(v); Q4(v) =

−1
12
Q′4(v)

we arrive (3.61) as desired. Similarly, we can prove for j = −1. Hence the proof is complete.
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The following corollary is an immediate consequence of Theorem 3.8 concerning the Hyers - Ulam, Hyers
- Ulam - Rassias and Ulam - JMRassias stabilities of (1.3).

Corollary 3.6. Let D faqcq : Y → Z be an even mapping. If there exist real numbers b and d such that

∥∥D faqcq(v1, · · · , vn)
∥∥ ≤


b,

b
n
∑

i=1
||vi||d, d 6= 2, 4;

b
{

n
∏
i=1
||vi||d +

n
∑

i=1
||vi||nd

}
, nd 6= 2, 4;

(3.64)

for all v1, · · · , vn ∈ Y , then there exists a unique quadratic function Q2 : Y → Z and a unique quartic function
Q4 : Y → Z such that

‖ f (v)−Q2(v)−Q4(v)‖ ≤



5b
12

(
1
|3| +

1
|15|

)
,

b||v||d(5n− 6 + 2rd)

12

(
1

|4− 2d|
+

1
|16− 2d|

)
,

b||v||nd(5n− 6 + 2rnd)

12

(
1

|4− 2nd|
+

1
|16− 2nd|

) (3.65)

for all v ∈ Y .

3.3 f IS AN ODD - EVEN FUNCTION

Theorem 3.9. Let q = ±1 and ω, Ω : Yn → [0, ∞) be functions satisfying (3.32) and (3.60) for all v1, · · · , vn ∈ Y .
Let D faqcq : Y → Z be a function satisfying the inequality∥∥D faqcq(v1, · · · , vn)

∥∥ ≤ ω (v1, · · · , vn) (3.66)

for all v1, · · · , vn ∈ Y . Then there exists a unique additive function A : Y → Z , a unique quadratic function
Q2 : Y → Z , a unique cubic function C : Y → Z and a unique quartic functionQ4 : Y → Z which satisfies (1.3) and

‖ f (v)−A(v)−Q2(v)− C(v)−Q4(v)‖

≤ 1
2

1
6

1
2

∞

∑
r= 1−q

2

Ω1(2rqv, 2rqv, · · · ,−2rqv, 0, 2rqv)
2rq +

1
8

∞

∑
r= 1−q

2

Ω3(2rqv, 2rqv, · · · ,−2rqv, 0, 2rqv)
23rq


+

1
12

1
4

∞

∑
r= 1−q

2

Ω2(2rqv, 2rqv, · · · ,−2rqv, 0, 2rqv)
22rq +

1
16

∞

∑
r= 1−q

2

Ω4(2rqv, 2rqv, · · · ,−2rqv, 0, 2rqv)
24rq


(3.67)

where

Ωt(2rqv, 2rqv, · · · ,−2rqv, 0, 2rqv) = Ω(2rqv, 2rqv, · · · ,−2rqv, 0, 2rqv) + Ω(−2rqv,−2rqv, · · · 2rqv, 0,−2rqv)

for t = 1, 2, 3, 4 and Ω(2rqv, 2rqv, · · · ,−2rqv, 0, 2rqv), A(v), Q2(v), C(v) and Q4(v) is defined in (3.4), (3.5), (3.41),
(3.27), and (3.55) for all v ∈ Y , respectively.

Proof. Let we define

fODD(v) =
f (v)− f (−v)

2

for all v ∈ Y . Then fODD(0) = 0 and fODD(−v) = − fODD(v) for all v ∈ Y . Hence

‖D fODD(v1, · · · , vn)‖ ≤
ω(v1, · · · , vn)

2
+

ω(−v1, · · · ,−vn)

2
(3.68)
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for all v1, · · · , vn ∈ Y . By Theorem 3.5, we have

‖ fODD(v)−A(v)− C(v)‖

≤ 1
2

1
6

1
2

∞

∑
r= 1−q

2

[
Ω(2rqv, 2rqv, · · · ,−2rqv, 0, 2rqv)

2rq +
Ω(−2rqv,−2rqv, · · · 2rqv, 0,−2rqv)

2rq

]

+
1
8

∞

∑
r= 1−q

2

[
Ω(2rqv, 2rqv, · · · ,−2rqv, 0, 2rqv)

23rq +
Ω(−2rqv,−2rqv, · · · 2rqv, 0,−2rqv)

23rq

]
≤ 1

2

1
6

1
2

∞

∑
r= 1−q

2

[
Ω1(2rqv, 2rqv, · · · ,−2rqv, 0, 2rqv)

2rq

]
+

1
8

∞

∑
r= 1−q

2

[
Ω3(2rqv, 2rqv, · · · ,−2rqv, 0, 2rqv)

23rq

]
(3.69)

for all v ∈ Y .
Also, let

fEVEN(v) =
f (v) + f (−v)

2

for all v ∈ Y . Then fEVEN(0) = 0 and fEVEN(−v) = fEVEN(v) for all v ∈ Y . Hence

‖D fEVEN(v1, · · · , vn)‖ ≤
ω(v1, · · · , vn)

2
+

ω(−v1, · · · ,−vn)

2
(3.70)

for all v ∈ Y . By Theorem 3.8, we have

‖ fEVEN(v)−Q2(v)−Q4(v)‖

≤ 1
2

 1
12

1
4

∞

∑
r= 1−q

2

[
Ω(2rqv, 2rqv, · · · ,−2rqv, 0, 2rqv)

22rq +
Ω(−2rqv,−2rqv, · · · 2rqv, 0,−2rqv)

22rq

]

+
1

16

∞

∑
r= 1−q

2

[
Ω(2rqv, 2rqv, · · · ,−2rqv, 0, 2rqv)

24rq +
Ω(2rqv, 2rqv, · · · ,−2rqv, 0, 2rqv)

24rq

]
≤ 1

2

 1
12

1
4

∞

∑
r= 1−q

2

[
Ω2(2rqv, 2rqv, · · · ,−2rqv, 0, 2rqv)

22rq

]
+

1
16

∞

∑
r= 1−q

2

[
Ω4(2rqv, 2rqv, · · · ,−2rqv, 0, 2rqv)

24rq

]
(3.71)

for all v ∈ Y . Define

f (v) = fEVEN(v) + fODD(v) (3.72)

for all v ∈ Y . From (3.69),(3.71) and (3.72), we arrive our result.

The following corollary is an immediate consequence of Theorem 3.9 concerning the Hyers - Ulam, Hyers
- Ulam - Rassias and Ulam - JMRassias stabilities of (1.3).

Corollary 3.7. Let D faqcq : Y → Z be a mapping. If there exists real numbers b and d such that

∥∥D faqcq(v1, · · · , vn)
∥∥ ≤


b,

b
n
∑

i=1
||vi||d, d 6= 1, 2, 3, 4;

b
{

n
∏
i=1
||vi||d +

n
∑

i=1
||vi||nd

}
, nd 6= 1, 2, 3, 4;

(3.73)

for all v1, · · · , vn ∈ Y , then there existss a unique additive function A : Y → Z , a unique quadratic function
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Q2 : Y → Z , a unique cubic function C : Y → Z and a unique quartic function Q4 : Y → Z such that

‖ f (v)−A(v)−Q2(v)− C(v)−Q4(v)‖

≤



5b
2

{
1
12

[
1
|3| +

1
|15|

]
+

1
6

[
1 +

1
|7|

]}
,

b||v||d(5n− 6 + 2rd)

2

{
1
12

[
1

|4− 2d|
+

1
|16− 2d|

]
+

1
6

[
1

|2− 2d|
+

1
|8− 2d|

]}
,

b||v||nd(5n− 6 + 2rnd)

2

{
1

12

[
1

|4− 2nd|
+

1
|16− 2nd|

]
+

1
6

[
1

|2− 2nd|
+

1
|8− 2nd|

]}
,

(3.74)

for all v ∈ Y .

4 Stability Results - Banach Space : n is an Even Positive Integer

In this section, we investigate the generalized Ulam-Hyers stability of the functional equation (1.3) where n is
an even positive integer in Banach space using direct method.

The proof of the following theorems and corollaries are similar to that of proofs of Section 3. Hence the
details of the proofs are omitted.

4.1 f IS AN ODD FUNCTION

Theorem 4.10. Let q = ±1 and ω, Ω : Yn → [0, ∞) be functions such that

lim
p→∞

ω (2pqv1, · · · , 2pqvn)

2pq = 0 (4.1)

for all v1, · · · , vn ∈ Y . Let D faqcq : Y → Z be an odd function satisfying the inequality∥∥D faqcq(v1, · · · , vn)
∥∥ ≤ ω (v1, · · · , vn) (4.2)

for all v1, · · · , vn ∈ Y . Then there exists a unique additive function A : Y → Z which satisfies (1.3) and

‖A(v)− a(v)‖ = ‖A(v)− { f (2v)− 8 f (v)}‖ ≤ 1
2

∞

∑
r= 1−q

2

Ω(2rqv, 2rqv, · · · ,−2rqv, 2rqv)
2rq (4.3)

where Ω(2rqv, 2rqv, · · · ,−2rqv, 2rqv) and A(v) are defined by

Ω(2rqv, 2rqv, · · · ,−2rqv, 2rqv)

= 4ω1(2rqv, 2rqv, · · · ,−2rqv, 2rqv) + ω1(2 · 2rqv, 2rqv, · · · ,−2rqv, 2rqv)

= 4ω

2rqv, 2rqv, 2rqv, · · · , 2rqv︸ ︷︷ ︸
n−2

2 times

,−2rqv,−2rqv, · · · ,−2rqv︸ ︷︷ ︸
n−2

2 times

, 2rqv



+ ω

2 · 2rqv, 2rqv, 2rqv, · · · , 2rqv︸ ︷︷ ︸
n−2

2 times

,−2rqv,−2rqv, · · · ,−2rqv︸ ︷︷ ︸
n−2

2 times

, 2rqv

 (4.4)

and

A(v) = lim
p→∞

a(2pqv)
2pq = lim

p→∞

f (2 · 2pqv)− 8 f (2pqv)
2pq (4.5)

for all v ∈ Y , respectively.

Corollary 4.8. Let D faqcq : Y → Z be an odd mapping. If there exists real numbers b and d such that

∥∥D faqcq(v1, · · · , vn)
∥∥ ≤



b,

b
n
∑

i=1
||vi||d, d 6= 1;

b
n
∏
i=1
||vi||d, nd 6= 1;

b
{

n
∏
i=1
||vi||d +

n
∑

i=1
||vi||nd

}
, nd 6= 1;

(4.6)
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for all v1, · · · , vn ∈ Y , then there existss a unique additive function A : Y → Z such that

‖a(v)−A(v)‖ ≤



5b,
b||v||d(5n− 1 + 2rd)

|2− 2d|
,

b||v||d(4 + 2rnd)

|2− 2nd|
,

b||v||nd(5n− 3 + 2rd + 2rnd)

|2− 2nd|

(4.7)

for all v ∈ Y .

Theorem 4.11. Let q = ±1 and ω, Ω : Yn → [0, ∞) be functions such that

lim
p→∞

ω (2pqv1, · · · , 2pqvn)

23pq = 0 (4.8)

for all v1, · · · , vn ∈ Y . Let D faqcq : Y → Z be an odd function satisfying the inequality∥∥D faqcq(v1, · · · , vn)
∥∥ ≤ ω (v1, · · · , vn) (4.9)

for all v1, · · · , vn ∈ Y . Then there exists a unique cubic function C : Y → Z which satisfies (1.3) and

‖C(v)− c(v)‖ = ‖C(v)− { f (2v)− 2 f (v)}‖ ≤ 1
8

∞

∑
r= 1−q

2

Ω(2rqv, 2rqv, · · · ,−2rqv, 2rqv)
2rq (4.10)

where Ω(2rqv, 2rqv, · · · ,−2rqv, 2rqv) is defined in (4.4) and C(v) is defined by

C(v) = lim
p→∞

c(2pqv)
23pq = lim

p→∞

f (2 · 2pqv)− 2 f (2pqv)
23pq (4.11)

for all v ∈ Y , respectively.

Corollary 4.9. Let D faqcq : Y → Z be an odd mapping. If there exists real numbers b and d such that

∥∥D faqcq(v1, · · · , vn)
∥∥ ≤



b,

b
n
∑

i=1
||vi||d, d 6= 3;

b
n
∏
i=1
||vi||d, nd 6= 3;

b
{

n
∏
i=1
||vi||d +

n
∑

i=1
||vi||nd

}
, nd 6= 3;

(4.12)

for all v1, · · · , vn ∈ Y , then there exists a unique cubic function C : Y → Z such that

‖c(v)− C(v)‖ ≤



5b
|7| ,

b||v||d(5n− 1 + 2rd)

|8− 2d|
,

b||v||d(4 + 2rnd)

|8− 2nd|
,

b||v||nd(5n− 3 + 2rd + 2rnd)

|8− 2nd|

(4.13)

for all v ∈ Y .

Theorem 4.12. Let q = ±1 and ω, Ω : Yn → [0, ∞) be functions satisfying (4.1) and (4.8) for all v1, · · · , vn ∈ Y .
Let D faqcq : Y → Z be an odd function satisfying the inequality∥∥D faqcq(v1, · · · , vn)

∥∥ ≤ ω (v1, · · · , vn) (4.14)
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for all v1, · · · , vn ∈ Y . Then there exists a unique additive function A : Y → Z and a unique cubic function
C : Y → Z which satisfies (1.3) and

‖ f (v)−A(v)− C(v)‖ ≤ 1
6

1
2

∞

∑
r= 1−q

2

Ω(2rqv, 2rqv, · · · ,−2rqv, 2rqv)
2rq

+
1
8

∞

∑
r= 1−q

2

Ω(2rqv, 2rqv, · · · ,−2rqv, 2rqv)
23rq

 (4.15)

where Ω(2rqv, 2rqv, · · · ,−2rqv, 2rqv), A(v) and C(v) is defined in (4.4), (4.5) and (4.11) for all v ∈ Y , respectively.

Corollary 4.10. Let D faqcq : Y → Z be an odd mapping. If there exists real numbers b and d such that

∥∥D faqcq(v1, · · · , vn)
∥∥ ≤



b,

b
n
∑

i=1
||vi||d, d 6= 1, 3;

b
n
∏
i=1
||vi||d, nd 6= 1, 3;

b
{

n
∏
i=1
||vi||d +

n
∑

i=1
||vi||nd

}
, nd 6= 1, 3;

(4.16)

for all v1, · · · , vn ∈ Y , then there exists a unique additive functionA : Y → Z and a unique cubic function C : Y → Z
such that

‖ f (v)−A(v)− C(v)‖ ≤



5b
6

(
1 +

1
|7|

)
,

b||v||d(5n− 1 + 2rd)

6

(
1

|2− 2d|
+

1
|8− 2d|

)
,

b||v||d(4 + 2rnd)

6

(
1

|2− 2d|
+

1
|8− 2d|

)
,

b||v||nd(5n + 3 + 2rd + 2rnd)

6

(
1

|2− 2nd|
+

1
|8− 2nd|

)
(4.17)

for all v ∈ Y .

4.2 f IS AN EVEN FUNCTION

Theorem 4.13. Let q = ±1 and ω, Ω : Yn → [0, ∞) be function such that

lim
p→∞

ω (2pqv1, · · · , 2pqvn)

22pq = 0 (4.18)

for all v1, · · · , vn ∈ Y . Let D faqcq : Y → Z be an even function satisfying the inequality∥∥D faqcq(v1, · · · , vn)
∥∥ ≤ ω (v1, · · · , vn) (4.19)

for all v1, · · · , vn ∈ Y . Then there exists a unique quadratic function Q2 : Y → Z which satisfies (1.3) and

‖Q2(v)− q2(v)‖ = ‖Q2(v)− { f (2v)− 16 f (v)}‖ ≤ 1
4

∞

∑
r= 1−q

2

Ω(2rqv, 2rqv, · · · ,−2rqv, 2rqv)
22rq (4.20)

where Ω(2rqv, 2rqv, · · · ,−2rqv, 2rqv) is defined in (4.4) and Q2(v) are defined by

Q2(v) = lim
p→∞

q2(2pqv)
22pq = lim

p→∞

f (2 · 2pqv)− 16 f (2pqv)
22pq (4.21)

for all v ∈ Y , respectively.
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Corollary 4.11. Let D faqcq : Y → Z be an even mapping. If there exists real numbers b and d such that

∥∥D faqcq(v1, · · · , vn)
∥∥ ≤



b,

b
n
∑

i=1
||vi||d, d 6= 2;

b
n
∏
i=1
||vi||d, nd 6= 2;

b
{

n
∏
i=1
||vi||d +

n
∑

i=1
||vi||nd

}
, nd 6= 2;

(4.22)

for all v1, · · · , vn ∈ Y , then there exists a unique quadratic function Q2 : Y → Z such that

‖a(v)−Q∈(v)‖ ≤



5b
|3| ,

b||v||d(5n− 1 + 2rd)

|4− 2d|
,

b||v||nd(4 + 2rnd)

|4− 2nd|
,

b||v||nd(5n + 3 + 2rd + 2rnd)

|4− 2nd|

(4.23)

for all v ∈ Y .

Theorem 4.14. Let q = ±1 and ω, Ω : Yn → [0, ∞) be functions such that

lim
p→∞

ω (2pqv1, · · · , 2pqvn)

24pq = 0 (4.24)

for all v1, · · · , vn ∈ Y . Let D faqcq : Y → Z be an even function satisfying the inequality∥∥D faqcq(v1, · · · , vn)
∥∥ ≤ ω (v1, · · · , vn) (4.25)

for all v1, · · · , vn ∈ Y . Then there exists a unique quartic function Q4 : Y → Z which satisfies (1.3) and

‖Q4(v)− q4(v)‖ = ‖Q4(v)− { f (2v)− 4 f (v)}‖ ≤ 1
16

∞

∑
r= 1−q

2

Ω(2rqv, 2rqv, · · · ,−2rqv, 2rqv)
24rq (4.26)

where Ω(2rqv, 2rqv, · · · ,−2rqv, 2rqv) is defined in (4.4) and Q4(v) is defined by

Q4(v) = lim
p→∞

q4(2pqv)
24pq = lim

p→∞

f (2 · 2pqv)− 4 f (2pqv)
24pq (4.27)

for all v ∈ Y , respectively.

Corollary 4.12. Let D faqcq : Y → Z be an even mapping. If there exists real numbers b and d such that

∥∥D faqcq(v1, · · · , vn)
∥∥ ≤



b,

b
n
∑

i=1
||vi||d, d 6= 4;

b
n
∏
i=1
||vi||d, nd 6= 4;

b
{

n
∏
i=1
||vi||d +

n
∑

i=1
||vi||nd

}
, nd 6= 4;

(4.28)

for all v1, · · · , vn ∈ Y , then there exists a unique quartic function Q4 : Y → Z such that

‖q4(v)−Q4(v)‖ ≤



5b
|15| ,

b||v||d(5n− 1 + 2rd)

|16− 2d|
,

b||v||nd(4 + 2rnd)

|16− 2nd|
,

b||v||nd(5n + 3 + 2rd + 2rnd)

|16− 2nd|

(4.29)

for all v ∈ Y .
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Theorem 4.15. Let q = ±1 and ω, Ω : Yn → [0, ∞) be functions satisfying (4.18) and (4.24) for all v1, · · · , vn ∈ Y .
Let D faqcq : Y → Z be an even function satisfying the inequality∥∥D faqcq(v1, · · · , vn)

∥∥ ≤ ω (v1, · · · , vn) (4.30)

for all v1, · · · , vn ∈ Y . Then there exists a unique quadratic function Q2 : Y → Z and a unique quartic function
Q4 : Y → Z which satisfies (1.3) and

‖ f (v)−Q2(v)−Q4(v)‖ ≤
1
12

1
4

∞

∑
r= 1−q

2

Ω(2rqv, 2rqv, · · · ,−2rqv, 2rqv)
22rq

+
1

16

∞

∑
r= 1−q

2

Ω(2rqv, 2rqv, · · · ,−2rqv, 2rqv)
24rq

 (4.31)

where Ω(2rqv, 2rqv, · · · ,−2rqv, 2rqv),Q2(v) andQ4(v) is defined in (4.4), (4.21) and (4.27) for all v ∈ Y , respectively.

Corollary 4.13. Let D faqcq : Y → Z be an even mapping. If there exists real numbers b and d such that

∥∥D faqcq(v1, · · · , vn)
∥∥ ≤



b,

b
n
∑

i=1
||vi||d, d 6= 2, 4;

b
n
∏
i=1
||vi||d, nd 6= 2, 4;

b
{

n
∏
i=1
||vi||d +

n
∑

i=1
||vi||nd

}
, nd 6= 2, 4;

(4.32)

for all v1, · · · , vn ∈ Y , then there exists a unique quadratic function Q2 : Y → Z and a unique quartic function
Q4 : Y → Z such that

‖ f (v)−Q2(v)−Q4(v)‖ ≤



5b
12

(
1
|3| +

1
|15|

)
,

b||v||d(5n− 1 + 2rd)

12

(
1

|4− 2d|
+

1
|16− 2d|

)
,

b||v||nd(4 + 2rnd)

12

(
1

|4− 2d|
+

1
|16− 2d|

)
,

b||v||nd(5n + 3 + 2rd + 2rnd)

12

(
1

|4− 2nd|
+

1
|16− 2nd|

)
(4.33)

for all v ∈ Y .

4.3 f IS AN ODD - EVEN FUNCTION

Theorem 4.16. Let q = ±1 and ω, Ω : Yn → [0, ∞) be functions satisfying (4.14) and (4.30) for all v1, · · · , vn ∈ Y .
Let D faqcq : Y → Z be a function satisfying the inequality∥∥D faqcq(v1, · · · , vn)

∥∥ ≤ ω (v1, · · · , vn) (4.34)

for all v1, · · · , vn ∈ Y . Then there exists a unique additive function A : Y → Z , a unique quadratic function
Q2 : Y → Z , a unique cubic function C : Y → Z and a unique quartic functionQ4 : Y → Z which satisfies (1.3) and

‖ f (v)−A(v)−Q2(v)− C(v)−Q4(v)‖

≤ 1
2

1
6

1
2

∞

∑
r= 1−q

2

Ω11(2rqv, 2rqv, · · · ,−2rqv, 2rqv)
2rq +

1
8

∞

∑
r= 1−q

2

Ω33(2rqv, 2rqv, · · · ,−2rqv, 2rqv)
23rq


+

1
12

1
4

∞

∑
r= 1−q

2

Ω22(2rqv, 2rqv, · · · ,−2rqv, 2rqv)
22rq +

1
16

∞

∑
r= 1−q

2

Ω44(2rqv, 2rqv, · · · ,−2rqv, 2rqv)
24rq


(4.35)
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where

Ωtt(2rqv, 2rqv, · · · ,−2rqv, 2rqv) = Ω(2rqv, 2rqv, · · · ,−2rqv, 2rqv) + Ω(−2rqv,−2rqv, · · · 2rqv,−2rqv)

for tt = 1, 2, 3, 4 and Ω(2rqv, 2rqv, · · · ,−2rqv, 2rqv), A(v), Q2(v), C(v) and Q4(v) is defined in (4.4), (4.5), (4.21),
(4.11) and (4.27) for all v ∈ Y , respectively.

Corollary 4.14. Let D faqcq : Y → Z be a mapping. If there exists real numbers b and d such that

∥∥D faqcq(v1, · · · , vn)
∥∥ ≤



b,

b
n
∑

i=1
||vi||d, d 6= 1, 2, 3, 4;

b
n
∏
i=1
||vi||d, nd 6= 1;

b
{

n
∏
i=1
||vi||d +

n
∑

i=1
||vi||nd

}
, nd 6= 1, 2, 3, 4;

(4.36)

for all v1, · · · , vn ∈ Y , then there exists a unique additive functionA : Y → Z , a unique quadratic functionQ2 : Y →
Z , a unique cubic function C : Y → Z and a unique quartic function Q4 : Y → Z such that

‖ f (v)−A(v)−Q2(v)− C(v)−Q4(v)‖

≤



5b
2

{
1

12

[
1
|3| +

1
|15|

]
+

1
6

[
1 +

1
|7|

]}
,

b||v||d(5n− 1 + 2rd)

2

{
1

12

[
1

|4− 2d|
+

1
|16− 2d|

]
+

1
6

[
1

|2− 2d|
+

1
|8− 2d|

]}
,

b||v||nd(4 + 2rnd)

2

{
1

12

[
1

|4− 2d|
+

1
|16− 2d|

]
+

1
6

[
1

|2− 2d|
+

1
|8− 2d|

]}
,

b||v||nd(5n + 3 + 2rd + 2rnd)

2

{
1

12

[
1

|4− 2nd|
+

1
|16− 2nd|

]
+

1
6

[
1

|2− 2nd|
+

1
|8− 2nd|

]}
,

(4.37)

for all v ∈ Y .

5 Stability Results - Fixed Point Method: n Odd Positive Integer

In this section, we investigate the generalized Ulam-Hyers stability of the functional equation (1.3) where n is
an odd positive integer in Banach space using fixed point method.

5.1 f IS AN ODD FUNCTION

Theorem 5.17. Let D faqcq : Y → Z be a odd mapping for which there exist a function ω, Ω : Yn → [0, ∞) with the
condition

lim
p→∞

ω
(

κ
p
j v1, · · · , κ

p
j vn

)
κ

p
j

= 0 (5.1)

for all v1, · · · , vn ∈ Y where

κj =

{
2 i f j = 0;
1
2 i f j = 1,

(5.2)

such that the functional inequality ∥∥D faqcq(v1, · · · , vn)
∥∥ ≤ ω (v1, · · · , vn) (5.3)

for all v1, · · · , vn ∈ Y . If there exists L = L(i) such that the function

Ψ(v, v, · · · ,−v, 0, v) = Ω
(v

2
,

v
2

, · · · ,−v
2

, 0,
v
2

)
,

has the property

Ψ(v, v, · · · ,−v, 0, v) =
L
κj

Ψ
(
κjv, κjv, · · · ,−κjv, 0, κjv

)
. (5.4)
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for all v ∈ Y . Then there exists a unique additive function A : Y → Z which satisfies (1.3) and

‖A(v)− a(v)‖ = ‖A(v)− { f (2v)− 8 f (v)}‖ ≤ L1−j

1− L
Ψ(v, v, · · · ,−v, 0, v) (5.5)

for all v ∈ Y .

Proof. Consider the set
Γ = {p/p : Y → Z , p(0) = 0}

and introduce the generalized metric on Γ,

d(p, q) = inf{K ∈ (0, ∞) :‖ p(v)− q(v) ‖≤ Kψ(v), v ∈ Y}.

It is easy to see that (Γ, d) is complete.
Define Υ : Γ→ Γ by

Υp(v) =
1
κj

p(κjv),

for all v ∈ Y . Now p, q ∈ Γ, by [36], we have d(Υp, Υq) ≤ Ld(p, q), i.e., T is a strictly contractive mapping on
Γ with Lipschitz constant L.

From (3.13), we arrive ∥∥∥a(2v)− 2a(v)
∥∥∥ ≤ Ω(v, v, · · · ,−v, 0, v) (5.6)

for all v ∈ Y . It follows from (5.6) that∥∥∥∥ a(2v)
2
− a(v)

∥∥∥∥ ≤ Ω(v, v, · · · ,−v, 0, v)
2

(5.7)

for all v ∈ Y . Using (5.4) for the case j = 0 it reduces to∥∥∥∥ a(2v)
2
− a(v)

∥∥∥∥ ≤ LΨ(v, v, · · · ,−v, 0, v)

for all v ∈ Y ,
i.e., d(Υa, a) ≤ L⇒ d(Υa, a) ≤ L = L1 < ∞. (5.8)

Again replacing v =
v
2

in (5.6), we get∥∥∥a(v)− 2a
(v

2

)∥∥∥ ≤ Ω
(v

2
,

v
2

, · · · ,−v
2

, 0,
v
2

)
(5.9)

for all v ∈ Y . Using (5.4) for the case j = 1 it reduces to∥∥∥a(v)− 2a
(v

2

)∥∥∥ ≤ Ψ(v, v, · · · ,−v, 0, v)

for all v ∈ Y ,
i.e., d(a, Υa) ≤ 1⇒ d(a, Υa) ≤ 1 = L0 < ∞. (5.10)

From (5.8) and (5.10), we arrive
d(a, Υa) ≤ L1−j.

Therefore (FP1) holds.
By (FP2), it follows that there exists a fixed point A of Υ in Γ such that

A(v) = lim
p→∞

a(κp
j v)

κ
p
j

, ∀ v ∈ Y . (5.11)

To order to prove A satisfies the functional equation (1.3), the proof is similar to the of Theorem 3.3. By
(FP3), A is the unique fixed point of Υ in the set

∆ = {A ∈ Γ : d(a, A) < ∞},
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such that
‖a(v)− A(v)‖ ≤ Kψ(v)

for all v ∈ Y and K > 0. Finally by (FP4), we obtain

d(a, A) ≤ 1
1− L

d(a, Υa)

this implies

d(a, A) ≤ L1−j

1− L

which yields

‖a(v)− A(v)‖ ≤ L1−j

1− L
Ψ(v, v, · · · ,−v, 0, v)

this completes the proof of the theorem.

The following corollary is an immediate consequence of Theorem 5.17 concerning the stability of (1.3).

Corollary 5.15. Let D faqcq : Y → Z be an odd mapping. If there exists real numbers b and d satisfying (3.22) for all
v1, · · · , vn ∈ Y , then there exists a unique additive function A : Y → Z such that

‖a(v)−A(v)‖ ≤


5b,
b||v||d(5n− 6 + 2rd)

|2− 2d|
,

b||v||nd(5n− 6 + 2rnd)

|2− 2nd|

(5.12)

for all v ∈ Y .

Proof. Taking

ω (v1, · · · , vn) =


b,

b
n
∑

i=1
||vi||d,

b
{

n
∏
i=1
||vi||d +

n
∑

i=1
||vi||nd

}
,

for all v ∈ Y . Now,

1
κ

p
j

ω
(

κ
p
j v1, κ

p
j · · · , κ

p
j vn

)
=



b
κ

p
j

,

b
κ

p
j

n
∑

i=1
||κp

j vi||d,

b
κ

p
j

{
n
∏
i=1
||κp

j vi||d +
n
∑

i=1
||κp

j vi||nd
}

,

=



→ 0 as p→ ∞,

→ 0 as p→ ∞,

→ 0 as p→ ∞.

Thus, (5.1) is holds. But we have

Ψ(v, v, · · · ,−v, 0, v) = Ω
(v

2
,

v
2

, · · · − v
2

, 0,
v
2

)
,

has the property

Ψ(v, v, · · · ,−v, 0, v) =
L
κj

Ψ
(
κjv, κjv, · · · ,−κjv, 0, κjv

)
for all v ∈ Y . Hence

Ψ(v, v, · · · ,−v, 0, v) = Ω
(v

2
,

v
2

, · · · − v
2

, 0,
v
2

)
=


5b,
b(5n− 6 + 2rd)

2d ||v||d,

b(5n− 6 + 2rnd)

2d ||v||d.
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Now,

1
κj

Ψ
(
κjv, κjv, · · · ,−κjv, 0, κjv

)
=



5b
κj

,

b(5n− 6 + 2rd)

κj
||κjv||d,

b(5n− 6 + 2rnd)

κj
||κjv||nd,

=



κ−1
j Ψ(v, v, · · · ,−v, 0, v),

κd−1
j Ψ(v, v, · · · ,−v, 0, v)

κnd−1
j Ψ(v, v, · · · ,−v, 0, v).

Hence the inequality (5.4) holds either, L = 2−1 if i = 0 and L = 1
2−1 if i = 1. Now from (5.5), we prove the

following cases for condition (i).
Case:1 L = 2−1 if i = 0

‖a(v)− A(v)‖ ≤
(
2−1)1−0

1− 2−1 κd−1
j Ψ(v, v, · · · ,−v, 0, v) = 5b.

Case:2 L = 1
2−1 if i = 1

‖a(v)− A(v)‖ ≤

(
1

2−1

)1−1

1− 1
2−1

κd−1
j Ψ(v, v, · · · ,−v, 0, v) = −5b.

Also the inequality (5.4) holds either, L = 2d−1 for d < 1 if i = 0 and L = 1
2d−1 for d > 1 if i = 1. Now from

(5.5), we prove the following cases for condition (ii).
Case:3 L = 2d−1 for d < 1 if i = 0

‖a(v)− A(v)‖ ≤

(
2(d−1)

)1−0

1− 2(d−1)
Ψ(v, v, · · · ,−v, 0, v) =

b(5n− 6 + 2rd)||v||d
2− 2d .

Case:4 L = 1
2d−1 for d > 1 if i = 1

‖a(v)− A(v)‖ ≤

(
1

2(d−1)

)1−1

1− 1
2(d−1)

Ψ(v, v, · · · ,−v, 0, v) =
b(5n− 6 + 2rd)||v||d

2d − 2
.

The proof of condition (iii) is similar to that of condition (ii). Hence the proof is complete.

The proofs of the subsequent theorems and corollaries are similar to that of Theorem 5.17 and 5.15. Hence
the details of the proofs are omitted.

Theorem 5.18. Let D faqcq : Y → Z be a odd mapping for which there exists a function ω, Ω : Yn → [0, ∞) with the
condition

lim
p→∞

ω
(

κ
p
j v1, · · · , κ

p
j vn

)
κ

3p
j

= 0 (5.13)

for all v1, · · · , vn ∈ Y where κj is defined (5.2) such that the functional inequality∥∥D faqcq(v1, · · · , vn)
∥∥ ≤ ω (v1, · · · , vn) (5.14)

for all v1, · · · , vn ∈ Y . If there exists L = L(i) such that the function

Ψ(v, v, · · · ,−v, 0, v) = Ω
(v

2
,

v
2

, · · · ,−v
2

, 0,
v
2

)
,

has the property

Ψ(v, v, · · · ,−v, 0, v) =
L
κ3

j
Ψ
(
κjv, κjv, · · · ,−κjv, 0, κjv

)
. (5.15)

for all v ∈ Y . Then there exists a unique cubic function C : Y → Z which satisfies (1.3) and

‖C(v)− c(v)‖ = ‖C(v)− { f (2v)− 2 f (v)}‖ ≤ L1−j

1− L
Ψ(v, v, · · · ,−v, 0, v) (5.16)

for all x ∈ Y .
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Corollary 5.16. Let D faqcq : Y → Z be an odd mapping. If there exists real numbers b and d satisfying (3.30) for all
v1, · · · , vn ∈ Y , then there exists a unique cubic function C : Y → Z such that

‖c(v)− C(v)‖ ≤


5b,
b||v||d(5n− 6 + 2rd)

|8− 2d|
,

b||v||nd(5n− 6 + 2rnd)

|8− 2nd|

(5.17)

for all v ∈ Y .

Theorem 5.19. Let D faqcq : Y → Z be a odd mapping for which there exist a function ω, Ω : Yn → [0, ∞) with the
conditions (5.1) and (5.13) for all v1, · · · , vn ∈ Y where κj is defined (5.2) such that the functional inequality∥∥D faqcq(v1, · · · , vn)

∥∥ ≤ ω (v1, · · · , vn) (5.18)

for all v1, · · · , vn ∈ Y . If there exists L = L(i) such that the function

Ψ(v, v, · · · ,−v, 0, v) = Ω
(v

2
,

v
2

, · · · ,−v
2

, 0,
v
2

)
,

has the properties (5.4) and (5.15) and

Ψ(v, v, · · · ,−v, 0, v) =
L
κj

Ψ
(
κjv, κjv, · · · ,−κjv, 0, κjv

)
. (5.19)

for all v ∈ Y . Then there exists a unique additive function A : Y → Z and a unique cubic function C : Y → Z which
satisfies (1.3) and

‖ f (v)−A(v)− C(v)‖ ≤ L1−j

6(1− L)
Ψ(v, v, · · · ,−v, 0, v) (5.20)

for all x ∈ Y .

Corollary 5.17. Let D faqcq : Y → Z be an odd mapping. If there exists real numbers b and d satisfying (3.36) for all
v1, · · · , vn ∈ Y , then there exists a unique additive function A : Y → Z unique cubic function C : Y → Z such that

‖ f (v)−A(v)− C(v)‖ ≤



5b
6

(
1 +

1
|7|

)
,

b||v||d(5n− 6 + 2rd)

6

(
1

|2− 2d|
+

1
|8− 2d|

)
,

b||v||nd(5n− 6 + 2rnd)

6

(
1

|2− 2nd|
+

1
|8− 2nd|

) (5.21)

for all v ∈ Y .

5.2 f IS AN EVEN FUNCTION

Theorem 5.20. Let D faqcq : Y → Z be a even mapping for which there exists a function ω, Ω : Yn → [0, ∞) with the
condition

lim
p→∞

ω
(

κ
p
j v1, · · · , κ

p
j vn

)
κ

2p
j

= 0 (5.22)

for all v1, · · · , vn ∈ Y where κj is defined (5.2) such that the functional inequality∥∥D faqcq(v1, · · · , vn)
∥∥ ≤ ω (v1, · · · , vn) (5.23)

for all v1, · · · , vn ∈ Y . If there exists L = L(i) such that the function

Ψ(v, v, · · · ,−v, 0, v) = Ω
(v

2
,

v
2

, · · · ,−v
2

, 0,
v
2

)
,
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has the property

Ψ(v, v, · · · ,−v, 0, v) =
L
κ2

j
Ψ
(
κjv, κjv, · · · ,−κjv, 0, κjv

)
. (5.24)

for all v ∈ Y . Then there exists a unique quadratic function Q2 : Y → Z which satisfies (1.3) and

‖Q2(v)− q2(v)‖ = ‖Q2(v)− { f (2v) + 16 f (v)}‖ ≤ L1−j

1− L
Ψ(v, v, · · · ,−v, 0, v) (5.25)

for all x ∈ Y .

Corollary 5.18. Let D faqcq : Y → Z be an even mapping. If there exists real numbers b and d satisfying (3.50) for all
v1, · · · , vn ∈ Y , then there exists a unique quadratic function Q2 : Y → Z such that

‖q2(v)−Q2(v)‖ ≤



5b
7

,

b||v||d(5n− 6 + 2rd)

|4− 2d|
,

b||v||nd(5n− 6 + 2rnd)

|4− 2nd|

(5.26)

for all v ∈ Y .

Theorem 5.21. Let D faqcq : Y → Z be a even mapping for which there exists a function ω, Ω : Yn → [0, ∞) with the
condition

lim
p→∞

ω
(

κ
p
j v1, · · · , κ

p
j vn

)
κ

4p
j

= 0 (5.27)

for all v1, · · · , vn ∈ Y where κj is defined (5.2)
such that the functional inequality ∥∥D faqcq(v1, · · · , vn)

∥∥ ≤ ω (v1, · · · , vn) (5.28)

for all v1, · · · , vn ∈ Y . If there exists L = L(i) such that the function

Ψ(v, v, · · · ,−v, 0, v) = Ω
(v

2
,

v
2

, · · · ,−v
2

, 0,
v
2

)
,

has the property

Ψ(v, v, · · · ,−v, 0, v) =
L
κ4

j
Ψ
(
κjv, κjv, · · · ,−κjv, 0, κjv

)
. (5.29)

for all v ∈ Y . Then there exists a unique quartic function Q4 : Y → Z which satisfies (1.3) and

‖Q4(v)− q4(v)‖ = ‖Q4(v)− { f (2v)− 4 f (v)}‖ ≤ L1−j

1− L
Ψ(v, v, · · · ,−v, 0, v) (5.30)

for all x ∈ Y .

Corollary 5.19. Let D faqcq : Y → Z be an even mapping. If there exists real numbers b and d satisfying (3.58) for all
v1, · · · , vn ∈ Y , then there exists a unique quartic function Q4 : Y → Z such that

‖q4(v)−Q4(v)‖ ≤



5b
15

,

b||v||d(5n− 6 + 2rd)

|16− 2d|
,

b||v||nd(5n− 6 + 2rnd)

|16− 2nd|

(5.31)

for all v ∈ Y .
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Theorem 5.22. Let D faqcq : Y → Z be a even mapping for which there exists a function ω, Ω : Yn → [0, ∞) with the
conditions (5.22) and (5.27) for all v1, · · · , vn ∈ Y where κj is defined (5.2) such that the functional inequality∥∥D faqcq(v1, · · · , vn)

∥∥ ≤ ω (v1, · · · , vn) (5.32)

for all v1, · · · , vn ∈ Y . If there exists L = L(i) such that the function

Ψ(v, v, · · · ,−v, 0, v) = Ω
(v

2
,

v
2

, · · · ,−v
2

, 0,
v
2

)
,

has the properties (5.24) and (5.29) and

Ψ(v, v, · · · ,−v, 0, v) =
L
κj

Ψ
(
κjv, κjv, · · · ,−κjv, 0, κjv

)
. (5.33)

for all v ∈ Y . Then there exists a unique quadratic function Q2 : Y → Z and a unique quartic function Q4 : Y → Z
which satisfies (1.3) and

‖ f (v)−Q2(v)−Q4(v)‖ ≤
L1−j

12(1− L)
Ψ(v, v, · · · ,−v, 0, v) (5.34)

for all v ∈ Y .

Corollary 5.20. Let D faqcq : Y → Z be an even mapping. If there exists real numbers b and d satisfying (3.64) for all
v1, · · · , vn ∈ Y , then there exists a unique quadratic functionQ2 : Y → Z and a unique quartic functionQ4 : Y → Z
such that

‖ f (v)−Q2(v)−Q4(v)‖ ≤



5b
12

(
1
|3| +

1
|15|

)
,

b||v||d(5n− 1 + 2rd)

12

(
1

|4− 2d|
+

1
|16− 2d|

)
,

b||v||nd(5n− 1 + 2rnd)

12

(
1

|4− 2nd|
+

1
|16− 2nd|

) (5.35)

for all v ∈ Y .

5.3 f IS AN ODD - EVEN FUNCTION

Theorem 5.23. Let D faqcq : Y → Z be a mapping for which there exists a function ω, Ω : Yn → [0, ∞) with the
conditions (5.1), (5.22), (5.13) and (5.27) for all v1, · · · , vn ∈ Y where κj is defined (5.2) such that the functional
inequality ∥∥D faqcq(v1, · · · , vn)

∥∥ ≤ ω (v1, · · · , vn) (5.36)

for all v1, · · · , vn ∈ Y . If there exists L = L(i) such that the function

Ψ(v, v, · · · ,−v, 0, v) = Ω
(v

2
,

v
2

, · · · ,−v
2

, 0,
v
2

)
,

has the properties (5.4), (5.24), (5.15) and (5.29) and

Ψ(v, v, · · · ,−v, 0, v) =
L
κj

Ψ
(
κjv, κjv, · · · ,−κjv, 0, κjv

)
. (5.37)

for all v ∈ Y . Then there exists a unique additive function A : Y → Z a unique quadratic function Q2 : Y → Z a
unique cubic function C : Y → Z and a unique quartic function Q4 : Y → Z which satisfies (1.3) and

‖ f (v)−A(v)−Q2(v)− C(v)−Q4(v)‖ ≤
L1−j

(1− L)

(
1
6
+

1
12

)
Ψ(v, v, · · · ,−v, 0, v) (5.38)

for all v ∈ Y .
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Corollary 5.21. Let D faqcq : Y → Z be a mapping. If there exists real numbers b and d satisfying (3.73) for all
v1, · · · , vn ∈ Y , then there exists a unique additive function A : Y → Z a unique quadratic function Q2 : Y → Z a
unique cubic function C : Y → Z and a unique quartic function Q4 : Y → Z such that

‖ f (v)−A(v)−Q2(v)− C(v)−Q4(v)‖

≤



5b
2

{
1
12

[
1
|3| +

1
|15|

]
+

1
6

[
1 +

1
|7|

]}
,

b||v||d(5n− 1 + 2rd)

2

{
1
12

[
1

|4− 2d|
+

1
|16− 2d|

]
+

1
6

[
1

|2− 2d|
+

1
|8− 2d|

]}
,

b||v||nd(5n− 1 + 2rnd)

2

{
1

12

[
1

|4− 2nd|
+

1
|16− 2nd|

]
+

1
6

[
1

|2− 2nd|
+

1
|8− 2nd|

]}
,

(5.39)

for all v ∈ Y .

6 Stability Results - Fixed Point Method: n Even Positive Integer

In this section, we investigate the generalized Ulam-Hyers stability of the functional equation (1.3) where n is
an even positive integer in Banach space using fixed point method.

6.1 f IS AN ODD FUNCTION

Theorem 6.24. Let D faqcq : Y → Z be a odd mapping for which there exists a function ω, Ω : Yn → [0, ∞) with the
condition

lim
p→∞

ω
(

κ
p
j v1, · · · , κ

p
j vn

)
κ

p
j

= 0 (6.1)

for all v1, · · · , vn ∈ Y where

κj =

{
2 i f j = 0;
1
2 i f j = 1,

(6.2)

such that the functional inequality ∥∥D faqcq(v1, · · · , vn)
∥∥ ≤ ω (v1, · · · , vn) (6.3)

for all v1, · · · , vn ∈ Y . If there exists L = L(i) such that the function

Ψ(v, v, · · · ,−v, v) = Ω
(v

2
,

v
2

, · · · ,−v
2

,
v
2

)
,

has the property

Ψ(v, v, · · · ,−v, v) =
L
κj

Ψ
(
κjv, κjv, · · · ,−κjv, κjv

)
. (6.4)

for all v ∈ Y . Then there exists a unique additive function A : Y → Z which satisfies (1.3) and

‖A(v)− a(v)‖ = ‖A(v)− { f (2v)− 8 f (v)}‖ ≤ L1−j

1− L
Ψ(v, v, · · · ,−v, v) (6.5)

for all v ∈ Y .

Corollary 6.22. Let D faqcq : Y → Z be an odd mapping. If there exists real numbers b and d fulfilling (4.6) for all
v1, · · · , vn ∈ Y , then there exists a unique additive function A : Y → Z such that

‖a(v)−A(v)‖ ≤



5b,
b||v||d(5n− 1 + 2rd)

|2− 2d|
,

b||v||d(4 + 2rnd)

|2− 2nd|
,

b||v||nd(5n− 3 + 2rd + 2rnd)

|2− 2nd|

(6.6)

for all v ∈ Y .
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Theorem 6.25. Let D faqcq : Y → Z be a odd mapping for which there exists a function ω, Ω : Yn → [0, ∞) with the
condition

lim
p→∞

ω
(

κ
p
j v1, · · · , κ

p
j vn

)
κ

3p
j

= 0 (6.7)

for all v1, · · · , vn ∈ Y where κj is defined in (6.2) such that the functional inequality∥∥D faqcq(v1, · · · , vn)
∥∥ ≤ ω (v1, · · · , vn) (6.8)

for all v1, · · · , vn ∈ Y . If there existss L = L(i) such that the function

Ψ(v, v, · · · ,−v, v) = Ω
(v

2
,

v
2

, · · · ,−v
2

,
v
2

)
,

has the property

Ψ(v, v, · · · ,−v, v) =
L
κ3

j
Ψ
(
κjv, κjv, · · · ,−κjv, κjv

)
. (6.9)

for all v ∈ Y . Then there exists a unique cubic function C : Y → Z which satisfies (1.3) and

‖C(v)− c(v)‖ = ‖C(v)− { f (2v)− 2 f (v)}‖ ≤ L1−j

1− L
Ψ(v, v, · · · ,−v, v) (6.10)

for all v ∈ Y .

Corollary 6.23. Let D faqcq : Y → Z be an odd mapping. If there exists real numbers b and d fulfilling (4.12) for all
v1, · · · , vn ∈ Y , then there exists a unique cubic function C : Y → Z such that

‖c(v)− C(v)‖ ≤



5b,
b||v||d(5n− 1 + 2rd)

|8− 2d|
,

b||v||d(4 + 2rnd)

|8− 2nd|
,

b||v||nd(5n + 3 + 2rd + 2rnd)

|8− 2nd|

(6.11)

for all v ∈ Y .

Theorem 6.26. Let D faqcq : Y → Z be a odd mapping for which there exists a function ω, Ω : Yn → [0, ∞) with the
conditions (6.1) and (6.7) for all v1, · · · , vn ∈ Y where κj is defined in (6.2) such that the functional inequality∥∥D faqcq(v1, · · · , vn)

∥∥ ≤ ω (v1, · · · , vn) (6.12)

for all v1, · · · , vn ∈ Y . If there exists L = L(i) such that the function

Ψ(v, v, · · · ,−v, v) = Ω
(v

2
,

v
2

, · · · ,−v
2

,
v
2

)
,

has the properties (6.4) and (6.9) for all v ∈ Y . Then there exists a unique additive function A : Y → Z a unique cubic
function C : Y → Z which satisfies (1.3) and

‖ f (v)−A(v)− C(v)‖ ≤ L1−j

6(1− L)
Ψ(v, v, · · · ,−v, v) (6.13)

for all v ∈ Y .

Corollary 6.24. Let D faqcq : Y → Z be an odd mapping. If there exists real numbers b and d fulfilling (4.16) for all
v1, · · · , vn ∈ Y , then there exists a unique additive functionA : Y → Z a unique cubic function C : Y → Z such that

‖a(v)−A(v)‖ ≤



5b
6

+
5b
7.6

,

b||v||d(5n− 1 + 2rd)

6|2− 2d|
+

b||v||d(5n− 1 + 2rd)

6|8− 2d|
,

b||v||d(4 + 2rnd)

6|2− 2nd|
+

b||v||d(4 + 2rnd)

6|8− 2nd|
,

b||v||nd(5n + 3 + 2rd + 2rnd)

6|2− 2nd|
+

b||v||nd(5n + 3 + 2rd + 2rnd)

6|8− 2nd|

(6.14)

for all v ∈ Y .
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6.2 f IS AN EVEN FUNCTION

Theorem 6.27. Let D faqcq : Y → Z be a even mapping for which there exists a function ω, Ω : Yn → [0, ∞) with the
condition

lim
p→∞

ω
(

κ
p
j v1, · · · , κ

p
j vn

)
κ

2p
j

= 0 (6.15)

for all v1, · · · , vn ∈ Y where κj is defined in (6.2) such that the functional inequality∥∥D faqcq(v1, · · · , vn)
∥∥ ≤ ω (v1, · · · , vn) (6.16)

for all v1, · · · , vn ∈ Y . If there exists L = L(i) such that the function

Ψ(v, v, · · · ,−v, v) = Ω
(v

2
,

v
2

, · · · ,−v
2

,
v
2

)
,

has the property

Ψ(v, v, · · · ,−v, v) =
L
κ2

j
Ψ
(
κjv, κjv, · · · ,−κjv, κjv

)
. (6.17)

for all v ∈ Y . Then there exists a unique quadratic function Q2 : Y → Z which satisfies (1.3) and

‖Q2(v)− q2(v)‖ = ‖Q2(v)− { f (2v)− 16 f (v)}‖ ≤ L1−j

1− L
Ψ(v, v, · · · ,−v, v) (6.18)

for all v ∈ Y .

Corollary 6.25. Let D faqcq : Y → Z be an even mapping. If there exists real numbers b and d fulfilling (4.22) for all
v1, · · · , vn ∈ Y , then there exists a unique quadratic function Q2 : Y → Z such that

‖q2(v)−Q2(v)‖ ≤



5b,
b||v||d(5n− 1 + 2rd)

|4− 2d|
,

b||v||d(4 + 2rnd)

|4− 2nd|
,

b||v||nd(5n + 3 + 2rd + 2rnd)

|4− 2nd|

(6.19)

for all v ∈ Y .

Theorem 6.28. Let D faqcq : Y → Z be a even mapping for which there exists a function ω, Ω : Yn → [0, ∞) with the
condition

lim
p→∞

ω
(

κ
p
j v1, · · · , κ

p
j vn

)
κ

4p
j

= 0 (6.20)

for all v1, · · · , vn ∈ Y where κj is defined in (6.2) such that the functional inequality∥∥D faqcq(v1, · · · , vn)
∥∥ ≤ ω (v1, · · · , vn) (6.21)

for all v1, · · · , vn ∈ Y . If there exists L = L(i) such that the function

Ψ(v, v, · · · ,−v, v) = Ω
(v

2
,

v
2

, · · · ,−v
2

,
v
2

)
,

has the property

Ψ(v, v, · · · ,−v, v) =
L
κ4

j
Ψ
(
κjv, κjv, · · · ,−κjv, κjv

)
. (6.22)

for all v ∈ Y . Then there exists a unique quartic function Q4 : Y → Z which satisfies (1.3) and

‖Q4(v)− q4(v)‖ = ‖Q4(v)− { f (2v)− 4 f (v)}‖ ≤ L1−j

1− L
Ψ(v, v, · · · ,−v, v) (6.23)

for all v ∈ Y .
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Corollary 6.26. Let D faqcq : Y → Z be an even mapping. If there exists real numbers b and d fulfilling (4.28) for all
v1, · · · , vn ∈ Y , then there exists a unique quartic function Q4 : Y → Z such that

‖q4(v)−Q4(v)‖ ≤



5b,
b||v||d(5n− 1 + 2rd)

|16− 2d|
,

b||v||d(4 + 2rnd)

|16− 2nd|
,

b||v||nd(5n + 3 + 2rd + 2rnd)

|16− 2nd|

(6.24)

for all v ∈ Y .

Theorem 6.29. Let D faqcq : Y → Z be a even mapping for which there exists a function ω, Ω : Yn → [0, ∞) with the
conditions (6.15) and (6.20) for all v1, · · · , vn ∈ Y where κj is defined in (6.2) such that the functional inequality∥∥D faqcq(v1, · · · , vn)

∥∥ ≤ ω (v1, · · · , vn) (6.25)

for all v1, · · · , vn ∈ Y . If there existss L = L(i) such that the function

Ψ(v, v, · · · ,−v, v) = Ω
(v

2
,

v
2

, · · · ,−v
2

,
v
2

)
,

has the properties (6.17) and (6.22) for all v ∈ Y . Then there exists a unique quadratic function Q2 : Y → Z a unique
quartic function Q4 : Y → Z which satisfies (1.3) and

‖ f (v)−Q2(v)−Q4(v)‖ ≤
L1−j

12(1− L)
Ψ(v, v, · · · ,−v, v) (6.26)

for all v ∈ Y .

Corollary 6.27. Let D faqcq : Y → Z be an even mapping. If there exists real numbers b and d fulfilling (4.32) for all
v1, · · · , vn ∈ Y , then there exists a unique quadratic function Q2 : Y → Z a unique quartic function Q4 : Y → Z
such that

‖ f (v)−Q2(v)−Q4(v)‖ ≤



5b,
b||v||d(5n− 1 + 2rd)

12|4− 2d|
+

b||v||d(5n− 1 + 2rd)

12|16− 2d|
,

b||v||d(4 + 2rnd)

12|4− 2nd|
+

b||v||d(4 + 2rnd)

12|16− 2nd|
,

b||v||nd(5n + 3 + 2rd + 2rnd)

12|4− 2nd|
+

b||v||nd(5n + 3 + 2rd + 2rnd)

12|16− 2nd|

(6.27)

for all v ∈ Y .

6.3 f IS AN ODD - EVEN FUNCTION

Theorem 6.30. Let D faqcq : Y → Z be a mapping for which there exists a function ω, Ω : Yn → [0, ∞) with the
conditions (6.1), (6.15), (6.7) and (6.20) for all v1, · · · , vn ∈ Y where κj is defined in (6.2) such that the functional
inequality ∥∥D faqcq(v1, · · · , vn)

∥∥ ≤ ω (v1, · · · , vn) (6.28)

for all v1, · · · , vn ∈ Y . If there exists L = L(i) such that the function

Ψ(v, v, · · · ,−v, v) = Ω
(v

2
,

v
2

, · · · ,−v
2

,
v
2

)
,

has the properties (6.4), (6.17), (6.9) and (6.22) for all v ∈ Y . Then there exists a unique additive function A : Y → Z
a unique quadratic function Q2 : Y → Z a unique cubic function C : Y → Z a unique quartic function Q4 : Y → Z
which satisfies (1.3) and

‖ f (v)−A(v)−Q2(v)− C(v)−Q4(v)‖ ≤
L1−j

(1− L)

(
1
6
+

1
12

)
Ψ(v, v, · · · ,−v, v) (6.29)

for all v ∈ Y .
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Corollary 6.28. Let D faqcq : Y → Z be a mapping and if there exists real numbers b and d fulfilling (4.36) for all
v1, · · · , vn ∈ Y , then there exists a unique additive function A : Y → Z a unique quadratic function Q2 : Y → Z a
unique cubic function C : Y → Z a unique quartic function Q4 : Y → Z such that

‖ f (v)−A(v)−Q2(v)− C(v)−Q4(v)‖

≤



5b
2

{
1
12

[
1
|3| +

1
|15|

]
+

1
6

[
1 +

1
|7|

]}
,

b||v||d(5n− 1 + 2rd)

2

{
1
12

[
1

|4− 2d|
+

1
|16− 2d|

]
+

1
6

[
1

|2− 2d|
+

1
|8− 2d|

]}
,

b||v||d(4 + 2rnd)

2

{
1

12

[
1

|4− 2nd|
+

1
|16− 2nd|

]
+

1
6

[
1

|2− 2nd|
+

1
|8− 2nd|

]}
,

b||v||nd(5n− 3 + 2rd + 2rnd)

2

{
1

12

[
1

|4− 2nd|
+

1
|16− 2nd|

]
+

1
6

[
1

|2− 2nd|
+

1
|8− 2nd|

]}
,

(6.30)

for all v ∈ Y .

7 Counter Examples For Non Stable Cases

Now, we will provide an example to illustrate that the functional equation (1.3) is not stable for d = 1 in
condition (ii) of Corollaries 3.1, 4.8, 5.15 and 6.22.

Example 7.1. Let ω : R→ R be a function defined by

ω(v) =
{

ρv, if |v| <1
ρ, otherwise

where ρ > 0 is a constant, and define a function f : R→ R by

a(v) = f (2v)− 8 f (v) =
∞

∑
r=0

ω(2rv)
2r , f or all v ∈ R.

Then f satisfies the functional inequality∣∣∣∣∣ f
(

n−1

∑
i=1

vi + 2vn

)
+ f

(
n−1

∑
i=1

vi − 2vn

)
− 4 f

(
n

∑
i=1

vi

)
− 4 f

(
n−1

∑
i=1

vi − vn

)

+6 f

(
n−1

∑
i=1

vi

)
− f (2vn)− f (−2vn) + 4 f (vn) + 4 f (−vn)

∣∣∣∣∣ ≤ 52ρ
n

∑
i=1
|vi| (7.1)

for all v ∈ R. Then there do not exist a additive mapping A : R→ R and a constant η > 0 such that

|A(v)− { f (2v)− 8 f (v)}| ≤ η|v|, f or all v ∈ R. (7.2)

Proof. Now

|a(v)| = | f (2v)− 8 f (v)| ≤
∞

∑
r=0

|ω(2rv)|
|2r| =

∞

∑
n=0

ρ

2r = 2 ρ.

Therefore, we see that a is bounded. We are going to prove that a satisfies (7.1).

If v = 0 then (7.1) is trivial. If
n
∑

i=1
|vi| ≥

1
2

then the left hand side of (7.1) is less than 52ρ. Now suppose that

0 <
n
∑

i=1
|vi| <

1
2

. Then there exists a positive integer k such that

1
2k ≤

n

∑
i=1
|vi| <

1
2k−1 , (7.3)

so that 2k−1vi(i = 1, 2, · · · , n) <
1
2

and consequently

2k−1

(
n−1

∑
i=1

vi + 2vn

)
, 2k−1

(
n−1

∑
i=1

vi − 2vn

)
, 2k−1

(
n

∑
i=1

vi

)
, 2k−1

(
n−1

∑
i=1

vi − vn

)
,

2k−1 f

(
n−1

∑
i=1

vi

)
, 2k−1 (2vn) , 2k−1 (−2vn) , 2k−1 (vn) , 2k−1 (−vn) ∈ (−1, 1).
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Therefore for each r = 0, 1, . . . , k− 1, we have

2r

(
n−1

∑
i=1

vi + 2vn

)
, 2r

(
n−1

∑
i=1

vi − 2vn

)
, 2r

(
n

∑
i=1

vi

)
, 2r

(
n−1

∑
i=1

vi − vn

)
,

2r f

(
n−1

∑
i=1

vi

)
, 2r (2vn) , 2r (−2vn) , 2r (vn) , 2r (−vn) ∈ (−1, 1)

and

ω

(
2r

n−1

∑
i=1

vi + 2r · 2vn

)
+ ω

(
2r

n−1

∑
i=1

vi − 2r · 2vn

)
− 4ω

(
2r

n

∑
i=1

vi

)
− 4ω

(
2r

n−1

∑
i=1

vi − 2rvn

)

+ 6ω

(
2r

n−1

∑
i=1

vi

)
−ω (2r · 2vn)−ω (−2r · 2vn) + 4ω (2rvn) + 4ω f (−2rvn) = 0

for r = 0, 1, . . . , k− 1. From the definition of a and (7.3), we obtain that∣∣∣∣∣a
(

n−1

∑
i=1

vi + 2vn

)
+ a

(
n−1

∑
i=1

vi − 2vn

)
− 4a

(
n

∑
i=1

vi

)
− 4a

(
n−1

∑
i=1

vi − vn

)

+6a

(
n−1

∑
i=1

vi

)
− a (2vn)− a (−2vn) + 4a (vn) + 4a (−vn)

∣∣∣∣∣
≤

∞

∑
r=0

1
2r

∣∣∣ω(2r
n−1

∑
i=1

vi + 2r · 2vn

)
+ ω

(
2r

n−1

∑
i=1

vi − 2r · 2vn

)
− 4ω

(
2r

n

∑
i=1

vi

)

− 4ω

(
2r

n−1

∑
i=1

vi − 2rvn

)
+ 6ω

(
2r

n−1

∑
i=1

vi

)
−ω (2r · 2vn)−ω (−2r · 2vn)

+ 4ω (2rvn) + 4ω f (−2rvn)
∣∣∣

≤
∞

∑
r=k

1
2r

∣∣∣ω(2r
n−1

∑
i=1

vi + 2r · 2vn

)
+ ω

(
2r

n−1

∑
i=1

vi − 2r · 2vn

)
− 4ω

(
2r

n

∑
i=1

vi

)

− 4ω

(
2r

n−1

∑
i=1

vi − 2rvn

)
+ 6ω

(
2r

n−1

∑
i=1

vi

)
−ω (2r · 2vn)−ω (−2r · 2vn)

+ 4ω (2rvn) + 4ω f (−2rvn)
∣∣∣

=
∞

∑
r=k

1
2r × 26ρ = 26ρ× 2

2k ≤ 52ρ
n

∑
i=1
|vi|

Thus a satisfies (7.1) for all x ∈ R with 0 <
n
∑

i=1
|vi| <

1
2

.

We claim that the additive functional equation (1.3) is not stable for r = 1 in condition (ii) of Corollary 3.1.
Suppose on the contrary that there exist a additive mapping A : R→ R and a constant η > 0 satisfying (7.2).
Since a is bounded and continuous for all x ∈ R,A is bounded on any open interval containing the origin and
continuous at the origin. In view of Theorem 3.3, A must have the form A(v) = cv for any v in R. Thus, we
obtain that

|a(v)| ≤ (η + |c|) |v|. (7.4)

But we can choose a positive integer s with sρ > η + |c|.
If v ∈

(
0, 1

2s−1

)
, then 2rv ∈ (0, 1) for all r = 0, 1, . . . , s− 1 . For this v, we get

a(v) =
∞

∑
n=0

ω(2rv)
2r ≥

s−1

∑
r=0

ρ(2rv)
2r = sρv > (η + |c|) v

which contradicts (7.4). Therefore the additive functional equation (1.3) is not stable in sense of Ulam, Hyers
and Rassias if r = 1, assumed in the inequality condition (ii).
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Now, we will provide an example to illustrate that the functional equation (1.3) is not stable for d = 1
n in

condition (iii) of Corollaries 3.1,5.15 and condition (iv) of Corollaries 4.8 and 6.22.

Example 7.2. Let ω : R→ R be a function defined by

ω(v) =
{

ρv, if |v| < 1
n

ρ
n , otherwise

where ρ > 0 is a constant, and define a function f : R→ R by

a(v) = f (2v)− 8 f (v) =
∞

∑
r=0

ω(2rv)
2r , f or all v ∈ R.

Then f satisfies the functional inequality∣∣∣∣∣ f
(

n−1

∑
i=1

vi + 2vn

)
+ f

(
n−1

∑
i=1

vi − 2vn

)
− 4 f

(
n

∑
i=1

vi

)
− 4 f

(
n−1

∑
i=1

vi − vn

)

+6 f

(
n−1

∑
i=1

vi

)
− f (2vn)− f (−2vn) + 4 f (vn) + 4 f (−vn)

∣∣∣∣∣ ≤ 52ρ

n

n

∑
i=1
|vi|

1
n (7.5)

for all v ∈ R. Then there do not exist a additive mapping A : R→ R and a constant η > 0 such that

|A(v)− { f (2v)− 8 f (v)}| ≤ η|v|
1
n , f or all v ∈ R. (7.6)

Now, we will provide an example to illustrate that the functional equation (1.3) is not stable for d = 2 in
condition (ii) of Corollaries 3.1, 4.8, 5.15 and 6.22.

Example 7.3. Let ω : R→ R be a function defined by

ω(v) =
{

ρv2, if |v| <1
ρ, otherwise

where ρ > 0 is a constant, and define a function f : R→ R by

q2(v) = f (2v)− 3 f (v) =
∞

∑
r=0

ω(2rv)
22r , f or all v ∈ R.

Then f satisfies the functional inequality∣∣∣∣∣ f
(

n−1

∑
i=1

vi + 2vn

)
+ f

(
n−1

∑
i=1

vi − 2vn

)
− 4 f

(
n

∑
i=1

vi

)
− 4 f

(
n−1

∑
i=1

vi − vn

)

+6 f

(
n−1

∑
i=1

vi

)
− f (2vn)− f (−2vn) + 4 f (vn) + 4 f (−vn)

∣∣∣∣∣ ≤ 26ρ× 42

3

n

∑
i=1
|vi|2 (7.7)

for all v ∈ R. Then there do not exist a quadratic mapping Q2 : R→ R and a constant η > 0 such that

|Q2(v)− { f (2v)− 16 f (v)}| ≤ η|v|2, f or all v ∈ R. (7.8)

Now, we will provide an example to illustrate that the functional equation (1.3) is not stable for d = 2
n in

condition (iii) of Corollaries 3.1,5.15 and condition (iv) of Corollaries 4.8 and 6.22.

Example 7.4. Let ω : R→ R be a function defined by

ω(v) =

{
ρv, if |v| < 2

n
2ρ
n , otherwise

where ρ > 0 is a constant, and define a function f : R→ R by

q2(v) = f (2v)− 16 f (v) =
∞

∑
r=0

ω(2rv)
22r , f or all v ∈ R.
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Then f satisfies the functional inequality∣∣∣∣∣ f
(

n−1

∑
i=1

vi + 2vn

)
+ f

(
n−1

∑
i=1

vi − 2vn

)
− 4 f

(
n

∑
i=1

vi

)
− 4 f

(
n−1

∑
i=1

vi − vn

)

+6 f

(
n−1

∑
i=1

vi

)
− f (2vn)− f (−2vn) + 4 f (vn) + 4 f (−vn)

∣∣∣∣∣ ≤ 52ρ× 42

3n

n

∑
i=1
|vi|

2
n (7.9)

for all v ∈ R. Then there do not exist a quadratic mapping Q2 : R→ R and a constant η > 0 such that

|Q2(v)− { f (2v)− 16 f (v)}| ≤ η|v|
2
n , f or all v ∈ R. (7.10)

Now, we will provide an example to illustrate that the functional equation (1.3) is not stable for d = 3 in
condition (ii) of Corollaries 3.1, 4.8, 5.15 and 6.22.

Example 7.5. Let ω : R→ R be a function defined by

ω(v) =
{

ρv3, if |v| <1
ρ, otherwise

where ρ > 0 is a constant, and define a function f : R→ R by

c(v) = f (2v)− 3 f (v) =
∞

∑
r=0

ω(2rv)
23r , f or all v ∈ R.

Then f satisfies the functional inequality∣∣∣∣∣ f
(

n−1

∑
i=1

vi + 2vn

)
+ f

(
n−1

∑
i=1

vi − 2vn

)
− 4 f

(
n

∑
i=1

vi

)
− 4 f

(
n−1

∑
i=1

vi − vn

)

+6 f

(
n−1

∑
i=1

vi

)
− f (2vn)− f (−2vn) + 4 f (vn) + 4 f (−vn)

∣∣∣∣∣ ≤ 26ρ× 83

7

n

∑
i=1
|vi|3 (7.11)

for all v ∈ R. Then there do not exist a cubic mapping C : R→ R and a constant η > 0 such that

|C(v)− { f (2v)− 2 f (v)}| ≤ η|v|3, f or all v ∈ R. (7.12)

Now, we will provide an example to illustrate that the functional equation (1.3) is not stable for d = 3
n in

condition (iii) of Corollaries 3.1,5.15 and condition (iv) of Corollaries 4.8 and 6.22.

Example 7.6. Let ω : R→ R be a function defined by

ω(v) =

{
ρv, if |v| < 3

n
3ρ
n , otherwise

where ρ > 0 is a constant, and define a function f : R→ R by

c(v) = f (2v)− 2 f (v) =
∞

∑
r=0

ω(2rv)
23r , f or all v ∈ R.

Then f satisfies the functional inequality∣∣∣∣∣ f
(

n−1

∑
i=1

vi + 2vn

)
+ f

(
n−1

∑
i=1

vi − 2vn

)
− 4 f

(
n

∑
i=1

vi

)
− 4 f

(
n−1

∑
i=1

vi − vn

)

+6 f

(
n−1

∑
i=1

vi

)
− f (2vn)− f (−2vn) + 4 f (vn) + 4 f (−vn)

∣∣∣∣∣ ≤ 78ρ× 83

7n

n

∑
i=1
|vi|

3
n (7.13)

for all v ∈ R. Then there do not exist a cubic mapping C : R→ R and a constant η > 0 such that

|C(v)− { f (2v)− 2 f (v)}| ≤ η|v|
3
n , f or all v ∈ R. (7.14)
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Now, we will provide an example to illustrate that the functional equation (1.3) is not stable for d = 2 in
condition (ii) of Corollaries 3.1, 4.8, 5.15 and 6.22.

Example 7.7. Let ω : R→ R be a function defined by

ω(v) =
{

ρv4, if |v| <1
ρ, otherwise

where ρ > 0 is a constant, and define a function f : R→ R by

q4(v) = f (2v)− 4 f (v) =
∞

∑
r=0

ω(2rv)
24r , f or all v ∈ R.

Then f satisfies the functional inequality∣∣∣∣∣ f
(

n−1

∑
i=1

vi + 2vn

)
+ f

(
n−1

∑
i=1

vi − 2vn

)
− 4 f

(
n

∑
i=1

vi

)
− 4 f

(
n−1

∑
i=1

vi − vn

)

+6 f

(
n−1

∑
i=1

vi

)
− f (2vn)− f (−2vn) + 4 f (vn) + 4 f (−vn)

∣∣∣∣∣ ≤ 26ρ× 42

15

n

∑
i=1
|vi|4 (7.15)

for all v ∈ R. Then there do not exist a quartic mapping Q4 : R→ R and a constant η > 0 such that

|Q4(v)− { f (2v)− 4 f (v)}| ≤ η|v|4, f or all v ∈ R. (7.16)

Now, we will provide an example to illustrate that the functional equation (1.3) is not stable for d = 4
n in

condition (iii) of Corollaries 3.1,5.15 and condition (iv) of Corollaries 4.8 and 6.22.

Example 7.8. Let ω : R→ R be a function defined by

ω(v) =

{
ρv, if |v| < 4

n
4ρ
n , otherwise

where ρ > 0 is a constant, and define a function f : R→ R by

q2(v) = f (2v)− 4 f (v) =
∞

∑
r=0

ω(2rv)
24r , f or all v ∈ R.

Then f satisfies the functional inequality∣∣∣∣∣ f
(

n−1

∑
i=1

vi + 2vn

)
+ f

(
n−1

∑
i=1

vi − 2vn

)
− 4 f

(
n

∑
i=1

vi

)
− 4 f

(
n−1

∑
i=1

vi − vn

)

+6 f

(
n−1

∑
i=1

vi

)
− f (2vn)− f (−2vn) + 4 f (vn) + 4 f (−vn)

∣∣∣∣∣ ≤ 144ρ× 42

15n

n

∑
i=1
|vi|

4
n (7.17)

for all v ∈ R. Then there do not exist a quartic mapping Q4 : R→ R and a constant η > 0 such that

|Q4(v)− { f (2v)− 4 f (v)}| ≤ η|v|
4
n , f or all v ∈ R. (7.18)
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[17] L. Cădariu, V. Radu, Fixed points and the stability of quadratic functional equations,An. Univ. Timisoara, Ser.
Mat. Inform. 41 (2003), 25–48.
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Abstract

In this paper, the authors proved the generalized Ulam-Hyers stability of 2-variable Additive-Quadratic-
Cubic-Quartic functional equation

f (x + 2y, u + 2v) + f (x− 2y, u− 2v) =4 f (x + y, u + v)− 4 f (x− y, u− v)− 6 f (x, u) + f (2y, 2v)

+ f (−2y,−2v)− 4 f (y, v)− 4 f (−y,−v)

using fixed point method.
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1 Introduction and Preliminaries

Under what condition is there a homomorphism near an approximately homomorphism between a group
and a metric group? This is called the stability problem of functional equations which was first raised by S. M.
Ulam [49] in 1940. In next year, D. H. Hyers [24] answers the problem of Ulam under the assumption that the
groups are Banach spaces. A generalized version of the theorem of Hyers for approximately linear mappings
was given by T. Aoki [2] and Th. M. Rassias [44], respectively. The terminology Hyers- Ulam-Rassias stability
originates from this historical background. Since then, a great deal of work has been done by a number of
authors (for instance, [11, 13, 25, 40–42, 45, 47]).

The stability of mixed type functional equations have been extensively investigated by a number of math-
ematicians in referenes (see [3–5, 14–22, 28–31, 33–38, 43, 48, 50–52]). In 2003, V. Radu [39] introduced a new
method, successively developed in ([7–10]), to obtaining the existence of the exact solutions and the error
estimations, based on the fixed point alternative.

Now we will recall the fundamental results in fixed point theory.

Theorem 1.1. (Banach’s contraction principle) Let (X, d) be a complete metric space and consider a mapping T : X →
X which is strictly contractive mapping, that is

(A1) d(Tx, Ty) ≤ Ld(x, y) for some (Lipschitz constant) L < 1. Then,
(i) The mapping T has one and only fixed point x∗ = T(x∗);
(ii)The fixed point for each given element x∗ is globally attractive, that is

∗Corresponding author.
E-mail addresses: annarun2002@yahoo.co.in (M. Arunkumar), karthik.sma204@yahoo.com (S. Karthikeyan), hemsjes@yahoo.co.in
(S. Hemalatha).
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(A2) limn→∞Tnx = x∗, for any starting point x ∈ X;
(iii) One has the following estimation inequalities:

(A3) d(Tnx, x∗) ≤ 1
1−L d(Tnx, Tn+1x), ∀ n ≥ 0, ∀ x ∈ X;

(A4) d(x, x∗) ≤ 1
1−L d(x, x∗), ∀ x ∈ X.

Theorem 1.2. [12](The alternative of fixed point) Suppose that for a complete generalized metric space (X, d) and a
strictly contractive mapping T : X → X with Lipschitz constant L. Then, for each given element x ∈ X, either
(B1) d(Tnx, Tn+1x) = ∞ ∀ n ≥ 0,
or
(B2) there exists a natural number n0 such that:
(i) d(Tnx, Tn+1x) < ∞ for all n ≥ n0 ;
(ii)The sequence (Tnx) is convergent to a fixed point y∗ of T
(iii) y∗ is the unique fixed point of T in the set Y = {y ∈ X : d(Tn0 x, y) < ∞};
(iv) d(y∗, y) ≤ 1

1−L d(y, Ty) for all y ∈ Y.

Recently, M. Arunkumar et al. introduced and investigated the general solution and generalized Ulam-
Hyers stability of 2-Variable AQCQ Functional equation

f (x + 2y, u + 2v) + f (x− 2y, u− 2v) = 4 f (x + y, u + v)− 4 f (x− y, u− v)− 6 f (x, u) + f (2y, 2v)

+ f (−2y,−2v)− 4 f (y, v)− 4 f (−y,−v) (1.1)

using direct method.
In this paper, the authors proved the generalized Ulam-Hyers stability of 2-variable Additive-Quadratic-

Cubic-Quartic functional equation (1.1) using fixed point method.
Through out this paper, let X be a normed space and Y be a Banach space respectively. Define a mapping

D f : X → Y by

D f (x, y, u, v) = f (x + 2y, u + 2v) + f (x− 2y, u− 2v)− 4 f (x + y, u + v) + 4 f (x− y, u− v) + 6 f (x, u)

− f (2y, 2v)− f (−2y,−2v) + 4 f (y, v) + 4 f (−y,−v)

for all x, y, u, v ∈ X.

2 Stability Results: Odd Case

In this section, the authors presented the generalized Ulam-Hyers stability of the functional equation (1.1) for
odd case using fixed point method.

2.1 Additive Stability Results

Theorem 2.1. Let D f : X → Y be a mapping for which there exist a function α : X4 → [0, ∞) with the condition

lim
k→∞

1
µk

i
α
(

µk
i x, µk

i y, µk
i u, µk

i v
)
= 0 (2.1)

where µi = 2 if i = 0 and µi =
1
2 if i = 1, such that the functional inequality with

‖D f (x, y, u, v)‖ ≤ α(x, y, u, v) (2.2)

for all x, y, u, v ∈ X. If there exists L = L(i) < 1 such that the function

u→ Φ(u) = β
(u

2
,

u
2

,
u
2

,
u
2

)
, (2.3)

has the property

Φ(u) = L
1
µi

Φ (µiu) (2.4)
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where β(u, u, u, u) = 4α(u, u, u, u) + α(2u, u, 2u, u) for all x ∈ X. Then there exists a unique additive mapping
A : X → Y satisfying the functional equation (1.1) and

‖ f (2u, 2u)− 8 f (u, u)− A(u, u) ‖≤ L1−i

1− L
Φ(u) (2.5)

for all u ∈ X.

Proof. Consider the set
Ω = {p/p : X → Y, p(0) = 0}

and introduce the generalized metric on Ω,

d(p, q) = inf{K ∈ (0, ∞) :‖ p(u)− q(u) ‖≤ KΦ(u), u ∈ X}.

It is easy to see that (Ω, d) is complete.
Define T : Ω→ Ω by

Tp(u) =
1
µi

p(µiu),

for all u ∈ X. Now p, q ∈ Ω, we have

d(p, q) ≤ K ⇒‖ p(u)− q(u) ‖≤ KΦ(u), ∀u ∈ X.

⇒
∥∥∥∥ 1

µi
p(µiu)−

1
µi

q(µiu)
∥∥∥∥ ≤ 1

µi
KΦ(µiu), ∀u ∈ X,

⇒
∥∥∥∥ 1

µi
p(µiu)−

1
µi

q(µiu)
∥∥∥∥ ≤ LKΦ(u), ∀u ∈ X,

⇒‖ Tp(u)− Tq(u) ‖≤ LKΦ(u), ∀u ∈ X,

⇒ d(p, q) ≤ LK.

This implies d(Tp, Tq) ≤ Ld(p, q), for all p, q ∈ Ω . i.e., T is a strictly contractive mapping on Ω with Lipschitz
constant L.
Replacing (x, y, u, v) by (u, u, u, u) in (2.2), we get

‖ f (3u, 3u)− 4 f (2u, 2u) + 5 f (u, u)‖ ≤ ‖α(u, u, u, u)‖ (2.6)

for all u ∈ X. Replacing (x, y, u, v) by (2u, u, 2u, u) in (2.2), we obtain

‖ f (4u, 4u)− 4 f (3u, 3u) + 6 f (2u, 2u)− 4 f (u, u)‖ ≤ ‖α(2u, u, 2u, u)‖ (2.7)

for all u ∈ X. Now, from (2.6) and (2.7), we have

‖ f (4u, 4u)− 10 f (2u, 2u) + 16 f (u, u)‖
≤ 4 ‖ f (3u, 3u)− 4 f (2u, 2u) + 5 f (u, u)‖+ ‖ f (4u, 4u)− 4 f (3u, 3u) + 6 f (2u, 2u)− 4 f (u, u)‖
≤ 4α(u, u, u, u) + α(2u, u, 2u, u) (2.8)

for all u ∈ X. From (2.8), we arrive

‖ f (4u, 4u)− 10 f (2u, 2u) + 16 f (u, u)‖ ≤ β(u, u, u, u) (2.9)

where β(u, u, u, u) = 4α(u, u, u, u) + α(2u, u, 2u, u) for all u ∈ X. It is easy from (2.9) that

‖ f (4u, 4u)− 8 f (2u, 2u)− 2 ( f (2u, 2u)− 8 f (u, u))‖ ≤ β(u, u, u, u) (2.10)

for all u ∈ X. Let a : X → Y be a mapping defined by a(u, u) = f (2u, 2u)− 8 f (u, u). From (2.10), we conclude
that

‖a(2u, 2u)− 2a(u, u)‖ ≤ β(u, u, u, u) (2.11)
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for all u ∈ X. From (2.11), we arrive∥∥∥∥ a(2u, 2u)
2

− a(u, u)
∥∥∥∥ ≤ 1

2
β(u, u, u, u) (2.12)

for all u ∈ X. Using (2.3) and (2.4) for the case i = 0 it reduces to∥∥∥∥ a(2u, 2u)
2

− a(u, u)
∥∥∥∥ ≤ LΦ(u)

for all u ∈ X,
i.e., d( f , T f ) ≤ L ≤ L1 < ∞.

Again replacing u =
u
2

in (2.11), we get∥∥∥a(u, u)− 2a
(u

2
,

u
2

)∥∥∥ ≤ β
(u

2
,

u
2

,
u
2

,
u
2

)
(2.13)

for all u ∈ X. Using (2.3) and (2.4) for the case i = 1 it reduces to∥∥∥a(u, u)− 2a
(u

2
,

u
2

)∥∥∥ ≤ Φ(u)

for all u ∈ X,
i.e., d( f , T f ) ≤ 1 ≤ L0 < ∞.

In both cases, we arrive
d( f , T f ) ≤ L1−i.

Therefore, (A1) holds. By (A2), it follows that there exists a fixed point A of T in Ω such that

A(u, u) = lim
k→∞

1
µk

i

(
f (µk+1

i u, µk+1
i u)− 8 f (µk

i u, µk
i u)
)

(2.14)

for all u ∈ X.
To prove A : X → Y is additive. Replacing (x, y, u, v) by

(
µk

i x, µk
i y, µk

i u, µk
i v
)

in (2.2) and dividing by µk
i , it

follows from (2.1) that

‖A(x, y, u, v)‖ = lim
k→∞

∥∥∥D f (µk
i x, µk

i y, µk
i u, µk

i v)
∥∥∥

µk
i

≤ lim
k→∞

α(µk
i x, µk

i y, µk
i u, µk

i v)
µk

i
= 0

for all x, y, u, v ∈ X. i.e., A satisfies the functional equation (1.1).
By (A3), A is the unique fixed point of T in the set ∆ = {A ∈ Ω : d( f , A) < ∞}, A is the unique function

such that
‖ f (2u, 2u)− 8 f (u, u)− A(u, u)‖ ≤ KΦ(u)

for all u ∈ X and K > 0. Finally by (A4), we obtain

d( f , A) ≤ 1
1− L

d( f , T f )

this implies

d( f , A) ≤ L1−i

1− L
which yields

‖ f (2u, 2u)− 8 f (u, u)− A(u, u) ‖≤ L1−i

1− L
Φ(u)

for all u ∈ X. This completes the proof.

The following corollary is an immediate consequence of Theorem 2.1 concerning the stability of (1.1).



M. Arunkumar et al. / Stability of 2-Variable Additive-Quadratic-Cubic-Quartic... 245

Corollary 2.1. Let D f : X → Y be a mapping and there exits real numbers λ and s such that

‖D f (x, y, u, v)‖ ≤


λ,
λ (||x||s + ||y||s + ||u||s + ||v||s) , s 6= 1;
λ (||x||s||y||s||u||s||v||s) , s 6= 1

4 ;
λ
{
||x||s||y||s||u||s||v||s + ||x||4s + ||y||4s + ||u||4s + ||v||4s} , s 6= 1

4 ;

(2.15)

for all x, y, u, v ∈ X, then there exists a unique additive function A : X → Y such that

‖ f (2u, 2u)− 8 f (u, u)− A(u, u)‖ ≤



5λ,(
18 + 2s+1) λ||u||s

|2− 2s| ,

(4 + 4s) λ||u||4s

|2− 24s| ,(
22 + 4s + 24s+1) λ||u||4s

|2− 24s| .

(2.16)

for all u ∈ X.

Proof. Setting

α(x, y, u, v) =


λ;
λ (||x||s + ||y||s + ||u||s + ||v||s) ;
λ (||x||s||y||s||u||s||v||s) ;
λ
{
||x||s||y||s||u||s||v||s + ||x||4s + ||y||4s + ||u||4s + ||v||4s} ;

for all x, y, u, v ∈ X. Now,

α(µk
i x, µk

i y, µk
i u, µk

i u)
µk

i
=


λµ−k

i ;

λµ
k(s−1)
i (||x||s + ||y||s + ||u||s + ||v||s);

λµ
k(4s−1)
i (||x||s||y||s||u||s||v||s);

λµ
k(4s−1)
i

{
||x||s||y||s||u||s||v||s + ||x||4s + ||y||4s + ||u||4s + ||v||4s

}
;

=


→ 0 as k→ ∞;
→ 0 as k→ ∞;
→ 0 as k→ ∞;
→ 0 as k→ ∞.

Thus, (2.1) is holds.
But we have Φ(u) = β

(u
2

,
u
2

,
u
2

,
u
2

)
has the property Φ(u) = L · 1

µi
Φ (µiu) for all u ∈ X. Hence,

Φ(u) = β
(u

2
,

u
2

,
u
2

,
u
2

)
=



5λ,(
18 + 2s+1) λ

2s ||u||s;
(4 + 4s) λ

24s ||u||4s;(
22 + 4s + 24s+1) λ

24s ||u||4s.

Now,

1
µi

Φ(µiu) =



5λ

µi
;(

18 + 2s+1) λ

µi2s (||µiu||s);
(4 + 4s) λ

µi24s

(
||µiu||4s

)
;(

22 + 4s + 24s+1) λ

µi24s

(
||µiu||4s

)
;

=



µ−1
i Φ(u);

µs−1
i Φ(u);

µ4s−1
i Φ(u);

µ4s−1
i Φ(u).
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From (2.5), we prove the following cases:
Case:1 L = 2−1 if i = 0;

‖ f (2u, 2u)− 8 f (u, u)− A(u, u)‖ ≤ λ

((
2−1)1−0

1− 2(−1)

)
= 5λ.

Case:2 L = 21 if i = 1,

‖ f (2u, 2u)− 8 f (u, u)− A(u, u)‖ ≤ λ

((
21)1−1

1− 21

)
= −5λ.

Case:3 L = 2s−1 for s < 1 if i = 0,

‖ f (2u, 2u)− 8 f (u, u)− A(u, u)‖ ≤
(
18 + 2s+1) λ

2s


(

2(s−1)
)1−0

1− 2(s−1)

 ||u||s = (
18 + 2s+1) λ

2− 2s ||u||s.

Case:4 L = 21−s for s > 1 if i = 1,

‖ f (2u, 2u)− 8 f (u, u)− A(u, u)‖ ≤
(
18 + 2s+1) λ

2s


(

2(1−s)
)1−1

1− 2(1−s)

 ||u||s = (
18 + 2s+1) λ

2s − 2
||u||s.

Case:5 L = 24s−1 for s < 1
4 if i = 0,

‖ f (2u, 2u)− 8 f (u, u)− A(u, u)‖ ≤ (4 + 4s) λ

24s


(

2(4s−1)
)1−0

1− 2(4s−1)

 ||u||4s =
(4 + 4s) λ

2− 24s ||u||
4s.

Case:6 L = 21−4s for s > 1
4 if i = 1,

‖ f (2u, 2u)− 8 f (u, u)− A(u, u)‖ ≤ (4 + 4s) λ

24s


(

2(1−4s)
)1−0

1− 2(1−4s)

 ||u||4s =
(4 + 4s) λ

24s − 2
||u||4s.

This completes the proof.

2.2 Cubic Stability Results

Theorem 2.2. Let D f : X → Y be a mapping for which there exist a function α : X4 → [0, ∞) with the condition

lim
k→∞

1
µ3k

i
α
(

µk
i x, µk

i y, µk
i u, µk

i v
)
= 0 (2.17)

where µi = 2 if i = 0 and µi =
1
2 if i = 1, such that the functional inequality with

‖D f (x, y, u, v)‖ ≤ α(x, y, u, v) (2.18)

for all x, y, u, v ∈ X. If there exists L = L(i) < 1 such that the function

u→ Φ(u) = β
(u

2
,

u
2

,
u
2

,
u
2

)
, (2.19)

has the property

Φ(u) = L
1

µ3
i

Φ (µiu) (2.20)

where β(u, u, u, u) = 4α(u, u, u, u) + α(2u, u, 2u, u) for all x ∈ X. Then there exists a unique cubic mapping C : X →
Y satisfying the functional equation (1.1) and

‖ f (2u, 2u)− 2 f (u, u)− C(u, u) ‖≤ L1−i

1− L
Φ(u) (2.21)

for all u ∈ X.
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Proof. Consider the set
Ω = {p/p : X → Y, p(0) = 0}

and introduce the generalized metric on Ω,

d(p, q) = inf{K ∈ (0, ∞) :‖ p(u)− q(u) ‖≤ KΦ(u), u ∈ X}.

It is easy to see that (Ω, d) is complete.
Define T : Ω→ Ω by

Tp(u) =
1

µ3
i

p(µiu),

for all u ∈ X. Now p, q ∈ Ω, we have

d(p, q) ≤ K ⇒‖ p(u)− q(u) ‖≤ KΦ(u), ∀u ∈ X.

⇒
∥∥∥∥∥ 1

µ3
i

p(µiu)−
1

µ3
i

q(µiu)

∥∥∥∥∥ ≤ 1
µ3

i
KΦ(µiu), ∀u ∈ X,

⇒
∥∥∥∥∥ 1

µ3
i

p(µiu)−
1

µ3
i

q(µiu)

∥∥∥∥∥ ≤ LKΦ(u), ∀u ∈ X,

⇒‖ Tp(u)− Tq(u) ‖≤ LKΦ(u), ∀u ∈ X,

⇒ d(p, q) ≤ LK.

This implies d(Tp, Tq) ≤ Ld(p, q), for all p, q ∈ Ω . i.e., T is a strictly contractive mapping on Ω with Lipschitz
constant L.
It is easy from (2.9) that

‖ f (4u, 4u)− 2 f (2u, 2u)− 8 ( f (2u, 2u)− 2 f (u, u))‖ ≤ β(u, u, u, u) (2.22)

for all u ∈ X. Let c : X → Y be a mapping defined by c(u, u) = f (2u, 2u)− 2 f (u, u). From (2.22), we conclude
that

‖c(2u, 2u)− 8c(u, u)‖ ≤ β(u, u, u, u) (2.23)

for all u ∈ X. From (2.23), we arrive∥∥∥∥ c(2u, 2u)
8

− c(u, u)
∥∥∥∥ ≤ 1

8
β(u, u, u, u) (2.24)

for all u ∈ X. Using (2.19) and (2.20) for the case i = 0 it reduces to∥∥∥∥ c(2u, 2u)
8

− c(u, u)
∥∥∥∥ ≤ LΦ(u)

for all u ∈ X,
i.e., d( f , T f ) ≤ L ≤ L1 < ∞.

Again replacing u =
u
2

in (2.23), we get∥∥∥c(u, u)− 8c
(u

2
,

u
2

)∥∥∥ ≤ β
(u

2
,

u
2

,
u
2

,
u
2

)
(2.25)

for all u ∈ X. Using (2.19) and (2.20) for the case i = 1 it reduces to∥∥∥c(u, u)− 8c
(u

2
,

u
2

)∥∥∥ ≤ Φ(u)

for all u ∈ X,
i.e., d( f , T f ) ≤ 1 ≤ L0 < ∞.

In both cases, we arrive
d( f , T f ) ≤ L1−i.
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Therefore, (A1) holds. By (A2), it follows that there exists a fixed point C of T in Ω such that

C(u, u) = lim
k→∞

1
µ3k

i

(
f (µk+1

i u, µk+1
i u)− 2 f (µk

i u, µk
i u)
)

(2.26)

for all u ∈ X.
To prove C : X → Y is cubic. Replacing (x, y, u, v) by

(
µk

i x, µk
i y, µk

i u, µk
i v
)

in (2.18) and dividing by µ3k
i , it

follows from (2.17) that

‖C(x, y, u, v)‖ = lim
k→∞

∥∥∥D f (µk
i x, µk

i y, µk
i u, µk

i v)
∥∥∥

µ3k
i

≤ lim
k→∞

α(µk
i x, µk

i y, µk
i u, µk

i v)
µ3k

i
= 0

for all x, y, u, v ∈ X. i.e., C satisfies the functional equation (1.1).
By (A3), C is the unique fixed point of T in the set ∆ = {C ∈ Ω : d( f , C) < ∞}, C is the unique function

such that
‖ f (2u, 2u)− 2 f (u, u)− C(u, u)‖ ≤ KΦ(u)

for all u ∈ X and K > 0. Finally by (A4), we obtain

d( f , C) ≤ 1
1− L

d( f , T f )

this implies

d( f , C) ≤ L1−i

1− L
which yields

‖ f (2u, 2u)− 2 f (u, u)− C(u, u) ‖≤ L1−i

1− L
Φ(u)

for all u ∈ X. This completes the proof.

The following corollary is an immediate consequence of Theorem 2.2 concerning the stability of (1.1).

Corollary 2.2. Let D f : X → Y be a mapping and there exits real numbers λ and s such that

‖D f (x, y, u, v)‖ ≤


λ,
λ (||x||s + ||y||s + ||u||s + ||v||s) , s 6= 3;
λ (||x||s||y||s||u||s||v||s) , s 6= 3

4 ;
λ
{
||x||s||y||s||u||s||v||s + ||x||4s + ||y||4s + ||u||4s + ||v||4s} , s 6= 3

4 ;

(2.27)

for all x, y, u, v ∈ X, then there exists a unique cubic function A : X → Y such that

‖ f (2u, 2u)− 8 f (u, u)− A(u, u)‖ ≤



5λ

7
,(

18 + 2s+1) λ||u||s

|23 − 2s| ,

(4 + 4s) λ||u||4s

|23 − 24s| ,(
22 + 4s + 24s+1) λ||u||4s

|23 − 24s| .

(2.28)

for all u ∈ X.

Proof. Setting

α(x, y, u, v) =


λ;
λ (||x||s + ||y||s + ||u||s + ||v||s) ;
λ (||x||s||y||s||u||s||v||s) ;
λ
{
||x||s||y||s||u||s||v||s + ||x||4s + ||y||4s + ||u||4s + ||v||4s} ;
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for all x, y, u, v ∈ X. Now,

α(µk
i x, µk

i y, µk
i u, µk

i u)
µ3k

i
=


λµ−3k

i ;

λµ
k(s−3)
i (||x||s + ||y||s + ||u||s + ||v||s);

λµ
k(4s−3)
i (||x||s||y||s||u||s||v||s);

λµ
k(4s−3)
i

{
||x||s||y||s||u||s||v||s + ||x||4s + ||y||4s + ||u||4s + ||v||4s

}
;

=


→ 0 as k→ ∞;
→ 0 as k→ ∞;
→ 0 as k→ ∞;
→ 0 as k→ ∞.

Thus, (2.17) is holds.
But we have Φ(u) = β

(u
2

,
u
2

,
u
2

,
u
2

)
has the property Φ(u) = L · 1

µ3
i

Φ (µiu) for all u ∈ X. Hence

Φ(u) = β
(u

2
,

u
2

,
u
2

,
u
2

)
=



5λ,(
18 + 2s+1) λ

2s ||u||s;
(4 + 4s) λ

24s ||u||4s;(
22 + 4s + 24s+1) λ

24s ||u||4s.

Now,

1
µ3

i
Φ(µiu) =



5λ

µ3
i

;(
18 + 2s+1) λ

µ3
i 2s (||µiu||s);

(4 + 4s) λ

µ3
i 24s

(
||µiu||4s

)
;(

22 + 4s + 24s+1) λ

µ3
i 24s

(
||µiu||4s

)
;

=



µ−3
i Φ(u);

µs−3
i Φ(u);

µ4s−3
i Φ(u);

µ4s−3
i Φ(u).

From (2.21), we prove the following cases:
Case:1 L = 2−3 if i = 0;

‖ f (2u, 2u)− 2 f (u, u)− C(u, u)‖ ≤ 5λ

((
2−3)1−0

1− 2(−3)

)
=

5λ

7
.

Case:2 L = 23 if i = 1,

‖ f (2u, 2u)− 2 f (u, u)− C(u, u)‖ ≤ 5λ

((
23)1−1

1− 23

)
=
−5λ

7
.

Case:3 L = 2s−3 for s < 3 if i = 0,

‖ f (2u, 2u)− 2 f (u, u)− C(u, u)‖ ≤
(
18 + 2s+1) λ

2s


(

2(s−3)
)1−0

1− 2(s−3)

 ||u||s = (
18 + 2s+1) λ

23 − 2s ||u||s.

Case:4 L = 23−s for s > 3 if i = 1,

‖ f (2u, 2u)− 2 f (u, u)− C(u, u)‖ ≤
(
18 + 2s+1) λ

2s


(

2(3−s)
)1−1

1− 2(3−s)

 ||u||s = (
18 + 2s+1) λ

2s − 23 ||u||s.
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Case:5 L = 24s−3 for s < 3
4 if i = 0,

‖ f (2u, 2u)− 2 f (u, u)− C(u, u)‖ ≤ (4 + 4s) λ

24s


(

2(4s−3)
)1−0

1− 2(4s−3)

 ||u||4s =
(4 + 4s) λ

23 − 24s ||u||
4s.

Case:6 L = 23−4s for s > 3
4 if i = 1,

‖ f (2u, 2u)− 2 f (u, u)− C(u, u)‖ ≤ (4 + 4s) λ

24s


(

2(3−4s)
)1−0

1− 2(3−4s)

 ||u||4s =
(4 + 4s) λ

24s − 23 ||u||
4s.

This finishes the proof.

2.3 Additive-Cubic Mixed Stability Results

Theorem 2.3. Let D f : X → Y be a mapping for which there exist a function α : X4 → [0, ∞) with the condition
given in (2.1) and (2.17) respectively, such that the functional inequality

‖D f (x, y, u, v)‖ ≤ α(x, y, u, v) (2.29)

for all x, y, u, v ∈ X. If there exists L = L(i) < 1 such that the function

u→ Φ(u) = β
(u

2
,

u
2

,
u
2

,
u
2

)
, (2.30)

has the property (2.4) and (2.20), then there exists a unique 2-variable additive function A : X → Y and a unique
2-variable cubic function C : X → Y satisfying the functional equation (1.1) and

‖ f (u, u)− A(u, u)− C(u, u) ‖≤ L1−i

1− L
Φ(u) (2.31)

for all u ∈ X.

Proof. By Theorems 2.1 and 2.2, there exists a unique 2-variable additive function A1 : X → Y and a unique
2-variable cubic function C1 : X → Y such that

‖ f (2u, 2u)− 8 f (u, u)− A1(u, u)‖ ≤ L1−i

1− L
Φ(u) (2.32)

for all u ∈ X and

‖ f (2u, 2u)− 2 f (u, u)− C1(u, u)‖ ≤ L1−i

1− L
Φ(u) (2.33)

for all u ∈ X. Now, from (2.32) and (2.33) that∥∥∥∥ f (u, u) +
1
6

A1(u, u)− 1
6

C1(u, u)
∥∥∥∥ =

∥∥∥∥{− f (2u, 2u)
6

+
8
6

f (u, u) +
1
6

A1(u, u)
}

+

{
f (2u, 2u)

6
− 2

6
f (u, u)− 1

6
C1(u, u)

}∥∥∥∥
≤ 1

6
‖{− f (2u, 2u) + 8 f (u, u) + A1(u, u)}

+ { f (2u, 2u)− 2 f (u, u)− C1(u, u)}‖

≤ 1
6

{
L1−i

1− L
Φ(u) +

L1−i

1− L
Φ(u)

}
for all u ∈ X. Thus we obtain (2.31) by defining A(u, u) = −1

6 A1(u, u) and C(u, u) = 1
6 C1(u, u), where A(u, u)

and C(u, u) are defined in (2.14) and (2.26) respectively, for all u ∈ X.
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The following corollary is an immediate consequence of Theorem 2.3 concerning the stability of (1.1).

Corollary 2.3. Let D f : X → Y be a mapping and there exits real numbers λ and s such that

‖D f (x, y, u, v)‖ ≤


λ,
λ (||x||s + ||y||s + ||u||s + ||v||s) , s 6= 1, 3;
λ (||x||s||y||s||u||s||v||s) , s 6= 1

4 , 3
4 ;

λ
{
||x||s||y||s||u||s||v||s + ||x||4s + ||y||4s + ||u||4s + ||v||4s} , s 6= 1

4 , 3
4 ;

(2.34)

for all x, y, u, v ∈ X, then there exists a unique 2-variable additive function A : X → Y and a unique 2-variable cubic
function C : X → Y such that

‖ f (u, u)− A(u, u)− C(u, u)‖ ≤



20λ

21
;(

18 + 2s+1)
6

(
1

|2− 2s| +
1

|23 − 2s|

)
λ||u||s;

(4 + 4s)

6

(
1

|2− 24s| +
1

|23 − 24s|

)
λ||u||4s;(

22 + 4s + 24s+1)
6

(
1

|2− 24s| +
1

|23 − 24s|

)
λ||u||4s;

(2.35)

for all u ∈ X.

3 Stability Results: Even Case

In this section, the authors given the generalized Ulam-Hyers stability of the functional equation (1.1) for even
case using fixed point method.

3.1 Quadratic Stability Results

Theorem 3.4. Let D f : X → Y be a mapping for which there exist a function α : X4 → [0, ∞) with the condition

lim
k→∞

1
µ2k

i
α
(

µk
i x, µk

i y, µk
i u, µk

i v
)
= 0 (3.1)

where µi = 2 if i = 0 and µi =
1
2 if i = 1, such that the functional inequality with

‖D f (x, y, u, v)‖ ≤ α(x, y, u, v) (3.2)

for all x, y, u, v ∈ X. If there exists L = L(i) < 1 such that the function

u→ Φ(u) = β
(u

2
,

u
2

,
u
2

,
u
2

)
, (3.3)

has the property

Φ(u) = L
1

µ2
i

Φ (µiu) (3.4)

where β(u, u, u, u) = 4α(u, u, u, u) + α(2u, u, 2u, u) for all u ∈ X. Then there exists a unique 2-variable quadratic
mapping Q2 : X → Y satisfying the functional equation (1.1) and

‖ f (2u, 2u)− 16 f (u, u)−Q2(u, u) ‖≤ L1−i

1− L
Φ(u) (3.5)

for all u ∈ X.

Proof. Consider the set
Ω = {p/p : X → Y, p(0) = 0}

and introduce the generalized metric on Ω,

d(p, q) = inf{K ∈ (0, ∞) :‖ p(u)− q(u) ‖≤ KΦ(u), u ∈ X}.



252 M. Arunkumar et al. / Stability of 2-Variable Additive-Quadratic-Cubic-Quartic...

It is easy to see that (Ω, d) is complete.
Define T : Ω→ Ω by

Tp(u) =
1

µ2
i

p(µiu),

for all u ∈ X. Now p, q ∈ Ω, we have

d(p, q) ≤ K ⇒‖ p(u)− q(u) ‖≤ KΦ(u), ∀u ∈ X.

⇒
∥∥∥∥∥ 1

µ2
i

p(µiu)−
1

µ2
i

q(µiu)

∥∥∥∥∥ ≤ 1
µ2

i
KΦ(µiu), ∀u ∈ X,

⇒
∥∥∥∥∥ 1

µ2
i

p(µiu)−
1

µ2
i

q(µiu)

∥∥∥∥∥ ≤ LKΦ(u), ∀u ∈ X,

⇒‖ Tp(u)− Tq(u) ‖≤ LKΦ(u), ∀u ∈ X,

⇒ d(p, q) ≤ LK.

This implies d(Tp, Tq) ≤ Ld(p, q), for all p, q ∈ Ω . i.e., T is a strictly contractive mapping on Ω with Lipschitz
constant L.
Replacing (x, y, u, v) by (u, u, u, u) in (3.2) and using evenness of f , we get

‖ f (3u, 3u)− 6 f (2u, 2u) + 15 f (u, u)‖ ≤ ‖α(u, u, u, u)‖ (3.6)

for all u ∈ X. Replacing (x, y, u, v) by (2u, u, 2u, u) in (3.2), we obtain

‖ f (4u, 4u)− 4 f (3u, 3u) + 4 f (2u, 2u) + 4 f (u, u)‖ ≤ ‖α(2u, u, 2u, u)‖ (3.7)

for all u ∈ X. Now, from (3.6) and (3.7), we have

‖ f (4u, 4u)− 20 f (2u, 2u) + 64 f (u, u)‖
≤ 4 ‖ f (3u, 3u)− 6 f (2u, 2u) + 15 f (u, u)‖+ ‖ f (4u, 4u)− 4 f (3u, 3u) + 4 f (2u, 2u) + 4 f (u, u)‖
≤ 4α(u, u, u, u) + α(2u, u, 2u, u) (3.8)

for all u ∈ X. From (3.8), we arrive

‖ f (4u, 4u)− 20 f (2u, 2u) + 64 f (u, u)‖ ≤ β(u, u, u, u) (3.9)

where β(u, u, u, u) = 4α(u, u, u, u) + α(2u, u, 2u, u) for all u ∈ X. It is easy from (3.9) that

‖ f (4u, 4u)− 16 f (2u, 2u)− 4 ( f (2u, 2u)− 16 f (u, u))‖ ≤ β(u, u, u, u) (3.10)

for all u ∈ X. Let q2 : X → Y be a mapping defined by q2(u, u) = f (2u, 2u) − 16 f (u, u). From (3.10), we
conclude that

‖q2(2u, 2u)− 4q2(u, u)‖ ≤ β(u, u, u, u) (3.11)

for all u ∈ X. From (3.11), we arrive∥∥∥∥ q2(2u, 2u)
4

− q2(u, u)
∥∥∥∥ ≤ 1

4
β(u, u, u, u) (3.12)

for all u ∈ X. Using (3.3) and (3.4) for the case i = 0 it reduces to∥∥∥∥ q2(2u, 2u)
4

− q2(u, u)
∥∥∥∥ ≤ LΦ(u)

for all u ∈ X,
i.e., d( f , T f ) ≤ L ≤ L1 < ∞.

Again replacing u =
u
2

in (3.11), we get∥∥∥q2(u, u)− 4q2

(u
2

,
u
2

)∥∥∥ ≤ β
(u

2
,

u
2

,
u
2

,
u
2

)
(3.13)
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for all u ∈ X. Using (3.3) and (3.4) for the case i = 1 it reduces to∥∥∥q2(u, u)− 4q2

(u
2

,
u
2

)∥∥∥ ≤ Φ(u)

for all u ∈ X,
i.e., d( f , T f ) ≤ 1 ≤ L0 < ∞.

In both cases, we arrive
d( f , T f ) ≤ L1−i.

Therefore, (A1) holds. By (A2), it follows that there exists a fixed point Q2 of T in Ω such that

Q2(u, u) = lim
k→∞

1
µ2k

i

(
f (µk+1

i u, µk+1
i u)− 16 f (µk

i u, µk
i u)
)

(3.14)

for all u ∈ X.
To prove Q2 : X → Y is quadratic. Replacing (x, y, u, v) by

(
µk

i x, µk
i y, µk

i u, µk
i v
)

in (3.2) and dividing by

µ2k
i , it follows from (3.1) that

‖Q2(x, y, u, v)‖ = lim
k→∞

∥∥∥D f (µk
i x, µk

i y, µk
i u, µk

i v)
∥∥∥

µ2k
i

≤ lim
k→∞

α(µk
i x, µk

i y, µk
i u, µk

i v)
µ2k

i
= 0

for all x, y, u, v ∈ X. i.e., Q2 satisfies the functional equation (1.1).
By (A3), Q2 is the unique fixed point of T in the set ∆ = {Q2 ∈ Ω : d( f , Q2) < ∞}, Q2 is the unique

function such that
‖ f (2u, 2u)− 16 f (u, u)−Q2(u, u)‖ ≤ KΦ(u)

for all u ∈ X and K > 0. Finally by (A4), we obtain

d( f , Q2) ≤
1

1− L
d( f , T f )

this implies

d( f , Q2) ≤
L1−i

1− L
which yields

‖ f (2u, 2u)− 16 f (u, u)−Q2(u, u) ‖≤ L1−i

1− L
Φ(u)

for all u ∈ X. This finishes the proof.

The following corollary is an immediate consequence of Theorem 3.4 concerning the stability of (1.1).

Corollary 3.4. Let D f : X → Y be a mapping and there exits real numbers λ and s such that

‖D f (x, y, u, v)‖ ≤


λ,
λ (||x||s + ||y||s + ||u||s + ||v||s) , s 6= 2;
λ (||x||s||y||s||u||s||v||s) , s 6= 1

2 ;
λ
{
||x||s||y||s||u||s||v||s + ||x||4s + ||y||4s + ||u||4s + ||v||4s} , s 6= 1

2 ;

(3.15)

for all x, y, u, v ∈ X, then there exists a unique 2-variable quadratic function Q2 : X → Y such that

‖ f (2u, 2u)− 16 f (u, u)−Q2(u, u)‖ ≤



5λ

3
,(

18 + 2s+1) λ||u||s

|22 − 2s| ,

(4 + 4s) λ||u||4s

|22 − 24s| ,(
22 + 4s + 24s+1) λ||u||4s

|22 − 24s| .

(3.16)

for all u ∈ X.
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Proof. Setting

α(x, y, u, v) =


λ;
λ (||x||s + ||y||s + ||u||s + ||v||s) ;
λ (||x||s||y||s||u||s||v||s) ;
λ
{
||x||s||y||s||u||s||v||s + ||x||4s + ||y||4s + ||u||4s + ||v||4s} ;

for all x, y, u, v ∈ X. Now,

α(µk
i x, µk

i y, µk
i u, µk

i u)
µ2k

i
=


λµ−2k

i ;

λµ
k(s−2)
i (||x||s + ||y||s + ||u||s + ||v||s);

λµ
k(4s−2)
i (||x||s||y||s||u||s||v||s);

λµ
k(4s−2)
i

{
||x||s||y||s||u||s||v||s + ||x||4s + ||y||4s + ||u||4s + ||v||4s

}
;

=


→ 0 as k→ ∞;
→ 0 as k→ ∞;
→ 0 as k→ ∞;
→ 0 as k→ ∞.

Thus, (3.1) is holds.
But we have Φ(u) = β

(u
2

,
u
2

,
u
2

,
u
2

)
has the property Φ(u) = L · 1

µ2
i

Φ (µiu) for all u ∈ X. Hence,

Φ(u) = β
(u

2
,

u
2

,
u
2

,
u
2

)
=



5λ,(
18 + 2s+1) λ

2s ||u||s;
(4 + 4s) λ

24s ||u||4s;(
22 + 4s + 24s+1) λ

24s ||u||4s.

Now,

1
µ2

i
Φ(µiu) =



5λ

µi
;(

18 + 2s+1) λ

µ2
i 2s (||µiu||s);

(4 + 4s) λ

µ2
i 24s

(
||µiu||4s

)
;(

22 + 4s + 24s+1) λ

µ2
i 24s

(
||µiu||4s

)
;

=



µ−2
i Φ(u);

µs−2
i Φ(u);

µ4s−2
i Φ(u);

µ4s−2
i Φ(u).

From (3.5), we prove the following cases:
Case:1 L = 2−2 if i = 0;

‖ f (2u, 2u)− 16 f (u, u)−Q2(u, u)‖ ≤ λ

((
2−2)1−0

1− 2(−2)

)
=

5λ

3
.

Case:2 L = 21 if i = 1,

‖ f (2u, 2u)− 16 f (u, u)−Q2(u, u)‖ ≤ λ

((
22)1−1

1− 22

)
=
−5λ

3
.

Case:3 L = 2s−2 for s < 2 if i = 0,

‖ f (2u, 2u)− 16 f (u, u)−Q2(u, u)‖ ≤
(
18 + 2s+1) λ

2s


(

2(s−2)
)1−0

1− 2(s−2)

 ||u||s = (
18 + 2s+1) λ

22 − 2s ||u||s.
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Case:4 L = 22−s for s > 2 if i = 1,

‖ f (2u, 2u)− 16 f (u, u)−Q2(u, u)‖ ≤
(
18 + 2s+1) λ

2s


(

2(2−s)
)1−1

1− 2(2−s)

 ||u||s = (
18 + 2s+1) λ

2s − 22 ||u||s.

Case:5 L = 24s−2 for s < 1
2 if i = 0,

‖ f (2u, 2u)− 16 f (u, u)−Q2(u, u)‖ ≤ (4 + 4s) λ

24s


(

2(4s−2)
)1−0

1− 2(4s−2)

 ||u||4s =
(4 + 4s) λ

22 − 24s ||u||
4s.

Case:6 L = 22−4s for s > 2
4 if i = 1,

‖ f (2u, 2u)− 16 f (u, u)−Q2(u, u)‖ ≤ (4 + 4s) λ

24s


(

2(2−4s)
)1−0

2− 2(1−4s)

 ||u||4s =
(4 + 4s) λ

24s − 22 ||u||
4s.

This completes the proof.

3.2 Quartic Stability Results

Theorem 3.5. Let D f : X → Y be a mapping for which there exist a function α : X4 → [0, ∞) with the condition

lim
k→∞

1
µ4k

i
α
(

µk
i x, µk

i y, µk
i u, µk

i v
)
= 0 (3.17)

where µi = 2 if i = 0 and µi =
1
2 if i = 1, such that the functional inequality with

‖D f (x, y, u, v)‖ ≤ α(x, y, u, v) (3.18)

for all x, y, u, v ∈ X. If there exists L = L(i) < 1 such that the function

u→ Φ(u) = β
(u

2
,

u
2

,
u
2

,
u
2

)
, (3.19)

has the property

Φ(u) = L
1

µ4
i

Φ (µiu) (3.20)

where β(u, u, u, u) = 4α(u, u, u, u) + α(2u, u, 2u, u) for all x ∈ X. Then there exists a unique 2-variable quartic
mapping Q4 : X → Y satisfying the functional equation (1.1) and

‖ f (2u, 2u)− 4 f (u, u)−Q4(u, u) ‖≤ L1−i

1− L
Φ(u) (3.21)

for all u ∈ X.

Proof. Consider the set
Ω = {p/p : X → Y, p(0) = 0}

and introduce the generalized metric on Ω,

d(p, q) = inf{K ∈ (0, ∞) :‖ p(u)− q(u) ‖≤ KΦ(u), u ∈ X}.

It is easy to see that (Ω, d) is complete.
Define T : Ω→ Ω by

Tp(u) =
1

µ4
i

p(µiu),
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for all u ∈ X. Now p, q ∈ Ω, we have

d(p, q) ≤ K ⇒‖ p(u)− q(u) ‖≤ KΦ(u), ∀u ∈ X.

⇒
∥∥∥∥∥ 1

µ4
i

p(µiu)−
1

µ4
i

q(µiu)

∥∥∥∥∥ ≤ 1
µ4

i
KΦ(µiu), ∀u ∈ X,

⇒
∥∥∥∥∥ 1

µ4
i

p(µiu)−
1

µ4
i

q(µiu)

∥∥∥∥∥ ≤ LKΦ(u), ∀u ∈ X,

⇒‖ Tp(u)− Tq(u) ‖≤ LKΦ(u), ∀u ∈ X,

⇒ d(p, q) ≤ LK.

This implies d(Tp, Tq) ≤ Ld(p, q), for all p, q ∈ Ω . i.e., T is a strictly contractive mapping on Ω with Lipschitz
constant L.
It is easy from (3.9) that

‖ f (4u, 4u)− 4 f (2u, 2u)− 16 ( f (2u, 2u)− 4 f (u, u))‖ ≤ β(u, u, u, u) (3.22)

for all u ∈ X. Let q4 : X → Y be a mapping defined by q4(u, u) = f (2u, 2u) − 4 f (u, u). From (3.22), we
conclude that

‖q4(2u, 2u)− 16q4(u, u)‖ ≤ β(u, u, u, u) (3.23)

for all u ∈ X. From (3.23), we arrive∥∥∥∥ q4(2u, 2u)
16

− q4(u, u)
∥∥∥∥ ≤ 1

16
β(u, u, u, u) (3.24)

for all u ∈ X. Using (3.19) and (3.20) for the case i = 0 it reduces to∥∥∥∥ q4(2u, 2u)
16

− q4(u, u)
∥∥∥∥ ≤ LΦ(u)

for all u ∈ X,
i.e., d( f , T f ) ≤ L ≤ L1 < ∞.

Again replacing u =
u
2

in (3.23), we get∥∥∥q4(u, u)− 16q4

(u
2

,
u
2

)∥∥∥ ≤ β
(u

2
,

u
2

,
u
2

,
u
2

)
(3.25)

for all u ∈ X. Using (3.19) and (3.20) for the case i = 1 it reduces to∥∥∥q4(u, u)− 8q4

(u
2

,
u
2

)∥∥∥ ≤ Φ(u)

for all u ∈ X,
i.e., d( f , T f ) ≤ 1 ≤ L0 < ∞.

In both cases, we arrive
d( f , T f ) ≤ L1−i.

Therefore, (A1) holds. By (A2), it follows that there exists a fixed point Q4 of T in Ω such that

Q4(u, u) = lim
k→∞

1
µ4k

i

(
f (µk+1

i u, µk+1
i u)− 4 f (µk

i u, µk
i u)
)

(3.26)

for all u ∈ X.
To prove Q4 : X → Y is quartic. Replacing (x, y, u, v) by

(
µk

i x, µk
i y, µk

i u, µk
i v
)

in (3.18) and dividing by µ4k
i ,

it follows from (3.17) that

‖Q4(x, y, u, v)‖ = lim
k→∞

∥∥∥D f (µk
i x, µk

i y, µk
i u, µk

i v)
∥∥∥

µ4k
i

≤ lim
k→∞

α(µk
i x, µk

i y, µk
i u, µk

i v)
µ4k

i
= 0
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for all x, y, u, v ∈ X. i.e., Q4 satisfies the functional equation (1.1).
By (A3), Q4 is the unique fixed point of T in the set ∆ = {Q4 ∈ Ω : d( f , Q4) < ∞}, Q4 is the unique

function such that
‖ f (2u, 2u)− 4 f (u, u)−Q4(u, u)‖ ≤ KΦ(u)

for all u ∈ X and K > 0. Finally by (A4), we obtain

d( f , Q4) ≤
1

1− L
d( f , T f )

this implies

d( f , Q4) ≤
L1−i

1− L
which yields

‖ f (2u, 2u)− 4 f (u, u)−Q4(u, u) ‖≤ L1−i

1− L
Φ(u)

for all u ∈ X. This completes the proof.

The following corollary is an immediate consequence of Theorem 3.5 concerning the stability of (1.1).

Corollary 3.5. Let D f : X → Y be a mapping and there exits real numbers λ and s such that

‖D f (x, y, u, v)‖ ≤


λ,
λ (||x||s + ||y||s + ||u||s + ||v||s) , s 6= 4;
λ (||x||s||y||s||u||s||v||s) , s 6= 1;
λ
{
||x||s||y||s||u||s||v||s + ||x||4s + ||y||4s + ||u||4s + ||v||4s} , s 6= 1;

(3.27)

for all x, y, u, v ∈ X, then there exists a unique 2-variable quartic function A : X → Y such that

‖ f (2u, 2u)− 4 f (u, u)−Q4(u, u)‖ ≤



5λ

15
,(

18 + 2s+1) λ||u||s

|24 − 2s| ,

(4 + 4s) λ||u||4s

|24 − 24s| ,(
22 + 4s + 24s+1) λ||u||4s

|24 − 24s| .

(3.28)

for all u ∈ X.

Proof. Setting

α(x, y, u, v) =


λ;
λ (||x||s + ||y||s + ||u||s + ||v||s) ;
λ (||x||s||y||s||u||s||v||s) ;
λ
{
||x||s||y||s||u||s||v||s + ||x||4s + ||y||4s + ||u||4s + ||v||4s} ;

for all x, y, u, v ∈ X. Now,

α(µk
i x, µk

i y, µk
i u, µk

i u)
µ4k

i
=


λµ−4k

i ;

λµ
k(s−4)
i (||x||s + ||y||s + ||u||s + ||v||s);

λµ
k(4s−4)
i (||x||s||y||s||u||s||v||s);

λµ
k(4s−4)
i

{
||x||s||y||s||u||s||v||s + ||x||4s + ||y||4s + ||u||4s + ||v||4s

}
;

=


→ 0 as k→ ∞;
→ 0 as k→ ∞;
→ 0 as k→ ∞;
→ 0 as k→ ∞.

Thus, (3.17) is holds.
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But we have Φ(u) = β
(u

2
,

u
2

,
u
2

,
u
2

)
has the property Φ(u) = L · 1

µ4
i

Φ (µiu) for all u ∈ X. Hence

Φ(u) = β
(u

2
,

u
2

,
u
2

,
u
2

)
=



5λ,(
18 + 2s+1) λ

2s ||u||s;
(4 + 4s) λ

24s ||u||4s;(
22 + 4s + 24s+1) λ

24s ||u||4s.

Now,

1
µ4

i
Φ(µiu) =



5λ

µ4
i

;(
18 + 2s+1) λ

µ4
i 2s (||µiu||s);

(4 + 4s) λ

µ4
i 24s

(
||µiu||4s

)
;(

22 + 4s + 24s+1) λ

µ4
i 24s

(
||µiu||4s

)
;

=



µ−4
i Φ(u);

µs−4
i Φ(u);

µ4s−4
i Φ(u);

µ4s−4
i Φ(u).

From (3.21), we prove the following cases:
Case:1 L = 2−4 if i = 0;

‖ f (2u, 2u)− 4 f (u, u)−Q4(u, u)‖ ≤ 5λ

((
2−4)1−0

1− 2(−4)

)
=

5λ

16
.

Case:2 L = 24 if i = 1,

‖ f (2u, 2u)− 4 f (u, u)−Q4(u, u)‖ ≤ 5λ

((
24)1−1

1− 24

)
=
−5λ

16
.

Case:3 L = 2s−4 for s < 4 if i = 0,

‖ f (2u, 2u)− 4 f (u, u)−Q4(u, u)‖ ≤
(
18 + 2s+1) λ

2s


(

2(s−4)
)1−0

1− 2(s−4)

 ||u||s = (
18 + 2s+1) λ

24 − 2s ||u||s.

Case:4 L = 24−s for s > 3 if i = 1,

‖ f (2u, 2u)− 4 f (u, u)−Q4(u, u)‖ ≤
(
18 + 2s+1) λ

2s


(

2(4−s)
)1−1

1− 2(4−s)

 ||u||s = (
18 + 2s+1) λ

2s − 24 ||u||s.

Case:5 L = 24s−4 for s < 1 if i = 0,

‖ f (2u, 2u)− 4 f (u, u)−Q4(u, u)‖ ≤ (4 + 4s) λ

24s


(

2(4s−4)
)1−0

1− 2(4s−4)

 ||u||4s =
(4 + 4s) λ

24 − 24s ||u||
4s.

Case:6 L = 24−4s for s > 1 if i = 1,

‖ f (2u, 2u)− 4 f (u, u)−Q4(u, u)‖ ≤ (4 + 4s) λ

24s


(

2(4−4s)
)1−0

1− 2(4−4s)

 ||u||4s =
(4 + 4s) λ

24s − 24 ||u||
4s.

This finishes the proof.
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3.3 Quadratic-Quartic Mixed Stability Results

Theorem 3.6. Let D f : X → Y be a mapping for which there exist a function α : X4 → [0, ∞) with the condition
given in (3.1) and (3.17) respectively, such that the functional inequality

‖D f (x, y, u, v)‖ ≤ α(x, y, u, v) (3.29)

for all x, y, u, v ∈ X. If there exists L = L(i) < 1 such that the function

u→ Φ(u) = β
(u

2
,

u
2

,
u
2

,
u
2

)
, (3.30)

has the property (3.4) and (3.20), then there exists a unique 2-variable quadratic function Q2 : X → Y and a unique
2-variable quartic function Q4 : X → Y satisfying the functional equation (1.1) and

‖ f (u, u)−Q2(u, u)−Q4(u, u) ‖≤ L1−i

1− L
Φ(u) (3.31)

for all u ∈ X.

Proof. By Theorems 3.4 and 3.5, there exists a unique 2-variable quadratic function Q21 : X → Y and a unique
2-variable quartic function Q41 : X → Y such that∥∥ f (2u, 2u)− 16 f (u, u)−Q21(u, u)

∥∥ ≤ L1−i

1− L
Φ(u) (3.32)

for all u ∈ X and ∥∥ f (2u, 2u)− 4 f (u, u)−Q41(u, u)
∥∥ ≤ L1−i

1− L
Φ(u) (3.33)

for all u ∈ X. Now, from (3.32) and (3.33) that∥∥∥∥ f (u, u) +
1

12
Q21(u, u)− 1

12
Q41(u, u)

∥∥∥∥ =

∥∥∥∥{− f (2u, 2u)
12

+
16
12

f (u, u) +
1
12

Q21(u, u)
}

+

{
f (2u, 2u)

12
− 4

12
f (u, u)− 1

12
Q41(u, u)

}∥∥∥∥
≤ 1

12

∥∥{ f (2u, 2u)− 16 f (u, u)−Q21(u, u)
}

+
{

f (2u, 2u)− 4 f (u, u)−Q41(u, u)
}∥∥

≤ 1
12

{
L1−i

1− L
Φ(u) +

L1−i

1− L
Φ(u)

}
for all u ∈ X. Thus we obtain (3.31) by defining Q2(u, u) = −1

12 Q21(u, u) and Q4(u, u) = 1
12 Q41(u, u), where

Q2(u, u) and Q4(u, u) are defined in (3.14) and (3.26) respectively, for all u ∈ X.

The following corollary is an immediate consequence of Theorem 3.6 concerning the stability of (1.1).

Corollary 3.6. Let D f : X → Y be a mapping and there exits real numbers λ and s such that

‖D f (x, y, u, v)‖ ≤


λ,
λ (||x||s + ||y||s + ||u||s + ||v||s) , s 6= 2, 4;
λ (||x||s||y||s||u||s||v||s) , s 6= 1

2 , 1;
λ
{
||x||s||y||s||u||s||v||s + ||x||4s + ||y||4s + ||u||4s + ||v||4s} , s 6= 1

2 , 1;

(3.34)

for all x, y, u, v ∈ X, then there exists a unique 2-variable quadratic function Q2 : X → Y and a unique 2-variable
quartic function Q4 : X → Y such that

‖ f (u, u)−Q2(u, u)−Q4(u, u)‖ ≤



λ

18
;(

18 + 2s+1)
6

(
1

|22 − 2s| +
1

|24 − 2s|

)
λ||u||s;

(4 + 4s)

12

(
1

|22 − 24s| +
1

|24 − 24s|

)
λ||u||4s;(

22 + 4s + 24s+1)
12

(
1

|22 − 24s| +
1

|24 − 24s|

)
λ||u||4s;

(3.35)

for all u ∈ X.
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4 Additive-Quadratic-Cubic-Quartic Mixed Stability Results

In this section, the authors proved the additive-quadratic-cubic-quartic mixed stability of the functional equa-
tion (1.1) using fixed point method.

Theorem 4.7. Let j = ±1. Let D f : X2 → Y be a mapping for which there exist a function α : X4 → [0, ∞) with the
condition given in (2.1), (2.17), (3.1) and (3.17) respectively, such that the functional inequality

‖D f (x, y, u, v)‖ ≤ α(x, y, u, v) (4.1)

for all x, y, u, v ∈ X. Then there exists a unique 2-variable additive mapping A(u, u) : X2 → Y, a unique 2-variable
quadratic mapping Q2(u, u) : X2 → Y, a unique 2-variable cubic mapping C(u, u) : X2 → Y and a unique 2-variable
quartic mapping Q4(u, u) : X2 → Ysatisfying the functional equation (1.1) and

‖g(u, u)− A(u, u)−Q2(u, u)− C(u, u)−Q4(u, u)‖ L1−i

1− L
(
ΦAC(u) + ΦQ2Q4(u)

)
(4.2)

for all u ∈ X, where ΦAC(u) and ΦQ2Q4(u) are defined by

ΦAC(u) =
1
6
[Φ(u) + Φ(−u)] (4.3)

ΦQ2Q4(u) =
1

12
[Φ(u) + Φ(−u)] (4.4)

respectively, for all u ∈ X.

Proof. Let fo(u, u) =
1
2
( f (u, u)− f (−u,−u)) for all u ∈ X. Then fo(0, 0) = 0 and fo(−u,−u) = − fo(u, u) for

all u ∈ X. Hence

‖D fo(x, y, u, v)‖ ≤ 1
2
{α(x, y, u, v) + α(−x,−y,−u,−v)} (4.5)

for all x, y, u, v ∈ X. By Theorem 2.3, there exists a unique 2-variable additive function A(u, u) : X2 → Y and
a unique 2-variable cubic function C(u, u) : X2 → Y such that

‖ fo(u, u)− A(u, u)− C(u, u)‖ ≤ 1
2

{
1
3

L1−i

1− L
Φ(u) +

1
3

L1−i

1− L
Φ(−u)

}
≤ 1

6
L1−i

1− L
{Φ(u) + Φ(−u)} , (4.6)

for all u ∈ X. Also, let fe(u, u) =
1
2
( f (u, u) + f (−u,−u)) for all u ∈ X. Then fe(0, 0) = 0 and fe(−u,−u) =

fe(u, u) for all u ∈ X. Hence

‖D fe(x, y, u, v)‖ ≤ 1
2
{α(x, y, u, v) + α(−x,−y,−u,−v)} (4.7)

for all x, y, u, v ∈ X. By Theorem 3.6, there exists a unique 2-variable quadratic mapping Q2(u, u) : X2 → Y
and a unique 2-variable quartic mapping Q4(u, u) : X2 → Y such that

‖ fe(u, u)−Q2(u, u)−Q4(u, u)‖ ≤≤ 1
2

{
1
6

L1−i

1− L
Φ(u) +

1
6

L1−i

1− L
Φ(u−)

}
≤ 1

12
L1−i

1− L
{Φ(u) + Φ(−u)} , (4.8)

for all u ∈ X. Define

f (u, u) = fo(u, u) + fe(u, u) (4.9)
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for all u ∈ X. Now from (4.6), (4.8) and (4.9)

‖ f (u, u)− A(u, u)−Q2(u, u)− C(u, u)−Q4(u, u)‖
= ‖ fo(u, u) + fe(u, u)− A(u, u)−Q2(u, u)− C(u, u)−Q4(u, u)‖
≤ ‖ fo(u, u)− A(u, u)− C(u, u)‖+ ‖ fe(u, u)−Q2(u, u)−Q4(u, u)‖

≤ 1
6

L1−i

1− L
{Φ(u) + Φ(−u)}+ 1

12
L1−i

1− L
{Φ(u) + Φ(−u)}

≤ L1−i

1− L
{

ΦAC(u) + ΦQ2Q4(u)
}

(4.10)

for all u ∈ X. This finishes the proof.

The following corollary is an immediate consequence of Theorem 4.7, using Corollaries 2.3 and 3.6 con-
cerning stability of (1.1).

Corollary 4.7. Let D f : X2 → Y be a mapping and there exits real numbers λ and s such that

‖D f (x, y, u, v)‖

≤


λ,
λ {||x||s + ||y||s + ||u||s + ||v||s} , s 6= 1, 2, 3, 4;
λ||x||s||y||s||u||s||v||s, s 6= 1

4 , 1
2 , 3

4 , 1;
λ
{
||x||s||y||s||u||s||v||s +

{
||x||4s + ||y||4s + ||u||4s + ||v||4s}} , s 6= 1

4 , 1
2 , 3

4 , 1;

(4.11)

for all x, y, u, v ∈ X, then there exists a unique 2-variable additive mapping A(u, u) : X2 → Y, a unique 2-variable
quadratic mapping Q2(u, u) : X2 → Y, a unique 2-variable cubic mapping C(u, u) : X2 → Y and a unique 2-variable
quartic mapping Q4(u, u) : X2 → Y such that

‖ f (u, u)− A(u, u)−Q2(u, u)− C(u, u)−Q4(u, u)‖

≤



5ρ

6

(
1 +

1
7
+

1
2 · 3 +

1
2 · 15

)
,

(18 + 2s+1)

6

(
1

|2− 2s| +
1

|8− 2s| +
1

2|4− 2s| +
1

2|16− 2s|

)
ρ||u||s,

(4 + 22s)

6

(
1

|2− 24s| +
1

|8− 24s| +
1

2|4− 24s| +
1

2|16− 24s|

)
ρ||u||4s

(22 + 22s + 24s+1)

6

(
1

|2− 24s| +
1

|8− 24s| +
1

2|4− 24s| +
1

2|16− 24s|

)
ρ||u||4s

(4.12)

for all u ∈ X.
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Abstract

In this paper we establish the existence of solution for two boundary value problems of Fredholm
functional integro-differential equations with nonlocal boundary conditions.
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integro-differential equation, compact in measure.
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1 Introduction

Mathematical modelling of real-life problems usually results in functional equations, of various types
appear in many applications that arise in the fields of mathematical analysis, nonlinear functional analysis,
mathematical physics, and engineering. An interesting feature of functional integral equations is their role in
the study of many problems of functional integro-differential equations. Several different techniques were
proposed to study the existence of solutions of the functional integral equations in appropriate function
spaces. Although all of these techniques have the same goal, they differ in the function spaces and the
fixed point theorems to be applied. Consider the following boundary value problems of Fredholm functional
integro-differential equations.

x′(t) = f (t,
∫ 1

0
k(t, s)x′(s)ds), a.e. t ∈ (0, 1) (1.1)

with the nonlocal boundary condition

x(τ) + α x(ξ) = 0, τ, ξ ∈ [0, 1], α 6= −1. (1.2)

x′′(t) = f (t,
∫ 1

0
k(t, s)x′′(s)ds) a.e. t ∈ (0, 1) (1.3)

with the nonlocal boundary conditions

x(τ) + β x(ξ) = 0, β 6= − 1 (1.4)

x′(τ) + α x′(ξ) = 0, τ, ξ ∈ [0, 1], α 6= − 1. (1.5)
∗Corresponding author.

E-mail address: amasayed@gmail.com (A. M. A. El-Sayed), mohdshaaban@yahoo.com(M. SH. Mohamed), kheriamsaik@gmail.com (K. M.
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Here we study the existence of at least one solution of each of the boundary value problems (1.1)-(1.2) and
(1.3)-(1.5).
The existence of exactly one solution of them will be deduced.

2 Functional integral equation

Here we study the existence of at least one (and exactly one) integrable solution of the Fredholm functional
integral equation.

y(t) = f (t,
∫ 1

0
k(t, s)y(s)ds) (2.6)

under the following assumptions

(1) f : I = [0, 1]× R→ R is measurable in t ∈ [0, 1] for all x ∈ R and continuous in x ∈ R for all t ∈ [0, 1]
and there exists integrable function a ∈ L1[0, 1] and positive constant b > 0 such that

| f (t, x) | ≤ a(t) + b|x| a.e. t ∈ I.

(2)

||a|| =
∫ 1

0
|a(t)|dt, t ∈ [0, 1]

(3) k :I = [0, 1]× [0, 1] → R is continuous t ∈ [0, 1] for every s ∈ [0, 1]
and measurable in s ∈ [0, 1] for all t ∈ [0, 1], such that

sup
t

∫ 1

0
k(t, s)dt ≤ M

Now for the existence of at least one integrable solution of the functional integral equation (2.6) we have the
following theorem.

Theorem 2.1. Let the assumptions (1)-(3) be satisfied. If L = Mb < 1, then the functional integral equation (2.6) has
at least one solution y ∈ L1[0, 1].

Proof. Let L1 = L1[0, 1] and define the set Br by

Br = {y ∈ L1 : ||y|| ≤ r} ⊂ L1[0, 1],

where
r =

a
1− bM

.

Define the operator T associated with the Fredholm functional integral equation (2.6) by

Ty(t) = f (t,
∫ 1

0
k(t, s)y(s)ds).

To show that T : Br → Br, let y ∈ Br, then

||Ty(t)||L1 =
∫ 1

0
|Ty(t) |dt

=
∫ 1

0
| f (t,

∫ 1

0
k(t, s)y(s)ds) |dt

≤
∫ 1

0
[| a(t) |+ b|

∫ 1

0
k(t, s)y(s)ds|]dt

≤
∫ 1

0
| a(t) |dt + b

∫ 1

0

∫ 1

0
|k(t, s)y(s)|dsdt

≤
∫ 1

0
| a(t) |dt + bM

∫ 1

0
|y(s)| ds

≤ || a || + bM ||y||
≤ ||a||+ bMr = r.

≤ a + bMr = r.
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From this we observe that T(Br) ⊂ Br. Then T : Br → Br, Moreover from our assumptions (1) − (3)
follows that the operator T is continuous.

To prove that T is a contraction with respect to measure of weak non compactness β on the set Br.
Let X ⊂ Br and let y ∈ X . Futher ε > 0 and take a measurable subset D ⊂ [0, 1] such that µ(D) ≤ ε, then
we get

||Ty(t)||L1(D) =
∫

D
|Ty(t) |dt

=
∫

D
| f (t,

∫ 1

0
k(t, s)y(s)ds) |dt

≤
∫

D
[| a(t) |+ b|

∫
D

k(t, s)y(s)ds|]dt

≤
∫

D
| a(t) |dt + b

∫
D

∫ 1

0
|k(t, s)y(s)|dsdt

≤
∫

D
| a(t) |dt + bM

∫
D
|y(s)| ds

≤ || a ||L1(D) + bM
∫

D
|y(s)|ds

for this subset X, the measure of weak non compactness β(X) is given by the formula

β(X) = lim
ε→ 0

{sup
y∈ X

{sup
D
{
∫

D
|y(t)|dt : D ⊂ [0, 1] µ(D) ≤ ε}}}

To value β(TX) we notice that

β(X) = lim
ε→ 0

{sup
y∈ X

{sup
D
{
∫

D
|a(t)|dt + bM

∫
D
|y(t)|dt : D ⊂ [0, 1] µ(D) ≤ ε}}} = 0

Indeed,we have β(TX) ≤ bMβ(X).
Since all conditions of Schauder fixed point theorem (see[15]), are satisfied, then the operator T has at least
one fixed point y ∈ L1[0, 1], which completes the proof.

Now for the uniqueness of the solution of the Fredholm functional integral equation (2.6) Consider
following assumptions

(1∗) f : I = [0, 1]× R→ R is measurable in t ∈ [0, 1] for all x ∈ R and satisfies
the lipschitz such that

| f (t, x)− f (t, y)| ≤ b|x− y|, b > 0 (2.7)

(2∗) f (t, 0) ∈ L1[0, 1]
∫ 1

0 | f (t, 0)|dt ≤ a.

Theorem 2.2. Let the assumptions (1∗),(2∗) and (3) be satisfied. If Mb < 1, then the functional integral equation (2.6)
has a unique solution y ∈ L1[0, 1].

Proof. From (2.7) we can obtain
| f (t, x)| ≤ | f (t, 0)|+ b |x|.

This shows that the assumptions of Theorem (2.1) are satisfied
Now let y1,y2 be two solution of functional integral equation (2.6)

y1(t) = f (t,
∫ 1

0
k(t, s)y1(s)ds)

y2(t) = f (t,
∫ 1

0
k(t, s)y2(s)ds)
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||y1(t)− y2(t)||L1 =
∫ t

0
| f (t,

∫ 1

0
k(t, s)y1 ds)− f (t,

∫ 1

0
k(t, s)y2 ds)|dt

≤ b
∫ t

0
|
∫ 1

0
k(t, s)y1(s) ds−

∫ 1

0
k(t, s)y2(s) ds|dt

≤ b
∫ t

0
|
∫ 1

0
k(t, s) (y1(s)− y2(s)) ds|dt

≤ b
∫ t

0

∫ 1

0
|k(t, s)| |y1(s)− y2(s)|dsdt

≤ bM
∫ t

0
|y1(s)− y2(s)|ds

≤ bM||y1 − y2||L1 ,

then
||y1 − y2|| ≤ K||y1 − y2||

where L = bM < 1, then
||y1 − y2||(1− k) ≤ 0

and
||y1 − y2|| = 0

which implies that y1 = y2 then the Fredholm functional integral equation (2.6) has a unique integrable
solution.

3 Nonlocal boundary value problems

Here we study the existence of at least one (and exactly one) solution of each of the boundary value problems
(1.1)-(1.2) and (1.3)-(1.5).
Consider the functional integro differential equation

x′(t) = f (t,
∫ 1

0
k(t, s) x′(s) ds) a.e. t ∈ (0, 1).

with the nonlocal boundary value condition

x(τ) + α x(ξ) = 0. τ, ξ ∈ [0, 1], α 6= − 1

Theorem 3.3. Let the assumptions of theorem (2.1) be satisfied, then the nonlocal boundary value problem (1.1)-(1.2)
has at least one integrable solution x ∈ L1[0, 1].

Proof. Let x′(t) = y(t). Integrating both sides we get

x(t) = x(0) +
∫ t

0
y(s)ds,

x(τ) = x(0) +
∫ τ

0
y(s)ds

and

x(ξ) = x(0) +
∫ ξ

0
y(s)ds

Using the nonlocal boundary condition (1.2) we obtain

x(0) +
∫ τ

0
y(s)ds = − α x(0)− α

∫ ξ

0
y(s)ds,

and

x(0) = − 1
1 + α

∫ τ

0
y(s)ds− α

1 + α

∫ ξ

0
y(s)ds,



A. M. A. El-Sayed et al. / On two boundary-value problems... 269

then

x(t) =
∫ t

0
y(s)ds− 1

1 + α

∫ τ

0
y(s)ds− α

1 + α

∫ ξ

0
y(s)ds (3.8)

where y satisfies the functional integral equation

y(t) = f (t,
∫ 1

0
k(t, s)y(s)ds).

This complete the proof of equivalent between the nonlocal problem (1.1)-(1.2) and the functional integral
equation (2.6). This implies that there exists at least one solution x ∈ L1[0, 1] of the nonlocal problem
(1.1)-(1.2).

Corollary 3.1. Let the assumptions (1∗),(2∗) and (3) be satisfied, then the solution of nonlocal boundary value problem
(1.1)-(1.2) has a unique integrable solution x ∈ L1[0, 1].

Consider the Fredholm functional integro-differential equation

x′′(t) = f (t,
∫ 1

0
k(t, s)x′′(s)ds) a.e. t ∈ (0, 1)

with the nonlocal boundary conditions
x(τ) + β x(ξ) = 0,

x′(τ) + α x′(ξ) = 0.

Theorem 3.4. Let the assumptions of theorem (2.1) be satisfied then the boundary value problems (1.3)-(1.5) has at least
one integrable solution x ∈ L1[0, 1].

Proof. Let x′′(t) = y(t) integrating both sides we obtain

x′(t) = x′(0) +
∫ t

0
y(s) ds

and

x(t) = x(0) + tx′(0) +
∫ t

0
(t− s) y(s)ds.

then
x′(τ) = x′(0) +

∫ τ

0
y(s) ds,

and

x′(ξ) = x′(0) +
∫ ξ

0
y(s) ds.

Using the nonlocal condition (1.5) we obtain

x′(0) = − 1
1 + α

∫ τ

0
y(s)ds− α

1 + α

∫ ξ

0
y(s) ds

and
x(τ) = x(0) + τ x′(0) +

∫ τ

0
(τ − s) y(s) ds,

x(ξ) = x(0) + ξ x′(0) +
∫ ξ

0
(ξ − s) y(s) ds,

x′(0) = − 1
1 + α

∫ τ

0
y(s)ds− α

1 + α

∫ ξ

0
y(s) ds.

Using Boundary condition (1.4) we obtain

x(0) =
−βξ − τ

1 + β
x′(0)− 1

1 + α

∫ τ

0
(τ − s)y(s)ds− 1

1 + β

∫ ξ

0
(ξ − s)y(s)ds,
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x(t) =
−βξ − τ

1 + β
[− 1

1 + β

∫ τ

0
y(s)ds− 1

1 + α

∫ ξ

0
y(s)ds]

− 1
1 + β

∫ τ

0
(τ − s)y(s)ds− β

1 + β

∫ ξ

0
(ξ − s)ds

+ t[− 1
1 + α

∫ τ

0
y(s)ds− α

1 + α

∫ ξ

0
y(s)ds] +

∫ t

0
(t− s)y(s)ds, (3.9)

x′(t) = − 1
1 + α

∫ τ

0
y(s)ds− α

1 + α

∫ ξ

0
y(s)ds] +

∫ t

0
y(s)ds,

and y satisfies the functional integral equation

y(t) = f (t,
∫ 1

0
k(t, s)y(s)ds).

This complete the proof of equivalent between the nonlocal problem (1.3)-(1.5) and the functional integral
equation (2.6). This implies that there exists at least one solution x ∈ L1[0, 1] of the nonlocal problem
(1.3)-(1.5).

Corollary 3.2. Let the assumptions (1∗),(2∗) and (3) be satisfied, then the solution of nonlocal boundary value problem
(1.3)-(1.5) has a unique integrable solution x ∈ L1[0, 1].
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Abstract

In this paper, the authors investigated the general solution and generalized Ulam - Hyers stability of ai
type n− variable multi n− dimensional additive functional equation

2h

(
n

∑
i=1

ai x1i,
n

∑
i=1

ai x2i, . . . . . . ,
n

∑
i=1

ai xni

)

=

(
n

∑
i=1

ai

)
h

(
n

∑
i=1

x1i,
n

∑
i=1

x2i, . . . . . . ,
n

∑
i=1

xni

)

+

(
a1 −

n

∑
i=2

ai

)
h

(
x11 −

n

∑
i=2

x1i, x21 −
n

∑
i=2

x2i, . . . . . . , xn1 −
n

∑
i=2

xni

)

where ai(i = 1, 2, . . . n) are different integers greater than 1, using two different technique.

Keywords: Additive functional equations, Ulam - Hyers stability, Ulam - Hyers - Rassias stability, Ulam -
Gavruta - Rassias stability, Ulam - JRassias stability.

2010 MSC: 39B52, 32B72, 32B82. c©2016 MJM. All rights reserved.

1 Introduction

During the last seven decades, the perturbation problems of several functional equations have been ex-
tensively investigated by number of authors [1, 3, 20, 21, 30, 31, 34, 35]. The terminology generalized Ulam -
Hyers stability originates from these historical backgrounds. These terminologies are also applied to the case
of other functional equations. For more detailed definitions of such terminologies, one can refer to [8, 18, 22–
24].

One of the most famous functional equations is the additive functional equation

f (x + y) = f (x) + f (y). (1.1)

In 1821, it was first solved by A.L. Cauchy in the class of continuous real-valued functions. It is often called
an additive Cauchy functional equation in honor of Cauchy (see [24]). The additive function f (x) = cx is the
solution of the additive functional equation (1.1).

The solution and stability of various additive functional equations were discussed by D.O. Lee [19], K.
Ravi, M. Arunkumar [32], M. Arunkumar [4–6, 8, 9]. W.G. Park, J.H. Bae [16, 27] investigate the general
solution and the generalized Hyers-Ulam stability of the multi-additive functional equation and 2- variable

∗Corresponding author.
E-mail addresses: matina@stats.ucl.ac.uk (Matina J. Rassias), annarun2002@yahoo.co.in (M. Arunkumar),
sathya24mathematics@gmail.com ( E. Sathya).
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quadratic functional equation of the forms

f (x1 + x2, y1 + y2, z1 + z2) = ∑
1≤i,j,k≤2

f (xi, yj, zk), (1.2)

f (x + y, z + w) + f (x− y, z− w) = 2 f (x, z) + 2 f (y, w). (1.3)

The stability of the functional equation (1.3) in fuzzy normed space was proved by M. Arunkumar et., al
[7]. Using the ideas in [7], the general solution and generalized Hyers-Ulam-Rassias stability of a 3- variable
quadratic functional equation

f (x + y, z + w, u + v) + f (x− y, z− w, u− v) = 2 f (x, z, u) + 2 f (y, w, v). (1.4)

was discussed by K. Ravi and M. Arunkumar [33]. Its solution is of the form

f (x, y, z) = ax2 + by2 + cz2 + dxy + eyz + f zx. (1.5)

Also, M. Arunkumar, S. Hema Latha established the general solution and generalized Ulam - Hyers stability
of a 2 - variable Additive Quadratic functional equation

f (x + y, u + v) + f (x− y, u− v) = 2 f (x, u) + f (y, v) + f (−y,−v) (1.6)

having solutions

f (x, y) = ax + by (1.7)

and

f (x, y) = ax2 + bxy + cy2 (1.8)

in Banach and Non Archimedean Fuzzy spaces respectively. Infact, M. Arunkumar et. al., [11] introduced and
discussed a 2 - variable AC - mixed type functional equation

f (2x + y, 2z + w)− f (2x− y, 2z− w) = 4[ f (x + y, z + w)− f (x− y, z− w)]− 6 f (y, w) (1.9)

having solutions

f (x, y) = ax + by (1.10)

and

f (x, y) = ax3 + bx2y + cxy2 + dy3. (1.11)

Recently, M.Arunkumar et.al., [12] introduced and established the general solution and generalized Ulam -
Hyers stability of a 2 - variable Associative functional equation

g (x, u) + g (y + z, v + w) = g (x + y, u + v) + g (z, w) (1.12)

having solutions

g(x, y) = ax + by (1.13)

using Banach and Intuitionistic Fuzzy Normed spaces, respectively.
Inspired by the above results in this paper, the authors investigated the general solution generalized Ulam

- Hyers stability of ai type n− variable multi n− dimensional additive functional equation

2h

(
n

∑
i=1

ai x1i,
n

∑
i=1

ai x2i, . . . . . . ,
n

∑
i=1

ai xni

)
=

(
n

∑
i=1

ai

)
h

(
n

∑
i=1

x1i,
n

∑
i=1

x2i, . . . . . . ,
n

∑
i=1

xni

)

+

(
a1 −

n

∑
i=2

ai

)
h

(
x11 −

n

∑
i=2

x1i, x21 −
n

∑
i=2

x2i, . . . . . . , xn1 −
n

∑
i=2

xni

)
(1.14)
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having solution

h(x1, x2, . . . , xn) =
n

∑
i=1

cixi (1.15)

where ai(i = 1, 2, . . . n) are different integers greater than 1, using Hyers direct and Alternative fixed point
methods.

In particular, when n = 1, 2 in (1.14), we arrive

2h (a1 x11, a1 x21, . . . , a1 xn1) = a1h (x11, x21, . . . , xn1) + a1h (x11, x21 . . . , xn1) . (1.16)

and

2h (a1 x11 + a2 x12, a1 x21 + a1 x22, . . . , a1 xn1 + a1 xn2)

= (a1 + a2) h (x11 + x12, x21 + x22, . . . , xn1 + xn2)

+ (a1 − a2) h (x11 − x12, x21 − x22, . . . , xn1 − xn2) . (1.17)

2 General Solution

In this section, the general solution of the functional equation (1.14) is given. Through out this section let
as assume A and B be linear normed spaces.

Lemma 2.1. If a mapping h : An → B satisfies the functional equation (1.14) then h is additive.

Proof. Assume h : An → B be a mapping satisfies the functional equation (1.14). Replacing

xmi = 0, i = 1, 2, . . . n, m = 1, 2, · · · n

in (1.14), we get

h(0, 0, . . . , 0) = 0. (2.1)

Again replacing

xmi = 0, i = 2, 3 . . . n, m = 1, 2, · · · n

in (1.14), we obtain

2h(a1x11, a1x21, . . . , a1xn1) = (a1 + a2 + · · ·+ an)h(x11, x21, . . . , xn1)

+ (a1 − a2 − · · · − an)h(x11, x21, . . . , xn1) (2.2)

for all x11, x21, . . . , xn1 ∈ A. If we substitute (x11, x21, . . . , xn1) by (x, x . . . , x) in (2.2), we reach

h(a1x, a1x, . . . , a1x) = a1 h(x, x, . . . , x) (2.3)

for all x ∈ A. Putting

xmi = 0, i = 3, 4 . . . n, m = 1, 2, · · · n

in (1.14), we obtain

h(x12, 0, . . . , 0) = −h(−x12, 0, . . . , 0) (2.4)

for all x12 ∈ A. So one can show that

h(ak
1x, ak

1x, . . . , ak
1x) = ak

1 h(x, x, . . . , x) (2.5)

for all x ∈ A and all k ∈N.
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3 Stability Results: Banach Space: Hyers Method

In this section, we investigate the generalized Ulam-Hyers stability of the functional equation (1.14).
In this section, let we consider A be a normed space and B be a Banach space and define a mapping

Dh : An → B by

Dh(x11, . . . , x1n, x21, . . . , x2n, xn1, . . . , xnn)

= 2h

(
n

∑
i=1

ai x1i,
n

∑
i=1

ai x2i, . . . . . . ,
n

∑
i=1

ai xni

)
−
(

n

∑
i=1

ai

)
h

(
n

∑
i=1

x1i,
n

∑
i=1

x2i, . . . . . . ,
n

∑
i=1

xni

)

−
(

a1 −
n

∑
i=2

ai

)
h

(
x11 −

n

∑
i=2

x1i, x21 −
n

∑
i=2

x2i, . . . . . . , xn1 −
n

∑
i=2

xni

)

for all x11, . . . , x1n, x21, . . . , x2n, xn1, . . . , xnn ∈ A.

Theorem 3.1. Let ` = ±1 and ϑ, Θ : An → [0, ∞) be a function such that

lim
s→∞

1
2s` ϑ

(
as`

1 x11, . . . , as`
1 x1n, as`

1 x21, . . . , as`
1 x2n, as`

1 xn1, . . . , as`
1 xnn

)
= 0 (3.1)

for all x11, . . . , x1n, x21, . . . , x2n, xn1, . . . , xnn ∈ A. Let h : An → B be a function satisfying the inequality

‖Dh(x11, . . . , x1n, x21, . . . , x2n, xn1, . . . , xnn)‖ ≤
n

∑
j=1

ϑj
(
xj1, xj2, . . . , xjn

)
(3.2)

for all x11, . . . , x1n, x21, . . . , x2n, xn1, . . . , xnn ∈ A. Then there exists a unique n− variable additive mapping A : An →
B which satisfies (1.14) and

‖h(x, x, . . . , x)− A(x, x, . . . , x)‖ ≤ 1
a1

∞

∑
t=0

Θ(at`
1 x)

at`
1

(3.3)

where Θ
(

at`
1 x
)

and A(x, x, . . . , x) are defined by

Θ(at`
1 x) =

1
2

n

∑
j=1

ϑj

at`
1 x, 0, . . . , 0︸ ︷︷ ︸

(n−1)−times

 (3.4)

and

A(x, x, . . . , x) = lim
s→∞

1
as`

1
h(as`

1 x, as`
1 x, . . . , as`

1 x) (3.5)

for all x ∈ A, respectively.

Proof. Given h : An → B be a function satisfying the inequality (3.2) for all x11, . . . , x1n, . . . , xn1, . . . , xnn ∈ A.
To establish this theorem, we have to show that

(i)
{

1
as

1
h (as

1x, as
1x, . . . , as

1x)
}

is a Cauchy sequence for every x ∈ A;

(ii) If

A(x, x, . . . , x) = lim
s→∞

1
a1

h(as
1x, as

1x, . . . , as
1x)

then A is additive on A;

(iii) Further A satisfies (3.3), for all x ∈ A;

(iv) A is unique.
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Replacing
xmi = 0, i = 2, 3 . . . n, m = 1, 2, · · · n

in (3.2), we get

‖2h(a1x11, a1x21, . . . , a1xn1)− (a1 + a2 + · · ·+ an)h(x11, x21, . . . , xn1)

−(a1 − a2 − · · · − an)h(x11, x21, . . . , xn1)‖ ≤
n

∑
j=1

ϑj

xj1, 0, . . . , 0︸ ︷︷ ︸
(n−1)−times

 (3.6)

for all x11, x21, . . . , xn1 ∈ A. If we substitute

xm1 = x, m = 1, 2, . . . n

in (3.7), we arrive

‖2h(a1x, a1x, . . . , a1x)− 2a1h(x, x, . . . , x)‖ ≤
n

∑
j=1

ϑj

x, 0, . . . , 0︸ ︷︷ ︸
(n−1)−times

 (3.7)

for all x ∈ A. Hence from (3.7), we reach∥∥∥∥∥∥∥
1
a1

h

a1x, a1x, . . . , a1x︸ ︷︷ ︸
n−times

− h

x, x, . . . , x︸ ︷︷ ︸
n−times


∥∥∥∥∥∥∥ ≤

1
2× a1

n

∑
j=1

ϑj

x, 0, . . . , 0︸ ︷︷ ︸
(n−1)−times

 (3.8)

for all x ∈ A. It follows from (3.8) that∥∥∥∥∥∥∥
1
a1

h

a1x, a1x, . . . , a1x︸ ︷︷ ︸
n−times

− h

x, x, . . . , x︸ ︷︷ ︸
n−times


∥∥∥∥∥∥∥ ≤

1
a1

Θ(x) (3.9)

where

Θ(x) =
1
2

n

∑
j=1

ϑj

x, 0, . . . , 0︸ ︷︷ ︸
(n−1)−times


for all x ∈ A. Now replacing x by a1x and dividing by a1 in (3.9), we get∥∥∥∥∥ 1

a2
1

h
(

a2
1x, a2

1x, . . . , a2
1x
)
− 1

a1
h (a1x, a1x, . . . , a1x)

∥∥∥∥∥ ≤ 1
a2

1
Θ(a1x) (3.10)

for all x ∈ A. From (3.8) and (3.10), we obtain∥∥∥∥∥ 1
a2

1
h
(

a2
1x, a2

1x, . . . , a2
1x
)
− h (x, x, . . . , x)

∥∥∥∥∥ ≤ 1
a1

[
Θ(x) +

Θ(a1x)
a1

]
(3.11)

for all x ∈ A. Proceeding further and using induction on a positive integer s, we get∥∥∥∥ 1
as

1
h (as

1x, as
1x, . . . , as

1x)− h (x, x, . . . , x)
∥∥∥∥ ≤ 1

a1

s−1

∑
t=0

Θ(at
1x)

at
1

(3.12)

for all x ∈ A. In order to prove the convergence of the sequence{
1
as

1
h (as

1x, as
1x, . . . , as

1x)
}

,
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replace x by ar
1x and dividing by ar

1 in (3.12), for any r, s > 0 , we deduce∥∥∥∥∥ 1
ar+s

1
h
(
ar+s

1 x, ar+s
1 x, . . . , ar+s

1 x
)
− 1

ar
1

h (ar
1x, ar

1x, . . . , ar
1x)

∥∥∥∥∥
=

1
ar

1

∥∥∥∥ 1
as

1
h (ar

1 · as
1x, ar

1 · as
1x, . . . , ar

1 · as
1x)− h (ar

1x, ar
1x, . . . , ar

1x)
∥∥∥∥

≤ 1
a1

∞

∑
t=0

Θ(ar+s
1 x)

ar+s
1

→ 0 as r → ∞

for all x ∈ A. Hence the sequence
{

1
as

1
h (as

1x, as
1x, . . . , as

1x)
}

is a Cauchy sequence. Since B is complete, there

exists a mapping A : An → B such that

A(x, x, . . . x) = lim
s→∞

1
as

1
h (as

1x, as
1x, . . . , as

1x) , ∀ x ∈ A.

Letting s→ ∞ in (3.12), we see that (3.3) holds for all x ∈ A. To prove that A satisfies (1.14), replacing

xmi = as
1xmi, i = 1, 2, 3 . . . n, m = 1, 2, · · · n

and dividing by as
1 in (3.2), we obtain

1
as

1
‖Dh(as

1x11, . . . , as
1x1n, as

1x21, . . . , as
1x2n, as

1xn1, . . . , as
1xnn)‖

≤ 1
as

1

n

∑
j=1

ϑj
(
as

1xj1, as
1xj2, . . . , as

1xjn
)

for all x11, . . . , x1n, x21, . . . , x2n, xn1, . . . , xnn ∈ A. Letting s → ∞ in the above inequality and using the defini-
tion of A(x, x, . . . , x), we see that

DA(x11, . . . , x1n, x21, . . . , x2n, xn1, . . . , xnn) = 0.

Hence A satisfies (1.14) for all x11, . . . , x1n, x21, . . . , x2n, xn1, . . . , xnn ∈ A. To prove that A(x, x, . . . x) is unique,
let B(x, x, . . . x) be another n− variable additive mapping satisfying (1.14) and (3.3), then

‖A(x, x, . . . x)− B(x, x, . . . x)‖

=
1
as

1
‖A(as

1x, as
1x, . . . as

1x)− B(as
1x, as

1x, . . . as
1x)‖

≤ 1
2n {‖A(as

1x, as
1x, . . . as

1x)− h(as
1x, as

1x, . . . as
1x)‖

+ ‖h(as
1x, as

1x, . . . as
1x)− B(as

1x, as
1x, . . . as

1x)‖}

≤ 2
a1

∞

∑
t=0

Θ(at+s
1 x)

a(t+s)
1

→ 0 as s→ ∞

for all x ∈ A. Thus A is unique. Hence for ` = 1 the Theorem holds.
Now, replacing x by x

a1
in (3.7), we reach

∥∥∥∥2h(x, x, . . . , x)− 2a1h
(

x
a1

,
x
a1

, . . . ,
x
a1

)∥∥∥∥ ≤ n

∑
j=1

ϑj

 x
a1

, 0, . . . , 0︸ ︷︷ ︸
(n−1)−times

 (3.13)

for all x ∈ A. Dividing the above inequality by 2, we obtain∥∥∥∥h(x, x, . . . , x)− a1h
(

x
a1

,
x
a1

, . . . ,
x
a1

x
)∥∥∥∥ ≤ Θ

(
x
a1

)
(3.14)
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where

Θ
(

x
a1

)
=

1
2

n

∑
j=1

ϑj

 x
a1

, 0, . . . , 0︸ ︷︷ ︸
(n−1)−times


for all x ∈ A. The rest of the proof is similar to that of ` = 1. Hence for ` = −1 also the Theorem holds. This
completes the proof of the theorem.

The following Corollary is an immediate consequence of Theorem 3.1 concerning the Ulam-Hyers [21],
Ulam-TRassias [31] and Ulam-JMRassias [30] stabilities of (1.14).

Corollary 3.1. Let ρ and q be nonnegative real numbers. Let h : An → B be a function satisfying the inequality

‖Dh(x11, . . . , x1n, x21, . . . , x2n, xn1, . . . , xnn)‖ ≤


ρ,

ρ
n
∑

i=1

n
∑

m=1
||xmi||q, q 6= 1;

ρ

{
n
∏
i=1

n
∏

m=1
||xmi||q +

n
∑

i=1

n
∑

m=1
||xmi||nq,

}
, nq 6= 1;

(3.15)

for all x11, . . . , x1n, x21, . . . , x2n, xn1, . . . , xnn ∈ A. Then there exists a unique n− variable additive function A : A →
B such that

‖h(x, x . . . , x)− A(x, x, . . . x)‖ ≤



na1ρ

2|a1 − 1| ,
na1ρ||x||q

2|a1 − aq
1|

,

na1ρ||x||nq

2|a1 − anq
1 |

,

(3.16)

for all x ∈ A.

Now, we will provide an example to illustrate that the functional equation (1.14) is not stable for q = 1 in
condition (ii) of Corollary 3.1.

Example 3.1. Let ϑ : R→ R be a function defined by

ϑ(x) =
{

µx, if |x| <1
µ, otherwise

where µ > 0 is a constant, and define a function h : Rn → R by

h(x, x . . . , x) =
∞

∑
n=0

ϑ(2nx)
2n f or all x ∈ R.

Then h satisfies the functional inequality

|Dh(x11, . . . , x1n, x21, . . . , x2n, xn1, . . . , xnn)| ≤
4 µ a1

(a1 − 1)
|x| (3.17)

for all x11, . . . , x1n, x21, . . . , x2n, xn1, . . . , xnn ∈ R. Then there do not exist a n− variable additive mapping A : Rn →
R and a constant κ > 0 such that

|h(x, x . . . , x)− A(x, x, . . . x)| ≤ κ|x| f or all x ∈ R. (3.18)

Proof. Now

|h(x, x . . . , x)| ≤
∞

∑
n=0

|ϑ(an
1 x)|
|an

1 |
=

∞

∑
n=0

µ

an
1
=

a1µ

a1 − 1
.

Therefore, we see that h is bounded. We are going to prove that h satisfies (3.17).

If xmi = 0, i = 1, 2, . . . , n, m = 1, 2, . . . , n then (3.17) is trivial. If |xmi| ≥
1
a1

then the left hand side of

(3.17) is less than
4 µ a1

a1 − 1
. Now suppose that 0 < |xmi| <

1
a1

. Then there exists a positive integer k such that

1
ak

1
≤ |xmi| <

1
ak−1

1

, (3.19)



Matina J. Rassias et al. / ai Type n− Variable Multi n−... 285

so that ak−1
1 xmi <

1
a1

and consequently

ak−1
1 (xmi), ak−1

1 (−xmi) ∈ (−1, 1).

Therefore for each p = 0, 1, . . . , k− 1, we have

ap
1 (xmi), ap

1 (−xmi) ∈ (−1, 1)

and

2ϑ

(
ap

1

n

∑
i=1

ai x1i, ap
1

n

∑
i=1

ai x2i, . . . . . . , ap
1

n

∑
i=1

ai xni

)

−
(

n

∑
i=1

ai

)
ϑ

(
ap

1

n

∑
i=1

x1i, ap
1

n

∑
i=1

x2i, . . . . . . , ap
1

n

∑
i=1

xni

)

−
(

a1 −
n

∑
i=2

ai

)
ϑ

(
ap

1 x11 − ap
1

n

∑
i=2

x1i, ap
1 x21 − ap

1

n

∑
i=2

x2i, . . . . . . , ap
1 xn1 − ap

1

n

∑
i=2

xni

)
= 0

for p = 0, 1, . . . , k− 1. From the definition of h and (3.19), we obtain that∣∣∣∣∣2h

(
n

∑
i=1

ai x1i,
n

∑
i=1

ai x2i, . . . . . . ,
n

∑
i=1

ai xni

)

−
(

n

∑
i=1

ai

)
h

(
n

∑
i=1

x1i,
n

∑
i=1

x2i, . . . . . . ,
n

∑
i=1

xni

)

−
(

a1 −
n

∑
i=2

ai

)
h

(
x11 −

n

∑
i=2

x1i, x21 −
n

∑
i=2

x2i, . . . . . . , xn1 −
n

∑
i=2

xni

)∣∣∣∣∣
≤

∞

∑
p=0

1
an

1

∣∣∣∣∣2ϑ

(
ap

1

n

∑
i=1

ai x1i, ap
1

n

∑
i=1

ai x2i, . . . . . . , ap
1

n

∑
i=1

ai xni

)

−
(

n

∑
i=1

ai

)
ϑ

(
ap

1

n

∑
i=1

x1i, ap
1

n

∑
i=1

x2i, . . . . . . , ap
1

n

∑
i=1

xni

)

−
(

a1 −
n

∑
i=2

ai

)
ϑ

(
ap

1 x11 − ap
1

n

∑
i=2

x1i, ap
1 x21 − ap

1

n

∑
i=2

x2i, . . . . . . , ap
1 xn1 − ap

1

n

∑
i=2

xni

)∣∣∣∣∣
≤

∞

∑
p=k

1
ap

1

∣∣∣∣∣2ϑ

(
ap

1

n

∑
i=1

ai x1i, ap
1

n

∑
i=1

ai x2i, . . . . . . , ap
1

n

∑
i=1

ai xni

)

−
(

n

∑
i=1

ai

)
ϑ

(
ap

1

n

∑
i=1

x1i, ap
1

n

∑
i=1

x2i, . . . . . . , ap
1

n

∑
i=1

xni

)

−
(

a1 −
n

∑
i=2

ai

)
ϑ

(
ap

1 x11 − ap
1

n

∑
i=2

x1i, ap
1 x21 − ap

1

n

∑
i=2

x2i, . . . . . . , ap
1 xn1 − ap

1

n

∑
i=2

xni

)∣∣∣∣∣
≤

∞

∑
p=k

1
ap

1
4µ = 4 µ× a1

(a1 − 1) ak
1
=

4 µ a1

(a1 − 1)
|x|.

Thus h satisfies (3.17) for all xmi ∈ R with 0 < |xmi| <
1
a1

.

We claim that the additive functional equation (1.14) is not stable for q = 1 in condition (ii) Corollary 3.1.
Indeed, assume the contrary that there exist a additive mapping A : Rn → R and a constant κ > 0 satisfying
(3.18). Since h is bounded and continuous for all x ∈ R, A is bounded on any open interval containing the
origin and continuous at the origin. In view of Theorem 3.1, A must have the form A(x, x, . . . , x) = cx for any
x in R. Thus, we obtain that

|h(x, x, . . . , x)| ≤ (κ + |c|) |x|. (3.20)
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But, choose a positive integer i with iµ > κ + |c|.
If x ∈

(
0, 1

2i−1

)
, then 2px ∈ (0, 1) for all p = 0, 1, . . . , i− 1 . For this x, we get

h(x, x, . . . , x) =
∞

∑
p=0

ϑ(ap
1 x)

ap
1
≥

i−1

∑
p=0

µ(2px)
2p = iµx > (κ + |c|) x

which contradicts (3.20). Therefore the additive functional equation (1.14) is not stable in sense of Ulam, Hyers
and Rassias if q = 1, assumed in the inequality condition (ii) of (3.16).

Now, we will provide an example to illustrate that the functional equation (1.14) is not stable for q = 1
n in

condition (iii) of Corollary 3.1.

Example 3.2. Let ϑ : R→ R be a function defined by

ϑ(x) =
{

µx, if |x| < 1
n

µ
n , otherwise

where µ > 0 is a constant, and define a function h : Rn → R by

h(x, x . . . , x) =
∞

∑
n=0

ϑ(2nx)
2n f or all x ∈ R.

Then h satisfies the functional inequality

|Dh(x11, . . . , x1n, x21, . . . , x2n, xn1, . . . , xnn)| ≤
4 µ a1

n(a1 − 1)
|x| (3.21)

for all x11, . . . , x1n, x21, . . . , x2n, xn1, . . . , xnn ∈ R. Then there do not exist a n− variable additive mapping A : Rn →
R and a constant κ > 0 such that

|h(x, x . . . , x)− A(x, x, . . . x)| ≤ κ|x| f or all x ∈ R. (3.22)

4 Stability Results: Banach Space: Alternative Fixed Point Method

In this section, we apply a fixed point method for achieving stability of the functional equation (1.14) is
present.

Now, first we will recall the fundamental results in fixed point theory.

Theorem 4.2. (Banach’s contraction principle) Let (X, d) be a complete metric space and consider a mapping T : X →
X which is strictly contractive mapping, that is

(A1) d(Tx, Ty) ≤ Ld(x, y) for some (Lipschitz constant) L < 1. Then,
(i) The mapping T has one and only fixed point x∗ = T(x∗);
(ii)The fixed point for each given element x∗ is globally attractive, that is

(A2) limn→∞Tnx = x∗, for any starting point x ∈ X;
(iii) One has the following estimation inequalities:

(A3) d(Tnx, x∗) ≤ 1
1−L d(Tnx, Tn+1x), ∀ n ≥ 0, ∀ x ∈ X;

(A4) d(x, x∗) ≤ 1
1−L d(x, x∗), ∀ x ∈ X.

Theorem 4.3. [26] Suppose that for a complete generalized metric space (Ω, δ) and a strictly contractive mapping
T : Ω→ Ω with Lipschitz constant L. Then, for each given x ∈ Ω , either

d(Tnx, Tn+1x) = ∞ ∀ n ≥ 0,

or there exists a natural number n0 such that
(FP1) d(Tnx, Tn+1x) < ∞ for all n ≥ n0 ;
(FP2) The sequence (Tnx) is convergent to a fixed to a fixed point y∗ of T
(FP3) y∗ is the unique fixed point of T in the set ∆ = {y ∈ Ω : d(Tn0 x, y) < ∞};
(FP4) d(y∗, y) ≤ 1

1−L d(y, Ty) for all y ∈ ∆.
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In this section, we take let us consider E and F to be a normed space and a Banach space, respectively and
define a mapping Dh : En → F by

Dh(x11, . . . , x1n, x21, . . . , x2n, xn1, . . . , xnn)

= 2h

(
n

∑
i=1

ai x1i,
n

∑
i=1

ai x2i, . . . . . . ,
n

∑
i=1

ai xni

)
−
(

n

∑
i=1

ai

)
h

(
n

∑
i=1

x1i,
n

∑
i=1

x2i, . . . . . . ,
n

∑
i=1

xni

)

−
(

a1 −
n

∑
i=2

ai

)
h

(
x11 −

n

∑
i=2

x1i, x21 −
n

∑
i=2

x2i, . . . . . . , xn1 −
n

∑
i=2

xni

)
for all x11, . . . , x1n, x21, . . . , x2n, xn1, . . . , xnn ∈ E .

Theorem 4.4. Let h : En → F be a mapping for which there exists a function ζ : En → [0, ∞) with the condition

lim
k→∞

1
τk

i
ζ(τk

i x) = 0 (4.1)

where

τi =

{
a1 i f i = 0;
1
a1

i f i = 1,
(4.2)

such that the functional inequality

‖Dh(x11, . . . , x1n, x21, . . . , x2n, xn1, . . . , xnn)‖ ≤
n

∑
j=1

ϑj
(
xj1, xj2, . . . , xjn

)
(4.3)

for all x11, . . . , x1n, x21, . . . , x2n, xn1, . . . , xnn ∈ E . If there exists L = L(i) < 1 such that the function

x → Θ(x) =
1
2

n

∑
j=1

ϑj

 x
a1

, 0, . . . , 0︸ ︷︷ ︸
(n−1)−times

 ,

has the property
1
τi

Θ(τix) = L Θ (x) . (4.4)

for all x ∈ E . Then there exists a unique additive mapping A : E → F satisfying the functional equation (1.14) and

‖h(x, x, . . . , x)− A(x, x, . . . , x)‖ ≤ L1−i

1− L
Θ(x) (4.5)

for all x ∈ E .

Proof. Consider the set
Γ = { f / f : En → F , f (0) = 0}

and introduce the generalized metric on Γ,

d( f , g) = inf{K ∈ (0, ∞) :‖ f (x, x, . . . , x)− g(x, x, . . . , x) ‖≤ KΘ(x), x ∈ E}.

It is easy to see that (Γ, d) is complete.
Define Υ : Γ→ Γ by

Υ f (x, x, . . . , x) =
1
τi

f (τix, τix, . . . , τix),

for all x ∈ E . Now f , g ∈ Γ,

d( f , g) ≤ K ⇒ ‖ f (x, x, . . . , x)− g(x, x, . . . , x) ‖≤ KΘ(x), x ∈ E .

⇒
∥∥∥∥ 1

τi
f (τix, τix, . . . , τix)−

1
τi

g(τix, τix, . . . , τix)
∥∥∥∥ ≤ 1

τi
KΘ(τix), x ∈ E ,

⇒
∥∥∥∥ 1

τi
f (τix, τix, . . . , τix)−

1
τi

g(τix, τix, . . . , τix)
∥∥∥∥ ≤ LKΘ(x), x ∈ E ,

⇒ ‖ Υ f (x, x, . . . , x)− Υg(x, x, . . . , x) ‖≤ LKΘ(x), x ∈ E ,

⇒d(Υ f , Υg) ≤ LK.
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This implies d(Υ f , Υg) ≤ Ld( f , g), for all f , g ∈ Γ. i.e., T is a strictly contractive mapping on Γ with Lipschitz
constant L.

It follows from, (3.9) that

‖2h(a1x, a1x, . . . , a1x)− 2a1h(x, x, . . . , x)‖ ≤
n

∑
j=1

ϑj

x, 0, . . . , 0︸ ︷︷ ︸
(n−1)−times

 (4.6)

for all x ∈ E . Now, from (4.6), we get∥∥∥∥ 1
a1

h (a1x, a1x, . . . , a1x)− h (x, x, . . . , x)
∥∥∥∥ ≤ 1

2a1
Θ(x) (4.7)

for all x ∈ E . Using (4.4) for the case i = 0 it reduces to∥∥∥∥ 1
a1

h (a1x, a1x, . . . , a1x)− h (x, x, . . . , x)
∥∥∥∥ ≤ LΘ(x)

for all x ∈ E ,
i.e., d(Υh, h) ≤ L⇒ d(Υh, h) ≤ L = L1 < ∞. (4.8)

Again replacing x = x
ai

in (4.6), we get

∥∥∥∥h(x, x, . . . , x)− a1h
(

x
ai

,
x
ai

, . . . ,
x
ai

)∥∥∥∥ ≤ 1
2

n

∑
j=1

ϑj

 x
a1

, 0, . . . , 0︸ ︷︷ ︸
(n−1)−times

 (4.9)

for all x ∈ E . Using (4.4) for the case i = 1 it reduces to∥∥∥∥h(x, x, . . . , x)− a1h
(

x
ai

,
x
ai

, . . . ,
x
ai

)∥∥∥∥ ≤ Θ(x)

for all x ∈ E ,
i.e., d(h, Υh) ≤ 1⇒ d(h, Υh) ≤ 1 = L0 < ∞. (4.10)

From (4.8) and (4.10), we arrive
d(h, Υh) ≤ L1−i.

Therefore (FP1) holds.
By (FP2), it follows that there exists a fixed point A of Υ in Γ such that

A(x, x, . . . , x) = lim
k→∞

h(τk
i x, τk

i x . . . , τk
i x)

τk
i

, ∀ x ∈ E . (4.11)

To order to prove A : E → F satisfies (1.14), replacing

xmi = τk
i xmi, i = 1, 2, 3 . . . n, m = 1, 2, · · · n

in (4.3) and dividing by τk
i , it follows from (4.1) that

1
τk

i

∥∥∥Dh(τk
i x11, . . . , τk

i x1n, τk
i x21, . . . , τk

i x2n, τk
i xn1, . . . , τk

i xnn)
∥∥∥

≤ 1
τk

i

n

∑
j=1

ϑj

(
τk

i xj1, τk
i xj2, . . . , τk

i xjn

)
for all x11, . . . , x1n, x21, . . . , x2n, xn1, . . . , xnn ∈ E . Letting k→ ∞ in the above inequality and using the definition
of A(x, x, . . . , x), we see that

DA(x11, . . . , x1n, x21, . . . , x2n, xn1, . . . , xnn) = 0.

Hence A satisfies (1.14) for all x11, . . . , x1n, x21, . . . , x2n, xn1, . . . , xnn ∈ A.
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By (FP3), A is the unique fixed point of Υ in the set

∆ = {A ∈ Γ : d(h, A) < ∞},

such that
‖h(x, x, . . . , x)− A(x, x, . . . , x)‖ ≤ KΘ(x)

for all x ∈ E and K > 0. Finally by (FP4), we obtain

d(h, A) ≤ 1
1− L

d(h, Υh)

this implies

d(h, A) ≤ L1−i

1− L
which yields

‖h(x, x, . . . , x)− A(x, x, . . . , x)‖ ≤ L1−i

1− L
Θ(x)

this completes the proof of the theorem.

The following corollary is an immediate consequence of Theorem 4.4 concerning the stability of (1.14).

Corollary 4.2. Let h : E → F be a mapping and exists real numbers ρ and r such that

‖Dh(x11, . . . , x1n, x21, . . . , x2n, xn1, . . . , xnn)‖ ≤


ρ,

ρ
n
∑

i=1

n
∑

m=1
||xmi||q, q 6= 1;

ρ

{
n
∏
i=1

n
∏

m=1
||xmi||q +

n
∑

i=1

n
∑

m=1
||xmi||nq,

}
, nq 6= 1;

(4.12)

for all for all x11, . . . , x1n, x21, . . . , x2n, xn1, . . . , xnn ∈ E . Then there exists a unique additive function A : E → F such
that

‖h(x, x . . . , x)− A(x, x, . . . x)‖ ≤



nρ

2|a1 − 1| ,
nρ||x||q

2|a1 − aq
1|

,

nρ||x||nq

2|a1 − anq
1 |

,

(4.13)

for all x ∈ E .

Proof. Setting

ϑ(x) =


ρ,

ρ
n
∑

i=1

n
∑

m=1
||xmi||q,

ρ

{
n
∏
i=1

n
∏

m=1
||xmi||q +

n
∑

i=1

n
∑

m=1
||xmi||nq,

}
,

for all x ∈ E . Now,

1
τk

i
ϑ(τk

i x) =



ρ

τk
i

,

ρ

τk
i

n

∑
i=1

n

∑
m=1
||τk

i xi||q,

ρ

τk
i

{
n

∏
i=1

n

∏
m=1
||τk

i xmi||q +
n

∑
i=1

n

∑
m=1
||τk

i xmi||nq,

}
,

=



→ 0 as k→ ∞,

→ 0 as k→ ∞,

→ 0 as k→ ∞.

Thus, (4.1) is holds. We, already have

Θ(x) =
1
2

n

∑
j=1

ϑj

 x
a1

, 0, . . . , 0︸ ︷︷ ︸
(n−1)−times

 ,



290 Matina J. Rassias et al. / ai Type n− Variable Multi n− ...

with the property
1
τi

Θ(τix) = L Θ (x)

for all x ∈ E . Hence

Θ(x) =
1
2

n

∑
j=1

ϑj

 x
a1

, 0, . . . , 0︸ ︷︷ ︸
(n−1)−times

 =



nρ

2nρ

2 · aq
1
||x||q

nρ

2 · anq
1
||x||nq.

Also,

1
τi

Θ(τix) =



nρ

2τinρ

2τi
||τix||q

nρ

2τi
||τix||nq.

=


τ−1

i
nρ

2
,

τ
q−1
i n

nρ||x||q
2

τ
nq−1
i n

nρ||x||nq

2

=



τ−1
i Θ(x),

τ
q−1
i Θ(x)

τ
nq−1
i Θ(x).

Hence the inequality (4.4) holds either, L = a−1
1 if i = 0 and L = 1

a−1
1

if i = 1. Now from (4.5), we prove the

following cases for condition (i).
Case:1 L = a−1

1 if i = 0

‖h(x)− A(x)‖ ≤

(
a−1

1

)1−0

1− a−1
1

Θ(x) =
nρ

2(a1 − 1)
.

Case:2 L = 1
a−1

1
or if i = 1

‖h(x)− A(x)‖ ≤

(
1

a−1
1

)1−1

1− 1
a−1

1

Θ(x) =
nρ

2(1− a1)
.

Also the inequality (4.4) holds either, L = aq−1
1 for q < 1 if i = 0 and L = 1

aq−1
1

for q > 1 if i = 1. Now from

(4.5), we prove the following cases for condition (ii).
Case:3 L = aq−1

1 for q < 1 if i = 0

‖h(x)− A(x)‖ ≤

(
a(q−1)

1

)1−0

1− a(q−1)
1

Θ(x) =
nρ||x||q

2(a1 − aq
1)

Case:4 L = 1
aq−1

1

for q > 1 if i = 1

‖h(x)− A(x)‖ ≤

(
1

a(q−1)
1

)1−1

1− 1
a(q−1)

1

Θ(x) =
nρ||x||q

2(aq
1 − a1)

.

The proof of condition (iii) is similar to that of condition (ii). Hence the proof is complete.
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Abstract

In this paper, the authors investigated the intuitionistic random stability of a quadratic reciprocal func-
tional equation

f (x + 2y) + f (2x + y) =
f (x) f (y)

[
5 f (x) + 5 f (y) + 8

√
f (x) f (y)

]
[
2 f (x) + 2 f (y) + 5

√
f (x) + f (y)

]2

using direct and fixed point methods.

Keywords: Quadratic reciprocal functional equation, generalized Ulam-Hyers stability, intuitionistic random
normed space, fixed point.

2010 MSC: 39B52; 34K36; 46S50; 47S50. c©2016 MJM. All rights reserved.

1 Introduction

The study of stability problem for functional equations goes back to a question raised by Ulam [44] concerning
the stability of group homomorphisms that affirmatively answered for Banach spaces by Hyers [24]. Hyers
Theorem was generalized by Aoki [3] for additive mappings and by Th.M. Rassias [37] for linear mappings
by considering an unbounded Cauchy difference. The paper by Rassias has provided a lot of influences in
the development of what we now call the generalized Hyers-Ulam stability or Hyers- Ulam-Rassias stability
of functional equations. J.M. Rassias [35] considered the Cauchy difference controlled by a product of differ-
ent powers of norm. Afterwards, Găvruţa [21] generalized the Rassas’s theorem by using a general control
function. In 2008, a special case of Găvruţa’s theorem for the unbounded Cauchy difference was obtained by
Ravi et al. [38] by considering the summation of both the sum and the product of two p-norms in the sprit of
Rassias approach. A large part of proofs in this topic used the direct method (of Hyers): the exact solution of
the functional equation is explicitly constructed as a limit of a sequence, starting from the given approximate
solution.

In 2003, V. Radu [11] proposed a new method, successively developed in [12–14], to obtaining the existence
of the exact solutions and the error estimations, based on the fixed point alternative.

The theory of random normed spaces (RN-spaces) is important as a generalization of the deterministic
result of linear normed spaces and also in the study of random operator equations. The RN-spaces may also

∗Corresponding author.
E-mail addresses: jrassias@primedu.uoa.gr (John M. Rassias), annarun2002@yahoo.co.in (M. Arunkumar), karthik.sma204@yahoo.com (S.
Karthikeyan)
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provide us with the appropriate tools to study the geometry of nuclear physics and have important application
in quantum particle physics. Recently, J.M. Rassias et al. [36] investigated the intuitionistic random stability
of the quartic functional equation and C. Park et al. [33] presented the Hyers-Ulam stability of the additive-
quadratic functional equation in intuitionistic random normed space.

In 2014, M. Arunkumar and S. Karthikeyan [5] introduced and investigated Hyers-Ulam stability of n-
dimensional reciprocal functional equation

f
(

2x
n

)
=

n

∑
`=1

(
f (x + `y`) f (x− `y`)

f (x + `y`) + f (x− `y`)

)
(1.1)

which originates from n-consecutive terms of a harmonic progression in RN-space using direct and fixed point
methods.

Recently, Abasalt Bodaghi and Sang Og Kim [1] introduced new 2-dimensional quadratic reciprocal func-
tional equation

f (x + 2y) + f (2x + y) =
f (x) f (y)

[
5 f (x) + 5 f (y) + 8

√
f (x) f (y)

]
[
2 f (x) + 2 f (y) + 5

√
f (x) + f (y)

]2 . (1.2)

It is easily verified that the quadratic reciprocal function f (x) =
1
x2 is a solution of the functional equation

(1.2).
In this paper, the authors establish intuitionistic random norm stability of a quadratic reciprocal functional

equation (1.2) using direct and fixed point methods.

2 Preliminaries of Intuitionistic Random Normed Spaces

In this section, using the idea of intuitionistic random normed spaces introduced by Chang et al. [16], we
define the notion of intuitionistic random normed spaces as in [15, 22, 29, 31, 40–42].

Definition 2.1. A measure distribution function is a function µ : R→ [0, 1] which is left continuous, non-decreasing
on R, in ft∈Rµ(t) = 0 and supt∈Rµ(t) = 1.

We will denote by D the family of all measure distribution functions and by H a special element of D
defined by

H(t) =
{

0, i f t ≤ 0,
1, i f t > 0.

(2.1)

If X is a nonempty set, then µ : X → D is called a probabilistic measure on X and µ(x) is denoted by µx.

Definition 2.2. A non-measure distribution function is a function ν : R → [0, 1] which is right continuous, non-
decreasing on R, in ft∈Rν(t) = 0 and supt∈Rν(t) = 1.

We will denote by B the family of all non-measure distribution functions and by G a special element of B
defined by

G(t) =
{

1, i f t ≤ 0,
0, i f t > 0.

(2.2)

If X is a nonempty set, then ν : X → B is called a probabilistic non-measure on X and ν(x) is denoted by νx.

Lemma 2.1. [8, 20] Consider the set L∗ and operation ≤L∗ defined by:

L∗ =
{
(x1, x2) : (x1, x2) ∈ [0, 1]2 and x1 + x2 ≤ 1

}
,

(x1, x2) ≤L∗ (y1, y2)⇔ x1 ≤ y1, x2 ≥ y2, ∀ (x1, x2) , (y1, y2) ∈ L∗.

Then (L∗, ≤L∗) is a complete lattice.
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Definition 2.3. [8] An intuitionistic fuzzy set Aζ,η in a universal set U is an object

Aζ,η = {(ζA (u) , ηA (u)) |u ∈ U }

for all u ∈ U, ζA (u) ∈ [0, 1] and ηA (u) ∈ [0, 1] are called the membership degree and the non-membership degree,
respectively, of u in Aζ,η and, furthermore, they satisfy ζA (u) + ηA (u) ≤ 1.

We denote its units by 0L∗ = (0, 1) and 1L∗ = (1, 0). Classically, a triangular norm ∗ = T on [0, 1] is
defined as an increasing, commutative, associative mapping T : [0, 1]2 → [0, 1] satisfying T (1, x) = 1 ∗ x = x
for all x ∈ [0, 1]. A triangular conorm S = ♦ is defined as an increasing, commutative, associative mapping
S : [0, 1]2 → [0, 1] satisfying S (0, x) = 0♦x = x for all x ∈ [0, 1].

Using the lattice (L∗, ≤L∗), these definitions can be straightforwardly extended.

Definition 2.4. [8] A triangular norm (t−norm) on L∗ is a mapping T : (L∗)2 → L∗ satisfying the following condi-
tions:

(i) (∀ ∈ L∗) (T (x, 1L∗) = x) (boundary condition);

(ii)
(
∀ (x, y) ∈ (L∗)2

)
(T (x, y) = T (y, x)) (commutativity);

(iii)
(
∀ (x, y, z) ∈ (L∗)3

)
(T (x, T (y, z)) = T (T (x, y) , z)) (associativity);

(iv)
(
∀ (x, x′, y, y′) ∈ (L∗)4

)
(x ≤L∗ x′ and y ≤L∗ y′ ⇒ T (x, y) ≤L∗ T (x′, y′))

(monotonicity).

If (L∗,≤L∗ , T) is an Abelian topological monoid with unit 1L∗ , then T is said to be a continuous t−norm.

Definition 2.5. [8] A continuous t−norms T on L∗ is said to be continuous t−representable if there exist a continuous
t−norm ∗ and a continuous t−conorm ♦ on [0, 1] such that, for all x = (x1, x2) , y = (y1, y2) ∈ L∗,

T (x, y) = (x1 ∗ y1, x2♦y2) .

For example,
T (a, b) = (a1b1, min {a2 + b2, 1})

and
M (a, b) = (min {a1, b1} , max {a2, b2})

for all a = (a1, a2) , b = (b1, b2) ∈ L∗ are continuous t−representable.
Now, we define a sequence Tn recursively by T1 = T and

Tn
(

x(1), . . . , x(n+1)
)
= T

(
Tn−1

(
x(1), . . . , x(n)

)
, x(n+1)

)
, ∀n ≥ 2, x(i) ∈ L∗.

Definition 2.6. [43] A negator on L∗ is any decreasing mapping N : L∗ → L∗ satisfying N : (0L∗) = 1L∗ and
N (1L∗) = 0L∗ . If N (N (x)) = x for all x ∈ L∗, then N is called an involutive negator. A negator on [0, 1] is a
decreasing mapping N : [0, 1] → [0, 1] satisfying Pµ,ν (0) = 1 and Pµ,ν (1) = 0. Ns denotes the standard negator on
[0, 1] defined by

Ns (x) = 1− x, ∀x ∈ [0, 1] .

Definition 2.7. [43] Let µ and ν be measure and non-measure distribution functions from X × (0,+∞) to [0, 1] such
that µx (t) + νx (t) ≤ 1 for all x ∈ X and all t > 0 . The triple

(
X, Pµ,ν, T

)
is said to be an intuitionistic random

normed space (briefly IRN-space) if X is a vector space, T is a continuous t−representable and Pµ,ν is a mapping
X× (0,+∞)→ L∗ satisfying the following conditions: for all x, y ∈ X and t, s > 0,

(IRN1) Pµ,ν (x, 0) = 0L∗ ;

(IRN2) Pµ,ν (x, t) = 1L∗ if and only if x = 0;

(IRN3) Pµ,ν (αx, t) = Pµ,ν

(
x, t
|α|

)
for all α 6= 0;
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(IRN4) Pµ,ν (x + y, t + s) ≥L∗ T
(
Pµ,ν (x, t) , Pµ,ν (y, s)

)
.

In this case, Pµ,ν is called an intuitionistic random norm. Here, Pµ,ν (x, t) = (µx (t) , νx (t)) .

Example 2.1. [43] Let (X, ‖ · ‖) be a normed space. Let T (a, b) = (a1, b1, min (a2 + b2, 1)) for all a = (a1, a2) , b =

(b1, b2) ∈ L∗ and µ, ν be measure and non-measure distribution functions defined by

Pµ,v (x, t) = (µx (t) , vx (t)) =
(

t
t + ‖x‖ ,

‖x‖
t + ‖x‖

)
, ∀t ∈ R+.

Then
(
X, Pµ,ν, T

)
is an IRN-sapce.

Definition 2.8. [43] A sequence {xn} in an IRN-space
(
X, Pµ,ν, T

)
is called a Cauchy sequence if, for any ε > 0 and

t > 0, there exists n0 ∈N such that

Pµ,ν (xn − xm, t) > L∗ (Ns (ε) , ε) , ∀n, m ≥ n0,

where Ns is the standard negator.

Definition 2.9. [43] The sequence {xn} is said to be convergent to a point x ∈ X (denoted by xn
Pµ,ν−→ x) if

Pµ,ν (xn − x, t)→ 1L∗ as n→ ∞ for every t > 0.

Definition 2.10. [43] An IRN-space
(
X, Pµ,ν, T

)
is said to be complete if every Cauchy sequence in X is convergent to

a point x ∈ X.

Now, we use the following notation for a given mapping ∆ : X → Y

∆(x, y) = f (x + 2y) + f (2x + y)−
f (x) f (y)

[
5 f (x) + 5 f (y) + 8

√
f (x) f (y)

]
[
2 f (x) + 2 f (y) + 5

√
f (x) + f (y)

]2 .

3 Stability Results: Direct Method

In this section, the authors presented the generalized Ulam-Hyers stability of the functional equation (1.2) in
intuitionistic random normed spaces using direct method.

Theorem 3.1. Let X be a linear space and
(
Y, Pµ,ν, T

)
be a complete IRN-space. Let f : X → Y be a mapping

with f (0) = 0 for which there are ξ, ζ : X2 → D+, ξ(x, y) is denoted by ξx,y and ζ(x, y) is denoted by ζx,y,
furthur,

(
ξx,y(t), ζx,y(t)

)
is denoted by P′ξ,ζ (x, y, t) with the property:

Pµ,ν (∆(x, y), t) ≥L∗ P′ξ,ζ (x, y, t) (3.1)

for all x, y ∈ X and all t > 0. If
T∞

i=1P′ξ,ζ

( x
3i+n ,

x
3i+n , 3i−1+2nt

)
= 1L∗ (3.2)

and
limn→∞P′ξ,ζ

( x
3n ,

x
3n , 32nt

)
= 1L∗ (3.3)

for all x ∈ X and all t > 0, then there exists a unique quadratic reciprocal mapping R : X → Y satisfies the inequality

Pµ,ν ( f (x)− R(x), t) ≥L∗ T∞
i=1P′ξ,ζ

( x
3i ,

x
3i , 3i−1t

)
(3.4)

for all x ∈ X and all t > 0.

Proof. Replacing (x, y) by (x, x) in (3.1), we get

Pµ,ν

(
f (3x)− f (x)

32 , t
)
≥L∗ P′ξ,ζ (x, x, t) (3.5)

for all x ∈ X and all t > 0. Replacing x by x
3 in (3.5), we obtain

Pµ,ν

(
f (x)− 1

32 f
( x

3

)
, t
)
≥L∗ P′ξ,ζ

( x
3

,
x
3

, t
)

(3.6)
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for all x ∈ X and all t > 0. Replacing x by x
3n in (3.5)and using (IRN3), we have

Pµ,ν

(
1

32n f
( x

3n

)
− 1

32(n+1)
f
( x

3n+1

)
,

t
32n

)
≥L∗ P′ξ,ζ

( x
3n+1 ,

x
3n+1 , t

)
(3.7)

for all x ∈ X and all t > 0. Using (IRN3) in (3.7), we arrive

Pµ,ν

(
1

32n f
( x

3n

)
− 1

32(n+1)
f
( x

3n+1

)
, t
)
≥L∗ P′ξ,ζ

( x
3n+1 ,

x
3n+1 , 32nt

)
(3.8)

that is,

Pµ,ν

(
1

32n f
( x

3n

)
− 1

32(n+1)
f
( x

3n+1

)
,

t
3n

)
≥L∗ P′ξ,ζ

( x
3n+1 ,

x
3n+1 , 3nt

)
(3.9)

for all n ∈N and all t > 0. As 3 > 1/3 + 1/32 + . . . + 1/3k, by the triangle inequality it follows

Pµ,ν

(
f (x)− 1

32k f
( x

3k

)
, t
)
≥L∗ Tk−1

n=0

{
P′ξ,ζ

(
1

32n f
( x

3n

)
− 1

32(n+1)
f
( x

3n+1

)
,

k−1

∑
n=0

1
3n t

)}
≥L∗ Tk

i=1

{
P′ξ,ζ

( x
3i ,

x
3i , 3i−1t

)}
(3.10)

for all x ∈ X and all t > 0. In order to prove the convergence of the sequence
{

1
32n f

( x
3n

)}
, replacing x by

x
3m in (3.10), we obtain

Pµ,ν

(
1

32m f
( x

3m

)
− 1

32(k+m)
f
( x

3k+m

)
, t
)
≥L∗ Tk

i=1

{
P′ξ,ζ

( x
3i+m ,

x
3i+m , 3i−1+2mt

)}
(3.11)

for all x ∈ X and all t > 0 and all k, m ≥ 0. Since the right hand-side of the inequality tends to 1L∗ as m tends to

infinity, the sequence
{

1
32n f

( x
3n

)}
is a Cauchy sequence. Therefore, we may define R(x) = limn→∞

1
32n f

( x
3n

)
for all x ∈ X.

Now, we prove that R satisfies (1.2). Replacing (x, y) by
( x

3n , y
3n

)
in (3.1), we get

Pµ,ν

(
1

32n ∆
( x

3n ,
y
3n

)
, t
)
≥L∗ P′ξ,ζ

( x
3n ,

y
3n , 32nt

)
(3.12)

for all x, y ∈ X and t > 0. Letting n→ ∞ in the above inequality and using the definition of R(x), we see that
R satisfies (1.2) for all x, y ∈ X.

Finally, to prove the uniqueness of the quadratic reciprocal function R subject to (3.4), let us assume

that there exists another quadratic reciprocal function S which satisfies (3.4). Obviously, we have R
( x

3n

)
=

32nR(x) and S
( x

3n

)
= 32nS(x) for all x ∈ X and n ∈N. Hence, it follows from (3.4) that

Pµ,ν (R(x)− S(x), t) ≥L∗ Pµ,ν

(
R
( x

3n

)
− S

( x
3n

)
, 32nt

)
≥L∗ T

(
Pµ,ν

(
R
( x

3n

)
− f

( x
3n

)
,

32nt
2

)
, Pµ,ν

(
f
( x

3n

)
− S

( x
3n

)
,

32nt
2

))
≥L∗ T

(
T∞

i=1

(
P′ξ,ζ

(
x

3i+m ,
x

3i+m ,
3i−1+2mt

2

))
, T∞

i=1

(
P′ξ,ζ

(
x

3i+m ,
x

3i+m ,
3i−1+2mt

2

)))
for all x ∈ X and t > 0. By letting n→ ∞ in (3.4), we prove the uniqueness of R. This completes the proof.

From Theorem 3.1, we obtain the following corollary concerning the Hyers-Ulam-Rassias and JMRassias
stabilities for the functional equation (1.2).

Corollary 3.1. Suppose that a function f : X → Y satisfies the inequality

Pµ,ν (∆(x, y), t) ≥L∗


P′ξ,ζ (ε, t) ;
P′ξ,ζ (ε (||x||s + ||y||s) , t) ;
P′ξ,ζ (ε||x||s||y||s, t) ;
P′ξ,ζ

(
ε
(
||x||s||y||s + ||x||2s + ||y||2s) , t

)
;

(3.13)
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for all x, y ∈ X and t > 0, where ε, s are constants with ε > 0. Then there exists a unique quadratic reciprocal mapping
R : X → Y such that

Pµ,ν ( f (x)− R(x), t) ≥L∗



P′ξ,ζ
(∣∣ 9

8

∣∣ ε, t
)

;

P′ξ,ζ

(
18ε

|3s+2−1| ||x||
s, t
)

, s < −2 or s > −2;

P′ξ,ζ

(
9ε

|32s+2−1| ||x||
2s, t
)

, s < −1 or s > −1;

P′ξ,ζ

(
27ε

|32s+2−1| ||x||
2s, t
)

, s < −1 or s > −1;

(3.14)

for all x ∈ X and all t > 0.

4 Stability Results: Fixed Point Method

In this section, the authors proved the generalized Ulam-Hyers stability of the functional equation (1.2) in
intuitionistic random normed spaces using fixed point method.

Now, we will recall the fundamental results in fixed point theory.

Theorem 4.2. (Banach’s contraction principle) Let (X, d) be a complete metric space and consider a mapping Γ : X →
X which is strictly contractive mapping, that is

(A1) d(Γx, Γy) ≤ Ld(x, y) for some (Lipschitz constant) L < 1. Then,
(i) The mapping Γ has one and only fixed point x∗ = Γ(x∗);
(ii)The fixed point for each given element x∗ is globally attractive, that is

(A2) limn→∞Γnx = x∗, for any starting point x ∈ X;
(iii) One has the following estimation inequalities:

(A3) d(Γnx, x∗) ≤ 1
1−L d(Γnx, Γn+1x), ∀ n ≥ 0, ∀ x ∈ X;

(A4) d(x, x∗) ≤ 1
1−L d(x, x∗), ∀ x ∈ X.

Theorem 4.3. [30](The alternative of fixed point) Suppose that for a complete generalized metric space (X, d) and a
strictly contractive mapping Γ : X → X with Lipschitz constant L. Then, for each given element x ∈ X, either
(B1) d(Γnx, Γn+1x) = ∞ ∀ n ≥ 0,
or
(B2) there exists a natural number n0 such that:
(i) d(Γnx, Γn+1x) < ∞ for all n ≥ n0 ;
(ii)The sequence (Γnx) is convergent to a fixed point y∗ of Γ
(iii) y∗ is the unique fixed point of Γ in the set Y = {y ∈ X : d(Γn0 x, y) < ∞};
(iv) d(y∗, y) ≤ 1

1−L d(y, Γy) for all y ∈ Y.

Using above fixed point theorems to prove the stability results, we define the following:
δi is a constant such that

δi =

{
3 i f i = 0;
1
3 i f i = 1;

and Ω is the set such that
Ω = {g | g : X → Y, g(0) = 0} .

Theorem 4.4. Let X be a linear space and
(
Y, Pµ,ν, T

)
be a complete IRN-space. Let f : X → Y be a mapping for which

there exist a function ξ, ζ : X2 → D+ with the condition

T∞
i=1P′ξ,ζ

( x
3i+n ,

x
3i+n , 3i−1+2nt

)
= 1L∗ (4.1)

and
limn→∞P′ξ,ζ

( x
3n ,

x
3n , 32nt

)
= 1L∗ , (4.2)
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and satisfying the functional inequality

Pµ,ν (∆(x, y), t) ≥L∗ P′ξ,ζ (x, y, t) , ∀ x, y ∈ X, t > 0. (4.3)

If there exists L such that the function
x → β(x) =

x
3

,
x
3

(4.4)

has the property
P′ξ,ζ

(
Lδ2

i β(δix), r
)
= P′ξ,ζ (β(x), t) , ∀ x ∈ X, t > 0. (4.5)

Then there exists a unique quadratic reciprocal function R : X → Y satisfying the functional equation (1.2) and

Pµ,ν ( f (x)− R(x), t) ≥L∗ P′ξ,ζ

(
L1−i

1− L
β(x), t

)
, ∀ x ∈ X, t > 0. (4.6)

Proof. Let d be a general metric on Ω, such that

d(g, h) = in f
{

K ∈ (0, ∞)|Pµ,ν (g(x)− h(x), r) ≥L∗ P′ξ,ζ (Kβ(x), t) , x ∈ X, t > 0
}

.

It is easy to see that (Ω, d) is complete. Define Γ : Ω→ Ω by Γg(x) = δ2
i g(δix), for all x ∈ X. For g, h ∈ Ω, we

have d(g, h) ≤ K

⇒ Pµ,ν (g(x)− h(x), t) ≥L∗ P′ξ,ζ (Kβ(x), t)

⇒ Pµ,ν

(
δ2

i g(δix)− δ2
i h(δix), t

)
≥L∗ P′ξ,ζ

(
Kβ(δix),

t
δ2

i

)
⇒ Pµ,ν (Γg(x)− Γh(x), t) ≥L∗ P′ξ,ζ (KLβ(x), t)

⇒ d (Γg(x), Γh(x)) ≤ KL

⇒ d (Γg, Γh) ≤ Ld(g, h) (4.7)

for all g, h ∈ Ω. Therefore, Γ is strictly contractive mapping on Ω with Lipschitz constant L. Replacing (x, y)
by (x, x) in (4.3), we get

Pµ,ν

(
f (3x)− f (x)

9
, t
)
≥L∗ P′ξ,ζ (x, x, t) (4.8)

for all x ∈ X, t > 0. Using (IRN3) in (4.8), we arrive

Pµ,ν (9 f (3x)− f (x), t) ≥L∗ P′ξ,ζ

(
x, x,

t
9

)
(4.9)

for all x ∈ X, t > 0, with the help of (4.5) when i = 0, it follows from (4.8), we get

⇒ Pµ,ν (9 f (3x)− f (x), t) ≥L∗ P′ξ,ζ (Lβ(x), t)

⇒ d(Γ f , f ) ≤ L = L1 = L1−i. (4.10)

Replacing x by x
3 in (4.8) and using (IRN3), we obtain

Pµ,ν

(
f (x)− 1

9
f
( x

3

)
, t
)
≥L∗ P′ξ,ζ

( x
3

,
x
3

, t
)

(4.11)

for all x ∈ X, t > 0, with the help of (4.5) when i = 1, it follows from (4.11) we get

Pµ,ν

(
f (x)− 1

9
f
( x

3

)
, t
)
≥L∗ P′ξ,ζ (β(x), t)

⇒ d( f , Γ f ) ≤ 1 = L0 = L1−i (4.12)

for all x ∈ X, t > 0. Then, from (4.10) and (4.12) we can conclude,

d( f , Γ f ) ≤ L1−i < ∞.
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Now, from the fixed point alternative in both cases, it follows that there exists a fixed point R of Γ in Ω such
that

lim
n→∞

Pµ,ν

(
δ2n

i f (δn
i x)− R(x), t

)
→ 1L∗ , ∀x ∈ X, t > 0. (4.13)

Replacing (x, y) by (δix, δiy) in (4.3), we arrive

Pµ,ν

(
δ2n

i ∆(δix, δiy), t
)
≥L∗ P′ξ,ζ

(
δix, δiy,

t
δ2n

i

)
(4.14)

for all x, y ∈ X and t > 0.
By proceeding the same procedure as in the Theorem 3.1, we can prove the function, R : X → Y satisfies

the functional equation (1.2).
By fixed point alternative, since R is unique fixed point of Γ in the set

∇ = { f ∈ Ω|d( f , Q) < ∞} ,

therefore, R is a uniqe function such that

Pµ,ν ( f (x)− R(x), t) ≥L∗ P′ξ,ζ (Kβ(x), t) (4.15)

for all x ∈ X, t > 0 and K > 0. Again using the fixed point alternative, we obtain

d( f , R) ≤ 1
1− L

d( f , Γ f )

⇒ d( f , R) ≤ L1−i

1− L

⇒ Pµ,ν ( f (x)− R(x), t) ≥L∗ P′ξ,ζ

(
L1−i

1− L
β(x), t

)
(4.16)

for all x ∈ X and t > 0. This completes the proof.

From Theorem 4.4, we obtain the following corollary concerning the stability for the functional equation
(1.2).

Corollary 4.2. Suppose that a function f : X → Y satisfies the inequality

Pµ,ν (∆(x, y), t) ≥L∗


P′ξ,ζ (ε, t) ;
P′ξ,ζ (ε (||x||s + ||y||s) , t) ;
P′ξ,ζ (ε||x||s||y||s, t) ;
P′ξ,ζ

(
ε
(
||x||s||y||s + ||x||2s + ||y||2s) , t

)
;

(4.17)

for all x, y ∈ X and t > 0, where ε, s are constants with ε > 0. Then there exists a unique quadratic reciprocal mapping
R : X → Y such that

Pµ,ν ( f (x)− R(x), t) ≥L∗



P′ξ,ζ
(∣∣ 9

8

∣∣ ε, t
)

;

P′ξ,ζ

(
18ε

|3s+2−1| ||x||
s, t
)

, s < −2 or s > −2;

P′ξ,ζ

(
9ε

|32s+2−1| ||x||
2s, t
)

, s < −1 or s > −1;

P′ξ,ζ

(
27ε

|32s+2−1| ||x||
2s, t
)

, s < −1 or s > −1;

(4.18)

for all x ∈ X and all t > 0.

Proof. Setting

P′ξ,ζ(x, y, t) =


P′ξ,ζ (ε, t) ;
P′ξ,ζ (ε (||x||s + ||y||s) , t) ;
P′ξ,ζ (ε||x||s||y||s, t) ;
P′ξ,ζ

(
ε
(
||x||s||y||s + ||x||2s + ||y||2s) , t

)
;



John M. Rassias et al. / Ulam-Hyers Stability of Quadratic Reciprocal Functional Equation... 301

for all x, y ∈ X and t > 0. Then,

P′ξ,ζ

(
δk

i x, δk
i y,

t
δ2k

i

)
=



P′ξ,ζ

(
ε, t

δ2k
i

)
;

P′ξ,ζ

(
ε
(
||δk

i x||s + ||δk
i y||s

)
, t

δ2k
i

)
;

P′ξ,ζ

(
ε||δk

i x||s||δk
i y||s, t

δ2k
i

)
;

P′ξ,ζ

(
ε
(
||δk

i x||s||δk
i y||s + ||δk

i x||2s + ||δk
i y||2s

)
, t

δ2k
i

)
;

=



P′ξ,ζ

(
ε, δ−2k

i t
)

;

P′ξ,ζ

(
ε (||x||s + ||y||s) , δ

−(2+s)k
i t

)
;

P′ξ,ζ

(
ε||x||s||y||s, δ

−(2+2s)k
i t

)
;

P′ξ,ζ

(
ε
(
||x||s||y||s + ||x||2s + ||y||2s) , δ

−(2+2s)k
i t

)
;

=



→ 1L∗ as k→ ∞;

→ 1L∗ as k→ ∞;

→ 1L∗ as k→ ∞;

→ 1L∗ as k→ ∞.

Thus, (4.1) is holds. But we have β(x) =
( x

3
,

x
3

)
has the property

P′ξ,ζ

(
δ2

i β(δix), t
)
≥L∗ P′ξ,ζ (β(x), t) , ∀ x ∈ X, t > 0.

Hence,

P′ξ,ζ (β(x), t) = P′ξ,ζ

( x
3

,
x
3

, t
)
=



P′ξ,ζ (ε, t) ;

P′ξ,ζ

(
ε
(∥∥∥ x

3

∥∥∥s
+
∥∥∥ x

3

∥∥∥s)
, t
)

;

P′ξ,ζ

(
ε
∥∥∥ x

3

∥∥∥s ∥∥∥ x
3

∥∥∥s
, t
)

;

P′ξ,ζ

(
ε

(∥∥∥ x
3

∥∥∥s ∥∥∥ x
3

∥∥∥s
+
∥∥∥ x

3

∥∥∥2s
+
∥∥∥ x

3

∥∥∥2s
)

, t
)

;

=



P′ξ,ζ (ε, t) ;

P′ξ,ζ

(
2ε

3s ||x||
s, t
)

;

P′ξ,ζ

( ε

32s ||x||
2s, t
)

;

P′ξ,ζ

(
3ε

32s ||x||
2s, t
)

.

for all x ∈ X and t > 0. Now,

P′ξ,ζ

(
δ2

i β(δix), t
)
=



P′ξ,ζ

(
δ2

i ε, t
)

;

P′ξ,ζ

(
2ε

3s δ2
i ||δix||s, t

)
;

P′ξ,ζ

( ε

32s δ2
i ||δix||2s, t

)
;

P′ξ,ζ

(
3ε

32s δ2
i ||δix||2s, t

)
;

=



P′ξ,ζ

(
δ2

i ε, t
)

;

P′ξ,ζ

(
2ε

3s δ2+s
i ||x||s, t

)
;

P′ξ,ζ

( ε

32s δ2+2s
i ||x||2s, t

)
;

P′ξ,ζ

(
3ε

32s δ2+2s
i ||x||2s, t

)
;

=



P′ξ,ζ

(
δ2

i β(x), t
)

;

P′ξ,ζ

(
δ2+s

i β(x), t
)

;

P′ξ,ζ

(
δ2+2s

i β(x), t
)

;

P′ξ,ζ

(
δ2+2s

i β(x), t
)

,
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for all x ∈ X and t > 0. Now, from (4.6), we prove the following cases:
Case:1 L = 32 if i = 0;

Pµ,ν ( f (x)− R(x), r) ≥L∗ P′ξ,ζ

(
L

1− L
β(x), t

)
= P′ξ,ζ

(
−9
8

ε, t
)

.

Case:2 L = 3−2 if i = 1;

Pµ,ν ( f (x)− R(x), r) ≥L∗ P′ξ,ζ

(
1

1− L
β(x), 2t

)
= P′ξ,ζ

(
9
8

ε, t
)

.

Case:3 L = 3s+2 for s < −2 if i = 0;

Pµ,ν ( f (x)− R(x), t) ≥L∗ P′ξ,ζ

(
3s+2ε

1− 3s+2 β(x)||x||s, t
)
= P′ξ,ζ

(
18ε

1− 3s+2 ||x||
s, t
)

.

Case:4 L = 3−s−2 for s > −2 if i = 1;

Pµ,ν ( f (x)− R(x), t) ≥L∗ P′ξ,ζ

((
ε

1− 3−s−2

)
β(x)||x||s, t

)
= P′ξ,ζ

(
18ε

3s+2 − 1
||x||s, t

)
.

Case:5 L = 32s+2 for s < −1 if i = 0;

Pµ,ν ( f (x)− R(x), t) ≥L∗ P′ξ,ζ

((
32s+2ε

1− 32s+2

)
β(x)||x||2s, t

)
= P′ξ,ζ

(
9ε

1− 32s+2 ||x||
2s, t
)

.

Case:6 L = 3−2s−2 for s > −1 if i = 1;

Pµ,ν ( f (x)− R(x), t) ≥L∗ P′ξ,ζ

((
ε

1− 3−2s−2

)
β(x)||x||2s, t

)
= P′ξ,ζ

(
9ε

32s+2 − 1
||x||2s, t

)
.

Hence complete the proof.
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1 Introduction and Definitions

Let A denote the class of analytic functions in the unit disc

U = {z : z ∈ C and |z| < 1}

that have the form

f (z) = z +
∞

∑
n=2

anzn. (1.1)

Further, by S we shall denote the class of all functions in A which are univalent in U.

The Koebe one-quarter theorem [5] states that the image of U under every function f from S contains a

disk of radius 1
4 . Thus every such univalent function has an inverse f−1 which satisfies

f−1 ( f (z)) = z , (z ∈ U)

and

f
(

f−1 (w)
)
= w ,

(
|w| < r0 ( f ) , r0 ( f ) ≥ 1

4

)
,

where

f−1 (w) = w − a2w2 +
(

2a2
2 − a3

)
w3 −

(
5a3

2 − 5a2a3 + a4

)
w4 + · · · .

A function f ∈ A is said to be bi-univalent in U if both f and f−1 are univalent in U.

If the functions f and g are analytic in U, then f is said to be subordinate to g, written as

f (z) ≺ g (z) , (z ∈ U)

∗Corresponding author.
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if there exists a Schwarz function w (z) , analytic in U, with

w (0) = 0 and |w (z)| < 1, (z ∈ U)

such that

f (z) = g (w (z)) (z ∈ U) .

Let Σ denote the class of bi-univalent functions defined in the unit disc U. For a brief history and

interesting examples in the class Σ, (see [14]). The research into Σ was started by Lewin ([10]). It focused on

problems connected with coefficients and obtained the bound for the second coefficient. Several authors

have subsequently studied similar problems in this direction (see [4], [12]). Recently, Srivastava et al. [14]

introduced and investigated subclasses of the bi-univalent functions and obtained bounds for the initial

coefficients; it was followed by such works as those by Frasin and Aouf [6] and others (see, for example, [1],

[3], [9], [11], [15]).

Not much is known about the bounds on the general coefficient |an| for n ≥ 4. In the literature, there are

only a few works determining the general coefficient bounds |an| for the analytic bi-univalent functions ([2],

[7], [8]). The coefficient estimate problem for each of |an| ( n ∈N\ {1, 2} ; N = {1, 2, 3, ...}) is still an open

problem.

Motivated by the earlier work of Sakaguchi [13] on the class of starlike functions with respect to symmetric

points denoted by SS consisting of functions f ∈ A satisfy the condition Re
(

z f ′ (z)
f (z)− f (−z)

)
> 0, (z ∈ U), we

introduce a new subclass of the function class Σ of bi-univalent functions, and find estimates on the coefficients

|a2| and |a3| for functions in this new subclass.

2 Coefficient Estimates

In the following, let φ be an analytic function with positive real part in U, with φ (0) = 1 and φ′ (0) > 0.

Also, let φ (U) be starlike with respect to 1 and symmetric with respect to the real axis. Thus, φ has the Taylor

series expansion

φ (z) = 1 + B1z + B2z2 + B3z3 + · · · (B1 > 0) . (2.2)

Suppose that u (z) and v (w) are analytic in the unit disk U with u (0) = v (0) = 0, |u (z)| < 1, |v (w)| < 1, and

suppose that

u (z) = b1z +
∞

∑
n=2

bnzn, v (w) = c1w +
∞

∑
n=2

cnwn (|z| < 1, |w| < 1) . (2.3)

It is well known that

|b1| ≤ 1, |b2| ≤ 1− |b1|2 , |c1| ≤ 1, |c2| ≤ 1− |c1|2 . (2.4)

Next, the equations (2.2) and (2.3) lead to

φ (u (z)) = 1 + B1b1z +
(

B1b2 + B2b2
1

)
z2 + · · · , |z| < 1 (2.5)

and

φ (v (w)) = 1 + B1c1w +
(

B1c2 + B2c2
1

)
w2 + · · · , |w| < 1. (2.6)

Definition 2.1. A function f ∈ Σ is said to be in the class SΣ (φ, s, t) , if the following subordination hold

(s− t)z f ′ (z)
f (sz)− f (tz)

≺ φ (z)
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and
(s− t)wg′ (w)

g (sw)− g(tw)
≺ φ (w)

where g (w) = f−1 (w) , s, t ∈ C with s 6= t, |t| ≤ 1.

Theorem 2.1. Let f given by (1.1) be in the class SΣ (φ, s, t) . Then

|a2| ≤
B1
√

B1√∣∣∣(3− 2s− 2t + st) B2
1 − (2− s− t)2 B2

∣∣∣+ |2− s− t|2 B1

(2.7)

and

|a3| ≤



B1

|3− s2 − t2 − st| ; i f B1 ≤
|2− s− t|2

|3− s2 − t2 − st|

|(3−2s−2t+st)B2
1−(2−s−t)2B2|B1+|3−s2−t2−st|B3

1

|3−s2−t2−st|[|(3−2s−2t+st)B2
1−(2−s−t)2B2|+|2−s−t|2B1]

;

i f B1 >
|2− s− t|2

|3− s2 − t2 − st|

. (2.8)

Proof. Let f ∈ SΣ (φ, s, t) . Then, there are analytic functions u, v : U → U given by (2.3) such that

(s− t)z f ′ (z)
f (sz)− f (tz)

= φ (u (z)) (2.9)

and
(s− t)wg′ (w)

g (sw)− g(tw)
= φ (v (w)) (2.10)

where g (w) = f−1 (w) . Since

(s− t)z f ′ (z)
f (sz)− f (tz)

=

1 + (2− s− t) a2z +
[(

3− s2 − t2 − st
)

a3 −
(

2s + 2t− s2 − t2 − 2st
)

a2
2

]
z2 + · · ·

and

(s− t)wg′ (w)

g (sw)− g(tw)
=

1− (2− s− t) a2w +
[(

6− s2 − t2 − 2s− 2t
)

a2
2 −

(
3− s2 − t2 − st

)
a3

]
w2 + · · · ,

it follows from (2.5), (2.6), (2.9) and (2.10) that

(2− s− t) a2 = B1b1, (2.11)(
3− s2 − t2 − st

)
a3 −

(
2s + 2t− s2 − t2 − 2st

)
a2

2 = B1b2 + B2b2
1, (2.12)

and

− (2− s− t) a2 = B1c1, (2.13)(
6− s2 − t2 − 2s− 2t

)
a2

2 −
(

3− s2 − t2 − st
)

a3 = B1c2 + B2c2
1. (2.14)

From (2.11) and (2.13) we obtain

c1 = −b1. (2.15)
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By adding (2.14) to (2.12), further computations using (2.11) to (2.15) lead to[
2 (3− 2s− 2t + st) B2

1 − 2 (2− s− t)2 B2

]
a2

2 = B3
1 (b2 + c2) . (2.16)

(2.15) and (2.16), together with (2.4), we find that∣∣∣(3− 2s− 2t + st) B2
1 − (2− s− t)2 B2

∣∣∣ |a2|2 ≤ B3
1

(
1− |b1|2

)
. (2.17)

which gives us the desired estimate on |a2| as asserted in (2.7).

Next, in order to find the bound on |a3| , by subtracting (2.14) from (2.12), we obtain

2
(

3− s2 − t2 − st
)

a3 − 2
(

3− s2 − t2 − st
)

a2
2 = B1 (b2 − c2) + B2

(
b2

1 − c2
1

)
. (2.18)

Then, in view of (2.4) and (2.15) , we have∣∣∣3− s2 − t2 − st
∣∣∣ B1 |a3| ≤

[∣∣∣3− s2 − t2 − st
∣∣∣ B1 − |2− s− t|

]
|a2|2 + B2

1.

Notice that (2.7), we get the desired estimate on |a3| as asserted in (2.8).

Corollary 1. If we let

φ (z) =
(

1 + z
1− z

)α

= 1 + 2αz + 2α2z2 + ... (0 < α ≤ 1) ,

then inequalities (2.7) and (2.8) become

|a2| ≤
2α√∣∣∣2 (3− 2s− 2t + st)− (2− s− t)2

∣∣∣ α + |2− s− t|2

and

|a3| ≤



2α

|3− s2 − t2 − st| ; i f 0 < α ≤ |2− s− t|2

2 |3− s2 − t2 − st|

2[|2(3−2s−2t+st)−(2−s−t)2|+2|3−s2−t2−st|]α2

|3−s2−t2−st|[|2(3−2s−2t+st)−(2−s−t)2|α+|2−s−t|2]
;

i f
|2− s− t|2

2 |3− s2 − t2 − st| < α ≤ 1.

.

Corollary 2. If we let

φ (z) =
1 + (1− 2α) z

1− z
= 1 + 2 (1− α) z + 2 (1− α) z2 + · · · (0 ≤ α < 1) ,

then inequalities (2.7) and (2.8) become

|a2| ≤
2 (1− α)√∣∣∣2 (3− 2s− 2t + st) (1− α)− (2− s− t)2

∣∣∣+ |2− s− t|2

and

|a3| ≤



2 (1− α)

|3− s2 − t2 − st| ; i f
2|3−s2−t2−st|−|2−s−t|2

2|3−s2−t2−st| ≤ α < 1

2[|2(3−2s−2t+st)(1−α)−(2−s−t)2|+2|3−s2−t2−st|(1−α)](1−α)

|3−s2−t2−st|[|2(3−2s−2t+st)(1−α)−(2−s−t)2|+|2−s−t|2]
;

i f 0 ≤ α <
2|3−s2−t2−st|−|2−s−t|2

2|3−s2−t2−st|

.
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Abstract

In this paper, we have proved the existence of unique common fixed point of four contractive maps on

cone Banach space through an upper semi continuous contractive modulus and weakly compatible maps.
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1 Introduction

The notion of cone metric space is initiated by Huang and Zhang [3] and also they discussed some properties

of the convergence of sequences and proved the fixed point theorems of a contraction mapping for cone metric

spaces; Any mapping T of a complete cone metric space X into itself that satisfies, for some 0 ≤ k < 1, the

inequality d(Tx, Ty) ≤ kd(x, y), ∀x, y ∈ X has a unique fixed point. Some fixed theorems in cone Banach space

are proved by Karapinar[5].

In this paper, we investigate the common fixed point theorems with the assumption of weakly compatible

and coincidence point of four maps on an upper semi continuous contractive modulus in cone Banach space

Definition 1.1. Let E be the real Banach space. A subset P of E is called a cone if and only if:

i. P is closed, non empty and P 6= 0

ii. ax + by ∈ P for all x, y ∈ P and non negative real numbers a, b

iii. P ∩ (−P) = {0}.

Given a cone P ⊂ E, we define a partial ordering ≤ with respect to P by x ≤ y if and only if y− x ∈ P. We

will write x < y to indicate that x ≤ y but x 6= y, while x, y will stand for y− x ∈ intP, where intP denotes the

interior of P. The cone P is called normal if there is a number K > 0 such that 0 ≤ x ≤ y implies ‖x‖ ≤ K‖y‖
for all x, y ∈ E. The least positive number satisfying the above is called the normal constant.

∗Corresponding author.

E-mail address: srksacet@yahoo.co.in(R.Krishnakumar), dharan raj28@yahoo.co.in (D.Dhamodharan)
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Example 1.1. [12] Let K > 1. be given. Consider the real vector space with

E = {ax + b : a, b ∈ R; x ∈ [1− 1
k

, 1]}

with supremum norm and the cone

P = {ax + b : a ≥ 0, b ≤ 0}

in E. The cone P is regular and so normal.

Definition 1.2. Let X be a nonempty set. Suppose the mapping d : X× X → E satisfies

i. d(x, y) ≥ 0, and d(x, y) = 0 if and only if x = y ∀x, y ∈ X,

ii. d(x, y) = d(y, x), ∀x, y ∈ X,

iii. d(x, y) ≤ d(x, z) + d(z, y), ∀x, y, z ∈ X,

Then (X, d) is called a cone metric space (CMS).

Example 1.2. Let E = R2

P = {(x, y) : x, y ≥ 0}

X = R and d : X× X → E such that

d(x, y) = (|x− y|, α|x− y|)

where α ≥ 0 is a constant. Then (X, d) is a cone metric space.

Definition 1.3. [5] Let X be a vector space over R. Suppose the mapping ‖.‖c : X → E satisfies

i. ‖x‖c ≥ 0 for all x ∈ X,

ii. ‖x‖c = 0 if and only if x = 0,

iii. ‖x + y‖c ≤ ‖x‖c + ‖y‖c for all x, y ∈ X,

iv. ‖kx‖c = |k|‖x‖c for all k ∈ R and for all x ∈ X, then ‖.‖c is called a cone norm on X, and the pair (X, ‖.‖c) is

called a cone normed space (CNS).

Remark 1.1. Each Cone normed space is Cone metric space with metric defined by

d(x, y) = ‖x− y‖c

Example 1.3. Let X = R2, P = {(x, y) : x ≥ 0, y ≥ 0} ⊂ R2 and ‖(x, y)‖c = (a|x|, b|y|), a > 0, b > 0. Then

(X, ‖.‖c) is a cone normed space over R2

Definition 1.4. Let (X, ‖.‖c) be a CNS, x ∈ X and {xn}n≥0 be a sequence in X. Then {xn}n≥0 converges to x

whenever for every c ∈ E with 0� E, there is a natural number N ∈ N such that ‖xn − x‖c � c for all n ≥ N. It is

denoted by limn→∞ xn = x or xn → x

Definition 1.5. Let (X, ‖.‖c) be a CNS, x ∈ X and {xn}n≥0 be a sequence in X. {xn}n≥0 is a Cauchy sequence

whenever for every c ∈ E with 0� c, there is a natural number N ∈ N, such that ‖xn − xm‖c � c for all n, m ≥ N

Definition 1.6. Let (X, ‖.‖c) be a CNS, x ∈ X and {xn}n≥0 be a sequence in X. (X, ‖.‖c) is a complete cone normed

space if every Cauchy sequence is convergent. Complete cone normed spaces will be called cone Banach spaces.

Lemma 1.1. [5] Let (X, ‖.‖c) be a CNS, P be a normal cone with normal constant K, and {xn} be a sequence in X.

Then

i. the sequence {xn} converges to x if and only if ‖xn − x‖c → 0 as n→ ∞,
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ii. the sequence {xn} is Cauchy if and only if ‖xn − xm‖c → 0 as n, m→ ∞,

iii. the sequence {xn} converges to x and the sequence {yn} converges to y, then ‖xn − yn‖c → ‖x− y‖c.

Definition 1.7. Let f and g be two self maps defined on a set X maps f and g are said to be commuting of f gx = g f x

for all x ∈ X

Definition 1.8. Let f and g be two self maps defined on a set X maps f and g are said to be weakly compatible if they

commute at coincidence points. that is if f x = gx forall x ∈ X then f gx = g f x

Definition 1.9. Let f and g be two self maps on set X. If f x = gx, for some x ∈ X then x is called coincidence point of

f and g

Lemma 1.2. Let f and g be weakly compatible self mapping of a set X. If f and g have a unique point of coincidence,

that is w = f x = gx then w is the unique common fixed point of f and g.

2 Main Result

Theorem 2.1. Let (X, ‖.‖c) be a Cone Banch space with the norm d(x, 0) = ‖x‖c. Suppose that the mappings P, Q, S

and T are four self maps of (X, ‖.‖c) such that T(X) ⊆ P(X) and S(X) ⊆ Q(X) and satisfying

‖Ty− Sx‖c ≤ a‖Px−Qy‖c + b{‖Px− Sx‖c + ‖Qy− Ty‖c}+ c{‖Px− Ty‖c + ‖Qy− Sx‖c} (2.1)

for all x, y ∈ X, where a, b, c ≥ 0 and a+ 2b+ 2c < 1. suppose that the pairs {P, S} and {Q, T} are weakly compatible,

then P, Q, S and T have a unique common fixed point.

Proof. Suppose x0 is an arbitrary initial point of X and define the sequence {yn} in X such that

y2n = Sx2n = Qx2n+1

y2n+1 = Tx2n+1 = Px2n+2

By (2.1) implies that

‖y2n+1 − y2n‖c = ‖Tx2n+1 − Sx2n‖c

≤ a‖Px2n −Qx2n+1‖c + b{‖Px2n − Sx2n‖c + ‖Qx2n − Tx2n+1‖c}

+ c{‖Px2n − Tx2n+1‖c + ‖Qx2n+1 − Sx2n‖c}

≤ a‖y2n−1 − y2n‖c + b{‖y2n−1 − y2n‖c + ‖y2n − y2n+1‖c}

+ c{‖y2n−1 − y2n+1‖c + ‖y2n − y2n‖c}

≤ a‖y2n−1 − y2n‖c + b{‖y2n−1 − y2n‖c + ‖y2n − y2n+1‖c}

+ c‖y2n−1 − y2n+1‖c

≤ (a + b + c)‖y2n−1 − y2n‖c + (b + c)‖y2n − y2n+1‖c

‖y2n+1 − y2n‖c ≤
a + b + c

1− (b + c)
‖y2n − y2n−1‖c

‖y2n+1 − y2n‖c ≤ h‖y2n − y2n−1‖c

where h = a+b+c
1−(b+c) < 1 for all n ∈ N

‖y2n − y2n+1‖c ≤ h‖y2n−1 − y2n‖c

≤ h2‖y2n−2 − y2n−1‖c

...

≤ h2n−1‖y0 − y1‖c
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For all m > n

‖yn − ym‖c ≤ ‖yn − yn+1‖c + ‖yn+1 − yn+2‖c + · · ·+ ‖ym−1 − ym‖c

≤ (hn + hn+1 + · · · hm−1)‖y0 − y1‖c

≤ hn(1 + h + h2 + · · ·+ hm−1−n)‖y0 − y1‖c

≤ hn

1− h
‖y0 − y1‖c

⇒ ‖yn − ym‖c � 0 as n, m→ ∞.

Hence {yn} is a Cauchy sequence.

There exists a point l in (X, ‖.‖c) such that

lim
n→∞
{yn} = l , lim

n→∞
S2n = lim

n→∞
Q2n+1 = l and lim

n→∞
Tx2n+1 = lim

n→∞
Px2n+2 = l

that is,

lim
n→∞

S2n = lim
n→∞

Q2n+1 = lim
n→∞

Tx2n+1 = lim
n→∞

Px2n+2 = x∗

Since T(X) ⊆ P(X), there exists a point z in X Such that x∗ = Pz then by (1)

‖Sz− x∗‖c ≤ ‖Sz− Tx2n−1‖c + ‖Tx2n−1 − x∗‖c

≤ a‖Pz−Qx2n−1‖c + b{‖Pz− Sz‖c + ‖Qx2n−1 − Tx2n−1‖c}

+ c{‖Pz− Tx2n−1‖c + ‖Qx2n−1 − Sz‖c}+ ‖Tx2n−1 − x∗‖c

Taking the limit as n→ ∞

‖Sz− x∗‖c ≤ a‖x∗ − x∗‖c + b{‖x∗ − x∗‖c + ‖x∗ − Sz‖c}

+ c{‖x∗ − x∗‖c + ‖x∗ − Sz‖c}+ ‖x∗ − x∗‖c

≤ 0 + b{‖x∗ − Sz‖c + 0}+ c{0 + ‖x∗ − Sz‖c}+ 0 + (b + c)‖x∗ − Sz‖c

Which is a contraction since a + 2b + 2c < 1.

therefore Sz = Pz = x∗

Since S(X) ⊆ Q(X) there exists a point w ∈ X such that x∗ = Qw.

by (1)

‖Sz− x∗‖c ≤ ‖Sz− Tw‖c

≤ a‖Pz−Qw‖c + b{‖Pz− Sz‖c + ‖Qw− Tw‖c}+ c{‖Pz− Tw‖c + ‖Qw− Sw‖c}

≤ a‖x∗ − x∗‖c + b{‖x∗ − x∗‖c + ‖x∗ − Tw‖c}+ c{‖x∗ − Tw‖c + ‖x∗ − x∗‖c}

≤ 0 ++b{0 + ‖x∗ − Tw‖c}+ c{‖x∗ − Tw‖c + 0}

‖x∗ − Tw‖c ≤ (b + c)‖x∗ − Tw‖c

which is a contradiction since a + 2b + 2c < 1.

therefore Tw = Qw = x∗

Thus Sz = Pz = Tw = Qw = x∗

Since P and S are weakly compatible maps,

Then SP(z) = PS(z)

Sx∗ = Px∗



314 R.Krishnakumar and D.Dhamodharan. /Common Fixed Point...

To prove that x∗ is a fixed point of S

Suppose Sx∗ 6= x∗ then by (2.1)

‖Sx∗ − x∗‖c ≤ ‖Sx∗ − Tx∗‖c

≤ a‖Px∗ −Qw‖c + b{‖Px∗ − Sx∗‖c + ‖Qw− Tw‖c}+

+ c{‖Px∗ − Tw‖c + ‖Qw− Sx∗‖c}

≤ a‖Sx∗ − x∗‖c + b{‖Sx∗ − Sx∗‖c + ‖x∗ − x∗‖c}+

+ c{‖Sx∗ − x∗‖c + ‖x∗ − Sx∗‖c}

≤ a‖Sx∗ − x∗‖c + b{0 + 0}+ 2c‖Sx∗ − x∗‖c

‖Sx∗ − x∗‖c ≤ (a + 2c)‖Sx∗ − x∗‖c

Which is a contradiction, Since a + 2b + 2c < 1.

Sx∗ = x∗

Hence Sx∗ = Px∗ = x∗ Similarly, Q and T are weakly compatible maps then TQw = QTw, that is Tx∗ =

Qx∗

To prove that x∗ is a fixed point of T.

Suppose Tx∗ 6= x∗ by (2.1)

‖Tx∗ − x∗‖c ≤ ‖Sx∗ − Tx∗‖c

≤ a‖Px∗ −Qx∗‖c + b{‖Px∗ − Sx∗‖c + ‖Qx∗ − Tx∗‖c}+

+ c{‖Px∗ − Tx∗‖c + ‖Qx∗ − Sx∗‖c}

≤ a‖x∗ − Tx∗‖c + b{‖x∗ − x∗‖c + ‖Tx∗ − Tx∗‖c}+

+ c{‖x∗ − Tx∗‖c + ‖Tx∗ − x∗‖c}

≤ a‖Tx∗ − x∗‖c + b{0 + 0}+ 2c‖Tx∗ − x∗‖c

‖Tx∗ − x∗‖c ≤ (a + 2c)‖Tx∗ − x∗‖c

which is a contradiction since a + 2b + 2c < 1.

Tx∗ = x∗.

Hence. Tx∗ = Qx∗ = x∗

Thus Sx∗ = Px∗ = Tx∗ = Qx∗ = x∗

That is, x∗ is a common fixed point of P, Q, S and T

To prove that the uniqueness of x∗

Suppose that x∗ and y∗, x∗ 6= y∗ are common fixed points of P, Q, S and T respectively, by (2.1) we have,

‖x∗ − y∗‖c ≤ ‖Sx∗ − Ty∗‖c

≤ a‖Px∗ −Qy∗‖c + b{‖Px∗ − Sx∗‖c + ‖Qy∗ − Ty∗‖c}+

+ c{‖Px∗ − Ty∗‖c + ‖Qy∗ − Sx∗‖c}

≤ a‖x∗ − y∗‖c + b{‖x∗ − x∗‖c + ‖y∗ − y∗‖c}+ c{‖x∗ − y∗‖c + ‖y∗ − x∗‖c}

≤ a‖x∗ − y∗‖c + b{0 + 0}+ c{‖x∗ − y∗‖c + ‖y∗ − x∗‖c}

≤ (a + 2c)‖x∗ − y∗‖c

which is a contradiction. Since a + 2b + 2c < 1.

therefore x∗ = y∗.

Hence x∗ is the unique common fixed point of P, Q, S and T respectively.
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Corollary 2.1. Let (X, ‖.‖c) be a Cone Banach space with the norm d(x, 0) = ‖x‖c.. Suppose that the mappings P, S

and T are three self maps of (X, ‖.‖c) such that T(X) ⊆ P(X) and S(X) ⊆ P(X) and satisfying

‖Sx−Ty‖c ≤ a‖Px− Py‖c + b{‖Px−Sy‖c + ‖Px−Ty‖c}+ c{‖Px−Ty‖c + ‖Py−Sx‖c} (1)

for all x, y ∈ X, where a, b, c ≥ 0 and a + 2b + 2c < 1. suppose that the pairs {P, S} and {P, T} are weakly compatible,

then P, S and T have a unique common fixed point.

Proof. The proof of the corollary immediate by taking P = Q in the above theorem (2.1).

Definition 2.10. A function Φ : [0, ∞) → [0, ∞) is said to be contractive modulus if Φ : [0, ∞) → [0, ∞) and

Φ(t) < t for t > 0

Definition 2.11. A real valued function Φ defined on X ⊆ R is said to be upper semi continuous if lim
n→∞

sup Φ(tn) ≤
Φ(t), for every sequence {tn} ∈ X with tn → t as n→ ∞.

Remark 2.2. It is clear that every continuous function is upper semi continuous but converse may not true.

Theorem 2.2. Let (X, ‖.‖c) be a Cone Banch space with the norm d(x, 0) = ‖x‖c.. Suppose that the mappings P, Q, S

and T are four self maps of (X, ‖.‖c) such that T(X) ⊆ P(X) and S(X) ⊆ Q(X) satisfying

‖Sx− Ty‖c ≤ Φ(λ(x, y)), (2.2)

where Φ is an upper semi continuous contractive modulus and

λ(x, y) = max{‖Px−Qy‖c, ‖Px− Sx‖c, ‖Qy− Ty‖c,
1
2
{‖Px− Ty‖c + ‖Qy− Sx‖c}}.

The pair {S, P} and {T, Q} are weakly compatible. Then P, Q, S and T have a unique common fixed point.

Proof. Let us take x0 is an arbitrary point of X and define a sequence {y2n} in X such that

y2n = Sx2n = Qx2n+1

y2n+1 = Tx2n+1 = Px2n+2

By (2.2) implies that

‖y2n − y2n+1‖c = ‖Sx2n − Tx2n+1‖c

≤ Φ(λ(x2n, x2n+1))

≤ λ(x2n, x2n+1)

= max{‖Px2n −Qx2n+1‖c, ‖Px2n − Sx2n‖c, ‖Qx2n+1 − Tx2n+1‖c,

1
2
{‖Px2n − Tx2n+1‖c + ‖Qx2n+1 − Sx2n‖c}}

= max{‖Tx2n−1 − Sx2n‖c, ‖Tx2n−1 − Sx2n‖c, ‖Sx2n − Tx2n+1‖c,

1
2
{‖Tx2n−1 − Tx2n+1‖c + ‖Sx2n − Sx2n‖c}}

= max{‖Tx2n−1 − Sx2n‖c, ‖Tx2n−1 − Sx2n‖c, ‖Sx2n − Tx2n+1‖c,

1
2
‖Tx2n−1 − Tx2n+1‖c}

= max{‖y2n − y2n−1‖c, ‖y2n − y2n+1‖c,
1
2
‖y2n−1 − y2n+1‖c}

≤ max{‖y2n − y2n−1‖c, ‖y2n − y2n+1‖c}
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Since Φ is an contractive modulus, λ(x2n − x2n+1) = ‖y2n − y2n+1‖c is not possible. Thus,

‖y2n − y2n+1‖c ≤ Φ(‖y2n−1 − y2n‖c) (2.3)

Since Φ is an upper semi continuous, contractive modulus. Equation (2.3) implies that the sequence {‖y2n+1−
y2n‖c} is monotonic decreasing and continuous. There exists a real number, say r ≥ 0 such that

lim
n→∞

‖y2n+1 − y2n‖c = r,

as n→ ∞ equation (2.3)⇒
r ≤ Φ(r)

which is only possible if r = 0 because Φ is a contractive modulus. Thus

lim
n→∞

‖y2n+1 − y2n‖c = 0.

Claim: {y2n} is a Cauchy sequence.

Suppose {y2n} is not a Cauchy sequence.

Then there exists an ε > 0 and sub sequence {ni} and {mi} such that mi < ni < mi+1

‖ymi − yni‖c ≥ ε and ‖ymi − yni−1‖c ≤ ε (2.4)

ε ≤ ‖ymi − yni‖c ≤ ‖ymi − yni−1‖c + ‖yni−1 − yni‖c

therefore lim
i→∞
‖ymi − yni‖c = ε

now

ε ≤ ‖ymi−1 − yni−1‖c ≤ ‖ymi−1 − ymi‖c + ‖ymi − yni−1‖c

by taking limit i→ ∞ we get,

lim
i→∞
‖ymi−1 − yni−1‖c = ε

from (2.3) and (2.4)

ε ≤ ‖ymi − yni‖c = ‖Sxmi − Txni‖c ≤ Φ(λ(xmi , xni ))

where implies

ε ≤ Φ(λ(xmi , xni )) (2.5)

λ(xmi , xni ) = max{‖Pxmi −Qxni‖c, ‖Pxmi − Sxmi‖c, ‖Qxni − Txni‖c,

1
2
(‖Pxmi − Txni‖c + ‖Qxni − Sxmi‖c)}

= max{‖Txmi−1 − Sxni−1‖c, ‖Txmi−1 − Sxmi‖c, ‖Sxni−1 − Txni‖c,

1
2
(‖Txmi−1 − Txni‖c + ‖Sxni−1 − Sxmi‖c)}

= max{‖ymi−1 − yni−1‖c, ‖ymi−1 − ymi‖c, ‖yni−1 − yni‖c,

1
2
(‖ymi−1 − yni‖c + ‖yni−1 − ymi‖c)}

Taking limit as i→ ∞, we get

lim
i→∞

λ(xmi , xni ) = max{ε, 0, 0,
1
2
(ε, ε)}

lim
i→∞

λ(xmi , xni ) = ε

Therefore from (2.5) we have, ε ≤ Φ(ε)

This is a contraction because ε > 0 and Φ is contractive modulus.
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Therefore {y2n} is Cauchy sequence in X

There exits a point z in X such that lim
n→∞

y2n = z

Thus,

lim
n→∞

Sx2n = lim
n→∞

Qx2n+1 = z and

lim
n→∞

Tx2n+1 = lim
n→∞

Px2n+2 = z

(i.e) lim
n→∞

Sx2n = lim
n→∞

Qx2n+1 = lim
n→∞

Tx2n+1 = lim
n→∞

Px2n+2 = z

T(X) ⊆ P(X), there exists a point u ∈ X such that z = Pu

‖Su− z‖c ≤ ‖Su− Tx2n+1‖c + ‖Tx2n+1 − z‖c

≤ Φ(λ(u, x2n+1)) + ‖Tx2n+1 − z‖c

where

λ(u, x2n+1) = max{‖Pu−Qx2n+1‖c, ‖Pu− Su‖c, ‖Qx2n+1 − Tx2n+1‖c,

1
2
(‖Pu− Tx2n+1‖c + ‖Qx2n+1 − Su‖c)}

= max{‖z− Sx2n‖c, ‖z− Su‖c, ‖Sx2n − Tx2n+1‖c,

1
2
(‖z− Tx2n+1‖c + ‖Sx2n − Su‖c)}.

Now taking the limit as n→ ∞ we have,

λ(u, x2n+1) = max{‖z− Su‖c, ‖z− Su‖c, ‖Su− Tu‖c,
1
2
(‖z− Tu‖c + ‖z− Su‖c)}

= max{‖z− Su‖c, ‖z− Su‖c, ‖Su− z‖c,
1
2
(‖z− z‖c + ‖z− Su‖c)}

= ‖z− Su‖c

Thus

‖Su− z‖c ≤ Φ(‖Su− z‖c) + ‖z− z‖c

= Φ(‖Su− z‖c)

If Su 6= z then ‖Su− z‖c > 0 and hence as Φ is contracive modulus

Φ(‖Su− z‖c) < ‖Su− z‖c Which is a contradiction, Su = z so, Pu = Su = z

So u is a coincidence point if P and S. The pair of maps S and P are weakly compatible SPu = PSu that is

Sz = Pz.

S(X) ⊆ Q(X), there exists a point v ∈ X such that z = Qv.

Then we have

‖z− Tv‖c = ‖Su− Tv‖c

≤ Φ(λ(u, v))

≤ λ(u, v)

= max{‖Pu−Qv‖c, ‖Pu− Su‖c, ‖Qv− Tv‖c,

1
2
(‖Pu− Tv‖c + ‖Qv− Su‖c)}

= max{‖z− z‖c, ‖z− z‖c, ‖z− Tv‖c,

1
2
(‖z− Tv‖c + ‖z− z‖c)}

= ‖z− Tv‖c
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Thus ‖z− Tv‖c ≤ Φ(‖z− Tv‖c).

If Tv ∈ z then ‖z− Tv‖c ≥ 0 and hence as Φ is contractive modulus

Φ(‖z− Tv‖c) < ‖z− Tv‖c

Therefore ‖z− Tv‖c < ‖z− Tv‖c

which is a contradiction. Therefore Tv = Qv = z

So, v is a coincidence point of Q and T.

Since the pair of maps Q and T are weakly compatible, QTv = TQv

(i.e) Qz = Tz.

Now show that z is a fixed point of S.

We have

‖Sz− z‖ = ‖Sz− Tv‖c

≤ Φ(λ(z, v))

≤ λ(z, v)

= max{‖Pz−Qv‖c, ‖Pz− Sz‖c, ‖Qv− Tv‖c,
1
2
(‖Pz− Tv‖c + ‖Qv− Sz‖c)}

= max{‖Sz− z‖c, ‖Sz− Sz‖c, ‖z− z‖c,
1
2
(‖Sz− z‖c + ‖z− Sz‖c)}

= ‖Sz− z‖c

Thus ‖Sz− z‖c ≤ Φ(‖Sz− z‖c).

If Sz 6= z then ‖Sz− z‖c > 0 and hence as Φ is contractive modulus Φ(‖Sz− z‖c) < ‖Sz− z‖c

which is a contradiction. There exits Sz = z. Hence Sz = Pz = z

Show that z is a fixed point of T.

We have

‖z− Tz‖c = ‖Sz− Tz‖c

≤ Φ(λ(z, z))

≤ λ(z, z)

= max{‖Pz−Qz‖c, ‖Pz− Sz‖c, ‖Qz− Tz‖c,
1
2
(‖Pz− Tz‖c + ‖Qz− Sz‖c)}

= max{‖z− Tz‖c, ‖z− z‖c, ‖Tz− Tz‖c,
1
2
(‖z− Tz‖c + ‖Tz− z‖c)}

= ‖z− Tz‖c

Thus ‖z− Tz‖c ≤ Φ(‖z− Tz‖c).

If z 6= Tz then ‖z− Tz‖c > 0 and hence as Φ is contractive modulus

Φ(‖z− Tz‖c) < ‖z− Tz‖c.

which is a contradiction. Hence z = Tz.

Therefore Tz = Qz = z.

Therefore Sz = Pz = Tz = Qz = z.

That is z is common fixed point of P, Q, S and T.

Uniqueness

Suppose, z and w is (z 6= w) are common fixed point of P, Q, S and T.
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we have

‖z− w‖c = ‖Sz− Tw‖c

≤ Φ(λ(z, w))

≤ λ(z, w)

= max{‖Pz−Qw‖c, ‖Pz− Sz‖c, ‖Qw− Tw‖c,
1
2
(‖Pz− Tw‖c + ‖Qw− Sz‖c)}

= max{‖z− w‖c, ‖z− z‖c, ‖w− w‖c,
1
2
(‖z− w‖c + ‖w− z‖c)}

= ‖z− w‖c

Thus, ‖z− w‖c ≤ Φ(‖z− w‖c)

Since z 6= w, then ‖z− w‖ > 0 and hence as Φ is contractive modulus.

Φ(‖z− w‖c) < ‖z− w‖c

therefore ‖z− w‖c < ‖z− w‖c

which is a contradiction,

therefore z = w

Thus z is the unique common fixed point of P, Q, S and T.

Corollary 2.2. Let (X, ‖.‖c) be a Cone Banch space with the norm d(x, 0) = ‖x‖c. Suppose that the mappings P, S

and T are three self maps of (X, ‖.‖c) such that T(X) ⊆ P(X) and S(X) ⊆ P(X) satisfying

‖Sx− Ty‖c ≤ Φ(λ(x, y)), (2.6)

where Φ is an upper semi continuous contractive modulus and

λ(x, y) = max{‖Px− Py‖c, ‖Px− Sx‖c, ‖Py− Ty‖c,
1
2
{‖Px− Ty‖c + ‖Py− Sx‖c}}.

The pair {S, P} and {T, P} are weakly compatible. Then P, S and T have a unique common fixed point.

Proof. The proof of the corollary immediate by taking P = Q in the above theorem (2.2).
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Abstract

The transportation model is a special class of the linear programming problem. It deals with the
situation in which commodity is shipped from sources to destinations. The objective is to minimize the
total shipping cost while satisfying both the supply limit and the demand requirements. In this paper, a
new method named ASM-method for finding an optimal solution for a transportation problem. The most
attractive feature of this method is that it requires very simple arithmetical and logical calculation. So it is
very easy to understand and use.

Keywords: Transportation problem, optimal solution , ASM (Assigning Shortest Minimax)-method, NWCR
method.
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1 Introduction

A transportation problem is one of the earliest and most important applications of linear programming
problem. Description of a classical transportation problem can be given as follows. A certain amount of
homogeneous commodity is available at number of sources and a fixed amount is required to meet the
demand at each number of destinations. A balanced condition (i.e. Total demand is equal to total supply)
is assumed. It deals with the situation in which a commodity is shipped from sources to destinations. The
objective is to be determined the amounts shipped from each source to each destination that minimize
the total shipping cost while satisfying both the supply limit and the demand requirements. Nowadays
transportation problem has become a standard application for industrial organizations having several
manufacturing units, warehouses and distribution centers [1–9].

2 Definitions

A set of non-negative values xij, i = 1, 2, 3, · · · , and j = 1, 2, 3, · · · , n that satisfies the constraints is
called a feasible solution to the transportation problem.

A feasible solution is said to be optimal if it minimizes the total transportation cost.

Optimality test can be performed if the number of allocation cells in an initial basic feasible solution =
m + n− 1{ No. of rows + No. of coloums - 1}. Otherwise optimality test cannot be performed.

*Corresponding author.
E-mail address: satheeshay@yahoo.com (B. Satheesh Kumar), nandhuma3293@gmail.com (R. Nandhini), nandhumaths93@gmail.com
(T. Nanthini).
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3 General Formation of Transportation Problem

4 Different Methods to Finding Optimal Solution

For finding an optimal solution for transportation problems it was required to solve the problem into
two stages.

(1) In first stage Initial basic feasible solution (IBFS) was obtained by opting any of the available methods
such as North West Corner, Matrix Minima, Least Cost Method, Row Minima, Column Minima and
Vogels Approximation Method etc.

(2) Next and last stage MODI (Modified Distribution) method was adopted to get an optimal solution.

Here a much easier heuristic approach is proposed (ASM-Method) for finding an optimal solution directly
with lesser number of iterations and very easy computations. The stepwise procedure of proposed method
is carried out as follows.

4.1 ASM Method

Step 1:
Construct the transportation table from given transportation problem.

Step 2:
Subtract each row entries of the transportation table from the respective row minimum and then

subtract each column entries of the resulting transportation table from respective column minimum.
Step 3:

Now there will be at least one zero in each row and in each column in the reduced cost matrix. Select
the first zero (row-wise) occurring in the cost matrix. Suppose (i, j)th zero is selected, count the total
number of zeros (excluding the selected one) in the ith row and jth column. Now select the next zero and
count the total number of zeros in the corresponding row and column in the same manner. Continue it for
all zeros in the cost matrix.
Step 4:

Now choose a zero for which the number of zeros counted in step 3 is minimum and supply maximum
possible amount to that cell. If tie occurs for some zeros in step 3 then choose a (k.l)th zero breaking tie
such that the total sum of all the elements in the kth row and lth column is maximum. Allocate maximum
possible amount to that cell.
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Step 5:
After performing step 4, delete the row or column for further calculation where the supply from a

given source is depleted or the demand for a given destination is satisfied.
Step 6:

Check whether the resultant matrix possesses at least one zero in each row and in each column. If not,
repeat step 2, otherwise go to step 7.
Step 7:

Repeat step 3 to step 6 until and unless all the demands are satisfied and all the supplies are exhausted.

4.2 Numerical Example

ASM Method

1 2 3 4 Supply
A 11 13 17 14 250
B 16 18 14 10 300
C 21 24 13 10 400

Demand 200 225 275 250

Solution:

Row reduced matrix

1 2 3 4 Supply
A 0 2 6 3 250
B 6 8 4 0 300
C 11 14 3 0 400

Demand 200 225 275 250

Column reduced matrix.

1 2 3 4 Supply
A 0 0 3 3 250
B 6 6 1 0 300
C 11 12 0 0 400

Demand 200 225 275 250

Using ASM method and final table

1 2 3 4 Supply

A

200

11

50

13 17 14 250

B 16

175

18 14

125

10 300

C 21 24

275

13

125

10 400

Demand 200 225 275 250
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Transportation Cost

= (11 ∗ 200) + (13 ∗ 50) + (18 ∗ 175) + (10 ∗ 125) + (13 ∗ 275) + (10 ∗ 125)

= 2200 + 650 + 3150 + 1250 + 3575 + 1250

= Rs.12075

4.3 Optimality Check

To find initial basic feasible solution for the above example North West Corner Rule (NWCR)
Mmethod is used and allocations are obtained as follows:

1 2 3 4 Supply

A

200

11

50

13 17 14 250

B 16

175

18

125

14 10 300

C 21 24

150

13

250

10 400

Demand 200 225 275 250

Transportation cost

= (11 ∗ 200) + (13 ∗ 50) + (18 ∗ 175) + (10 ∗ 125) + (14 ∗ 125) + (13 ∗ 150)

= 2200 + 650 + 3150 + 1750 + 1950 + 2500

= Rs.12200

By applying NWCR (North West Corner Rule) the optimal solution is Rs.12200.
To finding the optimal solution by using NWCR Rs.12200 and ASM method Rs.12075 for transportation

problem. From these two methods ASM method provides the minimum transportation cost. Thus the
ASM method is optimal.

Problem 2

1 2 3 Supply
A 5 1 7 10
B 6 4 6 80
C 3 2 5 15

Demand 75 20 50

Solution:

1 2 3 Supply
A 5 1 7 10
B 6 4 6 80
C 3 2 5 15

Demand 75 20 50

Supply = 10 + 80 + 15 = 105
Demand = 75 + 20 + 50 = 145
Supply 6= Demand
=> Unbalanced transportation problem.
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Step:1

Introducing a dummy row with demand 40 units and cost 0.

1 2 3
A 5 1 7 10
B 6 4 6 80
C 3 2 5 15
D 0 0 0 40

75 20 50

Supply = 10 + 80 + 15 + 40 = 145
Demand = 75 + 20 + 50 = 145
Supply = Demand
=> Balanced transportation problem.

ASM Method

Row reduced matrix.

1 2 3
A 4 0 6 10
B 2 0 2 80
C 1 0 3 15
D 0 0 0 40

75 20 50

Column reduced matrix.

1 2 3
A 4 0 6 10
B 2 0 2 80
C 1 0 3 15
D 0 0 0 40

75 20 50

Using ASM and Final Table

1 2 3

A 5

10

1 7 10

B

60

6

10

4

10

6 80

C

15

3 2 5 15

D 0 0

40

0 40

75 20 50
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Transportation Cost

= (1 ∗ 10) + (6 ∗ 60) + (4 ∗ 10) + (6 ∗ 10) + (3 ∗ 15) + (0 ∗ 40)

= 10 + 360 + 40 + 60 + 45 + 0

= Rs.515.

Optimality Check

1 2 3

A

10

5 1 7 10

B

65

6

15

4 6 80

C 3

5

2

10

5 15

D 0 0

40

0 40

75 20 50

Transportation Cost

= (5 ∗ 10) + (6 ∗ 65) + (4 ∗ 15) + (2 ∗ 5) + (5 ∗ 10) + (0 ∗ 40)

= 50 + 390 + 60 + 10 + 50 + 0

= Rs.560.

By applying NWCR (North West Corner Rule) the optimal solution is Rs.560.
To finding the optimal solution by using NWCR Rs.560 and ASM method Rs.515 for transportation

problem. From these two methods ASM method provides the minimum transportation cost. Thus the
ASM method is optimal.

5 Conclusion

In this paper ASM method provides an optimal solution with less iteration for transportation problem.
This method provides less time and make easy to understand. So it will be helpful for decision makers
who are dealing with this problem.
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Abstract

We prove some fixed and common fixed point theorems for two weakly compatible self mappings in
complete b−metric spaces. Our results improve and generalize several known results from the current
literature and its extension.
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1 Introduction

It is well known that the Banach contraction principle has been improved in different directions at different
spaces by mathematicians over the years. In [9, 10], S. Czerwik introduced the notion of a b-metric space which
is a generalization of usual metric space and generalized the Banach contraction principle in the context of
complete b-metric spaces. In the sequel, several papers have been published on the fixed point theory in b-
metric spaces (see, e.g., [2–7, 12–14, 18, 26]). On the other hand, more recently, Samet et al. in [24] introduced
the concept of α−ψ-contractive type mappings and α-admissible mappings in metric spaces. Then, Karapinar
and Samet [16] introduced the concept of generalized α − ψ-contractive type, which was inspired by the
notion of α− ψ-contractive mappings. Furthermore, they [16] obtained various fixed point theorems for this
generalized class of contractive mappings. Also, It should be noted that the study of common fixed points
of mappings satisfying certain contractive conditions has been at the center of rigorous research activity (
see[1, 19–22]). In this paper, we prove coincidence fixed point and some common fixed point theorems for
two weakly compatible self mappings in complete b−metric spaces.

Definition 1.1. [9] Let X be a (nonempty) set and s ≥ 1 be a given real number. A function d : X× X −→ R+ is said
to be a b-metric space iff for all x, y, z ∈ X, the following conditions are satisfied:

(i) d(x, y) = 0 iff x = y,

(ii) d(x, y) = d(y, x),

(iii) d(x, y) ≤ s[d(x, z) + d(z, y)].

The pair (X, d) is called a b-metric space with the parameter s.
It is obvious that a b−metric space with base s = 1 is a metric space. There are examples of b−metric spaces
which are not metric spaces (see, e.g., Singh and Prasad [26]).
The notions of a Cauchy sequence and a convergent sequence in b−metric spaces are defined by Boriceanu[8].
As usual, a b−metric space is said to be complete if and only if each Cauchy sequence in this space is
convergent. Note that a b−metric, in the general case, is not continuous [2].

∗Corresponding author.
E-mail address: mathreza.arab@iausari.ac.ir (Reza Arab).
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Definition 1.2. [15] Let X be a non-empty set and T, g : X → X are given self-mappings on X. The pair {T, g} is said
to be weakly compatible if Tgx = gTx, whenever Tx = gx for some x in X.

Samet et al. [24] defined the notion of α−admissible mappings as follows.

Definition 1.3. Let T : X → X be a map and α : X× X → R be a function. Then T is said to be α−admissible if

α(x, y) ≥ 1 =⇒ α(Tx, Ty) ≥ 1.

Recently, Rosa et al. [23] introduced the following new notions of g− α−admissible mapping.

Definition 1.4. Let T, g : X → X and α : X × X → R. The mapping T is g− α−admissible if, for all x, y ∈ X such
that α(gx, gy) ≥ 1, we have α(Tx, Ty) ≥ 1. If g is the identity mapping, then T is called α−admissible.

Definition 1.5. [17] An α−admissible map T is said to be triangular α−admissible if

α(x, z) ≥ 1 and α(z, y) ≥ 1 =⇒ α(x, y) ≥ 1.

2 Main Results

Let Φ denote the family of all real functions ϕ : R5
+ → R with the following conditions:

(1) ϕ is upper-semicontinuous and non-decreasing in each coordinate variable;

(2) max{ϕ(0, 0, t, t, 0), ϕ(t, 0, 0, t, t), ϕ(t, t, t, t, 0)} < t for each t > 0.

The above family Φ is considered by Ding [11]. It is motivated by Singh and Meade [25].
In this section, we prove some common fixed point results for two self-mappings.

Definition 2.6. Let (X, d) be a b-metric space, g : X → X and α : X × X → R. X is α−regular with respect to g, if
for every sequence {xn} ⊆ X such that α(gxn, gxn+1) ≥ 1 for all n ∈ N and gxn → gx ∈ gX as n → ∞, then there
exists a subsequence {gxn(k)} of {gxn} such that for all k ∈N, α(gxn(k), gx) ≥ 1. If g is the identity mapping, then T
is called α−regular.

Our first result is the following.

Lemma 2.1. Let T, g : X → X and α : X × X → R. Suppose T be a g− α−admissible and triangular α−admissible.
Assume that there exists x0 ∈ X such that α(gx0, Tx0) ≥ 1. Then

α(gxm, gxn) ≥ 1 f or all m, n ∈N with m < n,

where
gxn+1 = Txn.

Proof. Since there exists x0 ∈ X such that α(gx0, Tx0) ≥ 1 and T is a g− α−admissible, we deduce that

α(gx0, gx1) = α(gx0, Tx0) ≥ 1 =⇒ α(gx1, gx2) = α(Tx0, Tx1) ≥ 1,

α(gx1, gx2) ≥ 1 =⇒ α(gx2, gx3) = α(Tx1, Tx2) ≥ 1.

By continuing this process, we get

α(gxn, gxn+1) ≥ 1, n = 0, 1, 2, · · · .

Suppose that m < n. Since α(gxm, gxm+1) ≥ 1, α(gxm+1, gxm+2) ≥ 1 and T is triangular α−admissible, we
have α(gxm, gxm+2) ≥ 1. Again, since α(gxm, gxm+2) ≥ 1 and α(gxm+2, gxm+3) ≥ 1, we have α(gxm, gxm+3) ≥
1. Continuing this process inductively, we obtain

α(gxm, gxn) ≥ 1.
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Theorem 2.1. Let (X, d) be a complete b-metric space, T, g : X → X be such that TX ⊆ gX and α : X × X → R.
Assume that gX is closed that the following condition holds:

α(x, y)s3d(Tx, Ty) ≤ ϕ(d(gx, gy), d(gx, Tx), d(gy, Ty),
1
2s

d(gx, Ty),
1
2s

d(gy, Tx)), (2.1)

for x, y ∈ X and ϕ ∈ Φ. Assume also that the following conditions hold:

(i) T is g− α−admissible and triangular α−admissible;

(ii) there exists x0 ∈ X such that α(gx0, Tx0) ≥ 1;

(iii) X is α−regular with respect to g.

Then T and g have a coincidence point.
Moreover, if the following conditions hold:

(a) The pair {T, g} is weakly compatible;

(b) either α(u, v) ≥ 1 or α(v, u) ≥ 1 whenever Tu = gu and Tv = gv.

Then T and g have a unique common fixed point.

Proof. Let x0 ∈ X be such that α(gx0, Tx0) ≥ 1 (using the condition (ii)). Since TX ⊆ gX we can choose a
point x1 ∈ X such that Tx0 = gx1. Also, there exists x2 ∈ X such that Tx1 = gx2, this can be done through the
reality TX ⊆ gX. Continuing this process having chosen x1, x2, ..., xn ∈ X, we have xn+1 ∈ X such that

gxn+1 = Txn, n = 0, 1, 2, · · · . (2.2)

By Lemma 2.1, we have

α(gxn, gxn+1) ≥ 1, n = 0, 1, 2, · · · . (2.3)

If Txn0 = Txn0+1 for some n0, then by (2.2), we get

gxn0 = Txn0+1 = Txn0 ,

that is, T and g have a coincidence point at x = xn0 , and so the proof is completed. So, we suppose that for all
n ∈N, Txn 6= Txn+1. Now, for all n ∈N by (2.1) and (2.3), we have

d(gxn, gxn+1) ≤ s3d(gxn, gxn+1) = s3d(Txn−1, Txn)

≤ α(gxn−1, gxn)s3d(Txn−1, Txn)

≤ ϕ(d(gxn−1, gxn), d(gxn−1, Txn−1), d(gxn, Txn),
1
2s

d(gxn−1, Txn),
1
2s

d(gxn, Txn−1))

= ϕ(d(gxn−1, gxn), d(gxn−1, gxn), d(gxn, gxn+1),
1
2s

d(gxn−1, gxn+1),
1
2s

d(gxn, gxn))

= ϕ(d(gxn−1, gxn), d(gxn−1, gxn), d(gxn, gxn+1),
1
2s

d(gxn−1, gxn+1), 0).

(2.4)

If d(gxn−1, gxn) ≤ d(gxn, gxn+1), from (2.4),

d(gxn−1, gxn+1)

2s
≤ d(gxn−1, gxn) + d(gxn, gxn+1)

2
,

and using the properties of the function ϕ, we get

d(gxn, gxn+1) ≤ ϕ(d(gxn−1, gxn), d(gxn−1, gxn), d(gxn, gxn+1),
d(gxn−1, gxn) + d(gxn, gxn+1)

2
, 0)

≤ ϕ(d(gxn, gxn+1), d(gxn, gxn+1), d(gxn, gxn+1), d(gxn, gxn+1), 0)

< d(gxn, gxn+1),
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which is a contradiction. So d(gxn, gxn+1) < d(gxn−1, gxn) for all n ∈ N, that is, the sequence of nonnegative
numbers {d(gxn, gxn+1)} is decreasing. Hence, it converges to a nonnegative number, say δ ≥ 0. If δ > 0,
then letting n→ ∞ in (2.4) and since ϕ is continuous, then we obtain

δ ≤ ϕ(δ, δ, δ, δ, 0) < δ,

which is a contraction. Therefore

lim
n→∞

d(gxn, gxn+1) = 0. (2.5)

Now, we claim that
lim

n,m−→∞
d(gxn, gxm) = 0. (2.6)

Assume on the contrary that there exists ε > 0 and subsequences {gxm(k)}, {gxn(k)} of {gxn} with n(k) >

m(k) ≥ k such that
d(gxm(k), gxn(k)) ≥ ε. (2.7)

Additionally, corresponding to m(k), we may choose n(k) such that it is the smallest integer satisfying (2.7)
and n(k) > m(k) ≥ k. Thus,

d(gxm(k), gxn(k)−1) < ε. (2.8)

Using the triangle inequality in b−metric space and (2.7) and (2.8) we obtain that

ε ≤ d(gxn(k), gxm(k)) ≤ sd(gxn(k), gxn(k)−1) + sd(gxn(k)−1, gxm(k))

< sd(gxn(k), gxn(k)−1) + sε.

Taking the the upper limit as k −→ ∞ and using (2.5) we obtain

ε ≤ lim sup
k−→∞

d(gxm(k), gxn(k)) ≤ sε. (2.9)

Also
ε ≤ d(gxm(k), gxn(k)) ≤ sd(gxm(k), gxn(k)+1) + sd(gxn(k)+1, gxn(k))

≤ s2d(gxm(k), gxn(k)) + s2d(gxn(k), gxn(k)+1) + sd(gxn(k)+1, gxn(k))

≤ s2d(gxm(k), gxn(k)) + (s2 + s)d(gxn(k), gxn(k)+1).

So from (2.5) and (2.9), we have

ε

s
≤ lim sup

k−→∞
d(gxm(k), gxn(k)+1) ≤ s2ε. (2.10)

Also
ε ≤ d(gxn(k), gxm(k)) ≤ sd(gxn(k), gxm(k)+1) + sd(gxm(k)+1, gxm(k))

≤ s2d(gxn(k), gxm(k)) + s2d(gxm(k), gxm(k)+1) + d(gxm(k)+1, gxm(k))

≤ s2d(gxn(k), gxm(k)) + (s2 + s)d(gxm(k), gxm(k)+1).

So from (2.5) and (2.9), we get

ε

s
≤ lim sup

k−→∞
d(gxn(k), gxm(k)+1) ≤ s2ε. (2.11)

Also
d(gxm(k)+1, gxn(k)) ≤ sd(gxm(k)+1, gxn(k)+1) + sd(gxn(k)+1, gxn(k)),

so from (2.5) and (2.11), we have

ε

s2 ≤ lim sup
k−→∞

d(gxn(k)+1, gxm(k)+1). (2.12)
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Now using inequality (2.1) and Lemma 2.1, we have

s3d(gxm(k)+1, gxn(k)+1) = s3d(gxm(k)+1, gxn(k)+1) = s3 d(Txm(k), Txn(k))

≤ α(gxm(k), gxn(k))s
3 d(Txm(k), Txn(k))

≤ ϕ(d(gxm(k), gxn(k)), d(gxm(k), gxm(k)+1), d(gxn(k)+1, gxn(k)),

1
2s

d(gxm(k), gxn(k)+1),
1
2s

d(gxn(k), gxm(k)+1)).

Since ϕ is upper-semicontinuous, by (2.5),(2.10),(2.11) and (2.12)

sε = s3.
ε

s2 ≤ s3 lim sup
k→∞

d(gxm(k)+1, gxn(k)+1)

≤ ϕ(sε, 0, 0,
sε

2
,

sε

2
)

≤ ϕ(sε, 0, 0, sε, sε)

< sε.

which is a contradiction. So, we conclude that {gxn} is a Cauchy sequence in (X, d). By virtue of (2.2) we get
{Txn} = {gxn+1} ⊆ gX and gX is closed, there exists x ∈ X such that

lim
n→∞

gxn = gx. (2.13)

Now, we claim that x is a coincidence point of T and g. On the contrary, assume that d(Tx, gx) > 0. Since X is
α−regular with respect to g and (2.13), we have

α(gxn(k)+1, gx) ≥ 1 f or all k ∈N. (2.14)

Also by the use of triangle inequality in b−metric space, we have

d(gx, Tx) ≤ sd(gx, gxn(k)+1) + sd(gxn(k)+1, Tx)

= sd(gx, gxn(k)+1) + sd(Txn(k), Tx).

In the above inequality, if k tends to infinity, then, we have

d(gx, Tx) ≤ lim
k→∞

sd(Txn(k), Tx). (2.15)

By property of ϕ, (2.14) and (2.15), we have

s2d(gx, Tx) ≤ lim
k→∞

s3d(Txn(k), Tx) ≤ lim
k→∞

α(gxn(k)+1, gx)s3d(Txn(k), Tx)

≤ lim
k→∞

[ϕ(d(gxn(k), gx), d(gxn(k), Txn(k)), d(gx, Tx),
1
2s

d(gxn(k), Tx),
1
2s

d(gx, Txn(k))]

= lim
k→∞

[ϕ(d(gxn(k), gx), d(gxn(k), gxn(k)+1), d(gx, Tx),
1
2s

d(gxn(k), Tx),
1
2s

d(gx, gxn(k)+1)]

≤ ϕ(0, 0, d(gx, Tx),
1
2s

d(gx, Tx), 0)

≤ ϕ(0, 0, d(gx, Tx), d(gx, Tx), 0)

< d(gx, Tx),

which is a contradiction. Hence, d(gx, Tx) = 0, that is, gx = Tx and x is a coincidence point of T and g. We
claim that, if Tu = gu and Tv = gv, then gu = gv. By hypotheses, α(u, v) ≥ 1 or α(v, u) ≥ 1. Suppose that
α(u, v) ≥ 1, then

s3d(gu, gv) = s3d(Tu, Tv) ≤ α(u, v)s3d(Tu, Tv)

≤ ϕ(d(gu, gv), d(gu, Tu), d(gv, Tv),
1
2s

d(gu, Tv),
1
2s

d(gv, Tu))

= ϕ(d(gu, gv), d(gu, gu), d(gv, gv),
1
2s

d(gu, gv),
1
2s

d(gv, gu))

≤ ϕ(d(gu, gv), 0, 0, d(gu, gv), d(gv, gu))

< d(gu, gv),
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which is a contradiction. Thus we deduce that gu = gv. Similarly, if α(v, u) ≥ 1 we can prove that gu = gv.
Now, we show that T and g have a common fixed point. Indeed, if w = Tu = gu, owing to the weakly
compatible of T and g, we get Tw = T(gu) = g(Tu) = gw. Thus w is a coincidence point of T and g, then
gu = gw = w = Tw. Therefore, w is a common fixed point of T and g. The uniqueness of common fixed point
of T and g is a consequence of the conditions (2.1) and (b), and so we omit the details.

Example 2.1. Let X be the set of Lebesgue measurable functions on [0, 1] such that
∫ 1

0 |x(t)| < ∞. Define d : X ×
X −→ [0, ∞) by

d(x, y) =
( ∫ 1

0
|x(t)− y(t)|dt

)2
.

Then d is a b-metric on X, with s = 2.
The operator T : X −→ X defined by

Tx(t) =
1√
8

ln
(
|x(t)|+ 1

)
,

and the operator g : X −→ X defined by
gx(t) = e

√
8|x(t)| − 1.

Now, we prove that T and g have a unique common fixed point. For all x, y ∈ X, we have

23d(Tx, Ty) = 23
( ∫ 1

0
|Tx(t)− Ty(t)|dt

)2
≤ 8

( ∫ 1

0
| 1√

8
ln(|x(t)|+ 1)− 1√

8
ln(|y(t)|+ 1)|dt

)2

≤
( ∫ 1

0
|(ln(|x(t)|+ 1)− ln(|y(t)|+ 1))|dt

)2
≤
( ∫ 1

0
ln(
|x(t)|+ 1
|y(t)|+ 1

)dt
)2

≤
( ∫ 1

0
ln(1 +

|x(t)− y(t)|
|y(t)|+ 1

)dt
)2
≤
(

ln(1 +
∫ 1

0
|x(t)− y(t)|dt)

)2

≤
(

ln(1 +
∫ 1

0
|e

4√
2
|x(t)|
− e

4√
2
|y(t)|
|dt)

)2
≤
(

ln(1 +

√√√√
(
∫ 1

0
|e

4√
2
|x(t)|
− e

4√
2
|y(t)|
|dt)2)

)2

≤
(

ln(1 +
√

d(gx, gy))
)2

≤ ϕ(d(gx, gy), d(gx, Tx), d(gy, Ty),
1
2s

d(gx, Ty),
1
2s

d(gy, Tx)).

Now, if we define x0 = 0, α(x, y) = 1 and ϕ(t) = ln2(1 +
√

t) for all t1, t2, t3, t4, t5 ∈ R2, where
t = max{t1, t2, t3, t4, t5}. Thus, by using Theorem 2.1 we obtain that T and g have a unique common fixed point.

From Theorem 2.1, if we choose g = IX the identity mapping on X, we deduce the following corollary.

Corollary 2.1. Let (X, d) be a complete b-metric space and T : X → X be a self-mapping on X. If there exist
α : X× X → R and ϕ ∈ Φ such that for all x, y ∈ X,

α(x, y)s3d(Tx, Ty) ≤ ϕ(d(x, y), d(x, Tx), d(y, Ty),
1
2s

d(x, Ty),
1
2s

d(y, Tx)).

Also that the following conditions hold:

(i) T is α−admissible and triangular α−admissible;

(ii) there exists x0 ∈ X such that α(x0, Tx0) ≥ 1;

(iii) X is α−regular;

(iv) either α(u, v) ≥ 1 or α(v, u) ≥ 1 whenever Tu = u and Tv = v.

Then T has a unique fixed point.

Example 2.2. Let X be the set of Lebesgue measurable functions on [0, 1] such that
∫ 1

0 |x(t)| < ∞. Define d : X ×
X −→ [0, ∞) by

d(x, y) =
( ∫ 1

0
|x(t)− y(t)|dt

)2
.
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Then d is a b-metric on X, with s = 2.
The operator T : X −→ X defined by

Tx(t) =
1√
8

ln
(
|x(t)|+ 1

)
.

Now, we prove that Thas a unique fixed point. For all x, y ∈ X, we have

23d(Tx, Ty) = 23
( ∫ 1

0
|Tx(t)− Ty(t)|dt

)2
≤ 8

( ∫ 1

0
| 1√

8
ln(|x(t)|+ 1)− 1√

8
ln(|y(t)|+ 1)|dt

)2

≤
( ∫ 1

0
|(ln(|x(t)|+ 1)− ln(|y(t)|+ 1))|dt

)2
≤
( ∫ 1

0
ln(
|x(t)|+ 1
|y(t)|+ 1

)dt
)2

≤
( ∫ 1

0
ln(1 +

|x(t)− y(t)|
|y(t)|+ 1

)dt
)2
≤
(

ln(1 +
∫ 1

0
|x(t)− y(t)|dt)

)2

≤
(

ln(1 +

√
(
∫ 1

0
|x(t)− y(t)|dt)2)

)2

≤
(

ln(1 +
√

d(x, y))
)2

≤ ϕ(d(x, y), d(x, Tx), d(y, Ty),
1
2s

d(x, Ty),
1
2s

d(y, Tx)).

Now, if we define x0 = 0, α(x, y) = 1 and ϕ(t) = ln2(1 +
√

t) for all t1, t2, t3, t4, t5 ∈ R2, where
t = max{t1, t2, t3, t4, t5}. Thus, by using Corollary 2.1 we obtain that T has a unique fixed point.

From Theorem 2.1, if the function α : X × X → R is such that α(x, y) = 1 for all x, y ∈ X, we deduce the
following theorem.

Theorem 2.2. Let (X, d) be a complete b-metric space, T, g : X → X be such that TX ⊆ gX. Assume that gX is closed
such that for all x, y ∈ X,

s3d(Tx, Ty) ≤ ϕ(d(gx, gy), d(gx, Tx), d(gy, Ty),
1
2s

d(gx, Ty),
1
2s

d(gy, Tx)),

where ϕ ∈ Φ. Then T and g have a coincidence point. Moreover, if T and g are weakly compatible, then T and g have a
unique common fixed point.

In Theorem 2.1, if we put
ϕ(t1, t2, t3, t4, t5) = k max{t1, t2, t3, t4 + t5}

for all ti ∈ R+(i = 1, 2, 3, 4, 5), we deduce the following theorem.

Theorem 2.3. Let (X, d) be a complete b-metric space, T, g : X → X be such that TX ⊆ gX. Assume that gX is closed
and there exist α : X× X → R and 0 < k < 1

2 such that for all x, y ∈ X,

α(x, y)s3d(Tx, Ty) ≤ k max{d(gx, gy), d(gx, Tx), d(gy, Ty),
d(gx, Ty) + d(gy, Tx)

2s
}.

Assume also that the following conditions hold:

(i) T is g− α−admissible and triangular α−admissible;

(ii) there exists x0 ∈ X such that α(gx0, Tx0) ≥ 1;

(iii) X is α−regular with respect to g.

Then T and g have a coincidence point.
Moreover, if the following conditions hold:

(a) The pair {T, g} is weakly compatible;

(b) either α(u, v) ≥ 1 or α(v, u) ≥ 1 whenever Tu = gu and Tv = gv.

Then T and g have a unique common fixed point.
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Example 2.3. Let X = [0, ∞) be endowed with b-metric d(x, y) = (|x − y|)2 = (x − y)2, where s = 2. Define
T, g : X −→ X by

T(x) =


1
8 x, 0 ≤ x ≤ 4

3 ,

x− 2
3

, x > 4
3 .

and
g(x) =

3
4

x ∀x ∈ X.

Now, we define the mapping α : X× X → R+ by

α(x, y) =


1, if (x, y) ∈ [0, 1],

0, otherwise.

It is easily seen that the pair {T, g} is weakly compatible, T(X) ⊂ g(X) and g(X) is closed. For all x, y ∈ X, we have

α(x, y)s3d(Tx, Ty) = 1.8.|1
8

x− 1
8

y|2 =
2
9
|3
4

x− 3
4

y|2

=
2
9

d(gx, gy)

≤ 1
3

max{d(gx, gy), d(gx, Tx), d(gy, Ty),
d(gx, Ty) + d(gy, Tx)

2s
}.

Moreover, there exists x0 ∈ X such that α(gx0, Tx0) ≥ 1. Indeed, for x0 = 1, we have α(g(1), T(1)) = α( 3
4 , 1

8 ) = 1.
Let x, y ∈ X such that α(gx, gy) ≥ 1, that is, gx, gy ∈ [0, 1] and by the definition of g, we have x, y ∈ [0, 4

3 ].
So, by definition of T and α, we have T(x) = 1

8 x ∈ [0, 1], T(y) = 1
8 y ∈ [0, 1] and α(Tx, Ty) = 1. Thus, T is

g− α−admissible and hence (i) is satisfied.
Finally, it remains to show that X is α−regular with respect to g. In so doing, let {xn} ⊆ X such that α(gxn, gxn+1) ≥
1 for all n ∈ N and gxn → gx ∈ gX as n → ∞. Since α(gxn, gxn+1) ≥ 1 for all n ∈ N, by the definition of α, we
have gxn ∈ [0, 1] for all n ∈ N and gx ∈ [0, 1]. Then, α(gxn, gx) ≥ 1. Now, all the hypotheses of Theorem 2.3 are
satisfied. Consequently, 0 is the unique common fixed point of T and g.

Remark 2.1. Since a b−metric space is a metric space when s = 1, so our results can be viewed as the generalization
an the extension of several comparable results.
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Abstract

Existence results are obtained for fractional differential equations with Cp continuity of functions.
Monotone method for nonlinear initial value problem is developed by introducing the notion of coupled
lower and upper solutions. As an application of the method existence and uniqueness results are obtained.
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1 Introduction

The advantages of fractional derivatives become apparent in modeling mechanical and electrical
properties of real materials, and in many other fields, like theory of fractals. Analytical as well as numerical
methods are available for studying fractional differential equations such as compositional method, transform
method, Adomain methods and power series method etc. ( see details in [4, 23] and references therein).
Monotone method [5] coupled with method of lower and upper solutions is an effective mechanism that
offers constructive procedure to obtain existence results in a closed set. Basic theory of fractional differential
equations with Riemann-Liouville fractional derivative is well developed in [2, 7, 9]. Lakshamikantham and
Vatsala [1, 6, 8] obtained the local and global existence of solution of Riemann-Liouville fractional differential
equation and uniqueness of solution. In the year 2009, McRae developed monotone method for
Riemann-Liouvile fractional differential equation with initial conditions and studied the qualitative
properties of solutions of initial value problem [10]. Nanware and Dhaigude [11, 13, 14, 16–22] developed
monotone method for system of fractional differential equations with various conditions and successfully
applied to study qualitative properties of solutions. Nanware obtained existence results for the solution of
fractional differential equations involving Caputo derivative with boundary conditions [12, 15]. In 2012,
Yaker and Koksal have studied initial value problem (1.1) − (1.2) for Riemann- Liouville fractional
differential equations. They have proved existence results by using concept of lower and upper solutions
and local existence results under the strong hypothesis that the functions are locally Holder continuous.
In this paper, we develop monotone method without such strong hypothesis for the following nonlinear
Riemann-Liouville fractional differential equation with initial condition

Dqu(t) = f (t, u(t)) + g(t, u(t)), t ∈ [t0, T] (1.1)

∗Corresponding author.
E-mail address: jag skmg91@rediffmail.com (J.A. Nanware), narsingjadhav4@gmail.com (N.B. Jadhav), dnyaraja@gmail.com (D.B.
Dhaigude).
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u0 = u(t)(t− t0)
1−q}t=t0 (1.2)

where f , g ∈ C(J ×R, R), J = [t0, T], f (t, u) is nondecreasing in u , g(t, u) is nonincreasing in u for each t and
Dq denotes the Riemann-Liouville fractional derivative with respect to t of order q(0 < q < 1). This is called
initial value problem(IVP). We develop monotone method coupled with lower and upper solutions for the
IVP (1.1)− (1.2). The method is applied to obtain existence and uniqueness of solution of the IVP (1.1)− (1.2).

The paper is organized in the following manner : In section 2, we consider some definitions and lemmas
required in next section and obtained result for nonstrict inequalities. In section 3, we improve the existence
results due to Yaker and Koksal. In section 4, we develop monotone method and apply it to obtain existence
and uniqueness results for Riemann-Liouville fractional differential equation with initial condition when
nonlinear function on the right hand side is considered as sum of nondecreasing and nonincreasing functions.

2 Preliminaries

In this section, we discuss some basic definitions and results which are required for the development of
monotone method for fractional differential equation with initial condition involving Riemann-Liouville
derivative when nonlinear function on the right hand side is considered as sum of nondecreasing and
nonincreasing functions.

The Riemann-Liouville fractional derivative of order q(0 < q < 1) [23] is defined as

Dq
au(t) =

1
Γ(n− q)

(
d
dt

)n ∫ t

a
(t− τ)n−q−1u(τ)dτ, for a ≤ t ≤ b.

Lemma 2.1. [2] Let m ∈ Cp([t0, T], R) and for any t1 ∈ (t0, T] we have m(t1) = 0 and m(t) < 0 for t0 ≤ t ≤ t1.
Then it follows that Dqm(t1) ≥ 0.

Lemma 2.2. [6] Let {uε(t)} be a family of continuous functions on [t0, T], for each ε > 0 where Dquε(t) =

f (t, uε(t)), uε(t0) = uε(t)(t − t0)
1−q}t=t0 and | f (t, uε(t))| ≤ M for t0 ≤ t ≤ T. Then the family {uε(t)} is

equicontinuous on [t0, T].

Now, we introduce the notion of lower and upper solutions for the initial value problem (1.1)− (1.2).

Definition 2.1. A pair of functions v(t) and w(t) in Cp(J, R) are said to be lower and upper solutions of the IVP
(1.1)− (1.2) if

Dqv(t) ≤ f (t, v(t)) + g(t, v(t)), v0 ≤ u0

Dqw(t) ≥ f (t, w(t)) + g(t, w(t)), w0 ≥ u0.

Definition 2.2. A pair of functions v(t) and w(t) in Cp(J, R) are said to be lower and upper solutions of type I of IVP
(1.1)− (1.2) if

Dqv(t) ≤ f (t, v(t)) + g(t, w(t)), v0 ≤ u0

Dqw(t) ≥ f (t, w(t)) + g(t, v(t)), w0 ≥ u0.

Definition 2.3. A pair of functions v(t) and w(t) in Cp(J, R) are said to be lower and upper solutions of type II of IVP
(1.1)− (1.2) if

Dqv(t) ≤ f (t, w(t)) + g(t, v(t)), v0 ≤ u0

Dqw(t) ≥ f (t, v(t)) + g(t, w(t)), w0 ≥ u0.

Definition 2.4. A pair of functions v(t) and w(t) in Cp(J, R) are said to be lower and upper solutions of type III of
IVP (1.1)− (1.2) if

Dqv(t) ≤ f (t, w(t)) + g(t, w(t)), v0 ≤ u0

Dqw(t) ≥ f (t, v(t)) + g(t, v(t)), w0 ≥ u0.
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3 Existence Results

In this section, we improve the existence results due to Yaker and Koksal [24] for IVP (1.1)− (1.2). We now
state and prove the following existence results.

Theorem 3.1. Suppose that:

(i) v(t) and w(t) in Cp(J, R) are coupled lower and upper solutions of type I of IVP (1.1)-(1.2) with v(t) ≤ w(t) on J.

(ii) f (t, u), g(t, u) ∈ C[Ω, R] and g(t, u(t)) is nonincreasing in u for each t on J.

Then there exist a solution u(t) of IVP (1.1)-(1.2) satisfying v(t) ≤ u ≤ w(t) on J.

Proof. Let P : J ×R→ R be defined by

P(t, u) = min{w(t), max(u(t), v(t))}

Then f (t, P(t, u(t)) + g(t, P(t, u(t))) defines a continuous extension of f + g to J ×R which is bounded, since
f + g is uniformly bounded on Ω. By Lemma 2.2, it follows that the family Pε(t, u(t)) is equicontinuous on J.
By Ascoli-Arzela theorem the sequences {Pε(t, u(t))} has convergent subsequences {Pεn(t, u1)} which
converges uniformly to P(t, u). Since f + g is uniformly continuous, we obtain that
f (t, Pεn(t, u)) + g(t, Pεn(t, u)) tends uniformly to f (t, P(t, u)) + g(t, P(t, u)) as n → ∞. Hence P(t, u(t)) is the
solution of

Dqu(t) = f (t, P(t, u)) + g(t, P(t, u)), u(t) = u(t0)(t− t0)
1−q}t=t0 = u0. (3.3)

It follows that the equation (3.3) has a solution on the interval J.
We wish to prove that v(t) ≤ u(t) ≤ w(t) on J. For ε > 0, consider wε(t) = w(t) + εγ(t) and viε(t) =

vi(t)− εγ(t), where γ(t) = (t− t0)
q−1Eq,q((t− t0)

q) Then we have w0
ε = w0 + εγ0, v0

ε = v0 − εγ0, where
γ0 > 0. This shows that v0

ε < u0 < w0
ε. Next we show that u < wε, t0 ≤ t ≤ T. On the contrary, suppose

that vε ≥ u ≥ wε. Then there exists t1 ∈ (t0, T] such that u(t1) = wε(t1) and vε > u > wε, t0 ≤ t < t1. Thus
u(t1) > w(t1) and hence P(t1, u(t1)) = w(t1).
Set m(t) = u(t)− wε(t) we have m(t1) = 0 and m(t) ≤ 0, t0 ≤ t ≤ t1. By Lemma 2.1, we have Dqu(t1) ≥
Dqwε(t1) which gives a contradiction

f (t1, w(t1)) + g(t1, w(t1)) = f (t1, P(t1, u(t1)) + g(t1, P(t1, u(t1)))

= Dqu(t1)

≥ Dqwε(t1)

= Dqw(t1) + εγ(t1)

> Dqw(t1)

≥ f (t1, w(t1)) + g(t1, v(t1))

Similarly, we prove vε < u, t0 ≤ t ≤ T. For this, suppose there exists t1 ∈ (t0, T] such that vε(t1) = u(t1)

and vε(t) > u(t), t0 ≤ t < t1. Thus u(t1) < v(t1 ≤ w(t1) and hence P(t1, u(t1)) = v(t1).
Set m(t) = vε(t) − u(t) we have m(t1) = 0 and m(t) ≤ 0, t0 ≤ t ≤ t1. Applying Lemma 2.1, we have
Dqu(t1) ≥ Dqwε(t1). Since g(t, u) is nonincreasing in u for each t and γ(t) > 0, we get a contradiction

f (t1, v(t1)) + g(t1, v(t1)) = f (t1, P(t1, u(t1)) + g(t1, P(t1, u(t1)))

= Dqu(t1)

≤ Dqvε(t1)

= Dqv(t1)− εγ(t1)

< Dqv(t1)

≤ f (t1, v(t1)) + g(t1, w(t1))

Consequently, we get vε(t) < u(t) < wε(t) on J. In the limiting case ε → 0 we get v(t) ≤ u(t) ≤ w(t) on
J.
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Theorem 3.2. Suppose that:

(i) v(t) and w(t) in Cp(J, R) are coupled lower and upper solutions of type II of IVP (1.1)-(1.2) with v(t) ≤ w(t) on
J.

(ii) f (t, u), g(t, u) ∈ C[Ω, R] and f (t, u) is nonincreasing in u for each t on J.

Then there exists a solution u(t) of IVP (1.1)-(1.2) satisfying v(t) ≤ u ≤ w(t) on J.

Proof. Proof can be given on the same line as in Theorem 3.1.

Theorem 3.3. Suppose that:

(i) v(t) and w(t) in Cp(J, R) are coupled lower and upper solutions of type III of IVP (1.1)-(1.2) with v(t) ≤ w(t) on
J.

(ii) f (t, u(t)), g(t, u(t)) ∈ C[Ω, R] are both nonin creasing in u for each t on J.

Then there exists a solution u(t) of IVP (1.1)-(1.2) satisfying v(t) ≤ u ≤ w(t) on J.

Proof. Proof can be given on the same line as in Theorem 3.1.

4 Monotone Method

In this section we develop monotone method for Riemann-liouville fractional differential equations with
initial conditions for all types of coupled lower and upper solutions defined in section 2 and we apply the
method to obtain extremal solutions and uniqueness of solution of the IVP (1.1)-(1.2).

Theorem 4.4. Assume that:

(i) f (t, u(t)) and g(t, u(t)) in C[Ω, R2] and f (t, u(t)) nonincreasing in u for each t ∈ [t0, T],

(ii) v0(t) and w0(t) in C(J, R) are coupled lower and upper solutions of type I of IVP (1.1)-(1.2) such that v0(t0) ≤
w0(t0) on J.

(iii) f (t, u(t)), g(t, u(t)) satisfies one-sided Lipschitz condition,

f (t, u(t))− f (t, u(t)) ≥ −M(u− u), M > 0, u ≥ u,

g(t, u(t))− g(t, u(t)) ≥ −N(u− u), N > 0, u ≥ u

Then there exist monotone sequences {vn(t)} and {wn(t)} such that

{vn(t)} → v(t) and {wn(t)} → w(t)as n→ ∞

and v(t) and w(t)) are minimal and maximal solutions of the IVP (1.1)-(1.2).

Proof. For any η in C(J, R) such that for v0 ≤ η on J, we consider the following linear fractional differential
equation

Dqu(t) = f (t, η(t)) + g(t, η(t))−M(u− η)− N(u− η), u(t)(t− t0)
1−q}t=t0 = u0 (4.4)

Since the right hand side of equation (4.4) is known, it is clear that for every η there exists a unique solution
u(t) of IVP (4.4) on J.

For each η and µ in C(J, R) such that v0 ≤ η and w0 ≤ µ, define a mapping A by A[η, µ] = u(t) where
u(t) is the unique solution of IVP (4.4). This mapping defines the sequences {vn(t)} and {wn(t)}. Firstly, we
prove

(I) v0 ≤ A[v0, w0], , w0 ≥ A[w0, v0]
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(I I) A possesses the monotone property on the segment
[v0, w0] ∈ C(J, R2) : v0 ≤ u ≤ w0}

Set A[v0, w0] = v1(t), where v1(t) is the unique solution of IVP (4.4) with η(t) = v0(t) and v0 is lower solution
of IVP (1.1)-(1.2).
Consider p(t) = v0(t)− v1(t) so that, we have

Dq p(t) = Dqv0(t)− Dqv1(t)

≤ f (t, v0(t)) + g(t, v0(t))− f (t, v0))− g(t, v0) + M(v1 − v0)

≤ −Mp(t)

Thus we have Dq p(t) ≤ −Mp(t)

and p(t)(t− t0)
1−q}t=t0 ≤ 0

By Lemma 2.1, we have p(t) ≤ 0 on t0 ≤ t ≤ T.This implies v0(t) ≤ v1(t). Thus v0 ≤ A[v0, w0]. Similarly
we can prove w0 ≥ A[w0, v0].
Let η(t) and µ(t) in [v0, w0] be such that η(t) ≤ µ(t). Suppose that A[η, µ] = u(t) and A[η, µ] = v(t)
Consider p(t) = u(t)− v(t) we find by Lipschitz condition that

Dq p(t) = Dqu(t)− Dqv(t)

= f (t, η(t)) + g(t, η(t))− f (t, η(t))− g(t, η(t)) + M(u− η)

≤ −M(u− v)

≤ −Mp(t)

Thus we have Dq p(t) ≤ −Mp(t)

and p(t)(t− t0)
1−q}t=t0 ≤ 0

As before in (I),we have A[η, µ] ≤ A[η, µ]. This shows that operator A possesses monotone property on
[v0, w0]. Now in view of (I) and (I I), define the sequences

vn(t) = A[vn−1, wn−1], wn(t) = A[vn−1, wn−1] on the segment [v0, w0].

It follows that

v0(t) ≤ v1(t) ≤ v2(t) ≤ ...vn(t) ≤ wn(t) ≤ wn−1(t) ≤ ... ≤ w1(t) ≤ w0(t). (4.5)

Obviously the sequences {vn(t)} and {wn(t)} are monotonic and bounded hence they are uniformly
bounded on J. By Lemma 2.2 it follows that the sequences {vn(t)} and {wn(t)} are equicontinuous on J
and by Ascoli-Arzela Theorem, there exists subsequences {vnk (t)} and {wnk (t)} that converge uniformly on
J. By (4.5) it follows that the sequences {vnk (t)} and {wnk (t)} converge uniformly and monotonically to v(t)
and w(t) where

lim
n→∞

vn(t) = v(t) lim
n→∞

wn(t) = w(t) on [t0, T]

Using following fractional Volterra integral equations

vn+1(t) = v0
0 +

1
Γ(q)

∫ t

t0

(t− s)q−1{ f (s, vn) + g(s, vn)−M(vn − η)− N(vn − η)}ds

wn+1(t) = w0
0 +

1
Γ(q)

∫ t

t0

(t− s)q−1{ f (s, wn) + g(s, wn)−M(wn − µ)− N(wn − µ)}ds
(4.6)

it follows that v(t) and w(t) are solutions of IVP (1.1)-(1.2).
To prove that v(t) and w(t) are the minimal and maximal solutions of IVP (1.1)-(1.2), we need to prove that

if u(t) is any solution of IVP (1.1)-(1.2) such that v0 ≤ u ≤ w0 on [t0, T] then v0 ≤ v ≤ u ≤ w0 on J. Suppose
that for some n, vn(t) ≤ u(t) ≤ wn(t) on J. Firstly, we prove vn+1(t) ≤ u(t) on [t0, T]. Set p(t) = vn+1(t)− u(t)
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so that by Lipschitz condition we have

Dq p(t) = Dqvn+1(t)− Dqu(t)

= f (t, vn) + g(t, vn)−M(vn+1 − vn)− f (t, u)− g(t, u)

≤ −M(vn − u)−Mi(vn − u)−M(vn+1 − vn)

≤ −Mp(t)

Thus we have Dq p(t) ≤ −Mp(t)

and p(t)(t− t0)
1−q}t=t0 ≤ 0

By Lemma 2.1, it follows that p(t) ≤ 0. This implies vn+1(t) ≤ u(t) on J.
Secondly, we prove that u(t) ≤ wn+1(t). Consider p(t) = u(t)− wn+1(t). By Lipschitz condition we have

Dq p(t) = Dqu(t)− Dqwn+1(t)

= f (t, u) + g(t, u)−M(wn+1 − wn)− f (t, wn+1)− g(t, wn+1)

≤ −M(u− wn+1)

≤ −Mp(t)

Thus we have Dq p(t) ≤ −Mp(t)

and p(t)(t− t0)
1−q}t=t0 ≤ 0

Using Lemma 2.1,we get p(t) ≤ 0. It follows that u(t) ≤ wn+1(t). Since v0 ≤ u ≤ w0 on J, by induction we
have vn(t) ≤ u(t) ≤ wn(t) for all n. In limiting case as n→ ∞, it follows that v(t) ≤ u(t) ≤ w(t) on J.

Lastly,we prove the uniqueness of solution of IVP (1.1)-(1.2) in the following

Theorem 4.5. Assume that (i)-(ii) of Theorem 4.1 hold and if

| f (t, u(t))− f (t, u)| ≤ M|(u− u)|, v0 ≤ u ≤ u ≤ w0, M > 0

then v(t) = w(t) = u(t) is the unique solution of IVP (1.1)− (1.2).

Proof. We need to prove only v(t) ≥ w(t). Set p(t) = w(t)− v(t), we find by Lipschitz condition that

Dq p(t) = Dqw(t)− Dqv(t)

= f (t, w(t)) + g(t, w(t))− f (t, v(t))− g(t, v(t))

≤ Mp(t)

Thus we have Dq p(t) ≤ −Mp(t)

and p(t)(t− t0)
1−q}t=t0 ≤ 0

Hence by Lemma 2.1, we have v(t) ≥ w(t). This shows that v(t) = w(t) = u(t) is the unique solution of IVP
(1.1)-(1.2).

Theorem 4.6. Assume that:

(i) f (t, u(t)) and g(t, u(t)) in C[Ω, R2] and f (t, u(t)) nonincreasing in u for each t ∈ [t0, T],

(ii) v0(t) and w0(t) in C(J, R) are coupled lower and upper solutions of type II of IVP (1.1)-(1.2) such that v0(t0) ≤
w0(t0) on J

(iii) f (t, u(t)), g(t, u(t)) satisfies one-sided Lipschitz condition,

f (t, u(t))− f (t, u(t)) ≥ −M(u− u), M > 0, u ≥ u,

g(t, u(t))− g(t, u(t)) ≥ −N(u− u), N > 0, u ≥ u

Then there exist monotone sequences {vn(t)} and {wn(t)} such that

{vn(t)} → v(t) and {wn(t)} → w(t)as n→ ∞

and v(t) and w(t)) are minimal and maximal solutions of the IVP (1.1)− (1.2).
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Proof. Proof can be given on the same line as in Theorem 4.1

Theorem 4.7. Assume that (i)-(ii) of Theorem 4.3 hold and if

| f (t, u(t))− f (t, u)| ≤ M|(u− u)|, v0 ≤ u ≤ u ≤ w0, M > 0

then v(t) = w(t) = u(t) is the unique solution of IVP (1.1)− (1.2).

Proof. Proof can be given on the same line as in Theorem 4.2.

Theorem 4.8. Assume that:

(i) f (t, u(t)) and g(t, u(t)) in C[Ω, R2] and f (t, u(t)) nonincreasing in u for each t ∈ [t0, T],

(ii) v0(t) and w0(t) in C(J, R) are coupled lower and upper solutions of type III of IVP (1.1)-(1.2) such that v0(t0) ≤
w0(t0) on J

(iii) f (t, u(t)), g(t, u(t)) satisfies one-sided Lipschitz condition,

f (t, u(t))− f (t, u(t)) ≥ −M(u− u), M > 0, u ≥ u,

g(t, u(t))− g(t, u(t)) ≥ −N(u− u), N > 0, u ≥ u

Then there exist monotone sequences {vn(t)} and {wn(t)} such that

{vn(t)} → v(t) and {wn(t)} → w(t)as n→ ∞

and v(t) and w(t)) are minimal and maximal solutions of the IVP (1.1)-(1.2).

Proof. Proof can be given on the same line as in Theorem 4.1

Theorem 4.9. Assume that (i)-(ii) of Theorem 4.5 hold and if

| f (t, u(t))− f (t, u)| ≤ M|(u− u)|, v0 ≤ u ≤ u ≤ w0, M > 0

then v(t) = w(t) = u(t) is the unique solution of IVP (1.1)− (1.2).

Proof. Proof can be given on the same line as in Theorem 4.2

5 Conclusion

Existence results obtained by Yaker and Koksal are improved for the class of continuous functions.
Monotone method coupled with lower and upper solutions is developed for the initial value problem
(1.1)− (1.2) when the function on the right hand side is sum of nondecreasing and nonincreasing functions.
The method developed is successfully applied to obtain existence and uniqueness of solutions of the IVP
(1.1)− (1.2).
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Abstract

In this paper, we are concerned with the existence of solutions for boundary value problems, first for a class
of fractional differential equations and second for a class of fractional differential inclusions. The methods
include techniques associated with measure of noncompactness in conjunction with fixed point theorems of
Mönch type.
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1 Boundary Value Problems for Fractional Differential Equations in
Banach Spaces

1.1 Introduction

In this section, we are concerned with the existence of solutions for boundary value problems (BVP for short),
for a class of fractional order differential equations, when we apply the method associated with the technique
of measure of noncompactness and a fixed point theorem of Mönch type. This technique was mainly initiated
in the monograph of Banas and Goebel [11] and subsequently developed and used in many papers; see, for
example, Banas and Sadarangani [12], Guo et al. [25], Lakshimikantham and Leela [38], Mönch [42], and
Szufla [47].

1.2 Preliminaries

We introduce notations, definitions, and preliminary facts, many of which will be used throughout the
remainder of this paper.

Let C(J, E) be the Banach space of all continuous functions from J into E with the norm

‖y‖ = sup{|y(t)| : 0 ≤ t ≤ T},

and we let L1(J, E) denote the Banach space of functions y : J −→ E which are Bochner integrable with norm

‖y‖L1 =
∫ T

0
|y(t)|dt.

∗Corresponding author.
E-mail address: hamani samira@yahoo.fr (Samira Hamani), Johnny Henderson@baylor.edu (Johnny Henderson),
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Let L∞(J, E) be the Banach space of functions y : J → E which are bounded and equipped with the norm

‖y‖L∞ = inf{c > 0 : ‖y(t)‖ ≤ c : a.e. t ∈ J}.

Let AC1(J, E) is the space of functions y : J → E, which are absolutely continuous whose first derivative
y′ is absolutely continuous.

For a given set V of functions v : J → E, we define

V(t) = {ϑ(t) : ϑ ∈ V}, t ∈ J,

V(J) = {ϑ(t) : ϑ ∈ V, t ∈ J}.

Definition 1.2.1. ([37, 45]). The fractional (arbitrary) order integral of the function h ∈ L1([a, b], R+) of order r ∈ R+

is defined by

Ir
ah(t) =

∫ t

a

(t− s)r−1

Γ(r)
h(s)ds,

where Γ is the gamma function. When a = 0, we write Irh(t) = h(t) ∗ ϕr(t), where ϕr(t) = tr−1

Γ(r) for t > 0, and
ϕr(t) = 0 for t ≤ 0, and ϕr → δ(t) as r → 0, where δ is the delta function.

Definition 1.2.2. ([37, 45]). For a function h given on the interval [a, b], the r Riemann-Liouville fractional-order
derivative of h, is defined by

(Dr
a+h)(t) =

1
Γ(n− r)

(
d
dt

)n ∫ t

a
(t− s)n−r−1h(s)ds.

Here n = [r] + 1 and [r] denotes the integer part of r.

For convenience, we first recall the definition of the Kuratowski measure of noncompactness, and
summarize the main properties of this measure.

Definition 1.2.3. ([6, 11]) Let E be a Banach space and let ΩE be the family of bounded subsets of E. The Kuratowski
measure of noncompactness is the map α : ΩE → [0, ∞) defined by

α(B) = inf{ε > 0, : B ⊂
m⋃

j=1

Bj and diam(Bj) ≤ ε} ; here B ∈ ΩE.

Properties:

(1) α(B) = 0⇔ B is compact (B is relatively compact).

(2) α(B) = α(B).

(3) A ⊂ B⇒ α(A) ≤ α(B).

(4) α(A + B) ≤ α(A) + α(B).

(5) α(cB) = cα(B) ; c ∈ R.

(6) α(conB) = α(B).

Here B and conB denote the closure and the convex hull of the bounded set B, respectively.
The details of α and its properties can be found in [6, 11].

Definition 1.2.4. A multivalued map F : J × E→ E is said to be Carathéodory if

(1) t→ F(t, u) is measurable for each u ∈ E.

(2) u→ F(t, u) is upper semicontinuous for almost all t ∈ J.

Let us now recall Mönch’s fixed point theorem and an important lemma.
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Theorem 1.2.1. ([42],[5]) Let D be a bounded, closed and convex subset of a Banach space E such that 0 ∈ D, and let
N be a continuous mapping of D into itself. if the implication,

V = coN(V) orV = N(V) ∪ {0} =⇒ α(V) = 0, (1.1)

holds for every subset V of D, then N has a fixed point.

Lemma 1.2.1. ([47]) Let D be a bounded, closed and convex subset of a Banach space C(J, E), G be a continuous
function on J × J, and f : J × E → E be a function satisfying the Carathéodory conditions, and suppose there exists
p ∈ L1(J, R+) such that for each t ∈ J and each bounded set B ⊂ E one has

lim
k→0+

α( f (Jt,k × B)) ≤ p(t)α(B); where Jt,k = [t− k, t] ∩ J. (1.2)

If V is an equicontinuous subset of D, then

α({
∫

J
G(s, t) f (s, y(s))ds : y ∈ V}) ≤

∫
J
‖G(t, s)‖p(s)α(V(s))ds. (1.3)

1.3 Boundary Value Problems of Order r ∈ (1, 2]

We consider the boundary value problem with nonlocal conditions

Dry(t) = f (t, y(t)), for a.e. t ∈ J = [0, T], (1.4)

y(0) = 0, y(T) = g(y), (1.5)

where 1 < r ≤ 2, Dr is the Riemann-Liouville fractional derivative, f : J × E → E is a continuous function,
g : E→ E is a continuous function and (E, | · |) denotes a Banach space.

Later we will study another boundary value problem for another fractional differential equation with
nonlocal conditions. In particular, we will consider the boundary value problem with nonlocal conditions,

Dry(t) = f (t, y(t)), for a.e. t ∈ J = [0, T], (1.6)

y(0) = 0, βy(η) = y(T), (1.7)

where 1 < r ≤ 2, 0 < βηr−1 < 1, 0 < η < 1, and Dr, f , (E, | · |) are as in (1.4)-(1.5).

1.3.1 Main Results for (1.4)-(1.5) and (1.6)-(1.7)

Let us start by defining what we mean by a solution of the problem (1.4)-(1.5).

Definition 1.3.5. A function y ∈ C([0, T], E) is said to be a solution of (1.4)-(1.5) if y satisfies the equation Dry(t) =
f (t, y(t)) on J, and the conditions y(0) = 0, y(T) = g(y).

For the existence of solutions for the problem (1.4)-(1.5), we need the following auxiliary lemma.

Lemma 1.3.2. [10] Let r > 0, and h ∈ C(0, T) ∩ L(0, T) then

IαDαh(t) = h(t) + c1tr−1 + c2tr−2 + . . . + cntr−n

for some ci ∈ R, i = 0, 1, 2, . . . , n− 1, where n is the smallest integer greater than or equal to r.

Lemma 1.3.3. Let 1 < α ≤ 2 and let h : [0, T] → R be continuous. A function y ∈ C([0, T], E) is a solution of the
fractional integral equation

y(t) = 1
Γ(r)

∫ t
0 (t− s)r−1h(s)ds

+ tr−1

Tr−1Γ(r)

∫ T
0 (T − s)r−1h(s)ds− tr−1

Tr−1 g(y)
(1.8)

if and only if y is a solution of the fractional BVP

Dry(t) = h(t), t ∈ [0, T], (1.9)

y(0) = 0, y(T) = g(y). (1.10)
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Proof: Assume y satisfies (1.9). Then Lemma 1.3.2 implies that

y(t) = c1tr−1 + c2tr−2 +
1

Γ(r)

∫ t

0
(t− s)r−1h(s)ds.

From (1.10), a simple calculation gives
c2 = 0,

and

c1 =
1

Tr−1Γ(r)

∫ T

0
(T − s)r−1h(s)ds +

1
Tr−1 g(y).

Hence we get equation (1.8). Conversely, it is clear that if y satisfies the integral equation (1.8), then equations
(1.9)-(1.10) hold. �

Theorem 1.3.2. Assume the following hypotheses hold:

(H1) The function f : J × E −→ E satisfies the Carathéodory conditions.

(H2) There exists p ∈ L∞(J, R+), such that

‖ f (t, y)‖ ≤ p(t)‖y‖ for a.e. t ∈ J and each y ∈ E.

(H3) There exists constant k∗ > 0 such that

‖g(y)‖| ≤ k∗‖y‖ for each y ∈ E.

(H4) For almost each t ∈ J and each bounded set B ⊂ E we have

lim
k→0+

α( f (Jt,k × B)) ≤ p(t)α(B).

(H5) For almost each bounded set B ⊂ E we have

α(g(B)) ≤ k∗α(B).

Then the BVP (1.4)-(1.5) has at least one solution on C(J, B), provided that

Tr + T2r

Γ(r)
‖p‖L∞ +

k∗Tr

Γ(r)
< 1. (1.11)

Proof. Transform the problem (1.4)-(1.5) into a fixed point problem. Consider the operator

(Ny)(t) = 1
Γ(r)

∫ t
0 (t− s)r−1 f (s, y(s))ds

+ tr−1

Tr−1Γ(r)

∫ T
0 (T − s)r−1 f (s, y(s))ds− tr−1

Tr−1 g(y).

Clearly, from Lemma 1.3.3, the fixed points of N are solutions to (1.4)-(1.5).
Now, let R > 0 and consider the set

DR = {y ∈ C(J, E) : ‖y‖∞ ≤ R}.

We shall show that N satisfies the assumptions of Mönch’s fixed point theorem. The proof will be given in
several steps.

Step 1: N is continuous.

Let {yn} be a sequence such that yn → y in C(J, E). Then, for each t ∈ J,

|(Nyn)(t)− (Ny)(t)| ≤ 1
Γ(r)

∫ t
0 (t− s)r−1‖ f (s, yn(s)− f (s, y(s))‖ds

+ tr−1

Tr−1Γ(r)

∫ T
0 (T − s)r−1‖ f (s, yn(s)− f (s, y(s))‖ds.
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Let ρ > 0 be such that

‖yn‖∞ ≤ ρ, ‖y‖∞ ≤ ρ.

By (H2)-(H3) we have

‖ f (s, yn(s)− f (s, y(s))‖ ≤ 2ρp(s) := σ(s); σ ∈ L1(J, R+).

Since f is a Carathéodory function, the Lebesgue dominated convergence theorem implies that

‖N(yn)− N(y)‖∞ → 0 as n→ ∞.

Step 2: N maps DR into itself.

For each y ∈ DR, by (H2) and (1.11) we have for each t ∈ J

‖N(y)(t)‖ ≤ 1
Γ(r)

∫ t
0 (t− s)r−1‖ f (s, y(s))‖ds

+ tr−1

Tr−1Γ(r)

∫ T
0 (T − s)r−1‖ f (s, y(s))‖ds + tr−1

Tr−1 ‖g(y)‖
≤ Tr+T2r

Γ(r) ‖p‖L∞ + k∗Tr

Γ(r)
≤ R.

Step 3: N(DR) is bounded and equicontinuous.

By Step 2, it is obvious that N(DR) ⊂ C(J, E) is bounded.

For the equicontinuity of N(DR), let t1, t2 ∈ J, t1 < t2, and y ∈ DR. We have

|(Ny)(t2)− (Ny)(t1)| =
∣∣∣ 1
Γ(r)

∫ t1

0
[(t2 − s)r−1 − (t1 − s)r−1] f (s, y(s))ds

+
1

Γ(r)

∫ t2

t1

(t2 − s)r−1 f (s, y(s))ds

+
(t1 − t2)

r−1

Tr−1Γ(r)

∫ T

0
(T − s)r−1| f (s, y(s))|ds

+
(t1 − t2)

r−1

Tr−1 g(y)
∣∣∣

≤ p(t)
Γ(r)

∫ t1

0
[(t1 − s)r−1 − (t2 − s)r−1]ds

+
p(t)
Γ(r)

∫ t2

t1

(t2 − s)r−1ds

+
p(t)(t2 − t1)

r−1

Tr−1Γ(r)

∫ T

0
(T − s)r−1ds +

k∗(t1 − t2)
r−1

Tr−1

≤ p(t)
Γ(r + 1)

[(t2 − t1)
r + tr

1 − tr
2] +

p(t)
Γ(r + 1)

(t2 − t1)
r

+
p(t)(t2 − t1)

r−1

Tr−1Γ(r)
+

k∗(t1 − t2)
r−1

Tr−1

≤ p(t)
Γ(r + 1)

(t2 − t1)
r +

p(t)
Γ(r + 1)

(tr
1 − tr

2)

+
p(t)(t2 − t1)

r−1

Tr−1Γ(r)
+

k∗(t1 − t2)
r−1

Tr−1 .

As t1 −→ t2, the right-hand side of the above inequality tends to zero.

Now let V be a subset of DR such that V ⊂ co(N(V) ∪ {0}). V is bounded and equicontinuous, and
therefore the function ϑ → ϑ = α(V(t)) is continuous on J. By (H3), Lemma1.2.1, and the properties of the
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measure α, we have for each t ∈ J

ϑ(t) ≤ α(N(V)(t) ∪ {0})
≤ α(N(V)(t))
≤

∫ t
0

Tr+T2r

Γ(r) p(s)α(V(s))ds + k∗Tr

Γ(r) α(V(t))

≤ ‖ϑ‖L∞

[
Tr+T2r

Γ(r) ‖p‖L∞ + k∗Tr

Γ(r)

]
.

This means that

‖ϑ‖L∞

(
1− Tr + T2r

Γ(r)
‖p‖L∞ +

k∗Tr

Γ(r)

)
≤ 1.

By (1.11) it follows that ‖ϑ‖∞ = 0, that is, ϑ = 0 for each t ∈ J, and then V(t) is relatively compact in E. In
view of the Ascoli-Arzela theorem, V is relatively compact in DR. Applying now Theorem 1.2.1 we conclude
that N has a fixed point which is a solution of the problem (1.4)-(1.5). �

Example. As an application of Theorem 1.3.2, we consider the fractional differential equation

Dry(t) =
2

19 + et |y(t)|, for a.e. t ∈ J = [0, 1], 1 < r ≤ 2, (1.12)

y(0) = 0, y(1) =
n

∑
i=1

ciy(ti), (1.13)

where 0 < t1 < t2 < · · · < tn < 1, ci, i = 1, . . . , n, are given positive constants with ∑n
i=1 ci <

4
5 .

Set

f (t, x) =
2

19 + et x, (t, x) ∈ J × [0, ∞),

Clearly, conditions (H1) and (H2) hold with

p(t) =
2

19 + et .

Condition (1.11) is satisfied with T = 1 and k∗ = 4
5 . Indeed

Tr+T2r

Γ(r) ‖p‖L∞ + k∗Tr

Γ(r) ≤ 2
25Γ(r) < 1,

which is satisfied for each r ∈ (1, 2]. Then by Theorem 1.2.1 (namely, Theorem 1.3.2), the problem (1.12)-(1.13)
has a solution on [0, 1].

Now we study the fractional boundary value problem (1.6)-(1.7).

Definition 1.3.6. A function y ∈ AC([0, T], E) is said to be a solution of (1.6)-(1.7) if y satisfies the equation Dry(t) =
f (t, y(t)) on J, and the conditions (1.7).

For the existence of solutions for the problem (1.6)-(1.7), we need the following auxiliary lemma.

Lemma 1.3.4. Let 1 < r ≤ 2 and let h : [0, T]→ R be continuous. A function y is a solution of the fractional integral
equation

y(t) = − 1
Γ(r)

∫ t
0 (t− s)r−1h(s)ds + tr−1

Tr−1−βηr−1Γ(r)

∫ T
0 (T − s)r−1h(s)ds

− βtr−1

Tr−1−βηr−1Γ(r)

∫ η
0 (η − s)r−1h(s)ds

(1.14)

if and only if y is a solution of the fractional BVP

Dry(t) = h(t), t ∈ [0, T], (1.15)

y(0) = 0, βy(η) = y(T). (1.16)
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Proof: Assume y satisfies (1.15), then Lemma 1.3.3 implies that

y(t) = −Irh(t) + c1tr−1 + c2tr−2,

for c1, c2 ∈ R. Consequently, the general solution is

y(t) = − 1
Γ(α)

∫ t

0
(t− s)r−1h(s)ds + c1tr−1 + c2tr−2.

From y(0) = 0, a simple calculation gives
c2 = 0,

and from βy(η) = y(T) combined with

y(T) = − 1
Γ(r)

∫ T

0
(T − s)r−1h(s)ds + c1Tr−1,

y(η) = − 1
Γ(r)

∫ η

0
(η − s)r−1h(s)ds + c1ηr−1,

we have

c1 =
1

Tr−1 − βηr−1Γ(r)

∫ T

0
(T − s)r−1h(s)ds− β

Tr−1 − βηr−1Γ(r)

∫ η

0
(η − s)r−1h(s)ds.

Hence we get equation (1.14). Conversely, it is clear that if y satisfies equation (1.14), then equations (1.15)-
(1.16) hold. �

Remark 1.3.1. The problem (1.15)-(1.16) is equivalent to

y(t) =
∫ T

0
G(t, s)h(s)ds. (1.17)

where

G(t, s) =



[t(T−s)]r−1−βtr−1(η−s)r−1

Tr−1−βηr−1Γ(r) −
(t−s)r−1Tr−1−βηr−1

Tr−1−βηr−1Γ(r) , 0 ≤ s ≤ t ≤ T, s ≤ η,
[t(T−s)]r−1−(t−s)r−1Tr−1−βηr−1

Tr−1−βηr−1Γ(r) , 0 ≤ η ≤ s ≤ t ≤ T,
[t(T−s)]r−1−βtr−1(η−s)r−1

Tr−1−βηr−1Γ(r) , 0 ≤ t ≤ s ≤ η ≤ T,
[t(T−s)]r−1

Tr−1−βηr−1Γ(r) , 0 ≤ t ≤ s ≤ T, η ≤ s.

(1.18)

Remark 1.3.2. The function t→
∫ T

0 |G(t, s)|ds is continuous on [0, T], and hence is bounded.

Theorem 1.3.3. Assume (H1),(H2) and the following hypothesis:

(H6) For almost each t ∈ J and each bounded set B1 ⊂ E we have

lim
l→0+

α( f (Jt,l × B1)) ≤ p(t)α(B1).

Then the BVP (1.6)-(1.7) has at least one solution on C(J, E), provided that

G∗T‖p‖L∞ < 1. (1.19)

Proof: Transform the problem (1.6)-(1.7) into a fixed point problem. Consider the operator

(N1y)(t) =
∫ T

0
G(t, s) f (s, y(s))ds (1.20)

where the function G(t, s) is given by (1.18).
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(We remark that, from Lemma 1.3.4, the fixed points of N1 are solutions to (1.6)-(1.7).)
Let R1 > 0 and consider the set

DR1 = {y ∈ C(J, E) : ‖y‖∞ ≤ R1}.

We shall show that N1 satisfies the assumptions of Mönch’s fixed point theorem. The proof will be given in
several steps.

Step 1: N1 is continuous.

Let {yn} be a sequence such that yn → y in C(J, E). Then, for each t ∈ J,

|(N1yn)(t)− (N1y)(t)| ≤
∫ T

0 |G(t, s)|‖ f (s, yn(s)− f (s, y(s))‖ds
≤

∫ T
0 sup(t,s)∈J×J |G(t, s)|‖ f (s, yn(s)− f (s, y(s))‖ds.

≤
∫ T

0 G∗‖ f (s, yn(s)− f (s, y(s))‖ds,

where
G∗ = sup

(t,s)∈J×J
|G(t, s)|.

Let ρ > 0 be such that
‖yn‖∞ ≤ ρ and ‖y‖∞ ≤ ρ.

By (H1)-(H2) we have

‖ f (s, yn(s)− f (s, y(s))‖ ≤ 2ρG∗p(s) := σ(s); σ ∈ L1(J, R+).

Since f is a Carathéodory function, the Lebesgue dominated convergence theorem implies that

‖N1(yn)− N1(y)‖∞ → 0 as n→ ∞.

Step 2: N1 maps DR1 into itself. For each y ∈ DR1 , by (H2) and (1.19) we have for each t ∈ J,

‖N1(y)(t)‖ ≤
∫ T

0 |G(t, s)|‖ f (s, y(s))‖ds
≤ T‖p‖L∞ G∗‖p∗‖L∞

≤ R1.

Step 3: N1(DR1) is bounded and equicontinuous.

By Step 2, it is obvious that N1(DR1) ⊂ C(J, E) is bounded.
For the equicontinuity of N1(DR1). Let τ1, τ2 ∈ J, τ1 < τ2, and y ∈ DR1 . We have

|N1(y)(τ2)− N2(y)(τ1)| =
∫ T

0 |G(τ2, s)− G(τ1, s)|| f (s, y(s))|ds
≤

∫ T
0 p(s)R1|G(τ2, s)− G(τ1, s)|ds

(1.21)

As τ1 −→ τ2, the right-hand side of the above inequality tends to zero.
Now let V be a subset of DR1 such that V ⊂ co(N1(V) ∪ {0}).

V is bounded and equicontinuous, and therefore the function ϑ → ϑ = α(V(t)) is continuous on J. By (H6),
Lemma 1.2.1, and the properties of the measure α, we have for each t ∈ J,

ϑ(t) ≤ α(N1(V)(t) ∪ {0})
≤ α(N1(V)(t))
≤

∫ T
0 p(s)|G(t, s)|α(V(s))ds

≤ ϑ‖L∞ [TG∗‖p‖L∞ ].

This implies that
‖ϑ‖L∞(1− [TG∗‖p‖L∞ ]) ≤ 1.

By (1.19) it follows that ‖ϑ‖∞ = 0, that is, ϑ = 0 for each t ∈ J, and then V(t) is relatively compact in E. In
view of the Ascoli-Arzela theorem, V is relatively compact in DR1 . Applying now Theorem 1.2.1 we conclude
that N1 has a fixed point which is a solution of the problem (1.6)-(1.7). �
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1.4 Boundary Value Problems of Order r ∈ (2, 3]

In this section, we will consider the boundary value problem

Dry(t) = f (t, y(t)), for a.e. t ∈ J = [0, T], (1.22)

y(0) = 0, y′(T) = 0, y′′(0) = 0, (1.23)

where 2 < r ≤ 3, Dr is the Riemann-Liouville fractional derivative and f and (E, | · |) are as in (1.4)-(1.5). We
will make use of some of the hypotheses (H1) - (H5) of Theorem 1.3.2 in this section.

1.4.1 Main Results for (1.22)-(1.23)

Let us start by defining what we mean by a solution of the problem (1.22)–(1.23).

Definition 1.4.7. A function y ∈ AC2([0, T], E) is said to be a solution of (1.22)-(1.23) if it satisfies Dry(t) =

f (t, y(t)) on J, and the conditions y(0) = 0, y′(T) = 0 y′′(0) = 0.

For the existence of solutions for the problem (1.22)-(1.23), we need the following auxiliary lemma.

Lemma 1.4.5. Let 2 < r ≤ 3 and let h : [0, T]→ E be continuous. A function y is a solution of the fractional integral
equation

y(t) = 1
Γ(r)

∫ t
0 (t− s)r−1h(s)ds

− tr−1

Γ(r)Tr−2

∫ T
0 (T − s)r−2h(s)ds.

(1.24)

if and only if y is a solution of the fractional BVP

Dry(t) = h(t), t ∈ [0, T], (1.25)

y(0) = 0, y′(T) = 0, y′′(0) = 0. (1.26)

Proof: Assume y satisfies (1.25), then Lemma 1.3.2 implies that

y(t) = c1tr−1 + c2tr−2 + c3tr−3 +
1

Γ(α)

∫ t

0
(t− s)r−1h(s)ds.

From (1.26), a simple calculation gives
c2 = 0, c3 = 0

and

c1 = − 1
Γ(r)Tr−2

∫ T

0
(T − s)r−2h(s)ds.

Hence we get equation (1.24). Conversely, it is clear that if y satisfies equation (1.24), then equations (1.25)-
(1.26) hold. �

Theorem 1.4.4. Assume (H1), (H2) and the following hypothesis:

(H7) For almost each t ∈ J and each bounded set B2 ⊂ E we have

lim
k→0+

α( f (Jt,k × B2)) ≤ p(t)α(B2).

Then the BVP (1.22)-(1.23) has at least one solution on C(J, B), provided that[
Tr

Γ(r + 1)
+

T2r

(r− 1)Γ(r)

]
‖p‖L∞ < 1. (1.27)

Proof. Transform the problem (1.22)-(1.23) into a fixed point problem. Consider the operator

(N2y)(t) = 1
Γ(r)

∫ t
0 (t− s)r−1 f (s, y(s))ds

− tr−1

Tr−2Γ(r)

∫ T
0 (T − s)r−2 f (s, y(s))ds.
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Remark 1.4.3. Clearly, from Lemma 1.4.5, the fixed points of N2 are solutions to (1.22)-(1.23).

Let R2 > 0 and consider the set

DR2 = {y ∈ C(J, E) : ‖y‖∞ ≤ R2}.

We shall show that N2 satisfies the assumptions of Mönch’s fixed point theorem. The proof will be given in
several steps.

Step 1: N2 is continuous.

Let {yn} be a sequence such that yn → y in C(J, E). Then, for each t ∈ J,

|(N2yn)(t)− (N2y)(t)| ≤ 1
Γ(r)

∫ t
0 (t− s)r−1‖ f (s, yn(s)− f (s, y(s))‖ds

− tr−1

Tr−2Γ(r)

∫ T
0 (T − s)r−2‖ f (s, yn(s)− f (s, y(s))‖ds.

Let ρ > 0 be such that
‖yn‖∞ ≤ ρ, ‖y‖∞ ≤ ρ.

By (H2) we have
‖ f (s, yn(s)− f (s, y(s))‖ ≤ 2ρp(s) := σ(s); σ ∈ L1(J, R+).

Since f is a Carathéodory function, the Lebesgue dominated convergence theorem implies that

‖N2(yn)− N2(y)‖∞ → 0 as n→ ∞.

Step 2: N2 maps DR2 into itself. For each y ∈ DR2 , by (H2) and (1.27) we have for each t ∈ J

‖N2(y)(t)‖ ≤ 1
Γ(r)

∫ t
0 (t− s)r−1‖ f (s, y(s))‖ds

− tr−1

Tr−2Γ(r)

∫ T
0 (T − s)r−2‖ f (s, y(s))‖ds

≤ R2

[[
Tr

Γ(r+1) +
T2r

(r−1)Γ(r)

]
‖p‖L∞

]
≤ R2.

Step 3: N2(DR2) is bounded and equicontinuous.

By Step 2, it is obvious that N2(DR2) ⊂ C(J, E) is bounded.
For the equicontinuity of N2(DR2). Let t1, t2 ∈ J, t1 < t2, and y ∈ DR2 . we have

|(N2y)(t2)− (N2y)(t1)| =
∥∥∥ 1

Γ(r)

∫ t1

0
[(t2 − s)r−1 − (t1 − s)r−1] f (s, y(s))ds

+
1

Γ(r)

∫ t2

t1

(t2 − s)r−1 f (s, y(s))ds

+
(t2 − t1)

r−1

Tr−2Γ(r)

∫ T

0
(T − s)r−2| f (s, y(s))|ds

∥∥∥
≤ p(t)

Γ(r)

∫ t1

0
[(t1 − s)r−1 − (t2 − s)r−1]ds

+
p(t)
Γ(r)

∫ t2

t1

(t2 − s)r−1ds

+
p(t)(t2 − t1)

r−1

Tr−2Γ(r− 1)

∫ T

0
(T − s)r−2ds

≤ p(t)
Γ(r + 1)

[(t2 − t1)
r + tr

1 − tr
2] +

p(t)
Γ(r + 1)

(t2 − t1)
r

+
p(t)(t2 − t1)

r−1

T2rΓ(r)

≤ p(t)
Γ(r + 1)

(t2 − t1)
r +

p(t)
Γ(r + 1)

(tr
1 − tr

2)

+
T2r p(t)(t2 − t1)

r−1

Γ(r)
.
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As t1 −→ t2, the right-hand side of the above inequality tends to zero.
Now let V2 be a subset of DR2 such that V2 ⊂ co(N2(V2) ∪ {0}).

V2 is bounded and equicontinuous, and therefore the function ϑ → ϑ = α(V2(t)) is continuous on J. By (H3),
Lemma 1.2.1, and the properties of the measure α, we have for each t ∈ J

ϑ(t) ≤ α(N2(V2)(t) ∪ {0})
≤ α(N2(V2)(t))
≤

∫ t
0

[
Tr

Γ(r+1) +
T2r

Γ(r)

]
p(s)α(V2(s))ds

≤ ‖ϑ‖L∞

[[
Tr

Γ(r+1) +
T2r

Γ(r)

]
‖p‖L∞

]
.

This means that

‖ϑ‖L∞

(
1−

[
Tr

Γ(r + 1)
+

T2r

Γ(r)

]
‖p‖L∞

)
≤ 1.

By (1.27) it follows that ‖ϑ‖∞ = 0, that is, ϑ = 0 for each t ∈ J, and then V2(t) is relatively compact in E. In
view of the Ascoli-Arzela theorem, V2 is relatively compact in DR2 . Applying now Theorem 1.2.1, we conclude
that N2 has a fixed point which is a solution of the problem (1.22)–(1.23). �

2 Boundary Value Problems for Fractional Differential Inclusions in
Banach Spaces

2.1 Introduction

In this section, we are concerned with the existence of solutions for boundary value problems, for a class of
fractional order differential inclusions, when the right hand side is convex valued. This result relies on the set-
valued analog of Mönch’s fixed point theorem combined with the technique of measure of noncompactness.
Recently, this has proved to be a valuable tool in solving fractional differential equations and inclusions in
Banach spaces; for details, see the papers of Lasota et al. [39], Agarwal et al. [4] and Benchohra et al. [18], [19],
[20]. This result extends to the multivalued case some previous results in the literature, and constitutes an
interesting contribution to this emerging field.

2.2 Preliminaries

We introduce notations, definitions, and preliminary facts that will be used in the remainder of this section.
Let (E, ‖ · ‖) be a Banach space. Let Pcl(E) = {A ∈ P(E) : A closed}, Pc(E) = {A ∈ P(E) :

A convex}, Pcp,c(E) = {A ∈ P(E) : A compact and convex}. A multivalued mapping G : E → P(E) has a
fixed point if there is x ∈ E such that x ∈ G(E). The fixed point set of the multivalued operator G will be
denoted by FixG. A multivalued map G : J → Pcl(R) is said to be measurable if for every y ∈ R, the function

t 7−→ d(y, G(t)) = inf{|y− z| : z ∈ G(t)}

is measurable.
Let X, Y be two sets, and N : X → P(Y) be a set-valued map. We define

graph(N) = {(x, y) : x ∈ X, y ∈ N(X)}.

For more details on multi-valued maps see the books of Deimling [23], Aubin et al. [7, 8] and Hu and
Papageorgiou [34].

Let R > 0, and let
B = {x ∈ E : |x| ≤ R},

and
U = {x ∈ C(J, E) : ‖x‖ ≤ R},
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Clearly U = C(J, B).
For each y ∈ C(J, E), define the set of selections of F by

SF,y = {v ∈ L1(J, E) : v(t) ∈ F(t, y(t)) a.e. t ∈ J}.

Theorem 2.2.5. ([32]) Let E be a Banach space and C ⊂ L1(J, E) be countable with |u(t)| ≤ h(t) for a.e. t ∈ J, and
every u ∈ C, where h ∈ L1(J, R+). Then the function φ(t) = α(C(t)) belongs to L1(J, R+) and satisfies

α

({∫ T

0
u(s)ds : u ∈ C

})
≤ 2

∫ T

0
α(C(s))ds,

where α is the Kuratowski measure of non compactness.

Let us now recall the set-valued analog of Mönch’s fixed point theorem.

Theorem 2.2.6. ([44]) Let K be a closed, convex subset of a Banach space E, U a relatively open subset of K, and
N : U → Pc(K). Assume that graph(N) is closed, that N maps compact sets into relatively compact sets, and that, for
some x0 ∈ U, the following two conditions are satisfied :{

M ⊂ U, M ⊂ conv(x0 ∪ N(M))

and M = U with C ⊂ Mcountable
⇒ Mcompact, (2.28)

x ∈ (1− λ)x0 + λN(x) for allx ∈ U�U, λ ∈ (0, 1). (2.29)

Then there exists x ∈ U with x ∈ N(x).

Lemma 2.2.6. ([39]) Let I be a compact real interval. Let F be a Carathéodory multivalued map and let Θ be a linear
continuous map from L1(I, E)→ C(I, E). Then the operator

Θ ◦ SF,y : C(I, E)→ Pcp,c(C(I, E)), y 7→ (Θ ◦ SF,y)(y) = Θ(SF,y)

is a closed graph operator in C(I, E)× C(I, E).

2.3 Boundary Value Problems of Order r ∈ (1, 2]

We consider the boundary value problem

Dry(t) ∈ F(t, y(t)), for a.e. t ∈ J = [0, T], (2.30)

y(0) = 0, βy(η) = y(T), (2.31)

where 1 < r ≤ 2, 0 < βηα−1 < 1, 0 < η < 1, Dr is as in (1.6)-(1.7), (E, || · ||) is a Banach space, F : J × E →
P(E) is a multivalued map, and P(E) is the family of all nonempty subsets of E.

2.3.1 Main Results for (2.30)-(2.31)

Let us start by defining what we mean by a solution of the problem (2.30)-(2.31).

Definition 2.3.8. A function y ∈ AC1([0, T], E) is said to be a solution of (2.30)-(2.31) if there exists a function
v ∈ L1(J, E) with v(t) ∈ F(t, y(t)), for a.e. t ∈ J, such that Dry(t) = v(t) on J, and the condition (2.31) is satisfied.

For the existence of solutions for the problem (2.30)-(2.31), we make use of the auxiliary Lemma 1.3.2 and
Lemma 1.3.4.

Theorem 2.3.7. Assume the following hypotheses hold:

(H’1) F : J ×R −→ Pcp,c(R) is a Carathéodory multi-valued map.
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(H’2) For each R > 0, there exists a function p ∈ L1(J, E) and such that

‖F(t, u)‖P = sup{|v|, v(t) ∈ F(t, y)} ≤ p(t)

for each (t, y) ∈ J × E with |y| ≤ R, and

lim
R→+∞

inf

∫ T
0 p(t)dt

R
= δ < ∞.

(H’3) There exists a Carathéodory function ψ, : J × [0, 2R]→ R+ such that

α(F(t, M)) ≤ ψ(t, α(M)), a.e. t ∈ J, and each M ⊂ B,

and the unique solution ϕ ∈ C(J, [0, 2R]) of the inequality,

φ(t) ≤ 2
[∫ t

0
G(t, s)ϕ(s, φ(s))ds

]
(2.32)

is φ ≡ 0.

Then the BVP (2.30)-(2.31) has at least one solution on C(J, B), provided that

TG∗‖p‖L∞ < 1, (2.33)

where
G∗ = sup

(t,s)∈J×J
|G(t, s)|.

Proof. Transform the problem (2.30)-(2.31) into a fixed point problem. Consider the multivalued operator

Q(y) =
{

h ∈ C(J, E) : h(t) =
∫ t

0
G(t, s)v(s)ds, v ∈ SF,y

}
.

We shall show that Q satisfies the assumptions of the set-valued analog of Mönch’s fixed point theorem. The
proof will be given in several steps.

Step 1: Q(y) is convex for each y ∈ C(J, E).

Indeed, if h1, h2 belong to Q(y), then there exist v1, v2 ∈ SF,y such that for each t ∈ J we have

hi(t) =
∫ t

0
G(t, s)vi(s)ds, i = 1, 2.

Let 0 ≤ d ≤ 1. Then, for each t ∈ J, we have

(dh1 + (1− d)h2)(t) =
∫ t

0
G(t, s)[dv1(s) + (1− d)v2(s)]ds.

Since SF,y is convex (because F has convex values), we have

dh1 + (1− d)h2 ∈ Q(y).

Step 2: Q(M) is relatively compact for each compact M ⊂ U.

Let M ⊂ U be a compact set and let {hn} by any sequence of elements of Q(M). We show that {hn} has
a convergent subsequence by using the Ascoli-Arzela criterion of compactness in C(J, E). Since hn ∈ Q(M)

there exist yn ∈ M and vn ∈ SF,yn such that

hn(t) =
∫ t

0
G(t, s)vn(s)ds.

Using Theorem 2.2.5 and the properties of the measure of noncompactness of Kuratowski, α, we have

α({hn(t)}) ≤ 2
[∫ t

0
G∗α({(vn(s)})ds

]
. (2.34)
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On the other hand, since M(s) is compact in E, the set {vn(s) ; n ≥ 1} is compact. Consequently, α({vn(s) ; n ≥
1}) = 0 for a.e. s ∈ J.
Now (2.32) implies that{hn(t) ; n ≥ 1} is relatively compact in E, for each t ∈ J. In addition, for each τ1, τ2 ∈
J, τ1 < τ2, and y ∈ DR, we have

|Q(y)(τ2)−Q(y)(τ1)| =
∫ T

0 |G(τ2, s)− G(τ1, s)||v(s)|ds
≤

∫ T
0 p(s)|G(τ2, s)− G(τ1, s)|ds

≤
∫ T

0 p(s)ds|G(τ2, s)− G(τ1, s)|ds
(2.35)

As τ1 −→ τ2, the right-hand side of the above inequality tends to zero.
This shows that {hn ; n ≥ 1} is equicontinuous. Consequently, {hn ; n ≥ 1} is relatively compact in C(J, E).

Step 3: Q has a closed graph.

Let (yn, hn) ∈ graph(Q), n ≥ 1, with ‖yn − y‖, ‖hn − h‖ → 0, as n → ∞. We must show that (y, h) ∈
graph(Q).

(yn, hn) ∈ graph(Q) means that hn ∈ Q(yn), which means that there exists vn ∈ SF,yn , such that for each
t ∈ J,

hn(t) =
∫ t

0
G(t, s)vn(s)ds.

Consider the continuous linear operator

Θ : L1(J, E)→ C(J, E),

Θ(v)(t) 7→ hn(t) =
∫ t

0
G(t, s)vn(s)ds

Clearly,
‖hn(t)− h(t)‖ → 0, as, n→ ∞.

From Lemma 2.2.6 it follows that Θ ◦ SF is a closed graph operator. Moreover, we have

hn(t) ∈ Θ(SF,yn).

Since yn → y, Lemma 2.2.6 implies that

h(t) =
∫ t

0
G(t, s)v(s)ds

for some v ∈ SF,y.

Step 4: Suppose M ⊂ U, M ⊂ conv({0} ∪ Q(M)), and M = C for some countable set C ⊂ M. Using an
estimation of type (2.35), we see that Q(M) is equicontinuous. Then from M ⊂ conv({0} ∪Q(M)), We deduce
that M is equicontinuous, too. In order to apply the Ascoli-Arzela theorem, it remains to show that M(t) is
relatively compact in E for each t ∈ J. Since

C ⊂ M ⊂ conv({0} ∪Q(M)) and C is countable,

we can find a countable set H = {hn : n ≥ 1} ⊂ Q(M) with C ⊂ conv({0} ∪ H). Then, there exist yn ∈ M
and vn ∈ SF,yn such that

hn(t) =
∫ t

0
G(t, s)vn(s)ds

From M ⊂ C ⊂ conv({0} ∪ H)), and according to Theorem 2.2.5, we have

α(M(t)) ≤ (α(C(t)) ≤ α(H(t)) = α({hn((t) : n ≥ 1}).

Using(2.34), we obtain

α(M(t)) ≤ 2
[∫ t

0
G∗α({vn(s)})ds

]
.
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Now, since vn(s) ∈ M(s), we have

α(M(t)) ≤ 2
[∫ t

0
G∗α({vn(s); n ≥ 1})ds

]
Also, since vn(s) ∈ M(s), we have

α({vn(s); n ≥ 1}) = α(M(s))

It follows that
α(M(t)) ≤ 2

[∫ t
0 G∗α(M(s))ds

]
≤ 2

[∫ t
0 G∗ψ(s, α(M(s)))ds

]
.

Also, the function φ given by φ(t) = α(M(t)) belongs to C(J, [0, 2R]). Consequently by (H’3), φ ≡ 0; that is,
α(M(t)) = 0 for all t ∈ J.
Now, by the Ascoli-Arzela theorem, M is relatively compact in C(J, E).

Step 5: Let h ∈ Q(y) with y ∈ U. Since |y(s)| ≤ R and by (H’2), we have Q(U) ⊆ U, because if it were not
true, then there exists a function y ∈ U, but ‖Q(y)‖P > R and

h(t) =
∫ t

0
G(t, s)v(s)ds

for some v ∈ SF,y. On the other hand, we have

R ≤ ‖Q(y)‖P
≤

∫ t
0 |G(t, s)||v(s)|ds

≤ TG∗‖p‖L∞ .

Dividing both sides by R and taking the lower limits as R → ∞, we conclude that [TG∗‖p‖L∞ ]δ ≥ 1 which
contradicts (2.33). Hence Q(U) ⊆ U.
As a consequence of Steps 1-5 together with Theorem 2.2.6, we can conclude that Q has a fixed point y ∈
C(J, B) which is a solution of the problem (2.30)-(2.31). �

2.4 Boundary Value Problems of Order r ∈ (2, 3]

In this section,we are concerned with the existence of solutions for the boundary value problem for a fractional
differential inclusion,

Dry(t) ∈ F(t, y(t)), for a.e. t ∈ J = [0, T], (2.36)

y(0) = 0, y′(0) = 0, y′′(T) = 0, (2.37)

where 2 < r ≤ 3, Dr is the Riemann-Liouville fractional derivative, F and (E, || · ||) as are in (2.30)-(2.31).

2.4.1 Main Results for (2.36)-(2.37)

Let us start by defining what we mean by a solution of the problem (2.36)–(2.37).

Definition 2.4.9. A function y ∈ AC2([0, T], E) is said to be a solution of (2.36)-(2.37) if there exist a function
v ∈ L1(J, E) with v(t) ∈ F(t, y(t)), for a.e. t ∈ J, such that Dry(t) = v(t) on J, and the condition y(0) = 0, y′(0) =
0 y′′(T) = 0.

For the existence of solutions for the problem (2.36)-(2.37), we will make use of the auxiliary Lemma 1.3.2
and Lemma 1.4.5.

Theorem 2.4.8. Assume (H’1)-(H’2) and the following hypothesis hold:
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(H’4) There exists a Carathéodory function ψ : J × [0, 2R]→ R+ such that

α(F(t, M)) ≤ ψ(t, α(M)), a.e. t ∈ J, and each M ⊂ B,

and the unique solution ϕ ∈ C(J, [0, 2R]) of the inequality

φ(t) ≤ 2[ 1
Γ(r)

∫ t
0 (t− s)r−1 ϕ(s, φ(s))ds

− tr−1

(r−1)(r−2)Γ(r−2)

∫ T
0 (T − s)r−3 ϕ(s, φ(s))ds], t ∈ J

(2.38)

is φ ≡ 0.

Then the BVP (2.36)-(2.37) has at least one solution on C(J, B), provided that

δ <

[
T

Γ(r + 1)
+

T2

(r− 1)(r− 2)Γ(r− 1)

]
. (2.39)

Proof. Transform the problem (2.36)-(2.37) into a fixed point problem. Consider the multivalued operator

Q2(y) =

h ∈ C(J, E) :

h(t) = 1
Γ(r)

∫ t
0 (t− s)r−1v(s)ds−
tr−1

(r−1)(r−2)Γ(r−2)×∫ T
0 (T − s)r−3v(s)ds

, v ∈ SF,y

 .

We shall show that Q2 satisfies the assumptions of the set-valued analog of Mönch’s fixed point theorem. The
proof will be given in several steps.

Step 1: Q2(y) is convex for each y ∈ C(J, E).

Indeed, if h1, h2 belong to Q2(y), then there exist v1, v2 ∈ SF,y such that for each t ∈ J we have

hi(t) = 1
Γ(r)

∫ t
0 (t− s)r−1vi(s)ds

− tr−1

(r−1)(r−2)Γ(r−2)

∫ T
0 (T − s)r−3vi(s)ds, i = 1, 2.

Let 0 ≤ d ≤ 1. Then, for each t ∈ J, we have

(dh1 + (1− d)h2)(t) = 1
Γ(r)

∫ t
0 (t− s)r−1[dv1(s) + (1− d)v2(s)]ds+
tr−1

(r−1)(r−2)Γ(r−2)×∫ T
0 (T − s)r−3[dv1(s) + (1− d)v2(s)]ds.

Since SF,y is convex (because F has convex values), we have

dh1 + (1− d)h2 ∈ N(y).

Step 2: Q2(M) is relatively compact for each compact M ⊂ U.

Let M ⊂ U be a compact set and let {hn} by any sequence of elements of Q2(M). We show that{hn} has a
convergent subsequence by using the Ascoli-Arzela criterion of compactness in C(J, E). Since {hn} ⊂ Q2(M)

there exist {yn} ∈ M and vn ∈ SF,yn such that

hn(t) = 1
Γ(r)

∫ t
0 (t− s)r−1vn(s)ds

− tr−1

(r−1)(r−2)Γ(r−2)

∫ T
0 (T − s)r−3vn(s)ds.

Using Theorem 2.2.5 and the properties of the measure of Kuratowski α, we have

α({hn(t)}) ≤ 2
[

1
Γ(r)

∫ t
0 α({(t− s)r−1vn(s)})ds

− tα−1

(r−1)(r−2)Γ(r−2)

∫ T
0 α({(T − s)r−3vn(s)})ds

]
.

(2.40)
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On the other hand, since M(s) is compact in E, the set {vn(s) ; n ≥ 1} is compact. Consequently, α({vn(s) ; n ≥
1}) = 0 for a.e. s ∈ J. Furthermore

α({(t− s)r−1vn(s)}) = (t− s)r−1α({vn(s) ; n ≥ 1}) = 0

α({(T − s)r−1vn(s)}) = (T − s)r−1α({vn(s) ; n ≥ 1}) = 0

for a.e. t, s ∈ J. Now (2.40) implies that{hn(t) ; n ≥ 1} is relatively compact in E, for each t ∈ J.
In addition for each t1 and t2 from J, t1 < t2, we have

|hn(t2)− hn(t1)| =
∣∣∣ 1

Γ(r)

∫ t1
0 [(t2 − s)r−1 − (t1 − s)r−1]vn(s)ds

+ 1
Γ(r)

∫ t2
t1
(t2 − s)r−1vn(s)ds

∣∣∣
+ (t2−t1)

r−1

(r−1)(r−2)Γ(r−2)

∫ T
0 (T − s)r−3|vn(s)|ds

≤ p(t)
Γ(r)

∫ t1
0 [(t1 − s)r−1 − (t2 − s)r−1]ds

+ p(t)
Γ(r)

∫ t2
t1
(t2 − s)r−1ds

+ p(t)(t2−t1)
r−1

(r−1)(r−2)Γ(r−2)

∫ T
0 (T − s)r−3ds

≤ p(t)
Γ(r+1) [(t2 − t1)

r + tr
1 − tr

2] +
p(t)

Γ(r+1) (t2 − t1)
r

+ p(t)(t2−t1)
r−1

Γ(r−1)

≤ p(t)
Γ(r+1) (t2 − t1)

r + p(t)
Γ(r+1) (t

r
1 − tr

2)

+ Tr p(t)(t2−t1)
r−1

Γ(r−1) .

(2.41)

As t1 −→ t2, the right-hand side of the above inequality tends to zero.This shows that {hn ; n ≥ 1} is
equicontinuous. Consequently,{hn ; n ≥ 1} is relatively compact in C(J, E).

Step 3: Q2 has a closed graph.

Let (yn, hn) ∈ graph(Q2), n ≥ 1, with ‖yn − y‖, ‖hn − h‖ → 0, as n → ∞. We must show that (y, h) ∈
graph(Q2).
(yn, hn) ∈ graph(Q2) means that hn ∈ Q2(yn), which means that there exists vn ∈ SF,yn , such that for each
t ∈ J,

hn(t) = 1
Γ(r)

∫ t
0 (t− s)r−1vn(s)ds

− tr−1

(r−1)(r−2)Γ(r−2)

∫ T
0 (T − s)r−3vn(s)ds.

Consider the continuous linear operator

Θ : L1(J, E)→ C(J, E)

Θ(v)(t) 7→ hn(t) = 1
Γ(r)

∫ t
0 (t− s)r−1vn(s)ds

− tr−1

(r−1)(r−2)Γ(r−2)

∫ T
0 (T − s)r−3vn(s)ds.

Clearly,
‖hn(t)− h(t)‖ → 0, as n→ ∞.

From Lemma 2.2.6 it follows that Θ ◦ SF is a closed graph operator. Moreover, we have

hn(t) ∈ Θ(SF,yn).

Since yn → y, Lemma 2.2.6 implies that

h(t) = 1
Γ(r)

∫ t
0 (t− s)r−1v(s)ds

− tr−1

(r−1)(r−2)Γ(r−2)

∫ T
0 (T − s)r−3v(s)ds,

for some v ∈ SF,y.

Step 4: Suppose M ⊂ U, M ⊂ conv({0} ∪ Q2(M)), and M = C for some countable set C ⊂ M. Using
an estimation of type (2.41), we see that Q2(M) is equicontinuous. Then from M ⊂ conv({0} ∪ Q2(M)), we
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deduce that M is equicontinuous, too. In order to apply the Ascoli-Arzela theorem, it remains to show that
M(t) is relatively compact in E for each t ∈ J. Since

C ⊂ M ⊂ conv({0} ∪ N(M)) and C is countable,

we can find a countable set H = {hn : n ≥ 1} ⊂ Q2(M) with C ⊂ conv({0} ∪ H). Then, there exists yn ∈ M
and vn ∈ SF,yn such that

hn(t) = 1
Γ(r)

∫ t
0 (t− s)r−1vn(s)ds

− tr−1

(r−1)(r−2)Γ(r−2)

∫ T
0 (T − s)r−3vn(s)ds.

From M ⊂ C ⊂ conv({0} ∪ H)), and according to Theorem 2.2.5, we have

α(M(t)) ≤ (α(c(t)) ≤ α(H(t)) = α({hn((t) : n ≥ 1}).

Using (2.40), we obtain

α(M(t)) ≤ 2[ 1
Γ(r)

∫ t
0 α({(t− s)r−1vn(s)})ds

− tα−1

(r−1)(r−2)Γ(r−2)

∫ T
0 α({(T − s)r−3vn(s)})ds].

Now, since vn ∈ M(s) we have

α(M(t)) ≤ 2[ 1
Γ(r)

∫ t
0 α({(t− s)r−1vn(s); n ≥ 1})ds

− tα−1

(r−1)(r−2)Γ(r−2)

∫ T
0 α({(T − s)r−3vn(s); n ≥ 1})ds].

Also, since vn(s) ∈ M(s) we have

α({(t− s)r−1vn(s); n ≥ 1}) = (t− s)r−1α(M(s))

and
α({(T − s)r−1vn(s); n ≥ 1}) = (T − s)r−1α(M(s)).

It follows that
α(M(t)) ≤ 2[ 1

Γ(r)

∫ t
0 (t− s)r−1α(M(s))ds

− tα−1

(r−1)(r−2)Γ(r−2)

∫ T
0 (T − s)r−3α(M(s))ds]

≤ 2[ 1
Γ(r)

∫ t
0 (t− s)r−1ψ(s, α(M(s)))ds

− tα−1

(r−1)(r−2)Γ(r−2)

∫ T
0 (T − s)r−3ψ(s, α(M(s)))ds].

Also, the function φ given by φ(t) = α(M(t)) belong to C(J, [0, 2R]). Consequently by (H’4), φ ≡ 0, that is
α(M(t)) = 0 for all t ∈ J.
Now, by the Ascoli-Arzela theorem, M is relatively compact in C(J, E).

Step 5: Let h ∈ Q2(y) with y ∈ U. Since |y(s)| ≤ R and (H’2), we have N(U) ⊆ U, because if it is not true,
then there exists a function y ∈ U but ‖Q2(y)‖P > R and

h(t) = 1
Γ(r)

∫ t
0 (t− s)r−1v(s)ds

− tr−1

(r−1)(r−2)Γ(r−2)

∫ T
0 (T − s)r−3v(s)ds,

for some v ∈ SF,y. On the other hand we have

R ≤ ‖Q2(y)‖P
≤ 1

Γ(r)

∫ t
0 (t− s)r−1|v(s)|ds

− tr−1

(r−1)(r−2)Γ(r−2)

∫ T
0 (T − s)r−3|v(s)|ds

≤ T
Γ(r+1)

∫ t
0 p(s)ds

− T2

(r−1)(r−2)Γ(r−1)

∫ T
0 p(s)ds

≤
[

T
Γ(r+1) +

T2

(r−1)(r−2)Γ(r−1)

] ∫ T
0 p(s)ds.
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Dividing both sides by R and taking the lower limits as R → ∞, we conclude that[
T

Γ(r+1) +
T2

(r−1)(r−2)Γ(r−1)

]
δ ≥ 1 which contradicts (2.39). Hence Q2(U) ⊆ U.

As a consequence of Steps 1-5 together with Theorem 2.2.6, we can conclude that Q2 has a fixed point
y ∈ C(J, B) which is a solution of the problem (2.36)-(2.37).

�
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Abstract

In this paper, we deals with the second order neutral functional difference equation of the form

∆ (r(n)∆(x(n)− p(n)x(n− τ))) + q(n) f (x(n− σ)) = 0; n ≥ n0 (∗)

where {r(n)}, {p(n)} and {q(n)} are sequences of real numbers, τ and σ are positive integers and f : R→ R
is a real valued function. We determine sufficient conditions under which every solutions of (∗) is either
oscillatory or tends to zero.

Keywords: Oscillation, nonoscillation, second order, neutral, delay difference equations.
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1 Introduction

In this paper we deals with the second order neutral functional difference equation of the form

∆ (r(n)∆(x(n)− p(n)x(n− τ))) + q(n) f (x(n− σ)) = 0; n ≥ n0 (1.1)

where ∆ is the forward difference operator defined by ∆x(n) = x(n + 1)− x(n), τ and σ are positive integers,
{r(n)}, {p(n)} and {q(n)} are sequences of real numbers, and f : R→ R is a continuous function.

Throughout this paper we assume the following conditions to be hold:

(i) {q(n)} is a sequence of nonnegative real numbers and {q(n)} is not identically zero for sufficiently large
values of n;

(ii) {p(n)} is a sequence of nonnegative real numbers and there exist a constant p such that 0 ≤ p(n) ≤ p <

1;

(iii) {r(n)} is a sequence of positive real numbers;

(iv) there exist a constant k such that f (u)
u ≥ k > 0 for all u 6= 0.

Let {x(n)} be a real sequences. We will also define a companion or associated sequence {z(n)} of it by

z(n) = x(n)− p(n)x(n− τ), n ≥ n0. (1.2)

Let θ = max {τ, σ}. For any real sequence {φ(n)} defined in n0 − θ ≤ n ≤ n0 − 1, the equation (1.1) has a
solution {x(n)} defined for n ≥ n0 and satisfying the initial condition x(n) = φ(n) for n0− θ ≤ n ≤ n0− 1. A

∗Corresponding author.
E-mail address: amurugesan3@gmail.com (A. Murugesan) and ammuthu75@gmail.com (K. Ammamuthu).
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solution {x(n)} of equation (1.1) is oscillatory if it is neither eventually positive nor eventually negative and
nonoscillatory otherwise.

In this paper we establish sufficient conditions for the oscillation of solutions to (1.1) under the following
two cases:

∞

∑
n=n0

1
r(n)

= ∞ (1.3)

and
∞

∑
n=n0

1
r(n)

< ∞. (1.4)

Recently, there has been much interest in studying the oscillatory and asymptotic behaviour of difference
equations; see, for example, [3-10] and the references cited therein. For the general theory of difference
equations one can refer to [1,2].

In [7], sternal et al. established sufficient conditions for every bounded solutions of (1.1) is either oscillatory
are tends to zero as n→ ∞ under the conditions (1.3) and

∞

∑
n=n0

q(n) = ∞.

Rath et al. in [6] established sufficient conditions under which every solution of (1.1) is oscillatory are
tends to zero as n→ ∞.

In [5] we established sufficient conditions for oscillation of all solutions of the equation (1.1) where {p(n)}
is a nonnegative real sequence.

In this paper our aim is to determine sufficient conditions under which every solution of (1.1) is oscillatory
or tends to zero as n → ∞. Our established results are discrete analogues of some well-known results due to
[8].

In the sequel, for our convenience, when we write a fractional inequality without mentioning its domain
of validity are assume that it holds for all sufficiently large values of n.

2 Some Useful Lemmas

In this section, we state and prove the following lemmas which are useful in proving our main results of
this paper.

Lemma 2.1. [3] Let {x(n)} be an eventually positive solutions of (1.1) and {z(n)} be its associated sequence defined
by (1.2). If {∆z(n)} is eventually negative or lim supn→∞ x(n) > 0, then z(n) > 0, eventually.

Lemma 2.2. Assume that (1.3) holds. Let {x(n)} be an eventually positive solution of (1.1) such that
lim supn→∞ x(n) > 0. Then its associated sequence {z(n)} defined by (1.2) satisfies z(n) > 0, r(n)∆z(n) > 0 and
∆(r(n)∆z(n)) < 0 eventually.

Proof. Assume that {x(n)} is an eventually positive solution of (1.1) such that lim supn→∞ x(n) > 0. Then it
follows from (1.1) that ∆(r(n)∆z(n)) = −q(n)x(σ(n)) < 0. Consequently {r(n)∆z(n)} is decreasing and thus
either ∆z(n) > 0 or ∆z(n) < 0, eventually. If we let ∆z(n) < 0, then by Lemma 2.1, z(n) > 0 eventually. Then
also r(n)∆z(n) < −c < 0 and summing this from n1 to n− 1, we have

z(n) ≤ z(n1)− c
n−1

∑
s=n1

1
r(s)

→ −∞ as n→ ∞.

This contradicts the positivity of {z(n)} and hence ∆z(n) > 0. Since lim supn→∞ x(n) > 0, by Lemma 2.1 we
have z(n) > 0 eventually and the proof is complete.



A. Murugesan et al. / Conditions for Oscillation and Convergence... 369

3 Main Results

In this section, we derive sufficient conditions for oscillation of all solutions of (1.1). For the sake of
convenience we use the following notations.

Q(n) : = min {q(n), q(n− τ)}
(∆η(n))+ = max {0, ∆η(n)}

R(n) =
n−1

∑
s=n0

1
r(s)

,

and

β(n) =
∞

∑
s=n

1
r(s)

.

Theorem 3.1. Assume that (1.3) holds and σ > τ. Suppose that there exist a positive real valued sequence {η(n)}∞
n=n0

such that

lim sup
n→∞

n−1

∑
s=n0

[
kη(s)Q(s)− (1 + p)r(s− σ) ((∆η(s))+)

2

4η(s)

]
= ∞. (3.1)

Then every solution of (1.1) is either oscillatory or tends to zero.

Proof. Assume the contrary. Without loss of generality we may suppose that {x(n)} is an eventually positive
solution of (1.1) such that lim supn→∞ x(n) > 0 and let {z(n)} be its associated sequence defined by (1.2).
Then there exists an integer n1 ≥ n0 such that x(n) > 0, x(n − τ) > 0, x(n − σ) > 0 and z(n) > 0 for all
n ≥ n1. Then from (1.1), we have

∆(r(n)∆z(n)) ≤ −kq(n)x(n− σ) ≤ 0, n ≥ n1. (3.2)

This shows that {r(n)∆z(n)} is a decreasing sequence. Then by Lemma 2.2, z(n) > 0 and ∆z(n) > 0,
eventually. Now from (3.2), we have

∆(r(n)∆z(n)) + p∆(r(n− τ)∆z(n− τ)) + kq(n)x(n− σ) + pkq(n− τ)x(n− τ − σ) ≤ 0.

or
∆(r(n)∆z(n)) + p∆(r(n− τ)∆z(n− τ)) + kQ(n)z(n− σ) ≤ 0. (3.3)

Define a sequence {u(n)} by

u(n) = η(n)
r(n)∆z(n)
z(n− σ)

, n ≥ n1. (3.4)

Clearly u(n) > 0. Taking difference on both sides of (3.4) and using the fact, from (3.2) that ∆z(n − σ) ≥
r(n+1)∆z(n+1)

r(n−σ)
, we have

∆u(n) ≤ η(n)
∆(r(n)∆z(n))

z(n− σ)
− η(n)

η2(n + 1)
u2(n + 1)
r(n− σ)

+
u(n + 1
η(n + 1)

∆η(n)

≤ η(n)
∆(r(n)∆z(n))

z(n− σ)
− η(n)u2(n + 1)

η2(n + 1)r(n− σ)
+

u(n + 1)
η(n + 1)

(∆η(n))+. (3.5)

Similarly we introduce another sequence {v(n)} defined by

v(n) = η(n)
r(n− τ)∆z(n− τ)

z(n− σ)
, n ≥ n1. (3.6)

Then v(n) > 0. Taking difference on both sides of (3.6), by (3.2) and σ > τ, we see that

∆z(n− σ) ≥ r(n− τ + 1)∆z(n− τ + 1)
r(n− σ)

,
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and

∆v(n) ≤ η(n)
∆(r(n− τ)∆z(n− τ))

z(n− σ)
− η(n)

η2(n + 1)
v2(n + 1)
r(n− σ)

+
v(n + 1)
η(n + 1)

∆η(n)

≤ η(n)
∆(r(n− τ)∆z(n− τ))

z(n− σ)
− η(n)

η2(n + 1)
v2(n + 1)
r(n− σ)

+
v(n + 1)
η(n + 1)

(∆η(n))+. (3.7)

From (3.5) and (3.7) we have

∆u(n) + p∆v(n) ≤ η(n)
∆(r(n)∆z(n))

z(n− σ)
+ pη(n)

∆(r(n− τ)∆z(n− τ))

z(n− σ)

+
u(n + 1)
η(n + 1)

(∆η(n))+ −
η(n)

η2(n + 1)
u2(n + 1)
r(n− σ)

+ p
v(n + 1)
η(n + 1)

(∆η(n))+

− p
η(n)

η2(n + 1)
v2(n + 1)
r(n− σ)

. (3.8)

In view of (3.3) and the above inequality, we have

∆u(n) + p∆v(n) ≤ −kQ(n)η(n) +
u(n + 1)(∆η(n))+

η(n + 1)
− η(n)u2(n + 1)

η2(n + 1)r(n− σ)

+
p(∆η(n))+
η(n + 1)

v(n + 1)− p
η(n)v2(n + 1)

η2(n + 1)r(n− σ)

≤ −kη(n)Q(n) + (1 + p)
r(n− σ)((∆η(n))+)2

4η(n)
.

Summing the above inequality from n1 to n− 1, we get

u(n) + pv(n) ≤ u(n1) + pv(n1)−
n−1

∑
s=n1

[
kη(s)Q(s)− (1 + p)r(s− σ((∆η(n))+)2

4η(s)

]
which implies that

n−1

∑
s=n1

[
kη(s)Q(s)− (1 + p)r(s− σ)((∆η(s))+)2

4η(s)

]
≤ u(n1) + pv(n1)

which contradicts (3.1). This completes the proof.

Choosing η(n) = R(n− σ + 1). By Theorem 3.1, we have the following results.

Corollary 3.2. Assume that (1.3) holds and σ > τ. If

lim sup
n→∞

n−1

∑
s=n0

[
kR(s− σ + 1)Q(s)− (1 + p)

4r(s− σ)R(s− σ + 1)

]
= ∞. (3.9)

Then every solution of (1.1) is either oscillatory or tends to zero.

Corollary 3.3. Assume that (1.3) holds and σ > τ. If

lim inf
n→∞

1
ln R(n− σ)

n−1

∑
s=n0

R(s− σ + 1)Q(s) >
1 + p

4k
, (3.10)

then every solution of (1.1) is either oscillatory or tends to zero.
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Proof. We can easily prove that (3.10) yields that there exists a constant ε > 0 such that for all large n,

1
ln R(n− σ)

n−1

∑
s=n0

R(s− σ + 1)Q(s) >
1 + p

4k
+ ε

which follows that
n−1

∑
s=n0

R(s− σ + 1)Q(s)−
(

1 + p
4k

)
ln R(n− σ) ≥ ε ln R(n− σ),

that is
n−1

∑
s=n0

[
R(s− σ + 1)Q(s)− 1 + p

4kr(s− σ)R(s− σ + 1)

]
≥ ε ln R(n− σ)

− (1 + p)
4k

ln R(n0 − σ). (3.11)

Now it is clear that (3.11) implies (3.9) and the assertion of Corollary 3.3 follows from Corollary 3.2.

Corollary 3.4. Assume that (1.3) holds and σ > τ. If

lim inf
n→∞

[
Q(n)R2(n− σ + 1)r(n− σ)

]
>

1 + p
4k

, (3.12)

then every solution of (1.1) is either oscillatory or tends to zero.

Proof. It is easy to verify that (3.12) yields the existence of ε > 0 such that for all large n,

Q(n)R2(n− σ + 1)r(n− σ) ≥ 1 + p
4k

+ ε.

Dividing the above inequality by R(n− σ + 1)r(n− σ), we have

Q(n)R(n− σ + 1)− 1 + p
4kR(n− σ + 1)r(n− σ)

≥ ε

R(n− σ + 1)r(n− σ)
,

which implies that (3.9) holds. Therefore by Corollary 3.2, every solution of (1.1) is either oscillatory or tends
to zero.

Next, choosing η(n) = n. By Theorem 3.1, we have the following result.

Corollary 3.5. Assume that (1.3) holds and σ > τ. If

lim sup
n→∞

n−1

∑
s=n0

[
ksQ(s)− 1 + p

4s

]
= ∞, (3.13)

then every solution of (3.13) is either oscillatory or tends to zero.

Theorem 3.6. Assume that (1.4) holds and σ > τ. Suppose that there exists a positive real valued sequence {η(n)}∞
n=n0

such that (3.1) holds and

lim sup
n→∞

n−1

∑
s=n0

[
kQ(s)β(s + 1)− 1 + p

4r(s)β(s + 1)

]
= ∞. (3.14)

Then every solution of (1.1) is either oscillatory or tends to zero.

Proof. Assume the contrary. Without loss of generality we may suppose that {x(n)} is an eventually positive
solution of (1.1) such that lim supn→∞ x(n) > 0. Let {z(n)} be the sequence defined by (1.2). Then by Lemma
2.1, z(n) > 0, eventually. Then there exists an integer n1 ≥ n0 such that x(n) > 0, x(n− τ) > 0, x(n− σ) > 0
and z(n) > 0, for all n ≥ n1.

Clearly we can see that {r(n)∆z(n)} is nonincreasing sequence eventually. Consequently, it is easy to
conclude that there exist two possible cases of sign of {∆z(n)}, that is, ∆z(n) > 0 or ∆z(n) < 0 for n ≥ n2 ≥ n1.
If ∆z(n) > 0, then we are back to the case of Theorem 3.1, and we can get a contradiction to (3.1). If ∆z(n) < 0,
then we define the sequence {u(n)} by

u(n) =
r(n)∆z(n)

z(n)
, n ≥ n2. (3.15)
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Clearly u(n) < 0, Noting that {r(n)∆z(n)} is nonincreasing, we have

r(s)∆z(s) ≤ r(n)∆z(n), s ≥ n ≥ n2.

Dividing the above inequality by r(s) and summing from n to l − 1, we get

z(l) ≤ z(n) + r(n)∆z(n)
l−1

∑
s=n

1
r(s)

, l ≥ n ≥ n2.

Letting l → ∞ in the above inequality, we have

0 ≤ z(n) + r(n)∆z(n)β(n), n ≥ n2.

Therefore
r(n)∆z(n)

z(n)
β(n) ≥ −1, n ≥ n2.

From (3.15), we have
− 1 ≤ u(n)β(n) ≤ 0. (3.16)

Similarly, we introduce another sequence {v(n)} by

v(n) =
r(n− τ)∆z(n− τ)

z(n)
, n ≥ n2. (3.17)

Clearly v(n) < 0. Noting that {r(n)∆z(n)} is nonincreasing, we have
r(n− τ)∆z(n− τ) ≥ r(n)∆z(n). Then v(n) > u(n). From (3.16), we obtain

− 1 ≤ v(n)β(n) ≤ 0, n ≥ n2. (3.18)

Taking difference on both sides of (3.15), we have

∆u(n) =
∆(r(n)∆z(n))

z(n)
− ∆u2(n)

r(n)
. (3.19)

Again, taking difference on both sides of (3.17), we obtain

∆v(n) ≤ ∆(r(n− τ)∆z(n− τ))

z(n)
− v2(n)

r(n)
. (3.20)

From (3.19) and (3.20), we can obtain

∆u(n) + p∆v(n) ≤ ∆(r(n)∆z(n))
z(n)

+ p
(r(n− τ)∆z(n− τ))

z(n)
− u2(n)

r(n)
− p

v2(n)
r(n)

. (3.21)

On the other hand, proceed as in the proof of Theorem 3.1, we have that (3.3) holds. Therefore by (3.3) and
(3.21), we get

∆u(n) + p∆v(n) ≤ −kQ(n)− u2(n)
r(n)

− p
v2(n)
r(n)

. (3.22)

Multiplying by β(n + 1) on (3.22) and summing from n2 to n− 1, we have

[β(n)u(n)− β(n2)u(n2)]−
n−1

∑
s=n2+1

u(s)∆β(s) + p [β(n)v(n)− β(n2)v(n2)]

−p
n−1

∑
s=n2+1

v(s)∆β(s) + k
n−1

∑
s=n2

Q(s)β(s + 1) +
n−1

∑
s=n2

u2(s)
r(s)

β(s + 1)

+p
n−1

∑
s=n2

v2(s)β(s + 1)
r(s)

≤ 0
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or

[β(n)u(n)− β(n2)u(n2)] +
n−1

∑
s=n2+1

u(s)
r(s)

+ p [β(n)v(n)− β(n2)v(n2)]

+p
n−1

∑
s=n2+1

v(s)
r(s)

+ k
n−1

∑
s=n2+1

Q(s)β(s + 1) +
n−1

∑
s=n2+1

u2(s)β(s + 1)
r(s)

+p
n−1

∑
s=n2+1

v2(s)β(s + 1)
r(s)

≤ 0

or

[β(n)u(n) + pβ(n)v(n)] +
n−1

∑
s=n2+1

[
u(s)
r(s)

+
u2(s)β(s + 1)

r(s)

]

+p
n−1

∑
s=n2+1

[
v(s)
r(s)

+
v2(s)β(s + 1)

r(s)

]
+ k

n−1

∑
s=n2+1

Q(s)β(s + 1)

≤ β(n2)u(n2) + pβ(n2)v(n2)

or

[β(n)u(n) + pβ(n)v(n)] +
n−1

∑
s=n2+1

[
kQ(s)β(s + 1)− 1 + p

4r(s)β(s + 1)

]

≤ β(n2)u(n2) + pβ(n2)v(n2).

By (3.16) and (3.18) we obtain a contradiction with (3.14). This completes the proof.

Corollary 3.7. Assume that (1.4) holds and σ > τ. Furthermore assume that one of conditions (3.9), (3.10), (3.12) and
(3.13) holds, and one has (3.14). Then every solution of (1.1) is either oscillatory or tends to zero.

Theorem 3.8. Assume that (1.4) holds and σ > τ. Suppose that there exists a positive real sequence {η(n)}∞
n=n0

such
that (3.1) holds, and

lim sup
n→∞

n−1

∑
s=n0

β2(s + 1)Q(s) = ∞. (3.23)

Then every solution of (1.1) is either oscillatory or tends to zero.

Proof. Assume the contrary. Without loss of generality we may suppose that {x(n)} is an eventually positive
solution of (1.1) and let {z(n)} be its associated sequence defined by (1.2). Then by Lemma 2.1, z(n) > 0,
eventually. Then there exists an integer n1 ≥ n0 such that x(n) > 0, x(n− τ) > 0, x(n− σ) > 0 and z(n) > 0
for all n ≥ n1. Also we see that {r(n)∆z(n)} is nonincreasing eventually. Consequently, it is easy to see that
there exist two possible cases of the sign of {∆z(n)}, that is, ∆z(n) > 0 or ∆z(n) < 0 for n ≥ n2 ≥ n1. If
∆z(n) > 0, then we have back to the case of Theorem 3.1 and we can get a contradiction to (3.1). If ∆z(n) < 0,
then we define the sequences {u(n)} and {v(n)} as in Theorem 3.6. Then proceed as in the proof of Theorem
3.6, we obtain (3.16), (3.18) and (3.22).

Multiplying (3.22) by β2(n + 1) and summing from n2 to n− 1 yields,

β2(n)u(n)− β2(n2)u(n2) + 2
n−1

∑
s=n2+1

u(s)β(s)
r(s)

+
n−1

∑
s=n2

u2(s)β2(s + 1)
r(s)

+pβ2(n)v(n)− pβ2(n2)v(n2) + 2p
n−1

∑
s=n2+1

v(s)β(s)
r(s)

+ p
n−1

∑
s=n2

v2(s)β2(s + 1)
r(s)

+ k
n−1

∑
s=n2

β2(s + 1)Q(s) ≤ 0 (3.24)
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If follows from (1.4) and (3.16) that∣∣∣∣∣ ∞

∑
s=n2+1

u(s)β(s + 1)
r(s)

∣∣∣∣∣ ≤ ∞

∑
s=n2+1

|u(s)β(s)|
r(s)

≤
∞

∑
s=n2+1

1
r(s)

< ∞,

n−1

∑
s=n2

u2(s)β2(s + 1)
r(s)

≤
n−1

∑
s=n2

u2(s)β2(s)
r(s)

<
∞

∑
s=n2

1
r(s)

< ∞.

In view of (3.18), we get ∣∣∣∣∣ ∞

∑
s=n2+1

v(s)β(s)
r(s)

∣∣∣∣∣ ≤ ∞

∑
s=n2+1

|v(s)β(s)|
r(s)

≤
∞

∑
s=n2+1

1
r(s)

< ∞,

∞

∑
s=n2

v2(s)β2(s + 1)
r(s)

≤
∞

∑
s=n2

v2(s)β2(s)
r(s)

≤
∞

∑
s=n2

1
r(s)

< ∞.

From (3.24), we have

lim sup
n→∞

n−1

∑
s=n2

β2(s + 1)Q(s) < ∞,

which is a contradiction with (3.23). This completes the proof.

Corollary 3.9. Assume that (1.4) holds and σ > τ. Suppose also that one of conditions (3.9), (3.10), (3.12) and (3.13)
holds and one has (3.23). Then every solution of (1.1) is either oscillatory or tends to zero.

In the following, we give some new oscillation results for (1.1) when σ ≤ τ.

Theorem 3.10. Assume that (1.3) holds and σ ≤ τ. Moreover, suppose that there exists a positive real valued sequence
{η(n)}∞

n=n0
such that

lim sup
n→∞

n−1

∑
s=n0

[
kη(s)Q(s)− (1 + p)r(s− τ)((∆η(s))+)2

4η(s)

]
= ∞. (3.25)

Then every solution of (1.1) is either oscillatory or tends to zero.

Proof. Assume the contrary. Without loss of generality we may suppose that {x(n)} is an eventually positive
solution of (1.1) such that lim supn→∞ x(n) > 0 and let {z(n)} be its associated sequence defined by (1.2).
Then by Lemma 2.2 z(n) > 0 and ∆z(n) > 0 eventually. Then there exists an integer n1 ≥ n0 such that
x(n) > 0, x(n− τ) > 0, x(n− σ) > 0 and z(n) > 0 for all n ≥ n1. Similar to the proof of Theorem 3.1, there
exists an integer n2 ≥ n1 such that (3.3) hold for n ≥ n2. Define a sequence {u(n)} by

u(n) = η(n)
r(n)∆z(n)
z(n− τ)

, n ≥ n2. (3.26)

Then u(n) > 0. Taking difference on both sides of (3.26), by (3.2), we get

∆z(n− τ) ≥ r(n)∆z(n)
r(n− τ)

,

and

∆u(n) ≤ η(n)∆(r(n)∆z(n))
z(n− τ)

− η(n)u2(n + 1)
β2(n + 1)r(n− τ)

+
u(n + 1)
η(n + 1)

∆η(n)

≤ η(n)∆(r(n)∆z(n))
z(n− τ)

− η(n)u2(n + 1)
η2(n + 1)r(n− τ)

+
u(n + 1)
η(n + 1)

(∆η(n))+. (3.27)

Also we define an another sequence {v(n)} by

v(n) = η(n)
r(n− τ)∆z(n− τ)

z(n− τ)
, n ≥ n2. (3.28)

Note that σ ≤ τ. The rest of the proof is similar to that of the Theorem 3.1 and so is omitted. This completes
the proof.
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Corollary 3.11. Assume that (1.3) holds and σ ≤ τ. If

lim sup
n→∞

n−1

∑
s=n0

[
kR(s− τ + 1)Q(s)− 1 + p

4r(s− τ)R(s− τ + 1)

]
= ∞, (3.29)

then every solution of (1.1) is either oscillatory or tends to zero.

Corollary 3.12. Assume that (1.3) hold and σ ≤ τ. If

lim inf
n→∞

1
ln R(n− τ)

n−1

∑
s=n0

R(s− τ + 1)Q(s) >
1 + p

4k
, (3.30)

then every solution of (1.1) is oscillatory or tends to zero.

Proof. By Corollary 3.11, the proof is similar to that of Corollary 3.3, we omit the details.

Corollary 3.13. Assume that (1.3) holds and σ ≤ τ. If

lim inf
n→∞

(
Q(n)R2(n− τ + 1)r(n− τ)

)
>

1 + p
4k

, (3.31)

then every solution of (1.1) is either oscillatory or tends to zero.

Proof. By Corollary 3.11, the proof is similar to that of Corollary 3.4 and so is omitted.

Next, choosing η(n) = n. From Theorem 3.8 we have the following result.

Corollary 3.14. Assume that (1.3) holds and σ ≤ τ. If

lim sup
n→∞

n−1

∑
s=n0

[
ksQ(s)− (1 + p)

r(s− τ)

4s

]
= ∞, (3.32)

then every solution of (1.1) is either oscillatory or tends to zero.

Theorem 3.15. Assume that (1.4) hold and σ ≤ τ. Further suppose that there exists a positive real valued sequence
{η(n)}∞

n=n0
such that (3.25) holds. Suppose also that one of (3.14) and (3.23) holds. Then every solution of (1.1) is

either oscillatory or tends to zero.

Proof. Assume the contrary. Without loss of generality we may suppose that {x(n)} is an eventually positive
solution of (1.1) such that lim supn→∞ x(n) > 0 and let {z(n)} be its associated sequence defined by (1.2).

Then by Lemma 2.1, z(n) > 0, eventually. Then there exists an integer n1 ≥ n0 such that x(n) > 0,
x(n − τ) > 0, x(n − σ) > 0 and z(n) > 0 for all n ≥ n1. In view of (3.2), {r(n)∆z(n)} is nonincreasing
eventually. Consequently, it is easy to conclude that there exists two possible cases of the sign of {∆z(n)}.
That is, ∆z(n) > 0 or ∆z(n) < 0 for n ≥ n2 ≥ n1. If ∆z(n) > 0, then we are base to the case of Theorem 3.10. If
∆z(n) < 0, then by the proof of Theorem 3.6 or Theorem 3.8, we can obtain a contradiction to (3.14) or (3.23)
respectively. The proof is complete.

Corollary 3.16. Assume that (1.4) holds and σ ≥ τ. Suppose that one of conditions (3.29), (3.30) and (3.32) holds, and
one has (3.14) or (3.23). Then every solution of (1.1) is either oscillatory or tends to zero.

4 Some Example

In this section we give some examples to illustrate our results.

Example 4.1. Consider the following second order neutral delay difference equation

∆ [(n + 2σ)∆(x(n)− p(n)x(n− τ))] +
λ

n + σ
f (x(n− σ)) = 0; n = 0, 1, 2, .... (4.1)
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where 0 ≤ p(n) ≤ p < 1, τ and σ are positive integers with σ > τ, r(n) = n + 2σ, q(n) = λ
n+σ , λ > 0 and

f (x) = x(1 + x2). Take η(n) = n + σ, we have k = 1, Q(n) = λ
n+τ . Now

lim sup
n→∞

n−1

∑
s=0

[
kη(s)Q(s)− (1 + p)r(s− τ)((∆η(s))+)2

4η(s)

]

=
n−1

∑
s=0

[
λ−

(
1 + p

4

)]
= ∞,

for λ > 1+p
4 . Hence by Theorem 3.1, every solution of (1.1) is either oscillatory or tends to zero.

Example 4.2. Consider the following second order neutral delay difference equation

∆ [(n + τ)∆(x(n)− p(n)x(n− τ))] +
λ

n

(
(x(n− σ)(1 + x2(n− σ))

)
= 0,

n = 1, 2, ... (4.2)

where 0 ≤ p(n) ≤ p < 1, τ and σ are positive integers with σ ≤ τ, r(n) = n + τ, q(n) = λ
n , λ > 0 and k = 1.

Clearly, Q(n) = λ
n . Now

lim sup
n→∞

n−1

∑
s=1

[
ksQ(s)−

(
1 + p

4

)
r(s− τ)

s

]

= lim sup
n→∞

n−1

∑
s=1

[
λ−

(
1 + p

4

)]
= ∞

for λ > 1+p
4 . Hence by Corollary 3.14, every solution of (4.2) is either oscillatory or tends to zero.

Example 4.3. Consider the following second order neutral delay difference equation

∆ [en∆(x(n)− p(n)x(n− 1))] + e2nx(n− 2)(1 + x2(n− 2)) = 0, n = 0, 1, ... (4.3)

where 0 ≤ p(n) ≤ p < 1, τ and σ are positive integers with σ > τ, r(n) = en, q(n) = e2n and k = 1. We have,
Q(n) = e2n−2, β(n + 1) = 1

en(e−1) . Clearly, ∑∞
n=0

1
r(n) < ∞. Also

lim sup
n→∞

n−1

∑
s=0

β2(s + 1)Q(s)

= lim sup
n→∞

n−1

∑
s=0

1
e2s(s− 1)2 e2s−2

= ∞

Also,

lim inf
n→∞

[
Q(n)R2(n− σ + 1)r(n− σ)

]

= lim inf
n→∞

[
e2n−2R2(n− 1)r(n− 2)

]
= lim inf

n→∞

[
e2n−2

(
en − 1

en−1(e− 1)

)2
en−2

]

= lim inf
n→∞

[
(en − 1)2

(e− 1)2 en−2
]

>
1 + p

ε

Then by Corollary 3.9, every solution of (1.1) is either oscillatory or tends to zero.
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Abstract

In this article, we analysis the oscillatory properties of first order neutral difference equations with positive
and negative variable coefficients of the forms

∆[x(n) + p(n)x(n− τ)] +
m

∑
i=1

qi(n)x(n− σi)−
k

∑
j=1

rj(n)x(n− ρj) = 0; n = 0, 1, 2, ..., (∗)

and

∆[x(n) + p(n)x(n + τ)] +
m

∑
i=1

qi(n)x(n + σi)−
k

∑
j=1

rj(n)x(n + ρj) = 0; n = 0, 1, 2, ..., (∗∗)

where {p(n)} is a sequence of real numbers, {qi(n)} and
{

rj(n)
}

are sequences of positive real numbers, τ

is a positive integer, σi and ρj are nonnegative integers, for i = 1, 2, ..., m and j = 1, 2, ..., k. We established
sufficient conditions for oscillation of solutions to (∗) and (∗∗).

Keywords and Phrases: Oscillatory properties, neutral, delay, advanced, difference equation, positive and negative
coefficients.

AMS Subject Classifications (2010): 39A10, 39A12. c©2012 MJM. All rights reserved.

1 Introduction

In this article, we analysis the oscillatory properties of the first order neutral delay and advanced difference
equations with several positive and negative coefficients of the forms

∆[x(n) + p(n)x(n− τ)] +
m

∑
i=1

qi(n)x(n− σi)−
k

∑
j=1

rj(n)x(n− ρj) = 0; n = 0, 1, 2, ..., (1.1)

and

∆[x(n) + p(n)x(n + τ)] +
m

∑
i=1

qi(n)x(n + σi)−
k

∑
j=1

rj(n)x(n + ρj) = 0; n = 0, 1, 2, ..., (1.2)

where ∆ is the forward difference operator defined by ∆x(n) = x(n + 1)− x(n), {p(n)} is a sequence of real
numbers, {qi(n)} and

{
rj(n)

}
are sequences of positive real numbers, τ is a positive integer, and σi and ρj are

nonnegative integers for i = 1, 2, ..., m and j = 1, 2, ..., k.

∗Corresponding author.
E-mail address: amurugesan3@gmail.com (A. Murugesan) and sksv07@gmail.com (K. Shanmugavalli).
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Throughout the paper we assumed that there exist a constant p such that −1 < p ≤ p(n) ≤ 0; eventually
and {p(n)} is monotonically.

In the last many years there has been an improving curiosity in the work of the oscillation concept of
neutral difference and differential equations. The oscillation and asymptotic properties of these equations has
been used in many areas of applied mathematics, such as population dynamics [4], stability theory [12,13],
circuit theory [3], bifurcation analysis [2], dynamical behavior of delayed network systems [14] and so on.

In [11], Öğünmez et al. established sufficient conditions for oscillation of all solutions of (1.1) and (1.2)
when p ≡ 0, m = k, qi(n) = qi and rj(n) ≡ rj. In [8], we derived sufficient conditions for oscillation of all
solutions of the equations (1.1) and (1.2) for the cases −1 < p < 0, m = k, qi(n) = qi and rj(n) = rj. The
results obtained in [8] improves the results in [11]; In [9], we derived sufficient conditions for oscillation of all
solutions of the equations (1.1) and (1.2) for the cases p(n) ≡ p with −1 < p < 0.

For the general background of difference equations, one can refer to the books [1,5] and the papers [2-4,
6-14] and reference cited therein. Our main aim in this paper is to obtain the sufficient conditions for the
oscillation of all solutions of equations (1.1) and (1.2).

Let n∗ = max
{

τ, σi, ρj
}

for i = 1, 2, ..., m and j = 1, 2..., k. A solution of (1.1) on N(n0) = {n0, n0 + 1, ...} is
defined as a real sequence {x(n)} defined for n ≥ n0 − n∗ and which satisfies (1.1) for n ∈ N(n0). A solution
{x(n)} of (1.1) on N(n0) is said to be oscillatory if for every positive integers N0 > n0, there exists n ≥ N0
such that x(n)x(n + 1) ≤ 0, otherwise {x(n)} is said to be nonoscillatory.

Furthermore, unless otherwise stated, when we write a functional inequality it indicates that it holds for
all sufficiently large values of n.

2 Some Useful Lemmas

The following lemmas are very useful to prove our main results.

Lemma 2.1. Let {x(n)} be an eventually positive solution of the delay difference equation

∆[x(n) + p(n)x(n− τ)] +
m

∑
i=1

qi(n)x(n− σi) = 0. (2.1)

Set
z(n) = x(n) + p(n)x(n− τ). (2.2)

Then z(n) > 0 and ∆z(n) < 0 eventually.

Proof. From (2.1) and (2.2), we obtain

∆z(n) = −
m

∑
i=1

qi(n)x(n− σi) ≤ 0. (2.3)

This shows that {z(n)} is a decreasing sequence.
Then either z(n) > 0 or z(n) < 0 eventually. If z(n) < 0, then

x(n) ≤ −p(n)x(n− τ) ≤ −px(n− τ)

or
x(n + kτ) ≤ (−p)kx(n),

which implies that x(n) → 0 as n → ∞. Since {p(n)} is bounded, we have z(n) → 0 as n → ∞ and
consequently z(n) > 0, eventually.

This completes the proof.

Lemma 2.2. [6] Assume that
(m̄ + 1)m̄+1

m̄m̄

r

∑
i=1

lim inf
n→∞

αi(n) > 1, (2.4)

where αi(n) ≥ 0, 1 ≤ i ≤ r and m̄ = min1≤i≤r mi. Then the delay difference inequality

∆x(n) +
r

∑
i=1

αi(n)x(n−mi) ≤ 0; n = 0, 1, 2, ..., (2.5)

has no eventually positive solution.
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Lemma 2.3. Let {x(n)} be an eventually positive solution of the neutral advanced difference equation

∆[x(n) + p(n)x(n + τ)]−
m

∑
i=1

qi(n)x(n + σi) = 0; n ≥ n0. (2.6)

Set
z(n) = x(n) + p(n)x(n + τ). (2.7)

If
∞

∑
n=n0

m

∑
i=1

qi(n) = +∞, (2.8)

then z(n) > 0 and ∆z(n) > 0 eventually.

Proof. From (2.6) and (2.7), we have

∆z(n) =
m

∑
i=1

qi(n)x(n + σi) ≥ 0. (2.9)

This shows that {z(n)} is an increasing sequence. Then either z(n) > 0 or z(n) < 0, eventually.
If z(n) < 0, then

x(n) < −p(n)x(n + τ) < x(n + τ).

This shows that {x(n)} is bounded from below by a positive constant, say M.
From (2.9), we have

∆z(n) ≥ M
m

∑
i=1

qi(n), (2.10)

which, in view of (2.8), implies that z(n) → +∞ as n → +∞. This is a contradiction and this completes the
proof.

Lemma 2.4. [8] Consider the advanced difference inequality

∆x(n)−
m

∑
i=1

qi(n)x(n + σi) ≥ 0; n ≥ n0. (2.11)

If
σσ

(σ− 1)σ−1

m

∑
i=1

lim inf
n→∞

qi(n) > 1, (2.12)

where σ = min1≤i≤m σi, then (2.11) cannot have an eventually positive solution.

3 Sufficient Conditions for Oscillations of Equation (1.1)

In this section, we establish sufficient conditions for the oscillation of all solutions of the neutral delay
difference equation (1.1).

Theorem 3.1. Assume that ∆p(n) ≤ 0 and m = k. Suppose that for i = 1, 2, ..., m, σi = ρi, σi > τ, qi(n)− ri(n) ≥ 0
and not identically zero and

qi(n)− ri(n) ≥ qi(n− τ)− ri(n− τ). (3.1)

Suppose that for i = 1, 2, ..., m,

(σ
′ − τ + 1)σ

′−τ+1

(σ′ − τ)σ
′−τ

m

∑
i=1

lim inf
n→∞

(
qi(n)− ri(n)

1 + p(n− σ + τ − σi)

)
> 1, (3.2)

where
σ
′
= min

1≤i≤m
σi and σ = max

1≤i≤m
σi.

Then every solution of (1.1) is oscillatory.
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Proof. Assume the contrary. Without loss of generality, we suppose that {x(n)} is an eventually positive
solution of (1.1) and let {z(n)} be its associated sequence defined by (2.2). Then by Lemma 2.1, z(n) > 0 and
∆z(n) < 0, eventually.

Then the equation (1.1) becomes,

∆z(n) =
m

∑
i=1

(ri(n)− qi(n))x(n− σi). (3.3)

Set

y(n) = z(n) + p(n− σ)z(n− τ). (3.4)

Then

∆y(n) ≤
m

∑
i=1

(ri(n)− qi(n))x(n− σi)

+ p(n− σ)
m

∑
i=1

(ri(n− τ)− qi(n− τ))x(n− σi − τ)

≤
m

∑
i=1

(ri(n)− qi(n))(x(n− σi) + p(n− σi)x(n− σi − τ))

=
m

∑
i=1

(ri(n)− qi(n))z(n− σi) ≤ 0. (3.5)

This shows that {y(n)} is a decreasing sequence. By applying the procedure used in Lemma 2.1, we can easily
show that y(n) > 0, eventually.

Now, from (3.4), we have
y(n)

1 + p(n− σ)
≤ z(n− τ), (3.6)

or
y(n + τ − σi)

1 + p(n− σ + τ − σi)
≤ z(n− σi). (3.7)

Using (3.7) in (3.5), we have

∆y(n) +
m

∑
i=1

(
qi(n)− ri(n)

1 + p(n− σ + τ − σi)

)
y(n− (σi − τ)) ≤ 0. (3.8)

In view of (3.2) and Lemma 2.2, the delay difference inequality (3.8) has no eventually positive solution, which
contradicts the fact that y(n) > 0, eventually.

This completes the proof.

Theorem 3.2. Assume that ∆p(n) ≤ 0 and m = k. Suppose that

(i) there exists a partition of the set {1, 2, ..., m} into two disjoint subsets I and J such that i ∈ I implies σi > ρi and
j ∈ J implies σj = ρj;

(ii) gi(n) = qi(n)− ri(n− σi + ρi) ≥ 0 and not identically zero for i = 1, 2, ..., m;

and

(iii) gi(n) ≥ gi(n− τ) and σi > τ for i = 1, 2, ..., m.

Suppose further that

∑
i∈I

n−1

∑
s=n−σi+ρi

ri(s) ≤ 1 + p(n) (3.9)

and
(σ
′ − τ + 1)σ

′−τ+1

(σ′ − τ)σ
′−τ

m

∑
i=1

lim inf
n→∞

(
gi(n)

1 + p(n + τ − σ− σi)

)
> 1, (3.10)

where σ
′
= min1≤i≤m σi and σ = max1≤i≤m σi.

Then every solution of (1.1) is oscillatory.
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Proof. On the contrary, we assume without loss of generality that {x(n)} is an eventually positive solution of
(1.1). Set

z(n) = x(n) + p(n)x(n− τ)−∑
i∈I

n−1

∑
s=n−σi+ρi

ri(s)x(s− ρi). (3.11)

Then by Lemma 2.1 in [10], z(n) > 0 and ∆z(n) ≤ 0 eventually.
Now,

∆z(n) = −
m

∑
i=1

qi(n)x(n− σi) +
m

∑
i=1

ri(n)x(n− ρi)

− ∑
i∈I

ri(n)x(n− ρi) + ∑
i∈I

ri(n− σi + ρi)x(n− σi)

= −
m

∑
i=1

qi(n)x(n− σi) +
m

∑
i=1

ri(n− σi + ρi)x(n− σi)

∆z(n) = −
m

∑
i=1

gi(n)x(n− σi). (3.12)

Set
y(n) = z(n) + p(n− σ)z(n− τ) (3.13)

where σ = max1≤i≤m σi. Then

∆y(n) ≤ ∆z(n) + p(n− σ)∆z(n− τ)

≤ −
m

∑
i=1

gi(n)x(n− σi)− p(n− σ)
m

∑
i=1

gi(n− τ)x(n− τ − σi)

≤ −
m

∑
i=1

gi(n)[x(n− σi) + p(n− σ)x(n− τ − σi)]

≤ −
m

∑
i=1

gi(n)[x(n− σi) + p(n− σi)x(n− τ − σi)]

= −
m

∑
i=1

gi(n)z(n− σi) ≤ 0. (3.14)

This shows that {y(n)} is a nonincreasing sequence. We claim that y(n) > 0, eventually.
Otherwise y(n) < 0. This implies that

z(n) < −p(n− σ)z(n− τ) ≤ −pz(n− τ)

and hence we have z(n) → 0 as n → ∞. Since {p(n)} is bounded, we have y(n) → 0 as n → ∞, which is a
contradiction.

From (3.13), we get
y(n)

1 + p(n− σ)
≤ z(n− τ)

or
y(n + τ − σi)

1 + p(n + τ − σ− σi)
≤ z(n− σi) (3.15)

Using (3.15) is (3.14), we have

∆y(n) +
m

∑
i=1

[
gi(n)

1 + p(n + τ − σ− σi)

]
y(n− (σi − τ)) ≤ 0. (3.16)

By Lemma 2.2 and (3.10), the delay difference inequality (3.16) has no eventually positive solution, which
leads to a contradiction.

This completes the proof.
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Theorem 3.3. Assume that ∆p(n) ≤ 0. Suppose that

(i) there exists a positive integer l ≤ m and a partition of the set {1, 2, ..., k} into l disjoint subsets J1, J2, ..., Jl such
that j ∈ Ji implies ρj < σi;

(ii) gi(n) = qi(n) − ∑u∈Ji
ru(n − σi + ρu) ≥ 0 and are not identically zero for i = 1, 2, ..., l, gi(n) = qi(n) for

i = l + 1, ..., m;

and

(iii) gi(n) ≥ gi(n− τ) and σi > τ for i = 1, 2, ..., m.

Suppose further that
l

∑
i=1

∑
j∈Ji

n−1

∑
s=n−σi+ρj

rj(s) ≤ 1 + p(n), eventually (3.17)

and
(σ
′ − τ + 1)σ

′−τ+1

(σ′ − τ)σ
′−τ

m

∑
i=1

lim inf
n→∞

(
gi(n)

1 + p(n + τ − σ− σi)

)
> 1, (3.18)

where σ
′
= min1≤i≤m σi and σ = max1≤i≤m σi.

Then every solution of (1.1) is oscillatory.

Proof. Assume the contrary. Without loss of generality we may suppose that {x(n)} is an eventually positive
solution of (1.1). Set

z(n) = x(n) + p(n)x(n− τ)−
l

∑
i=1

∑
u∈Ji

n−1

∑
s=n−σi+ρu

ru(s)x(s− ρu). (3.19)

Then

∆z(n) = ∆[x(n) + p(n)x(n− τ)]

−
l

∑
i=1

∑
u∈Ji

[
n

∑
s=n+1−σi+ρu

ru(s)x(s− ρu)−
n−1

∑
s=n−σi+ρu

ru(s)x(s− ρu)

]

= −
m

∑
i=1

qi(n)x(n− σi) +
k

∑
j=1

rj(n)x(n− ρj)

−
l

∑
i=1

∑
u∈Ji

[ru(n)x(n− ρu)− ru(n− σi + ρu)x(n− σi)]

= −
m

∑
i=1

qi(n)x(n− σi) +
l

∑
i=1

∑
u∈Ji

ru(n− σi + ρu)x(n− σi)

or

∆z(n) = −
m

∑
i=1

gi(n)x(n− σi) ≤ 0. (3.20)

This shows that {z(n)} is nonincreasing sequence. By Lemma 2.1 in [10], we can show that z(n) > 0,
eventually.

Set
y(n) = z(n) + p(n− τ)z(n− τ), (3.21)

where σ = max1≤i≤m σi.
Then

∆y(n) ≤ ∆z(n) + p(n− σ)∆z(n− τ)

= −
m

∑
i=1

gi(n)x(n− σi)− p(n− σ)
m

∑
i=1

gi(n− τ)x(n− τ − σi)
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≤ −
m

∑
i=1

gi(n)z(n− σi) ≤ 0. (3.22)

Clearly {y(n)} is a nonincreasing sequence. By applying the procedure in Theorem 3.2, we can easily show
that y(n) > 0, eventually.

Again from (3.21)
y(n) ≤ (1 + p(n− σ))z(n− τ)

or
y(n + τ − σi)

1 + p(n + τ − σ− σi)
≤ z(n− σi). (3.23)

Using (3.23) in (3.22), we obtain

∆y(n) +
m

∑
i=1

(
gi(n)

1 + p(n + τ − σ− σi)

)
y(n− (σi − τ)) ≤ 0. (3.24)

But in view of Lemma 2.2 and (3.18), the delay difference inequality (3.24) has no eventually positive solution.
This contradiction compelets the proof.

4 Sufficient Conditions for Oscillation of Equation (1.2)

Theorem 4.1. Assume that ∆p(n) ≥ 0 and m = k. Suppose that for i = 1, 2, ..., m, σi = ρi, ρi > τ, hi(n) =

ri(n)− qi(n) ≥ 0 and are not identically zero, and hi(n) ≥ hi(n + τ).
Suppose further that

∞

∑
n=0

m

∑
i=1

hi(n) = +∞ (4.1)

and
(ρ
′ − τ)ρ

′−τ

(ρ′ − τ − 1)ρ
′−τ−1

m

∑
i=1

lim inf
n→∞

(
hi(n)

1 + p(n + ρ− τ + ρi)

)
> 1, (4.2)

where ρ
′
= min1≤i≤m ρi and ρ = max1≤i≤m ρi.

Then every solution of (1.2) is oscillatory.

Proof. For the sake of contradiction, without loss of generality, we may suppose that {x(n)} is an eventually
positive solution of (1.2).

Set
z(n) = x(n) + p(n)x(n + τ). (4.3)

Then from (1.2) and (4.3), we obtain

∆z(n) =
m

∑
i=1

hi(n)x(n + ρi) ≥ 0. (4.4)

This shows that {z(n)} is an eventually increasing sequence. Then by
Lemma 2.3, the sequence {z(n)} is an eventually positive.

Set
y(n) = z(n) + p(n + ρ)z(n + τ) (4.5)

where ρ = max1≤i≤m ρi. Then

∆y(n) ≥ ∆z(n) + p(n + ρ)∆z(n + τ)

=
m

∑
i=1

hi(n)x(n + ρi) + p(n + ρ)
m

∑
i=1

hi(n + τ)x(n + ρi + τ)

≥
m

∑
i=1

hi(n) [x(n + ρi) + p(n + ρi)x(n + ρi + τ)]
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=
m

∑
i=1

hi(n)z(n + ρi) ≥ 0. (4.6)

This shows that {y(n)} is an increasing sequence. But in view of (4.1) and
Lemma 2.3, we get y(n) > 0, eventually.

From(4.5), we have
y(n)

1 + p(n + ρ)
≤ z(n + τ) (4.7)

or
y(n− τ + ρi)

1 + p(n + ρ− τ + ρi)
≤ z(n + ρi). (4.8)

Using (4.8) in (4.6), we obtain

∆y(n)−
m

∑
i=1

(
hi(n)

1 + p(n + ρ− τ + ρi)

)
y(n + ρi − τ) ≥ 0. (4.9)

But in view of (4.2) and Lemma 2.4, the advanced difference inequality (4.9) cannot have an eventually positive
solution. This is a contradiction and this completes the proof.

Theorem 4.2. Assume that ∆p(n) ≥ 0 and m = k. Suppose that

(i) there exist a partition of the set {1, 2, ..., m} into two disjoint subsets I and J such that i ∈ I implies ρi > σi and
j ∈ J implies ρj = σj;

(ii) hi(n) = ri(n)− qi(n + ρi − σi) ≥ 0 and are not identically zero for i = 1, 2, ..., m;

(iii) hi(n) ≥ hi(n + τ) and ρi > τ for i = 1, 2, ...m.

Suppose further that
∞

∑
n=0

m

∑
i=1

hi(n) = +∞ (4.10)

and
(ρ
′ − τ)ρ

′−τ

(ρ′ − τ − 1)ρ
′−τ−1

m

∑
i=1

lim inf
n→∞

(
hi(n)

1 + p(n + ρ− τ + ρi)

)
> 1, (4.11)

where ρ
′
= min1≤i≤m ρi and ρ = max1≤i≤m ρi.

Then every solution {x(n)} of (1.2) is either oscillatory or lim infn→∞ x(n) = 0.

Proof. On the contrary we may assume, without loss of generality that {x(n)} is an eventually positive
solution such that

lim inf
n→∞

x(n) > 0. (4.12)

Set

z(n) = x(n) + p(n)x(n + τ)−∑
i∈I

n+ρi−σi−1

∑
s=n

qi(s)x(s + σi). (4.13)

Then from (1.2) and (4.13), we have

∆z(n) = −
m

∑
i=1

qi(n)x(n + σi) +
m

∑
i=1

ri(n)x(n + ρi)

− ∑
i∈I

qi(n + ρi − σi)x(n + ρi) + ∑
i∈I

qi(n)x(n + σi)

= −
m

∑
i=1

qi(n + ρi − σi)x(n + ρi) +
m

∑
i=1

ri(n)x(n + ρi)

=
m

∑
i=1

hi(n)x(n + ρi) ≥ 0. (4.14)
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This shows that {z(n)} is a nondecreasing sequence.
Then either

lim
n→∞

z(n) = +∞ (4.15)

or
lim

n→∞
z(n) = L ∈ R. (4.16)

Assume that (4.16) holds. But in view of (4.10) and (4.12), and from (4.14), we have

lim
n→∞

z(n) = +∞,

which is a contradiction to the assumption and so (4.15) holds. Thus we have z(n) > 0. eventually. Set

y(n) = z(n) + p(n + ρ)z(n + τ) (4.17)

where ρ = max1≤i≤m ρi. Then

∆y(n) =
m

∑
i=1

hi(n)x(n + ρi) + p(n + ρ)
m

∑
i=1

hi(n + τ)x(n + τ + ρi)

≥
m

∑
i=1

hi(n)z(n + ρi) ≥ 0. (4.18)

This shows that {y(n)} is an increasing sequence. By repeating the steps followed in the Theorem 4.1, we can
easily show that y(n) > 0, eventually.

Again from (4.17), we have
y(n)

1 + p(n + ρ)
≤ z(n + τ)

or
y(n− τ + ρi)

1 + p(n− τ + ρ + ρi)
≤ z(n + ρi). (4.19)

Using (4.19) in (4.18), we obtain

∆y(n)−
m

∑
i=1

(
hi(n)

1 + p(n− τ + ρ + ρi)

)
y(n− τ + ρi) ≥ 0; (4.20)

But in view of (4.11) and the Lemma 2.4, the advanced difference inequality (4.20) cannot have an eventually
positive solution. This is a contradiction and this completes the proof.

Theorem 4.3. Assume that ∆p(n) ≥ 0. Suppose that

(i) there exist a positive integer l ≤ k and a partition of the set {1, 2, ..., m} into l disjoint subsets I1, I2, ..., Il such
that i ∈ Ij implies ρj > σj;

(ii) aj(n) = rj(n)− ∑i∈Ij
qi(n + ρj − σi) ≥ 0 for j = 1, 2, ..., l and are not identically zero and aj(n) = rj(n) for

j = l + 1, ..., k;

(iii) ρj > τ for j = 1, 2, ...k;

(iv) aj(n) ≥ aj(n + τ) for j = 1, 2, ..., k.

Suppose further that
∞

∑
n=0

k

∑
j=1

lim inf
n→∞

aj(n) > 1 (4.21)

and
(ρ
′ − τ)ρ

′−τ

(ρ′ − τ − 1)ρ
′−τ−1

k

∑
j=1

lim inf
n→∞

(
aj(n)

1 + p(n− τ + ρ− ρj)

)
> 1 (4.22)

where ρ
′
= min1≤j≤k ρj and ρ = max1≤j≤k ρj.

Then every solution {x(n)} of (1.2) is either oscillatory or lim infn→∞ x(n) = 0.
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Proof. On the contrary, without loss of generality that we may suppose that {x(n)} is an eventually positive
solution such that

lim inf
n→∞

x(n) > 0. (4.23)

Set

z(n) = x(n) + p(n)x(n− τ)−
l

∑
j=1

∑
i∈Ij

n+ρj−σi−1

∑
s=n

qi(s)x(s + σi). (4.24)

Then from (1.2) and (4.24), we have

∆z(n) = −
m

∑
i=1

qi(n)x(n + σi) +
k

∑
j=1

rj(n)x(n + ρj)

−
l

∑
j=1

∑
i∈Ij

(
qi(n + ρj − σi)x(n + ρj)− qi(n)x(n + σi)

)
=

l

∑
j=1

rj(n)x(n + ρj)−
l

∑
j=1

∑
i∈Ij

qi(n + ρj − σi)x(n + ρj)

+
k

∑
j=l+1

rj(n)x(n + ρj)

or

∆z(n) =
k

∑
j=1

aj(n)x(n + ρj) ≥ 0. (4.25)

This shows that {z(n)} is an increasing sequence. In view of (4.21) and (4.23) and from (4.25), we obtain
z(n)→ +∞ as n→ ∞. Since {z(n)} increases to +∞. We have z(n) > 0, eventually.

Set
y(n) = z(n) + p(n + ρ)z(n + τ), (4.26)

where ρ = max1≤j≤k ρj. Then

∆y(n) ≥ ∆z(n) + p(n + ρ)∆z(n + τ)

=
k

∑
j=1

aj(n)x(n + ρj) + p(n + ρ)
k

∑
j=1

aj(n + τ)x(n + τ + ρj)

or

∆y(n) ≥
k

∑
j=1

aj(n)z(n + ρj) ≥ 0. (4.27)

Since {y(n)} is increasing, z(n) → ∞ as n → ∞ and z(n) > 0 eventually, we can easily show from (4.27), that
y(n)→ ∞ as n→ ∞ and consequently y(n) > 0, eventually.

From (4.26), we have
y(n)

1 + p(n + ρ)
≤ z(n + τ)

or
y(n− τ + ρj)

1 + p(n + ρ− τ + ρj)
≤ z(n + ρj). (4.28)

Using (4.28) in (4.27), we have

∆y(n)−
k

∑
j=1

(
aj(n)

1 + p(n− τ + ρj + ρ)

)
y(n + ρj − τ) ≥ 0. (4.29)

This shows that the difference inequality (4.29) has an eventually positive solution {y(n)}. On the other hand,
in view of (4.22) and Lemma 2.4, the advanced difference inequality (4.29) cannot have an eventually positive
solution, which leads to a contradiction. This completes the proof.

Conclusion: We presents sufficient conditions for oscillation of all solutions of first order neutral delay
and advanced difference equations with positive and negative variable coefficients. Our results improves the
earlier results in the literature.
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Abstract

In this paper, He’s Homotopy Perturbation Method (HHPM), by construction, produces approximate
solutions of nonlinear integro-differential equations [2]. The purpose of this paper is to extend the He’s
Homotopy Perturbation method to the nonlinear integro-differential equations. Efficient error estimation
for the He’s Homotopy Perturbation method is also introduced. Details of this method are presented and
compared with Single-Term Haar Wavelet Series (STHWS) method [2] numerical results along with estimated
errors are given to clarify the method and its error estimator.
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1 Introduction

Mathematical modelling of real-life problems usually results in functional equations, like ordinary or
partial differential equations, integral and integro- differential equations, stochastic equations. Many
mathematical formulations of physical phenomena contain integro-differential equations, these equations
arise in many fields like fluid dynamics, biological models and chemical kinetics. Integro-differential
equations are usually difficult to solve analytically so it is required to obtain an efficient approximate
solution [6].

Nonlinear phenomena are of fundamental importance in various fields of science and engineering. The
nonlinear models of real-life problems are still difficult to solve either numerically or theoretically. There
has recently been much attention devoted to the search for better and more efficient solution methods for
determining a solution, approximate or exact, analytical or numerical, to nonlinear models, [1, 8, 9].

In this article we developed numerical methods for nonlinear IDEs to get discrete solutions via He’s
Homotopy Perturbation method which was studied by S. Sekar et al. [3, 4]. The subject of this paper is to
try to find numerical solutions of nonlinear integro-differential equations using He’s Homotopy Perturbation
method and compare the discrete results with the single-term Haar wavelet series method (STHWS) which is
presented previously by Sekar et al. [2]. Finally, we show the method to achieve the desired accuracy. Details
of the structure of the present method are explained in sections. We apply He’s Homotopy Perturbation
method and STHWS methods for nonlinear IDEs. In Section 4, it’s proved the efficiency of the He’s Homotopy
Perturbation method. Finally, Section 5 contains some conclusions and directions for future expectations and
researches.

∗Corresponding author.
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2 He’s Homotopy Perturbation Method

In this section, we briefly review the main points of the powerful method, known as the He’s homotopy
perturbation method [2]. To illustrate the basic ideas of this method, we consider the following differential
equation:

A(u)− f (t) = 0, u(0) = u0, t ∈ Ω (2.1)

where A is a general differential operator, u0 is an initial approximation of Eq. (2.1), and f (t) is a known
analytical function on the domain of Ω. The operator A can be divided into two parts, which are L and N,
where L is a linear operator, but N is nonlinear. Eq. (2.1) can be, therefore, rewritten as follows:

L(u) + N(u)− f (t) = 0

By the homotopy technique, we construct a homotopy U(t, p) : Ω× [0, 1]→ <, which satisfies:

H(U, p) = (1− p)[LU(t)− Lu0(t)] + p[AU(t)− f (t)] = 0, p ∈ [0, 1], t ∈ Ω (2.2)

or
H(U, p) = LU(t)− Lu0(t) + pLu0(t) + p[NU(t)− f (t)] = 0, p ∈ [0, 1], t ∈ Ω (2.3)

where p ∈ [0, 1] is an embedding parameter, which satisfies the boundary conditions. Obviously, from Eqs.
(2.2) or (2.3) we will have H(U, 0) = LU(t)− Lu0(t) = 0, H(U, 1) = AU(t)− f (t) = 0.

The changing process of p from zero to unity is just that of U(t, p) from u0(t) to u(t). In topology, this
is called homotopy. According to the He’s Homotopy Perturbation method, we can first use the embedding
parameter p as a small parameter, and assume that the solution of Eqs. (2.2) or (2.3) can be written as a power
series in p :

U =
∞

∑
n=0

pnUn = U0 + pU1 + p2U2 + p3U3 + ... (2.4)

Setting p = 1, results in the approximate solution of Eq.(2.1)

U(t) = lim
p→1

U = U0 + U1 + U2 + U3 + ...

Applying the inverse operator L−1 =
∫ t

0 (.)dt to both sides of Eq. (2.3), we obtain

U(t) = U(0) +
∫ t

0
Lu0(t)dt− p

∫ t

0
Lu0(t)dt− p[

∫ t

0
(NU(t)− f (t))dt] (2.5)

where U(0) = u0.
Now, suppose that the initial approximations to the solutions, Lu0(t), have the form

Lu0(t) =
∞

∑
n=0

αnPn(t) (2.6)

where αn are unknown coefficients, and P0(t), P1(t), P2(t), ... are specific functions. Substituting (2.4) and (2.6)
into (2.5) and equating the coefficients of p with the same power leads to

p0 : U0(t) = u0 + ∑∞
n=0 αn

∫ t
0 Pn(t)dt

p1 : U1(t) = −∑∞
n=0 αn

∫ t
0 Pn(t)dt−

∫ t
0 (NU0(t)− f (t))dt

p2 : U2(t) = −
∫ t

0 NU1(t)dt
...

pj : Uj(t) = −
∫ t

0 NUj−1(t)dt

(2.7)

Now, if these equations are solved in such a way that U1(t) = 0, then Eq. (2.7) results in U1(t) = U2(t) =
U3(t) = . . . = 0 and therefore the exact solution can be obtained by using

U(t) = U0(t) = u0 +
∞

∑
n=0

αn

∫ t

0
Pn(t)dt (2.8)
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It is worth noting that, if U(t) is analytic at t = t0, then their Taylor series

U(t) =
∞

∑
n=0

an(t− t0)
n

can be used in Eq. (2.8), where a0, a1, a2, ... are known coefficients and αn are unknown ones, which must be
computed.

3 General format for nonlinear integro-differential equations

The equation is of the form [3]

∂

∂t
u(x, t) +

∫ t

n=0
Ru(x, s)ds = g(x, t) (3.9)

is an example of general nonlinear integro-differential equations defined on a Hilbert space. In the equation
R is a nonlinear operator that contains partial derivatives with respect to x and g is an inhomogeneous term.
On particular interest is the following special case (3.9) becomes.

∂

∂t
u(x, t)−

∫ t

n=0
a(t− s)

∂

∂x
σ(

∂

∂x
u(x, s))ds = g(x, t), 0 < x < 1, 0 < t < T (3.10)

with the initial condition
u(x, 0) = f (x) (3.11)

The problem arises in the theory of one-dimensional viscoelasticity [3]. It is also a special model for one
dimensional heat flow in materials with memory [3].

A numerical solution to the nonlinear problem given by (3.10) and (3.11) was obtained using Galerkin’s
method [7]. In this paper, the STHWS method and He’s Homotopy Perturbation method are described and
applied to compute numerical solutions to (3.10) and (3.11). It will be shown that the algorithms are efficient
and accurate with only two or three iterations.

4 Numerical Experiments

Different forms of the kernel a(.) and the nonlinear function σ(.) [7] in (3.10) are considered. The
inhomogeneous term g(x, t) and initial condition f (x) in (3.11) are also chosen appropriately so that exact
solutions are available. The exact solutions are then compared with the numerical solutions derived through
the STHWS method and He’s Homotopy Perturbation method.

4.1 Example

In this example [5], a(ζ) = e−ζ , σ(ζ) = ζ2, g(x, t) = e−(x+t) + 2e−2x(e−t − e−2t) and the initial condition
u(x, 0) = e−x. With these choices, (3.10) and (3.11) become

∂

∂t
u(x, t)−

∫ t

0
e−(t−s) ∂

∂x
[(

∂

∂x
u(x, s))2]ds = e−(x+t) + 2e−2x(e−t − e−2t), u(x, 0) = e−x

The exact solution for this problem is u(x, t) = e−(x+t)

4.2 Example

In this example [5], a(ζ) = e−2ζ , σ(ζ) = ζ2, g(x, t) = cos(x+ t)+ 1
4 [sin2(x+ t)− cos2(x+ t)− e−2t(sin2x−

cos2x)] and the initial condition u(x, 0) = sinx.
The exact solution for this problem is u(x, t) = sin(x + t)
Table 1 shows the errors between the exact solution and numerical solutions. The above examples 4.1 and

4.2 has been solved numerically using the STHWS method [2] and He’s Homotopy Perturbation method. The
obtained results (with step size x = 0.2 and t = 0.01) along with exact solutions of the examples 4.1 and 4.2,
absolute errors between them are calculated and are presented in Table 1. A graphical representation is given
for the nonlinear integro-differential equations in Figures 1 and 2, using three-dimensional effect to highlight
the efficiency of the He’s Homotopy Perturbation method.
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Figure 1: Error estimation of the Example 4.1

Figure 2: Error estimation of the Exaample 4.2
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Table 1: Numerical results for the Examples 4.1 and 4.2

Exact Solution STHWS Error HHPM Error
t Example 4.1 Example 4.2 Example 4.1 Example 4.2 Example 4.1 Example 4.2

0.0 0.99005 0.29552 1.63E-04 1.00E-05 1.63E-06 1.00E-07
0.2 0.81058 0.47943 2.77E-04 2.62E-04 2.77E-06 2.62E-06
0.4 0.66365 0.64422 3.43E-04 3.48E-04 3.43E-06 3.48E-06
0.6 0.54335 0.78333 4.63E-04 4.18E-04 4.63E-06 4.18E-06
0.8 0.44486 0.89121 5.48E-05 5.42E-04 5.48E-07 5.42E-06
1.0 0.36422 0.96356 6.11E-05 6.62E-04 6.11E-07 6.62E-06

5 Conclusion

The obtained results (approximate solutions) of the nonlinear integro-differential equation [2] show that
the He’s Homotopy Perturbation method works well for finding the solution. The efficiency and the accuracy
of the He’s Homotopy Perturbation method have been illustrated by suitable examples. From the Table
1, it can be observed that for most of the time intervals, the absolute error is less in the He’s Homotopy
Perturbation method when compared to the single term Haar wavelet series method [2], which yields a small
error, along with the exact solutions. From the Figures 1 - 2, it can be predicted that the He’s Homotopy
Perturbation method solution match well to the problem when compared to the single term Haar wavelet
series method [2]. Hence the He’s Homotopy Perturbation method is more suitable for studying the nonlinear
integro-differential equation.

The researcher has successfully introduced He’s Homotopy Perturbation method which has been
exclusively developed for solving nonlinear integro-differential equation. Finally, in this paper, it is
concluded that from the Table and Figures, which indicate the error to be almost, less with the nonlinear
integro-differential equation using He’s Homotopy Perturbation method.
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In the present paper the concept of soft almost semi-continuous mappings and soft almost semi-open
mappings in soft topological spaces have been introduced and studied.

Keywords: Soft regular open set, Soft semi open set, Soft almost continuous mappings, Soft semi-continuous
mappings, Soft almost semi-continuous mappings and Soft almost semi-open mappings.

2010 MSC:54A40, 54D10, 06D72 c©2012 MJM. All rights reserved.

1 Introduction

The theory of soft set was proposed by Molodtsov in 1999 [10]. It is a method for handling uncertain
data. In 2011 Shabir and Naz [11] initiated the study of soft topological spaces. Many researchers worked
on the findings of structures of soft set theory ,soft topology and applied to many problems having
uncertainties.Theoretical study of soft sets and soft topological spaces have been by some authors in [1, 3, 5–
7, 10, 11, 13–15].In 2013, Chen [2] introduced the concept of soft semi-open sets and soft-semi-closed sets in soft
topological spaces.The section 2, of this paper gives the basic concept of soft set theory and soft topology.In
section 3, we define the concepts of soft almost continuous mappings.It is shown that every soft almost
continuous mapping is soft almost semi continuous and the example shows that the converse may not be
true.Several characterization and properties of soft almost continuous mappings in soft topological spaces
have been studies in this section. Section 4, introduces and studied soft almost open mappings.Last section
give the conclusion of this paper.

2 Preliminaries

Let U is an initial universe set , E be a set of parameters , P(U) be the power set of U and A ⊆ E.

Definition 2.1. [10] A pair (F, A) is called a soft set over U, where F is a mapping given by F: A → P(U). In other
words, a soft set over U is a parameterized family of subsets of the universe U. For all e ∈ A, F(e) may be considered as
the set of e-approximate elements of the soft set (F, A).

Definition 2.2. [6] For two soft sets (F, A) and (G, B) over a common universe U, we say that (F, A) is a soft subset of
(G, B), denoted by (F, A) ⊆ (G,B), if:

(a) A ⊆ B and

(b) F(e) ⊆ G(e) for all e ∈ E.
∗Corresponding author.

E-mail address: samajh singh@rediffmail.com (S. S. Thakur), alpasinghrajput09@gmail.com (Alpa Singh Rajput). dhakadmr@gmail.com
(M.R. Dhakad ).
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Definition 2.3. [6] Two soft sets (F, A) and (G, B) over a common universe U are said to be soft equal denoted by (F, A)
= (G, B) If (F, A) ⊆ (G, B) and (G, B) ⊆ (F, A).

Definition 2.4. [7] The complement of a soft set (F, A), denoted by (F,A)c, is defined by (F,A)c = (F c, A), where F c :
A→ P(U) is a mapping given by F c(e) = U − F(e), for all e ∈ E.

Definition 2.5. [6] Let a soft set (F, A) over U.

(a) Null soft set denoted by φ if for all e ∈ A, F (e) = φ.

(b) Absolute soft set denoted by Ũ , if for each e ∈ A, F(e) = U.

Clearly, Ũ c = φ and φc = Ũ .

Definition 2.6. [1] Union of two sets (F, A) and (G, B) over the common universe U is the soft (H, C), where C = A ∪
B, and for all e ∈ C,

H(e) =


F (e), ife ∈ A−B
G(e), ife ∈ B −A
F (e) ∪G(e), if e ∈A ∩B

Definition 2.7. [1] Intersection of two soft sets (F, A) and (G, B) over a common universe U, is the soft set (H, C) where
C = A ∩ B and H(e) = F(e) ∩ G(e) for each e ∈ E.

Let X and Y be an initial universe sets and E and K be the non empty sets of parameters, S(X, E) denotes
the family of all soft sets over X and S(Y, K) denotes the family of all soft sets over Y.

Definition 2.8. [11] A subfamily τ of S(X , E) is called a soft topology on X if:

1. φ̃, X̃ belong to τ .

2. The union of any number of soft sets in τ belongs to τ .

3. The intersection of any two soft sets in τ belongs to τ .

The triplet (X, τ , E) is called a soft topological space over X. The members of τ are called soft open sets in X and their
complements called soft closed sets in X.

Definition 2.9. If (X ,τ , E) is soft topological space and a soft set (F, E) over X.

(a) The soft closure of (F, E) is denoted by Cl(F,E) is defined as the intersection of all soft closed super sets of (F, E) [11].

(b) The soft interior of (F, E) is denoted by Int(F,E) is defined as the soft union of all soft open subsets of (F, E) [14].

Definition 2.10. [14] The soft set (F, E)∈ S(X, E) is called a soft point if there exist x ∈ X and e ∈ E such that F(e) =
{x} and F(e’) = φ for each e’ ∈ E – {e}, and the soft point (F, E) is denoted by (xe)E .

Definition 2.11. [14] The soft point (xe)E is said to be in the soft set (G, E), denoted by (xe)E ∈ (G, E) if (xe)E ⊂
(G,E).

Definition 2.12. [2, 13] A soft set (F,E) in a soft topological space (X,τ ,E) is said to be :
(a) Soft regular open if (F,E)= Int(Cl(F,E)).
(b) Soft regular closed if its complement is soft regular open.
(c) Soft semi-open if (F,E) ⊆ Cl(Int(F,E)).
(d) Soft semi-closed if its complement is soft semi-open.

Remark 2.13. [4, 13] Every soft regular open (resp. soft regular closed) set is soft open (resp. closed) and every soft
open (resp. closed) set is soft semi-open (resp. semi-closed) but the converses may not be true.

Definition 2.14. [2] Let (F,E) be a soft set in a soft topological space (X ,τ ,E).
(a) The soft semi-closure of (F, E) is denoted by sCl(F,E) is defined as the smallest soft semi-closed set over which

contains (F, E).
(b) The soft semi-interior of (F, E) is denoted by sInt(F,E) is defined as the largest soft semi-open set over which is

contained in (F, E).
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Definition 2.15. [5] Let S(X,E) and S(Y,K) be families of soft sets. Let u: X→ Y and p: E→ K be mappings. Then a
mapping fpu: S(X, E)→ S(Y, K) is defined as :

(i)Let (F, A) be a soft set in S(X, E). The image of (F, A) under fpu, written as fpu (F, A) = (fpu(F), p(A)), is a soft
set in S(Y,K) such that

fpu(F )(k) =

{⋃
e∈p−1(k)

⋂
A u(F (e)), p−1(k)

⋂
A 6=φ

φ, p−1(k)
⋂
A =φ

For all k ∈ K.
(ii) Let (G , B) be a soft set in S(Y , K). The inverse image of (G , B) under fpu, written as

f−1pu (G)(e) =

{
u−1G(p(e)), p(e)∈B
φ, otherwise

For all e ∈ E.

Definition 2.16. [8, 12] Let (X,τ ,E) and (Y,υ,K) be a soft topological spaces. A soft mapping fpu : (X,τ ,E)→(Y,υ,K) is
said to be :

(a) Soft almost continuous if f−1pu (G, K) is soft open in X , for all soft regular open set (G,K) in Y.
(b) Soft almost open if fpu (F, E) is soft open in Y, for all soft regular open set (F, E) in X.
(c) Soft semi-continuous mapping if f−1pu (G, K) is soft semi-open in X , for all soft open set (G,K) in Y.
(d) Soft semi-open if fpu (F, E) is soft semi-open in Y , for all soft open set (F, E) in X.
(e) Soft semi-irresolute if f−1pu (G, K) is soft semi-open in X , for all soft semi-open set (G, K) in Y.

3 Soft Almost Semi-Continuous Mappings

Definition 3.1. A soft mapping fpu : (X ,τ ,E)→ (Y,ϑ,K) is said to be soft almost semi-continuous if the inverse image
of every soft regular open set over Y is soft semi-open over X.

Remark 3.2. Every soft almost continuous mapping is soft almost semi-continuous but converse may not be true.

Example 3.3. Let X = {x1, x2 } , E = {e1, e2 } and Y = {y1, y2}, K = {k1, k2 }. The soft sets (F1,E), (F2,E), (F3,E),
(G1,K),(G2,K) are defined as follows :

F1(e1) = φ , F1(e2) = {x1},
F2(e1) = {x1} , F2(e2) = φ,
F3(e1) = {x1} , F3(e2) = {x1},
G1(k1) = {y1} , G1(k2) = {y2},
G2(k1) = {y2} , G2(k2) = {y1}
Let τ = {φ, (F1,E),(F2,E), (F3,E), X̃ } and υ = {φ ,(G1,K),(G2,K), Ỹ } are topologies on X and Y respectively. Then

soft mapping fpu : (X,τ ,E) → (Y,υ,K) defined by u(x1) = y1, u(x2) = y2 and p(e1 ) = k1, p(e2 ) = k2 is soft almost
semi-continuous mapping not soft almost continuous.

Remark 3.4. Every soft semi-continuous mapping is soft almost semi-continuous but converse may not be true.

Example 3.5. Let X = {x1, x2,x3} , E = {e1, e2 } and Y = {y1 , y2,y3}, K = {k1, k2 }. The soft set (G,K) is defined as
follows :

G(k1) = {y1} , G(k2) = φ
Let τ = {φ , X̃ } , and υ = {φ ,(G,K), Ỹ } are topologies on X and Y respectively. Then soft mapping fpu : (X,τ ,E)

→ (Y,υ,K) defined by u(x1) = y1 , u(x2) = y2 , u(x3) = y3 and p(e1 )= k1, p(e2 ) = k2 is soft almost semi-continuous but
not soft semi-continuous.

Theorem 3.6. Let fpu : (X ,τ ,E)→ (Y,ϑ,K) be a soft mapping. Then the following conditions are equivalent:
(a) fpu is soft almost semi-continuous.
(b) f−1pu (G,K) is soft semi-closed set in X for every soft regular closed set (G,K) in Y.
(c) f−1pu (A,K) ⊂ sInt(f−1pu (Int(Cl(A,K)))) for every soft open set (A,K) in Y.
(d) sCl(f−1pu (Cl(Int(G,K)))) ⊂ f−1pu (G,K) for every soft closed set (G,K) in Y.
(e) For each soft point (xe)E over X and each soft regular open set (G,K) over Y containing fpu ((xe)E),there exists

a soft semi-open set (F,E) over X such that (xe)E ∈ (F,E) and (F,E) ⊂ f−1pu (G,K).
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(f) For each soft point (xe)E over X and each soft regular open set (G,K) over Y containing fpu((xe)E),there exists a
soft semi-open set (F,E) over X such that (xe)E ∈ (F,E) and fpu(F,E) ⊂ (G,K).

Proof: (a)⇔(b) Since f−1pu ( (G,K)C) = (f−1pu (G,K))C for every soft set (G,K) over Y.
(a)⇒(c) Since (A,K) is soft open set over Y, (A,K) ⊂ Int(Cl(A,K)) and hence, f−1pu (A,K) ⊂ f−1pu (Int(Cl(A,K))).Now

Int (Cl(A,K)) is a soft regular open set over Y. By (a), f−1pu (Int(Cl(A,K))) is soft semi-open set over X. Thus, f−1pu (A,K)
⊂ f−1pu (Int(Cl(A,K) )) = sInt(f−1pu (Int(Cl(A,K)))).

(c)⇒(a) Let (A,K) be a soft regular open set over Y, then we have f−1pu (A,K) ⊂ sInt(f−1pu (Int(Cl(A,K)))) =
sInt(f−1pu (A,K)).Thus, f−1pu (A,K) = sInt(f−1pu (A,K)) shows that f−1pu (A,K) is a soft semi-open set over X.

(b)⇒(d) Since (G,K) is soft closed set over Y, Cl(Int(G,K)) ⊂ (G,K) and f−1pu (Cl(Int (G,K))) ⊂ f−1pu (G,K).
Cl(Int(G,K)) is soft regular closed set over Y. Hence, f−1pu (Cl(Int(G,K) is soft semi-closed set over X.Thus,
sCl(f−1pu (Cl(Int(G,K)))) = f−1pu (Cl(Int(G,K))) ⊂ f−1pu (G,K).

(d)⇒(b) Let (G,K) be a soft regular closed set over Y,then we have sCl(f−1pu (G,K)) = sCl(f−1pu (Cl(Int(G,K)))) ⊂ f−1pu

(G,K) .Thus, sCl(f−1pu (G,K)) ⊂ f−1pu (G,K), shows that f−1pu (G,K) is soft semi-closed set over X.
(a)⇒(e) Let (xe)Ebe a soft point over X and (G,K) be a soft regular open set over Y such that fpu((xe)E) ∈ (G,K),

Put (F,E) = f−1pu (G,K) .Then by (a), (F,E) is soft semi-open set, (xe)E∈ (F,E) and (F,E) ⊂ f−1pu (G,K).
(e)⇒(f) Let (xe)E be a soft point over X and (G,K) be a soft regular open set over Y such that fpu((xe)E). By (e) there

exists a soft semi-open set (F,E) such that (xe)E ∈ (F,E), (F,E) ⊂ f−1pu (G,K). And so , we have (xe)E ∈ (F,E), fpu(F,E) ⊂
fpu(f−1pu (G,K)) ⊂ (G,K).

(f)⇒(a) Let (G,K) be a soft regular open set over Y and (xe)E be a soft point over X such that (xe)E∈ f−1pu (G,K).Then
fpu((xe)E) ∈ fpu( f−1pu (G,K))⊂(G,K). By (f) ,there exists a soft semi-open set (F,E) such that (xe)E ∈ (F,E) and fpu(F,E)
⊂(G,K) .This shows that (xe)E ∈ (F,E) ⊂ f−1pu (G,K). it follows that f−1pu (G,K) is soft semi-open set and hence f−1pu is soft
almost semi-continuous.

Definition 3.7. A soft topological space (X ,τ ,E) is said to be soft semiregular if for each soft open set (F,E) and each soft
point (xe)E ∈ (F,E), there exists a soft open set (G,E) such that (xe)E ∈ (G,E) and (G,E) ⊂ Int(Cl(G,E)) ⊂ (F,E).

Theorem 3.8. Let fpu : (X ,τ ,E)→ (Y,ϑ,K) be a soft mapping from a soft topological space (X ,τ ,E) to a soft semiregular
space (Y,ϑ,K).Then fpu is soft almost semi-continuous if and only if fpu is soft semi-continuous.

Proof: Necessity: Let (xe)E be a soft point in X and (F,K) be a soft open set in Y such that fpu( (xe)E) ∈ (F,K) .Since
(Y,ϑ,K) is soft semiregular there exists a soft open set (G,K) in Y such that fpu((xe)E) ∈ (G,K) and (G,K)⊂ Int(Cl(G,K)
⊂ (F,K). Since Int(Cl(G,K)) is soft regular open in Y and fpu is soft almost semi-continuous,by theorem 3.6 (f) there
exists a soft semi-open set (A,E) in X such that (xe)E ∈ (A,E) and fpu(A,E) Int(Cl(G,K)).Thus, (A,E) is soft semi-open
set such that (xe)E ∈ (A,E) and fpu(A,E) ⊂ (F,K). Hence by theorem [26] [2], fpu is soft semi-continuous.

Sufficiency : Obvious.

Lemma 3.9. If fpu : (X ,τ ,E) → (Y,ϑ,K) be a soft mapping and fpu is a soft open and soft continuous mapping then
f−1pu (G,K) is soft semi-open in X for every (G,K) is soft semi-open in Y.

Proof: Let (G,K) is soft semi-open in Y.Then, (G,K) ⊆ Int(Cl(Int(G,K))).Since fpu is soft continuous we
have,f−1pu (G,K) ⊆ f−1pu (Int(Cl(Int(G,K)))) ⊆ Int(f−1pu (Cl(Int(G,K)))).By the openness of fpu, we have f−1pu (Cl(Int(G,K)))
⊆ Cl(f−1pu (Int(G,K))). Again fpu is soft continuous f−1pu (Int(G,K)) ⊆ Int(f−1pu (G,K)).Thus, f−1pu (G,K)⊆
Int(Cl(Int(f−1pu (G,K)))).

Consequently, f−1pu (G,K) is soft semi-open in X.

Theorem 3.10. If soft mapping fp1u1 : (X ,τ ,E)→ (Y,ϑ,K) is soft open soft continuous and soft mapping gp2u2 :(Y,ϑ,K)
→ (Z,η,T) is soft almost semi-continuous, then gp2u2

ofp1u1
: (X ,τ ,E)→ (Z,η,T) is soft almost semi-continuous.

Proof : Suppose (U,T) is a soft regular open set in Z. Then g−1p2u2
(U,T) is a soft semi-open set in Y because gp2u2

is soft almost semi-continuous. Since fp1u1
being soft open and continuous.By lemma 3.9 (f−1p1u1

(g−1p2u2
(U,T)) is soft

semi-open in X. Consequently, gp2u2 ofp1u1 : (X ,τ ,E)→ (Z,η,T) is soft almost semi-continuous.

Lemma 3.11. If (A,E) be a soft semi-open set over X and (Y,E) is soft open in a soft topological space (X ,τ ,E). Then
(A,E) ∩ (Y,E) is soft semi-open in (Y,E).

Proof: Obvious.

Theorem 3.12. Let fpu : (X ,τ ,E)→ (Y,ϑ,K) be a soft almost semi-continuous mapping and (A,E) is soft open set in X,
Then fpu/ (A,E) is soft almost semi-continuous.

Proof : Let (G,K) be a soft regular open set in Y then f−1pu (G,K) is soft semi-open in X. Since (A,E) is soft open in
X, By lemma 3.11 (A,E) ∩ f−1pu (G,K) = [fpu/(A,E)]−1 (G,K) is soft semi-open in (A,E). Therefore, fpu/ (A,E) is soft
almost semi-continuous.
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4 Soft Almost Semi-Open Mappings

Definition 4.1. A soft mapping fpu : (X ,τ ,E)→ (Y,ϑ,K) is said to be soft almost semi-open if for each soft regular open
set (F,E) in X, fpu(F,E) is soft semi-open in Y.

Remark 4.2. Every soft almost open is soft almost semi-open but converse may not be true.

Example 4.3. Let X = {x1 , x2 } , E = {e1 , e2 } and Y = {y1 , y2} , K = {k1 , k2 }. The soft sets (F1,E) ,(F2,E) ,(G,K)
are defined as follows :

F1(e1) = {x1} , F1(e2) = {x2} ,
F2(e1) = {x2} , F2(e2) = {x1},
G1(k1) = φ G1(k2) = {y1},
G2(k1) = {y1} G2(k2) = φ,
G3(k1) = {y1} G3(k2) = {y1}
Let τ = {φ , (F1,E) ,(F2,E), X̃ } , and υ = {φ ,(G1,K),(G2,K),(G3,K) Ỹ } are topologies on X and Y respectively.

Then soft mapping fpu : (X,τ ,E)→ (Y,υ,K) defined by u(x1) = y1 , u(x2)= y2 and p(e1 )= k1 , p(e2 ) = k2 is soft almost
semi-open mapping but not soft almost open .

Remark 4.4. Every soft semi-open mappings is soft almost semi-open but converse may not be true.

Example 4.5. Let X = {x1 , x2, x3 } , E = {e1 , e2 } and Y = {y1 , y2, y3} , K = {k1 , k2 }. The soft sets (F,E) is defined
as follows :

F(e1) = {x1} , F(e2) = φ,
Let τ = {φ , (F,E), X̃ } and υ = {φ , Ỹ } are topologies on X and Y respectively. Then soft mapping fpu : (X,τ ,E)

→ (Y,υ,K) defined by u(x1) = y1 , u(x2)= y2 and p(e1 )= k1 , p(e2 ) = k2 is soft almost semi-open mapping but not soft
semi-open.

Theorem 4.6. Let fp1u1
: (X ,τ ,E)→ (Y,ϑ,K) and gp2u2

:(Y,ϑ,K)→ (Z,η,T) be two soft mappings, If fp1u1
is soft almost

open and gp2u2 is soft semi-open. Then the soft mapping gp2u2 ofp1u1 : (X ,τ ,E)→ (Z,η,T) is soft almost semi-open.
Proof : Let (F,E) be soft regular open in X. Then fp1u1

(F,E) is soft open in Y because fp1u1
is soft almost

open.Therefore, gp2u2
( fp1u1

)(F,E) is soft semi-open in Z. Because gp2u2
is soft semi-open. Since (gp2u2

ofp1u1
)(F,E) =

(gp2u2
(fp1u1

(F,E)), it follows that the soft mapping (gp2u2
ofp1u1

) is soft almost semi-open.

Definition 4.7. A soft mapping fpu : (X ,τ ,E)→ (Y,ϑ,K) is said to be soft semi-irresolute if the inverse image of soft
semi-open set of Y is soft semi-open set in X.

Theorem 4.8. Let fp1u1
: (X ,τ ,E) → (Y,ϑ,K) and gp2u2

:(Y,ϑ,K) → (Z,η,T) be two soft mappings, such that gp2u2

ofp1u1
: (X ,τ ,E) → (Z,η,T) is soft almost semi-open and gp2u2

is soft semi-irresolute and injective then fp1u1
is soft

almost semi-open.
Proof : Suppose (F,E) is soft regular open set in X. Then gp2u2

ofp1u1
(F,E) is soft semi-open in Z because gp2u2

ofp1u1

is soft almost semi-open. Since gp2u2
is injective, we have (g−1p2u2

(gp2u2
ofp1u1

)(F,E)) = fp1u1
(F,E). Therefore fp1u1

(F,
E) is soft semi-open in Y, because gp2u2

is soft semi-irresolute. This implies fp1u1
is soft almost semi-open.

Theorem 4.9. Let soft mapping fpu : (X ,τ ,E) → (Y,ϑ,K) be soft almost semi-open mapping. If (G,K) is soft set of Y
and (F,E) is soft regular closed set of X containing f−1pu (G,K) then there is a soft semi-closed set (A,K) of Y containing
(G,K) such that f−1pu (A,K) ⊂ (F,E).

Proof: Let (A, K) = (fpu(F,E)C)C . Since f−1pu (G,K) ⊂ (F,E) we have fpu(F,E)C ⊂ (G,K). Since fpu is soft almost
semi-open then (A,K) is soft semi-closed set of Y and f−1pu (A,K) = ( f−1pu (fpu(F,E)C)C ⊂ ((F,E)C)C = (F,E). Thus,
f−1pu (A,K) ⊂ (F,E).

5 Conclusion

Continuity of soft mappings played very important role in the development of soft topology.In this paper
we have introduced soft almost semi-continuous(resp. soft almost semi-open) mappings and it is shown by
the examples that the class of soft almost semi-continuous(resp. soft almost semi-open)mappings properly
contains the class of all soft almost continuous(resp. soft almost open) mappings. Various properties and
characterization of these soft mappings have been studied. The class of all soft almost mappings introduced in
this paper will be useful to study various strong and weak forms of soft separation axioms,soft connectedness
and soft compactness in soft topology.



400 S. S. Thakur et al. / Soft Almost Semi-Continuous Mappings

References

[1] M. Irfan Ali, F. Feng, X. Liu, W. K. Min and M. Shabir, On some new operations in soft set theory,
Comput. Math. Appl. 57, 2009, 1547-1553.

[2] Bin Chen , Soft semi-open sets and related properties in soft topological spaces, Appl.Math.Inf.Sci. 7, (1)
(2013), 287–294.

[3] S. Hussain and B. Ahmad, Some properties of soft topological spaces, Comput. Math. Appl.,62 ,2011,
4058-4067.

[4] S. Hussain,Properties of soft semi-open and soft semi-closed sets, Pensee Journal 76,(2)(2014), 133–143.

[5] A. Kharral and B. Ahmad, Mappings on soft classes, New Math. Nat. Comput. ,7(3),2011, 471-481.

[6] P.K. Maji, R. Biswas, R. Roy, Soft set theory, Comput. Math. Appl., 45 ,2003, 555-562.

[7] P. Majumdar and S. K. Samanta, Similarity measure of soft sets, New Math. Nat. Comput. 4(1) (2008)
1-12.

[8] J. Mahanta and P. K. Das , On soft topological space via semi open and semi closed soft sets , Kyungpook
Math. J . 54, (2014), 221–236.

[9] W. K. Min, A note on soft topological spaces, Comput. Math. Appl.,62 ,2011,3524-3528.

[10] D. Molodtsov, Soft set theory first results, Comput. Math. Appl. ,37 ,1999, 19-31.

[11] M. Shabir and M. Naz, On soft topological spaces, Comput. Math. Appl.,61 ,2011, 1786-1799.

[12] S.S.Thakur and Alpa Singh Rajput, Soft Almost Continuous Mappings,(Submitted).

[13] Saziye Yuksel.,Soft Regular Generalized Closed Sets in Soft Topological Spaces Int. Journal of Math.
Analysis, 8(8), 2014 , 355-367.

[14] I. Zorlutana, N. Akdag and W.K. Min, Remarks on soft topological spaces, Ann. Fuzzy Math. Inf., 3(2)
,2012, 171-185.

[15] Idris Zorlutuna, Hatice Cakir, On Continuity of Soft Mappings, Appl.Math. Inf. Sci. 9(1), 2015, 403-409.

Received: July 07, 2016; Accepted: February 23, 2017

UNIVERSITY PRESS

Website: http://www.malayajournal.org/



Malaya J. Mat. 5(2)(2017) 401–406

On generalized b star - closed set in Topological Spaces

S. Sekara,∗ and S. Loganayagib

aDepartment of Mathematics, Government Arts College (Autonomous), Salem – 636 007, Tamil Nadu, India.

bDepartment of Mathematics, Bharathidasan College of Arts and Science, Ellispettai, Erode – 638 116, Tamil Nadu, India.

Abstract

In this paper, we introduce a new class of sets called generalized b star - closed sets in topological spaces
(briefly gb∗- closed set). Also we discuss some of their properties and investigate the relations between the
associated topology.
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1 Introduction

In 1970, Levine introduced the concept of generalized closed set and discussed the properties of sets,
closed and open maps, compactness, normal and separation axioms. Later in 1996 Andrjivic gave a new
type of generalized closed set in topological space called b closed sets. The investigation on generalization of
closed set has lead to significant contribution to the theory of separation axiom, generalization of continuity
and covering properties. A.A.Omari and M.S.M. Noorani made an analytical study and gave the concepts of
generalized b closed sets in topological spaces.

In this paper, a new class of closed set called generalized b star - closed set is introduced to prove that
the class forms a topology. The notion of generalized b star - closed set and its different characterizations are
given in this paper. Throughout this paper (X, τ) and (Y, σ) represent the non - empty topological spaces on
which no separation axioms are assumed, unless otherwise mentioned.

Let A ⊆ X, the closure of A and interior of A will be denoted by cl(A) and int(A) respectively, union of
all b - open sets X contained in A is called b - interior of A and it is denoted by bint(A), the intersection of all
b - closed sets of X containing A is called b - closure of A and it is denoted by bcl(A).

2 Preliminaries

Definition 2.1. Let A subset A of a topological space (X, τ), is called

1) a pre-open set [13] if A ⊆ int(cl(A)).

2) a semi-open set [? ] if A ⊆ cl(int(A)).

3) a α -open set [9] if A ⊆ int(cl(int(A))).

4) a b -open set [2] if A ⊆ cl(int(A)) ∪ int(cl(A)).

5) a generalized ∗ closed set (briefly g∗-closed)[8] if cl(A) ⊆ U whenever A ⊆ U and U is ĝ open in X.

∗Corresponding author.
E-mail address: sekar nitt@rediffmail.com (S. Sekar), logusavin@gmail.com (S. Loganayagi).
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6) a generalized b -closed set (briefly gb- closed) [1] if bcl(A) ⊆ U whenever A ⊆ U and U is open in X.

7) a α generalized star -closed set (briefly αg∗ - closed) [12] if cl(A) ⊆ U whenever A ⊆ U and U is α-open in X.

8) a generalized star semi -closed set (briefly g∗s- closed) [14] if scl(A) ⊆ U whenever A ⊆ U and U is gs-open in X.

9) a regular generalized b-closed set (briefly rgb- closed) [11] if bcl(A) ⊆ U whenever A ⊆ U and U is regular open in
X.

3 Generalized b star - closed set

In this section, we introduce generalized b star - closed set and investigate some of their properties.

Definition 3.2. A subset A of a topological space (X, τ), is called generalized b star - closed set (briefly gb∗ - closed set)
if bcl(A) ⊂ U whenever A ⊂ U and U is g∗ -open in X.

Theorem 3.1. Every closed set is gb∗ - closed.

Proof. Let A be any closed set in X such that A ⊂ U, where U is g∗ open. Since bcl(A) ⊂ cl(A) = A. Therefore
bcl(A) ⊂ U. Hence A is gb∗ - closed set in X.

The converse of above theorem need not be true as seen from the following example.

Example 3.1. Let X = {a, b, c} with τ = {X, φ, {a}, {a, b}}. The set {b} is gb∗ - closed set but not a closed set.

Theorem 3.2. Every pre-closed set is gb∗ - closed set.

Proof. Let A be pre-closed set in X such that A ⊆ U where U is g∗ open. Since A is pre closed bcl(A) ⊆
pcl(A) ⊆ A. Therefore bcl(A) ⊆ U. Hence A is gb∗ -closed set.

The converse of above theorem need not be true as seen from the following example.

Example 3.2. Let X = {a, b, c} with τ = {X, φ, {a}, {a, b}}. The set {a, c} is gb∗ -closed set but not a pre-closed set.

Theorem 3.3. Every semi-closed set is gb∗ - closed set.

Proof. Let A be any semi-closed set in X such that A ⊆ U where U is g∗ open. Since A is semi closed set,
bcl(A) ⊆ scl(A) ⊆ U. Therefore bcl(A) ⊆ U. Hence A is gb∗ closed set.

The converse of above theorem need not be true as seen from the following example.

Example 3.3. Let X = {a, b, c} with τ = {X, φ, {a, b}}. The set {a, c} is gb∗ - closed set but not a semi-closed set.

Theorem 3.4. Every αg∗ - closed set is gb∗ - closed set.

Proof. Let A be any αg∗ -closed set in X such that A ⊆ U where U is g∗ open. Since A is αg∗ -closed set,
bcl(A) ⊆ αcl(A) ⊆ U. Therefore bcl(A) ⊆ U. Hence A is gb∗ -closed set.

The converse of above theorem need not be true as seen from the following example.

Example 3.4. Let X = {a, b, c} with τ = {X, φ, {a}, {a, b}}. The set {b} is gb∗ - closed set but not a αg∗ -closed set.

Theorem 3.5. Every b -closed set is gb∗ - closed set.

Proof. Let A be any b -closed set in X such that A ⊆ U where U is g∗ open. Since A is b-closed, bcl(A) = A.
Therefore bcl(A) ⊂ U. Hence A is gb∗ - closed set.

The converse of above theorem need not be true as seen from the following example.

Example 3.5. Let X = {a, b, c} with τ = {X, φ, {a}, {a, b}}. The set {a, c} is gb∗ -closed set but not a b-closed set.

Theorem 3.6. Every g∗ - closed set is gb∗ -closed set.

Proof. Let A be any g∗ -closed set in X such that A ⊆ U where U is g∗ open. Since A is g∗ -closed, bcl(A) ⊆
cl(A) ⊆ U. Therefore bcl(A) ⊆ U. Hence A is gb∗- closed set.
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The converse of above theorem need not be true as seen from the following example.

Example 3.6. Let X = {a, b, c} with τ = {X, φ, {a, c}}. The set {a, b} is gb∗ -closed set but not a g∗ -closed set.

Theorem 3.7. Every g∗s -closed set is gb∗ -closed set.

Proof. Let A be g∗s -closed set in X such that A ⊆ U where U is g∗ open. Since A is g∗s closed set, bcl(A) ⊆
scl(A) ⊆ U. Hence A is gb∗ -closed set.

The converse of above theorem need not be true as seen from the following example.

Example 3.7. Let X = {a, b, c} with τ = {X, φ, {a}, {a, b}}. The set {a, c} is gb∗ - closed set but not a g∗s -closed
set.

Theorem 3.8. Every gb∗ -closed set is rgb -closed set.

Proof. Let A be any gb∗ -closed set in X such that A ⊆ U where U is g∗ open. Since A is gb∗ closed, bcl(A) ⊆
pcl(A) ⊆ U. Hence A is rgb -closed set.

The converse of above theorem need not be true as seen from the following example.

Example 3.8. Let X = {a, b, c} with τ = {X, φ, {a}}. The set {a, b} is rgb -closed set but not a gb∗ - closed set.

4 Characteristics of gb∗-closed set

Theorem 4.9. If A and B are gb∗-closed sets in X then A ∪ B is gb∗-closed set in X.

Proof. Let A and B are gb∗-closed sets in X and U be any g∗ open set containing A and B. Therefore bcl(A) ⊆
U, bcl(B) ⊆ U. Since A ⊆ U, B ⊆ U then A ∪ B ⊆ U. Hence bcl(A ∪ B) = bcl(A) ∪ bcl(B) ⊆ U. Therefore
A ∪ B is gb∗-closed set in X.

Theorem 4.10. If a set A is gb∗ - closed set if and only if bcl(A)− A contains no non empty g∗ -closed set.

Proof. Necessary: Let F be a g∗ closed set in X such that F ⊆ bcl(A)− A. Then A ⊆ XF. Since A is gb∗ closed
set and X − F is g∗ open then bcl(A) ⊆ X − F. (i.e.) F ⊆ X − bcl(A). So F ⊆ (X − bcl(A)) ∩ (bcl(A)− A).
Therefore F = ϕ.

Sufficiency: Let us assume that bcl(A)− A contains no non empty g∗ closed set. Let A ⊆ U, U is g∗ open.
Suppose that bcl(A) is not contained in U, bcl(A) ∩Uc is a non-empty g∗ closed set of bcl(A)− A which is
contradiction. Therefore bcl(A) ⊆ U. Hence A is gb∗-closed.

Theorem 4.11. If A is gb∗-closed set in X and A ⊆ B ⊆ bcl(A), Then B is gb∗-closed set in X.

Proof. Since B ⊆ bcl(A), we have bcl(B) ⊆ bcl(A) then bcl(B)− B ⊆ bcl(A)− A. By theorem 4.10, bcl(A)− A
contains no non empty g∗ closed set. Hence bcl(B)− B contains no non empty g∗ closed set. Therefore B is
gb∗-closed set in X.

Theorem 4.12. If A ⊆ Y ⊆ X and suppose that A is gb∗ closed set in X then A is gb∗-closed set relative to Y.

Proof. Given that A ⊆ Y ⊆ X and A is gb∗-closed set in X. To prove that A is gb∗- closed set relative to Y. Let
us assume that A ⊆ Y ∩U, where U is g∗ open in X. Since A is gb∗-closed set, A ⊆ U implies bcl(A) ⊆ U. It
follows that Y ∩ bcl(A) ⊆ Y ∩U. That is A is gb∗-closed set relative to Y.

Theorem 4.13. If A is both g∗ open and gb∗-closed set in X, then A is g∗ closed set.

Proof. Since A is g∗ open and gb∗ closed in X, bcl(A) ⊆ U. But A ⊆ bcl(A). Therefore A = bcl(A). Hence A
is g∗ closed set.

Theorem 4.14. For xinX, then the set X− {x} is a gb∗ -closed set or g∗ -open.

Proof. Suppose that X − {x} is not g∗ open, then X is the only g∗ open set containing X − {x}. (i.e.) bcl(X −
{x}) ⊆ X. Then X− {x} is gb∗ - closed in X.
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5 Generalized b star - open set and generalized b star - neighbourhoods

In this section, we introduce generalized b star - open sets (briefly gb∗ - open) and generalized b star -
neighbourhoods (briefly gb∗ - neighbourhood) in topological spaces by using the notions of gb∗ - open set and
study some of their properties.

Definition 5.3. A subset A of a topological space (X, τ), is called semi generalized b∗ - open set (briefly gb∗ - open set)
if Ac is gb∗ - closed in X. We denote the family of all gb∗ - open sets in X by gb∗ - O(X).

Theorem 5.15. If A and B are gb∗ - open sets in a space X. Then A ∩ B is also gb∗ - open set in X.

Proof. If A and B are gb∗ - open sets in a space X. Then Ac and Bc are gb∗ - closed sets in a space X. By
Theorem 4.13 Ac ∪ Bc is also gb∗ - closed set in X. (i.e.) Ac ∪ Bc = (A∩ B)c is a gb∗ - closed set in X. Therefore
A ∩ B gb∗ - open set in X.

Remark 5.1. The union of two gb∗-open sets in X is generally not a gb∗-open set in X.

Example 5.9. Let X = {a, b, c} with τ = {X, ϕ, {b}, {c}, {b, c}}. If A = {b}, B = {c} are pgb-open sets in X, then
A ∪ B = {b, c} is not gb∗ open set in X.

Theorem 5.16. If int(B) ⊆ B ⊆ A and if A is gb∗ -open in X, then B is gb∗ - open in X.

Proof. Suppose that int(B) ⊆ B ⊆ A and A is gb∗ -open in X then Ac ⊆ Bc ⊆ cl(Ac). Since Ac is gb∗ - closed
in X, by Theorem 5.15 B is gb∗ - open in X.

Definition 5.4. Let x be a point in a topological space X and let x ∈ X. A subset N of X is said to be a gb∗ -
neighbourhood of x iff there exists a gb∗ - open set G such that x ∈ G ⊂ N.

Definition 5.5. A subset N of Space X is called a gb∗ - neighbourhood of A ⊂ X iff there exists a gb∗ - open set G such
that A ⊂ G ⊂ N.

Theorem 5.17. Every neighbourhood N of x ∈ X is a gb∗ - neighbourhood of x.

Proof. Let N be a neighbourhood of point x ∈ X. To prove that N is a gb∗ - neighbourhood of x. By Definition
of neighbourhood, there exists an open set G such that x ∈ G ⊂ N. Hence N is a sg∗b - neighbourhood of
x.

Remark 5.2. In general, a gb∗ - neighbourhood of x ∈ X need not be a neighbourhood of x in X as seen from the
following example.

Example 5.10. Let X = {a, b, c} with topology τ = {X, φ, {c}, {a, c}}. Then gb∗ -
O(X) = {X, ϕ, {c}, {a, c}, {b, c}}. The set {b, c} is gb∗ - neighbourhood of point c, since the gb∗ - open sets {c} is
such that c ∈ {c} ⊂ {b, c}. However, the set {b, c} is not a neighbourhood of the point c, since no open set G exists
such that c ∈ G ⊂ {b, c}.

Remark 5.3. The gb∗ - neighbourhood N of x ∈ X need not be a gb∗ - open in X.

Theorem 5.18. If a subset N of a space X is gb∗ - open, then N is gb∗ - neighbourhood of each of its points.

Proof. Suppose N is gb∗ - open. Let x ∈ N. We claim that N is gb∗ - neighbourhood of x. For N is a gb∗ - open
set such that x ∈ N ⊂ N. Since x is an arbitrary point of N, it follows that N is a gb∗ - neighbourhood of each
of its points.

Remark 5.4. In general, a gb∗ - neighbourhood of x ∈ X need not be a neighbourhood of x in X as seen from the
following example.

Example 5.11. Let X = {a, b, c} with topology τ = {X, ϕ, {a, b}}. Then gb∗ −O(X) = {X, ϕ, {a}, {b}, {a, b}}.
The set {b, c} is gb∗-neighbourhood of point b, since the gb∗-open sets {b} is such that b ∈ {b} ⊂ {b, c}. Also the set
{b, c} is gb∗-neighbourhood of point {b}. Since the gb∗-open set {a, b} is such that b ∈ {b} ⊂ {a, b}. (i.e.) {b, c} is
gb∗-neighbourhood of each of its points. However, the set {b, c} is not a gb∗-open set in X.
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Theorem 5.19. Let X be a topological space. If F is gb∗ - closed subset of X and x ∈ Fc. Prove that there exists a gb∗ -
neighbourhood N of x such that N ∩ F = ϕ.

Proof. Let F be gb∗ - closed subset of X and x ∈ Fc. Then Fc is gb∗ - open set of X. So by Theorem 5.18 Fc

contains a gb∗ - neighbourhood of each of its points. Hence there exists a gb∗ - neighbourhood N of x such
that N ⊂ Fc. (i.e.) N ∩ F = ϕ.

Definition 5.6. Let x be a point in a topological space X. The set of all gb∗ - neighbourhood of x is called the gb∗ -
neighbourhood system at x, and is denoted by gb∗ - N(x).

Theorem 5.20. Let a gb∗ - neighbourhood N of X be a topological space and each x ∈ X, Let gb∗ - N(X, τ) be the
collection of all gb∗ - neighbourhood of x. Then we have the following results.

(i) For all x ∈ X, gb∗ − N(x) 6= φ.

(ii) N ∈ gb∗ − N(x)⇒ x ∈ N.

(iii) N ∈ gb∗ − N(x), M ⊃ N ⇒ M ∈ gb∗ − N(x).

(iv) N ∈ gb∗ − N(x), M ∈ gb∗ − N(x)⇒ N ∩M ∈ gb∗ − N(x). if finite intersection of gb∗ open set is gb∗ open.

(v) N ∈ gb∗ − N(x)⇒ there exists M ∈ gb∗ − N(x) such that M ⊂ N and M ∈ gb∗ − N(y) for every y ∈ M.

Proof. 1. Since X is gb∗ - open set, it is a gb∗ - neighbourhood of every x ∈ X. Hence there exists at least
one gb∗ - neighbourhood (namely - X) for each x ∈ X. Therefore gb∗ − N(x) 6= φ for every x ∈ X.

2. If N ∈ gb∗ − N(x), then N is gb∗ - neighbourhood of x. By Definition of gb∗ - neighbourhood, x ∈ N.

3. Let N ∈ gb∗ − N(x) and M ⊃ N. Then there is a gb∗ - open set G such that x ∈ G ⊂ N. Since
N ⊂ M, x ∈ G ⊂ M and so M is gb∗ - neighbourhood of x. Hence M ∈ gb∗ − N(x).

4. Let N ∈ gb∗ − N(x), M ∈ gb∗ − N(x). Then by Definition of gb∗ - neighbourhood, there exists gb∗ -
open sets G1 and G2 such that x ∈ G1 ⊂ N and x ∈ G2 ⊂ M. Hence

x ∈ G1 ∩ G2 ⊂ N ∩M (5.1)

Since G1 ∩ G2 is a gb∗ - open set, it follows from (5.1) that N ∩M is a gb∗ - neighbourhood of x.
Hence N ∩M ∈ gb∗ − N(x).

5. Let N ∈ gb∗ − N(x), Then there is a gb∗ - open set M such that x ∈ M ⊂ N. Since M is gb∗ - open set, it
is gb∗ - neighbourhood of each of its points.
Therefore M ∈ gb∗ − N(y) for every y ∈ M.

Theorem 5.21. Let X be a nonempty set, and for each x ∈ X, let gb∗ − N(x) be a nonempty collection of subsets of X
satisfying following conditions.

(i) N ∈ gb∗ − N(x)⇒ x ∈ N.

(ii) N ∈ gb∗ − N(x), M ∈ gb∗ − N(x)⇒ N ∩M ∈ gb∗ − N(x).

Let τ consists of the empty set and all those non-empty subsets of G of X having the property that x ∈ G implies that
there exists an N ∈ gb∗ − N(x) such that x ∈ N ⊂ G, Then τ is a topology for X.

Proof. 1. ϕ ∈ τ By definition. We have to show that x ∈ τ. Let x be any arbitrary element of X. Since
gb∗ − N(x) is non-empty, there is an N ∈ gb∗ − N(x) and so x ∈ N by (i). Since N is a subset of X, we
have x ∈ N ⊂ X. Hence x ∈ τ.

2. Let G1 ∈ τ and G2 ∈ τ. If x ∈ G1 ∩G2 then x ∈ G1 and x ∈ G2. Since G1 ∈ τ and G2 ∈ τ there exists N ∈
gb∗ − N(x) and M ∈ gb∗ − N(x), such that x ∈ N ⊂ G1 and x ∈ M ⊂ G2. Then x ∈ N ∩M ⊂ G1 ∩ G2.
But N ∩M ∈ gb∗ − N(x) by (2). Hence G1 ∩ G2 ∈ τ.
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6 Conclusion

The classes of generalized b star -closed sets defined using g∗ open sets form a topology. The gb∗-closed
sets can be used to derive a new decomposition of continuity, closed maps and open maps, contra
continuous function, almost contra continuous function, closure and interior. This idea can be extended to
fuzzy topological space and fuzzy intuistic topological spaces.
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Abstract

This study presents some new conditions of being integral curve for the geodesic spray of the natural lift
curves of the spherical indicatrices of the involutes of a given spacelike curve with a timelike binormal in
Minkowski 3-space. Furthermore, depending on these conditions some interesting results about the spacelike
evolute curve were obtained. Additionally we illustrate an example of our main results.
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1 Introduction

One of the most significant curve is an involute of a given curve. The concept of involute was first studied
by Huygens when he was considering clocks without pendula for use on ships at sea. An involute of a given
curve is some other curve that always remains perpendicular to the tangent lines to that given curve. This
can also be thought as the process of winding or unwinding a string tautly around a curve. The original
curve is called an evolute. In addition to this, involute-evolute curve couple is a well known concept in the
classical differential geometry, see [8, 11, 13]. The basic local theory of space curve are mainly developed
by the Frenet-Serret theorem which expresses the derivative of a geometrically chosen basis of E3 by the aid
of itself is proved. Then it is observed that by the solution of some of special ordinary differential equations,
further classical topics, for instance spherical curves, Bertrand curves, involutes and evolutes are investigated,
see for the details [10].

In differential geometry, especially the theory of space curves, the Darboux vector is the areal velocity
vector of the Frenet frame of a space curve. It is named after Gaston Darboux who discovered it. In terms
of the Frenet-Serret apparatus, the Darboux vector ω can be expressed as ω = τt + κb. In addition to this,
the concepts of the natural lift and the geodesic sprays have been given by Thorpe in 1979 [16]. Çalışkan et
al. [9] have studied the natural lift curves and the geodesic sprays in the Euclidean 3-space E3. Then Bilici et
al. [5] have proposed the natural lift curves and the geodesic sprays for the spherical indicatrices of the the
involute-evolute curve couple in E3.

Spherical images (indicatrices) are a well known concept in classical differential geometry of curves [10].
Kula and Yaylı [19] have studied spherical images of the tangent indicatrix and binormal indicatrix of a slant
helix and they have shown that the spherical images are spherical helices. In recent years some of the classical
differential geometry topics have been extended to Lorentzian geometry. In [20] Süha at all investigated
tangent and trinormal spherical images of timelike curve lying on the pseudo hyperbolic space in Minkowski
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space-time. İyigün [21] defined the tangent spherical image of a unit speed timelike curve lying on the on
the pseudo hyperbolic space in H2

0 . In [6] author adapted this problem for the spherical indicatrices of the
involutes of a timelike curve in Minkowski 3-space E3

1. However, this problem is not solved in other cases of
the space curve.

In the present paper, the natural lift curves for the spherical indicatrices of the involutes of a given
spacelike curve with a timelike binormal have been investigated in Minkowski 3-space E3

1. With this aim we
translate tangents of the involutes of a spacelike curve with a timelike binormal curve to the center of the
unit hypersphere S2

1 we obtain a spacelike curve α∗t∗ = t∗ on the unit hypersphere . This curve is called the
first spherical indicatrix or tangent indicatrix of α∗. One consider the principal normal indicatrix
α∗n∗ = n∗ and the binormal indicatrix α∗b∗ = b∗ on the unit hypersphere H2

0 . Then the natural lift curves of
the spherical indicatrices of the involutes of a given spacelike curve α with a timelike binormal are
investigated in Minkowski 3-space E3

1 and some new results were obtained. We hope these results will be
helpful to mathematicians who are specialized on mathematical modeling.

2 Preliminaries

Let M be a hypersurface in E3
1 equipped with a metric g, where the metric g means a symmetric

non-degenerate (0, 2) tensör field on M with constant signature. For a hypersurface M, let TM be the set
∪
{

Tp (M) : p ∈ M
}

of all tangent vectors to M. A technicality: For each p ∈ M replace 0 ∈ Tp (M) by 0p
(other-wise the zero tangent vector is in every tangent space). Then each v ∈ TM is in a unique Tp (M), and
the projection π : TM → M sends v to p. Thus π−1 (p) = Tp (M). There is a natural way to make TM a
manifold, called the tangent bundle of M.

A vector field X ∈ χ (M) is exactly a smooth section of TM, that is, a smooth function X : M → TM such
that π ◦ X = I (identity). Let M be a hypersurface in E3

1. A curve α : I → TM is an integral curve of
X ∈ χ (M) provided α′ = Xα ; that is,

d
ds

(α (s)) = X (α (s)) for all s ∈ I, [14],

For any parametrized curve α : I → TM, the parametrized curve given by α : I → TM

s→ α (s) =
(
α (s) , α′ (s)

)
= α′ (s) |α(s)

is called the natural lift of α on TM. Thus, we can write

dα

ds
=

d
ds

(
α′ (s) |α(s)

)
= Dα′(s)α

′ (s) , (2.1)

where D is the standard connection on E3
1.

For v ∈ TM , the smooth vector field X ∈ χ (M) defined by

X (v) = εg (v, S (v)) ξ |α(s), ε = g (ξ, ξ) (2.2)

is called the geodesic spray on the manifold TM, where ξ is the unit normal vector field of M and S is the shape
operator of M.

The Minkowski three-dimensional space E3
1 is the real vector space R3 endowed with the standard flat

Lorentzian metric given by [2]
g = −dx2

1 + dx2
2 + dx2

3,

where (x1, x2, x3) is a rectangular coordinate system of E3
1. If u = (u1, u2, u3) and v = (v1, v2, v3) are arbitrary

vectors in E3
1 then we define the Lorentzain vector product of u and v as the following:

u× v = (u3v2 − u2v3, u3v1 − u1v3, u1v2 − u2v1).

Since g is an indefinite metric, recall that a vector v ∈ E3
1 can have one of three Lorentzian characters: it

can be space-like if g(v, v) > 0 or v = 0, timelike if g(v, v) < 0 and null if g(v, v) = 0 and v 6= 0. Similarly, an
arbitrary curve α = α(s) in E3

1 can locally be spacelike, timelike or null (lightlike), if all of its velocity vectors
α′ are respectively spacelike, timelike or null (lightlike), for every s ∈ I ⊂ R. The pseudo-norm of an
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arbitrary vector a ∈ E3
1 is given by ‖a‖ =

√
|g(a, a)|. α is called an unit speed curve if velocity vector σ of α

satisfies ‖σ‖ = 1. For vectors v, w ∈ E3
1 it is said to be orthogonal if and only if g(v, w) = 0.

Denote by {t, n, b} the moving Frenet frame along the curve α in the space E3
1. For an arbitrary curve α

with first and second curvature, κ and τ in the space E3
1, the following Frenet formulae are given in [12]: If α

is a spacelike curve with a timelike binormal vector b, then the Frenet formulae read t′

n′

b′

 =

 0 κ 0
−κ 0 τ

0 τ 0

 t
n
b

 , (2.3)

where g(t, t) = 1, g(n, n) = 1, g(b, b) = −1, g(t, n) = g(t, b) = g(n, b) = 0.
The angle between two vectors in Minkowski space is defined by [15]:
Definition 2.1. Let X and Y be spacelike vectors in E3

1 that span a spacelike vector subspace, then we have
|g(X, Y)| ≤ ‖X‖‖Y‖ and hence, there is a unique positive real number θ such that

|g(X, Y)| = ‖X‖‖Y‖cosθ.

The real number θ is called the Lorentzian spacelike angle between X and Y.
Definition 2.2. Let X and Y be spacelike vectors in E3

1 that span a timelike vector subspace, then we have
|g(X, Y)| > ‖X‖‖Y‖ and hence, there is a unique positive real number θ such that

|g(X, Y)| = ‖X‖‖Y‖coshθ.

The real number θ is called the Lorentzian timelike angle between X and Y.
Definition 2.3. Let X be a spacelike vector and Y a positive timelike vector in E3

1, then there is a unique
non-negative real number θ such that

|g(X, Y)| = ‖X‖‖Y‖sinhθ.

The real number θ is called the Lorentzian timelike angle between X and Y.
Definition 2.4. Let X and Y be positive (negative) timelike vectors in E3

1, then there is a unique non-
negative real number θ such that

g(X, Y) = ‖X‖‖Y‖coshθ.

The real number θ is called the Lorentzian timelike angle between X and Y.
The Darboux vector for the spacelike curve with a timelike binormal is defined by [17]:

ω = τt− κb.

There are two cases corresponding to the causal characteristic of Darboux vector ω

Case 1. If |κ| < |τ|, then ω is a spacelike vector. In this situation, we can write

κ = ‖ω‖ sin hθ, τ = ‖ω‖ cos hθ, g (ω, ω) = ‖ω‖2 = τ2 − κ2

and the unit vector c of direction ω is

c =
1
‖ω‖ω = cos hθt− sin hθb,

where θ is the Lorentzian timelike angle between −b and timelike unit vector c′ Lorentz orthogonal to the
normalisation of the Darboux vector c as Fig. 1.

Case 2. If |κ| > |τ|, then ω is a timelike vector. In this situation, we have

κ = ‖ω‖ cos hθ, τ = ‖ω‖ sin hθ, g (ω, ω) = −‖ω‖2 = κ2 − τ2

and the unit vector c of direction ω is

c =
1
‖ω‖ω = sin hθt− cos hθb,
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Figure 1: Lorentzian timelike angle θ

Proposition 2.5. Let α be a spacelike (or timelike) curve with curvatures κ and τ. The curve is a general
helix if and only if τ

κ is constant, [3].

Remark 2.6 . We can easily see from Lemma 3.2, 3.3, and 3.4 in [1] that: τ(s)
κ(s) = cot θ, τ(s)

κ(s) = coth θ or
τ(s)
κ(s) = tanh θ, if θ =constant then α is a general helix.

Lemma 2.7. The natural lift α of the curve α is an integral curve of the geodesic spray X if and only if α is a geodesic
on M [6].

Remark 2.8. Let α be a spacelike curve with a timelike binormal. In this situation its involute curve α∗ must
be a spacelike curve with a spacelike or timelike binormal. (α, α∗) being the involute-evolute curve couple,
the following lemma was given by [4].

Lemma 2.9. Let (α, α∗) be the involute-evolute curve couple. The relations between the Frenet vectors of the curve
couple as follow.

I. If ω is a spacelike vector (|κ| < |τ|), then t∗

n∗

b∗

 =

 0 1 0
sinh θ 0 − cosh θ

− cosh θ τ sinh θ

 t
n
b

 .

II. If ω is a timelike vector (|κ| > |τ|), then t∗

n∗

b∗

 =

 0 1 0
− cosh θ 0 sinh θ

− sinh θ τ cosh θ

 t
n
b

 .

Remark 2.10. In this situation I., the causal characteristics of the Frenet frame of the involute curve α∗ is
{t∗ spacelike, n∗ timelike, b∗ spacelike}. If α is a spacelike curve with timelike ω, then the causal characteristics
of the Frenet frame of the curve α∗ must be of he form {t∗ spacelike, n∗ spacelike, b∗ timelike}.

Definition 2.10. Let S2
1 and H2

0 be hyperspheres in E3
1. The Lorentzian sphere and hyperbolic sphere of

radius 1 in are given by

S2
1 =

{
a = (a1, a2, a3)εE3

1 : g (a, a) = 1
}

and

H2
0 =

{
a = (a1, a2, a3)εE3

1 : g (a, a) = −1
}

respectively, [14].

3 The Natural Lift Curves for the Spherical Indicatrices of the Involutes of a Spacelike
Curve with a Timelike Binormal

3.1 The natural lift of tangent indicatrix of the curve α∗

Let α be a spacelike curve with timelike binormal and spacelike ω (|κ| < |τ|). We will investigate how evolute
curve α must be a curve satisfying the condition that the natural lift curve α∗t∗ is an integral curve of geodesic
spray, where α∗t∗ is the spherical indicatrix of tangent vector of involute curve α∗.
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If the natural lift curve α∗t∗ is an integral curve of the geodesic spray, then by means of Lemma 2.1.

Dα′∗t∗
α′∗t∗ = 0, (3.4)

where D is the connection on the Lorentzian sphere S2
1 and the equation of the spherical indicatrix of tangent

vector of the involute curve α∗ is α∗t∗ = t∗. Thus from Lemma 2.2.I and the last equation we obtain

− θ′

‖ω‖ cosh θ +
θ′

‖ω‖ sinh θ = 0.

Because of {t, n, b} are linear independent, we can easily see that

θ = cons tan t,

according to Remark 2.1, we have

τ

κ
= coth θ = cons tan t.

Result 3.1.1. If the curve α is a general helix, then the spherical indicatrix α∗t∗ of the involute curve α∗ is a
geodesic on the Lorentzian sphere S2

1. In this case, from the Lemma 2.1 the natural lift α∗t∗ of α∗t∗ is an integral
curve of the geodesic spray on the tangent bundle T

(
S2

1
)
. In the case of a spacelike curve with timelike

binormal and timelike ω, similar result can be easily obtained in following same procedure.
Remak 3.1.2. From the classification of all W-curves (i.e. a curves for which a curvature and a torsion are

constants) in [1, 18], Case 1. and Case 2. we have following results with relation to curve α.
Result 3.1.3. If the curve α with κ =constant > 0, τ =constant 6= 0 and κ < |τ| then α is a part of a spacelike

hyperbolic helix,

α (s) =
1

‖ω‖2 (κ sinh [‖ω‖ s] , κ cosh [‖ω‖ s] , τ ‖ω‖ s) .

Result 3.1.4. Let α be a spacelike curve with timelike binormal and timelike ω. If the curve α with
κ =constant > 0, τ =constant 6= 0 and κ > |τ| then α is a part of a spacelike circular helix,

α (s) =
1

‖ω‖2 (τ ‖ω‖ s, κ cos [‖ω‖ s] , κ sin [‖ω‖ s]) .

Result 3.1.5. Let α be a spacelike curve with timelike binormal and timelike ω. If the curve α with
κ =constant > 0, τ = 0 then α is a part of a circle.

From Lemma 3.1 in [7], we can write the following result:
Result 3.1.6. There is no spacelike W-curve with timelike binormal with condition |τ| = |κ| .

Example 3.1.7. Let α (s) =
(

sinh s, cosh s,
√

2s
)

be a unit speed spacelike hyperbolic helix with timelike
binormal and spacelike ω such that

t =
(

cosh s, sinh s,
√

2
)

n = (sinh s, cosh s, 0)

b =
(√

2 cosh s,
√

2 sinh s, 1
)

, κ = 1 and τ =
√

2.

If α is a spacelike curve then its involute curve is a spacelike. In this situation, the involutes of the curve α

can be given by the equation

α∗ (s) =
(

sinh s + (c− s) cosh s, cosh s + (c− s) sinh s, c
√

2
)

,

where c ∈ R. One can see a special example of such a curve α as Fig. 2. and its involute curve α∗ as Fig. 3.
when s = [−5, 5] and c = 2.

The short calculations give the following equation of the spherical indicatrices of the involute curve α∗ and
its natural lifts.
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Figure 2: Spacelike curve α

Figure 3: Involute curve α

α∗t∗ = t∗ = (sinh s, cosh s, 0)
α∗n∗ = n∗ = (cosh s, sinh s, 0)

α∗b∗ = b∗ = (0, 0, 1)

α∗t∗ = (cosh s, sinh s, 0)
α∗n∗ = (sinh s, cosh s, 0)

α∗b∗ = (0, 0, 0)

Since
g
(
α∗′t∗ , α∗′t∗

)
= 1 > 0

α∗t∗ is spacelike. For being α∗t∗ is a spacelike curve, its spherical image is geodesic which lies on the Lorentzian
unit sphere S2

1 as Fig. 4. and natural lift curve of the tangent indicatrix as Fig. 5. One consider the principal
normal indicatrix is a geodesic which lies on H2

0 as Fig. 6 and its natural lift as Fig. 7.

Figure 4: Spherical image of tangent indicatrix of the involute curve α∗

Figure 5: Tangent indicatrix of the involute curve α∗ and its natural lift
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Figure 6: Spherical image of principal normal indicatrix of the involute curve α∗

Figure 7: Principal normal indicatrix of the involute curve α∗ and its natural lift

3.2 The natural lift of principal normal indicatrix of the curve α∗

Let α be a spacelike curve with timelike binormal and spacelike ω (|κ| < |τ|). In this section, we will
investigate how α must be a curve satisfying the condition that the natural lift curve α∗n∗ of α∗n∗ is an integral
curve of geodesic spray, where α∗n∗ is the spherical indicatrix of principal normal vector of α∗. If the natural
lift curve α∗n∗ is an integral curve of the geodesic spray, then by means of Lemma 2.1. we have

Dα′∗n∗
α′∗n∗ = 0, (3.5)

and from the Lemma 2.2. I. and the equation (5) we get,[(
σ′ cosh θ + θ′σ sinh θ − κ

kn

)
t +
(
− k′n

k2
n

)
n +

(
τ

kn
− σ′ sinh θ − θ′σ cosh θ

)
b
]

1
‖ω‖ kn

= 0,

where σ = γn
kn

( γn = θ′

‖ω‖ and kn = 1
‖ω‖

√
θ′2 + ‖ω‖2 are the geodesic curvatures of the curve α with

respect to S2
1 and E3

1, respectively.) and D is the connection of hyperbolic sphere H2
0 . Since {t, n, b} are

linear independent, we get

σ′ cosh θ + θ′σ sinh θ − κ

kn
= 0

k′n
k2

n
= 0

τ

kn
− σ′ sinh θ − θ′σ cosh θ = 0,

and we obtain

γn = cons tan t, kn = cons tan t.

Therefore, we can write the following result.
Result 3.2.1. If the geodesic curvatures of the evolute curve α with respect to S2

1 and E3
1 are constant, then

the spherical indicatrix α∗n∗ is a geodesic on the hyperbolic sphere H2
0 . In this case, the natural lift α∗n∗ of α∗n∗

is an integral curve of the geodesic spray on the tangent bundle T
(

H2
0
)
. In particular, if the evolute curve α

is a spacelike curve with timelike binormal and timelike ω (|κ| > |τ|) , then the similar result can be easily
obtained by taking S2

1 instead of H2
0 in following same procedure.
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3.3 The natural lift of binormal indicatrix of the curve α∗

Let α be a spacelike curve with timelike binormal and spacelike ω (|κ| < |τ|). We will investigate how α

must be a curve satisfying the condition that the natural lift curve α∗b∗ is an integral curve of geodesic spray,
where α∗b∗ is the spherical indicatrix of binormal vector of α∗ and α∗b∗ is the natural lift of the curve α∗b∗ . If the
natural lift curve α∗b∗ is an integral curve of the geodesic spray, then by means of Lemma 2.1. we have

Dα′∗b∗
α′∗b∗ = 0, (3.6)

from the Lemma 2.2. I. and the equation (6) we have,

‖ω‖
θ′

n = 0.

Since {t, n, b} are linear independent, we obtain

κ = 0, τ = 0.

Thus, we can give the following result.
Result 3.3.1. The spherical indicatrix α∗b∗ of the involute curve α∗ can not be a geodesic line on the

Lorentzian sphere S2
1, because, the evolute curve α whose curvature and torsion are equal to 0 is a straight

line. In this case (α, α∗) can not occur the involute-evolute curve couple. Therefore, the natural lift α∗b∗ of the
curve α∗b∗ can never be an integral curve of the geodesic spray on the tangent bundle T

(
S2

1
)
. If the evolute

curve α is a spacelike curve with timelike binormal and timelike ω , then the similar result can be easily
obtained by taking S2

1 instead of H2
0 in following same procedure.
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Abstract

In this paper, we present the general solution of a nonadecic functional equation and establish the Ulam-
Hyers stability of nonadecic functional equation in matrix normed spaces by using the fixed point method.
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1 Introduction

In 1940, an interesting talk presented by S. M. Ulam [27] triggered the study of stability problems for
various functional equations. He raised a question concerning the stability of homomorphism. In the
following year, 1941, D. H. Hyers [5] was able to give a partial solution to Ulam’s question. The result of
Hyers was generalized by Aoki [1] for additive mappings. In 1978, Th. M. Rassias [14] succeeded in
extending the result of Hyers theorem by weakening the condition for the Cauchy difference.

The stability phenomenon that was presented by Th. M. Rassias is called the generalized Hyers-Ulam
stability. This concept actually means that if one is studying a Hyers-Ulam stable system, one need not have
to reach the exact solution, which usually is quite difficult or time consuming. This is quite useful in many
applications for example optimization, numerical analysis, biology, life sciences, economics etc., where
finding the exact solution is quite difficult.

From 1982-1994, J. M. Rassias (see [16]- [23]) solved the Ulam problem for different mappings and for
many Euler-Lagrange type quadratic mappings, by involving a product of different powers of norms. In
1994, a generalization of the Rassias theorem was obtained by Gavruta [4] by replacing the unbounded
Cauchy difference by a general control function. A further generalization of the Hyers-Ulam stability for a
large class of mapping was obtained by Isac and Th. M. Rassias [6]. They also presented some applications in
non-linear analysis, especially in fixed point theory. This terminology may also be applied to the cases of
other functional equations [2, 3, 13, 15, 26, 29]. Also, the generalized Hyers-Ulam stability of functional
equations and inequalities in matrix normed spaces has been studied by number of authors [7–10, 12, 28].

K. Ravi and B. V. Senthil Kumar [24] discussed the general solution of undecic functional equation
f (x + 6y)− 11 f (x + 5y) + 55 f (x + 4y)− 165 f (x + 3y) + 330 f (x + 2y)

−462 f (x + y)− 462 f (x)− 330 f (x− y) + 165 f (x− 2y)

− 55 f (x− 3y) + 11 f (x− 4y)− f (x− 5y) = 39916800 f (y)

and proved the stability of this functional equation in quasi β - normed spaces by applying the fixed point
method.

∗Corresponding author.
E-mail address: shcrmurali@yahoo.co.in, (R. Murali), m.rassias@ucl.ac.uk (Matina J. Rassias), viprutha26@gmail.com (V. Vithya).
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Very recently, K. Ravi et. al., [25] discussed the general solution of quattuordecic functional equation
f (x + 7y)− 14 f (x + 6y) + 91 f (x + 5y)− 364 f (x + 4y) + 1001 f (x + 3y)− 2002 f (x + 2y)

−3003 f (x + y)− 3432 f (x) + 3003 f (x− y)− 2002 f (x− 2y) + 1001 f (x− 3y)

− 364 f (x− 4y) + 91 f (x− 5y)− 14 f (x− 6y) + f (x− 7y) = 87178291200 f (y)

and its stability in quasi β - normed spaces.
In this paper, we introduce the following new functional equation

f (x + 10y)− 19 f (x + 9y) + 171 f (x + 8y)− 969 f (x + 7y) + 3876 f (x + 6y)− 11628 f (x + 5y)
+ 27132 f (x + 4y)− 50388 f (x + 3y) + 75582 f (x + 2y)− 92378 f (x + y)
+ 92378 f (x)− 75582 f (x− y) + 50388 f (x− 2y)− 27132 f (x− 3y)
+ 11628 f (x− 4y)− 3876 f (x− 5y) + 969 f (x− 6y)− 171 f (x− 7y)

+ 19 f (x− 8y)− f (x− 9y) = 19! f (y) (1.1)

where 19! = 121645100400000000, is said to be nonadecic functional equation since the function f (x) = cx19

is its solution. In this paper, we determine the general solution of the functional equation (1.1) and we also
prove the Ulam-Hyers stability of the functional equation (1.1) in matrix normed spaces by using fixed point
approach.

2 General Solution of Nonadecic Functional Equation (1.1)

In this section, we present the general solution of nonadecic functional equation (1.1). For this, let us consider
A and B be real vector spaces.

Theorem 2.1. If f : A → B be a mapping satisfying (1.1) for all x, y ∈ A, then f is nonadecic.

Proof. Letting x = y = 0 in (1.1), one gets f (0) = 0. Replacing x = 0, y = x and x = x, y = −x in (1.1) and
adding the two resulting equations, we get

f (−x) = − f (x)

Hence, f is an odd mapping. Replacing x = 0, y = 2x and x = 10x, y = x in (1.1) and subtracting the two
resulting equations, we get
19 f (19x)− 189 f (18x) + 969 f (17x)− 3724 f (16x) + 11628 f (15x)− 27930 f (14x)

+50388 f (13x)− 72675 f (12x) + 92378 f (11x)− 100130 f (10x)
+75582 f (9x)− 34884 f (8x) + 27132 f (7x)− 34884 f (6x) + 3876 f (5x)

+ 24225 f (4x) + 171 f (3x)− (16815 + 19!) f (2x) + 19! f (x) = 0 (2.2)

for all x ∈ A. Replacing (x, y) by (9x, x) in (1.1), we obtain that
f (19x)− 19 f (18x) + 171 f (17x)− 969 f (16x) + 3876 f (15x)− 11628 f (14x)

+27132 f (13x)− 50388 f (12x) + 75582 f (11x)− 92378 f (10x)
+92378 f (9x)− 75582 f (8x) + 50388 f (7x)− 27132 f (6x) + 11628 f (5x)

− 3876 f (4x) + 969 f (3x)− 171 f (2x) + (19− 19!) f (x) = 0 (2.3)

for all x ∈ A. Multiplying (2.3) by 19, and then subtracting (2.2) from the resulting equation, we get
172 f (18x)− 2280 f (17x) + 14687 f (16x)− 62016 f (15x) + 193002 f (14x)− 18240 f (3x)

−465120 f (13x) + 884697 f (12x)− 1343680 f (11x) + 1655052 f (10x)
−1679600 f (9x) + 1401174 f (8x)− 930240 f (7x) + 480624 f (6x)

− 217056 f (5x) + 97869 f (4x) + (13566− 19!) f (2x) + 20(19!) f (x) = 0 (2.4)

for all x ∈ A. Replacing (x, y) by (8x, x) in (1.1), we have
f (18x)− 19 f (17x) + 171 f (16x)− 969 f (15x) + 3876 f (14x)− 11628 f (13x)

+27132 f (12x)− 50388 f (11x) + 75582 f (10x)− 92378 f (9x)
+92378 f (8x)− 75582 f (7x) + 50388 f (6x)− 27132 f (5x) + 11628 f (4x)

− 3876 f (3x) + 969 f (2x)− (170 + 19!) f (x) = 0 (2.5)
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for all x ∈ A. Multiplying (2.5) by 172, and then subtracting (2.4) from the resulting equation , we get
988 f (17x)− 14725 f (16x) + 104652 f (15x)− 473670 f (14x) + 1534896 f (13x)

+7323056 f (11x)− 11345052 f (10x) + 14209416 f (9x)− 14487842 f (8x)
+12069864 f (7x)− 8186112 f (6x) + 4449648 f (5x)− 1902147 f (4x)

+ 648432 f (3x)− 3782007 f (12x)− (180234 + 19!) f (2x) + 192(19!) f (x) = 0 (2.6)

for all x ∈ A. Replacing (x, y) by (7x, x) in (1.1), it follows that
f (17x)− 19 f (16x) + 171 f (15x)− 969 f (14x) + 3876 f (13x)− 11628 f (12x)

+27132 f (11x)− 50388 f (10x) + 75582 f (9x)− 92378 f (8x)
+92378 f (7x)− 75582 f (6x) + 50388 f (5x)− 27132 f (4x) + 11628 f (3x)

− 3875 f (2x) + (950− 19!) f (x) = 0 (2.7)

for all x ∈ A. Multiplying (2.7) by 988, and then subtracting (2.6) from the resulting equation, we get
4047 f (16x)− 64296 f (15x) + 483702 f (14x)− 2294592 f (13x) + 7706457 f (12x)

+38438292 f (10x)− 60465600 f (9x) + 76781622 f (8x)− 79199600 f (7x)
+66488904 f (6x)− 45333696 f (5x) + 24904269 f (4x)− 10840032 f (3x)

− 19483360 f (11x) + (3648266− 19!) f (2x) + 1180(19!) f (x) = 0 (2.8)

for all x ∈ A. Replacing (x, y) by (6x, x) in (1.1), we have
f (16x)− 19 f (15x) + 171 f (14x)− 969 f (13x) + 3876 f (12x)− 11628 f (11x)

+27132 f (10x)− 50388 f (9x) + 75582 f (8x)− 92378 f (7x) + 92378 f (6x)

− 75582 f (5x) + 50388 f (4x)− 27131 f (3x) + 11609 f (2x)− (3705 + 19!) f (x) = 0 (2.9)

for all x ∈ A. Multiplying (2.9) by 4047, and then subtracting (2.8) from the resulting equation, we arrive at
12597 f (15x)− 208335 f (14x) + 1626951 f (13x)− 7979715 f (12x) + 27575156 f (11x)

+143454636 f (9x)− 229098732 f (8x) + 294654166 f (7x)− 307364862 f (6x)
+260546658 f (5x)− 179015967 f (4x) + 98959125 f (3x)

− 71364912 f (10x)− (43333357 + 19!) f (2x) + 5227(19!) f (x) = 0 (2.10)

for all x ∈ A. Replacing (x, y) by (5x, x) in (1.1), we obtain
f (15x)− 19 f (14x) + 171 f (13x)− 969 f (12x) + 3876 f (11x)− 11628 f (10x)

+27132 f (9x)− 50388 f (8x) + 75582 f (7x)− 92378 f (6x) + 92378 f (5x)

− 75581 f (4x) + 50369 f (3x)− 26961 f (2x) + (10659− 19!) f (x) = 0 (2.11)

for all x ∈ A. Multiplying (2.11) by 12597, and then subtracting (2.10) from the resulting equation, we arrive
at
31008 f (14x)− 527136 f (13x) + 4226778 f (12x)− 21250816 f (11x)

+75113004 f (10x)− 198327168 f (9x) + 405638904 f (8x)− 657452288 f (7x)
+856320804 f (6x)− 903139008 f (5x) + 773077890 f (4x)− 535539168 f (3x)

+ (296294360− 19!) f (2x) + 17824(19!) f (x) = 0 (2.12)

for all x ∈ A. Replacing (x, y) by (4x, x) in (1.1), we get
f (14x)− 19 f (13x) + 171 f (12x)− 969 f (11x) + 3876 f (10x)− 11628 f (9x)

+27132 f (8x)− 50388 f (7x) + 75582 f (6x)− 92377 f (5x)

+ 92359 f (4x)− 75411 f (3x) + 49419 f (2x)− (23256 + 19!) f (x) = 0 (2.13)

for all x ∈ A. Multiplying (2.13) by 31008, and then subtracting (2.12) from the resulting equation, we obtain
62016 f (13x)− 1075590 f (12x) + 8795936 f (11x)− 45074004 f (10x)

+162233856 f (9x)− 435670152 f (8x) + 904978816 f (7x) + 1802805120 f (3x)
−1487325852 f (6x) + 1961287008 f (5x)− 2090789982 f (4x) + 48832(19!) f (x)

− (1236089992 + 19!) f (2x) = 0 (2.14)
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for all x ∈ A. Replacing (x, y) by (3x, x) in (1.1), we have
f (13x)− 19 f (12x) + 171 f (11x)− 969 f (10x) + 3876 f (9x)− 11628 f (8x)

+27132 f (7x)− 50387 f (6x) + 75563 f (5x)− 92207 f (4x)

+ 91409 f (3x)− 71706 f (2x) + (38760− 19!) f (x) = 0 (2.15)

for all x ∈ A. Multiplying (2.15) by 62016, and then subtracting (2.14) from the resulting equation, we obtain
102714 f (12x)− 1808800 f (11x) + 15019500 f (10x)− 78140160 f (9x) + 285451896 f (8x)

−777639296 f (7x) + 1637474340 f (6x)− 2724828000 f (5x) + 3627519330 f (4x)

− 3866015424 f (3x) + (3210829304− 19!) f (2x) + 110848(19!) f (x) = 0 (2.16)

for all x ∈ A. Replacing (x, y) by (2x, x) in (1.1), it follows that
f (12x)− 19 f (11x) + 171 f (10x)− 969 f (9x) + 3876 f (8x)− 11627 f (7x) + 27113 f (6x)

− 50217 f (5x) + 74613 f (4x)− 88502 f (3x) + 80750 f (2x)− (48450− 19!) f (x) = 0 (2.17)

for all x ∈ A. Multiplying (2.17) by 102714, and then subtracting (2.16) from the resulting equation, we obtain
142766 f (11x)− 2544594 f (10x) + 21389706 f (9x)− 112667568 f (8x) + 416616382 f (7x)

−1147410342 f (6x) + 2433160938 f (5x)− 4036280352 f (4x) + 5224379004 f (3x)

− (5083326196 + 19!) f (2x) + 213562(19!) f (x) = 0 (2.18)

for all x ∈ A. Replacing (x, y) by (x, x) in (1.1), we get
f (11x)− 19 f (10x) + 171 f (9x)− 968 f (8x) + 3857 f (7x)− 11457 f (6x) + 26163 f (5x)

− 46512 f (4x) + 63954 f (3x)− 65246 f (2x) + (41990− 19!) f (x) = 0 (2.19)

for all x ∈ A. Multiplying (2.19) by 142766, and then subtracting (2.18) from the resulting equation, we obtain
167960 f (10x)− 3023280 f (9x) + 25529920 f (8x)− 134032080 f (7x)

+488259720 f (6x)− 1302025920 f (5x) + 2604051840 f (4x)

− 3906077760 f (3x) + (4231584240− 19!) f (2x) + 356328(19!) f (x) = 0 (2.20)

for all x ∈ A. Replacing (x, y) by (0, x) in (1.1), we obtain that
f (10x)− 18 f (9x) + 152 f (8x)− 798 f (7x) + 2907 f (6x)− 7752 f (5x)

+ 15504 f (4x)− 23256 f (3x) + 25194 f (2x)− (16796 + 19!) f (x) = 0 (2.21)

for all x ∈ A. Multiplying (2.21) by 167960, and then subtracting (2.20) from the resulting equation, we can
obtain that

f (2x) = 219 f (x)

for all x ∈ A. Hence f : A → B is a nonadecic mapping. This completes the proof.

3 Ulam-Hyers Stability of Nonadecic Functional Equation (1.1)

In this section, We will investigate the Ulam-Hyers stability for the functional equation (1.1) in matrix
normed spaces by using the fixed point method.

Throughout this section, let us consider (X, ‖.‖n) be a matrix normed space, (Y, ‖.‖n) be a matrix Banach
space and let n be a fixed non-negative integer.

For a mapping f : X → Y, define G f : X2 → Y and G fn : Mn(X2) → Mn(Y) by,
G f (a, b) = f (a + 10b)− 19 f (a + 9b) + 171 f (a + 8b)− 969 f (a + 7b) + 3876 f (a + 6b)

− 11628 f (a + 5b) + 27132 f (a + 4b)− 50388 f (a + 3b)− f (a− 9b)
+ 75582 f (a + 2b)− 92378 f (a + b) + 92378 f (a)− 75582 f (a− b)
+ 50388 f (a− 2b)− 27132 f (a− 3b) + 11628 f (a− 4b)− 19! f (b)
− 3876 f (a− 5b) + 969 f (a− 6b)− 171 f (a− 7b) + 19 f (a− 8b),
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G fn(xij, yij) = fn(xij + 10yij)− 19 fn(xij + 9yij) + 171 fn(xij + 8yij)− 969 fn(xij + 7yij)

+ 3876 fn(xij + 6yij)− 11628 fn(xij + 5yij) + 27132 fn(xij + 4yij)

− 50388 fn(xij + 3yij) + 75582 fn(xij + 2yij)− 92378 fn(xij + yij)

+ 92378 fn(xij)− 75582 fn(xij − yij) + 50388 fn(xij − 2yij)

− 27132 fn(xij − 3yij) + 11628 fn(xij − 4yij)− 3876 fn(xij − 5yij)

+ 969 fn(xij − 6yij)− 171 fn(xij − 7yij) + 19 fn(xij − 8yij)

− fn(xij − 9yij)− 19! fn(yij)

for all a, b ∈ X and all x = [xij], y = [yij] ∈ Mn(X).

Theorem 3.2. Let l = ±1 be fixed and ψ : X2 → [0, ∞) be a function such that there exists a η < 19 with

ψ(a, b) ≤ 219lηψ(
a
2l ,

b
2l ) ∀ a, b ∈ X. (3.22)

Let f : X → Y be a mapping satisfying

∥∥G fn([xij], [yij])
∥∥ ≤ n

∑
i,j=1

ψ(xij, yij) ∀ x = [xij], y = [yij] ∈ Mn(X). (3.23)

Then there exists a unique nonadecic mapping ND : X → Y such that

∥∥ fn([xij])−NDn([yij])
∥∥

n ≤
n

∑
i,j=1

η
1−l

2

219(1− η)
ψ(xij) ∀ x = [xij] ∈ Mn(X), (3.24)

where ψ(xij) =
1

19!
[ψ(0, 2xij) + ψ(10xij, xij) + 19ψ(9xij, xij) + 172ψ(8xij, xij)

+988ψ(7xij, xij) + 4047ψ(6xij, xij) + 12597ψ(5xij, xij)

+31008ψ(4xij, xij) + 62016ψ(3xij, xij) + 102714ψ(2xij, xij)

+142766ψ(xij, xij) + 167960ψ(0, xij)]

Proof. Substituting n = 1 in (3.23), we obtain

‖G f (a, b)‖ ≤ ψ(a, b) (3.25)

Replacing (a, b) by (0, 2a) in (3.25), we get
‖ f (20a)− 18 f (18a) + 152 f (16a)− 798 f (14a) + 2907 f (12a)− 7752 f (10a)

+15504 f (8a)− 23256 f (6a) + 25194 f (4a)− (16796 + 19!) f (2a)‖ ≤ ψ(0, 2a) (3.26)

for all a ∈ X. Replacing (a, b) by (10a, a) in (3.25), we obtain
‖ f (20a)− 19 f (19a) + 171 f (18a)− 969 f (17a) + 3876 f (16a)− 11628 f (15a)

+27132 f (14a)− 50388 f (13a) + 75582 f (12a)− 92378 f (11a)
+92378 f (10a)− 75582 f (9a) + 50388 f (8a)− 27132 f (7a) + 11628 f (6a)

−3876 f (5a) + 969 f (4a)− 171 f (3a) + 19 f (2a)− (1 + 19!) f (a)‖ ≤ ψ(10a, a) (3.27)

for all a ∈ X. Combining (3.26) and (3.27), we arrive at
‖19 f (19a)− 189 f (18a) + 969 f (17a)− 3724 f (16a) + 11628 f (15a)− 27930 f (14a)

+50388 f (13a)− 72675 f (12a) + 92378 f (11a)− 100130 f (10a)
+75582 f (9a)− 34884 f (8a) + 27132 f (7a)− 34884 f (6a) + 3876 f (5a)

+24225 f (4a) + 171 f (3a)− (16815 + 19!) f (2a) + 19! f (a)‖ ≤ ψ(0, 2a) + ψ(10a, a) (3.28)

for all a ∈ X. Replacing (a, b) by (9a, a) in (3.25), we obtain
‖ f (19a)− 19 f (18a) + 171 f (17a)− 969 f (16a) + 3876 f (15a)− 11628 f (14a)

+27132 f (13a)− 50388 f (12a) + 75582 f (11a)− 92378 f (10a)
+92378 f (9a)− 75582 f (8a) + 50388 f (7a)− 27132 f (6a) + 11628 f (5a)

−3876 f (4a) + 969 f (3a)− 171 f (2a) + (19− 19!) f (a)‖ ≤ ψ(9a, a) (3.29)
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∀ a ∈ X. Multiplying (3.29) by 19, and combining the resulting inequality with (3.28), we get
‖172 f (18a)− 2280 f (17a) + 14687 f (16a)− 62016 f (15a) + 193002 f (14a)

−465120 f (13a) + 884697 f (12a)− 1343680 f (11a) + 1655052 f (10a)
−1679600 f (9a) + 1401174 f (8a)− 930240 f (7a) + 480624 f (6a)
−217056 f (5a) + 97869 f (4a)− 18240 f (3a) + (13566− 19!) f (2a)

+20(19!) f (a)‖ ≤ ψ(0, 2a) + ψ(10a, a) + 19ψ(9a, a) (3.30)

for all a ∈ X. Replacing (a, b) by (8a, a) in (3.25), we obtain
‖ f (18a)− 19 f (17a) + 171 f (16a)− 969 f (15a) + 3876 f (14a)− 11628 f (13a)

+27132 f (12a)− 50388 f (11a) + 75582 f (10a)− 92378 f (9a)
+92378 f (8a)− 75582 f (7a) + 50388 f (6a)− 27132 f (5a) + 11628 f (4a)

−3876 f (3a) + 969 f (2a)− (170 + 19!) f (a)‖ ≤ ψ(8a, a) (3.31)

∀ a ∈ X. Multiplying (3.31) by 172, and combining the resulting inequality with (3.30), we get
‖988 f (17a)− 14725 f (16a) + 104652 f (15a)− 473670 f (14a) + 1534896 f (13a)

+7323056 f (11a)− 11345052 f (10a) + 14209416 f (9a)− 14487842 f (8a)
+12069864 f (7a)− 8186112 f (6a) + 4449648 f (5a)− 1902147 f (4a)
+648432 f (3a)− 3782007 f (12a)− (180234 + 19!) f (2a)

+192(19!) f (a)‖ ≤ ψ(0, 2a) + ψ(10a, a) + 19ψ(9a, a) + 172ψ(8a, a) (3.32)

for all a ∈ X. Replacing (a, b) by (7a, a) in (3.25), we get
‖ f (17a)− 19 f (16a) + 171 f (15a)− 969 f (14a) + 3876 f (13a)− 11628 f (12a)

+27132 f (11a)− 50388 f (10a) + 75582 f (9a)− 92378 f (8a)
+92378 f (7a)− 75582 f (6a) + 50388 f (5a)− 27132 f (4a) + 11628 f (3a)

−3875 f (2a) + (950− 19!) f (a)‖ ≤ ψ(7a, a) (3.33)

∀ a ∈ X. Multiplying (3.33) by 988, and combining the resulting inequality with (3.32), we get
‖4047 f (16a)− 64296 f (15a) + 483702 f (14a)− 2294592 f (13a) + 7706457 f (12a)

+38438292 f (10a)− 60465600 f (9a) + 76781622 f (8a)− 79199600 f (7a)
+66488904 f (6a)− 45333696 f (5a) + 24904269 f (4a)− 10840032 f (3a)

−19483360 f (11a) + (3648266− 19!) f (2a)

+1180(19!) f (a)‖ ≤ ψ(0, 2a) + ψ(10a, a) + 19ψ(9a, a) + 172ψ(8a, a) + 988ψ(7a, a) (3.34)

for all a ∈ X. Replacing (a, b) by (6a, a) in (3.25), we get
‖ f (16a)− 19 f (15a) + 171 f (14a)− 969 f (13a) + 3876 f (12a)− 11628 f (11a)

+27132 f (10a)− 50388 f (9a) + 75582 f (8a)− 92378 f (7a)
+92378 f (6a)− 75582 f (5a) + 50388 f (4a)− 27131 f (3a) + 11609 f (2a)

−(3705 + 19!) f (a)‖ ≤ ψ(6a, a) (3.35)

∀ a ∈ X. Multiplying (3.35) by 4047, and combining the resulting inequality with (3.34), we arrive at
‖12597 f (15a)− 208335 f (14a) + 1626951 f (13a)− 7979715 f (12a) + 27575156 f (11a)

+143454636 f (9a)− 229098732 f (8a) + 294654166 f (7a)− 307364862 f (6a)
+260546658 f (5a)− 179015967 f (4a) + 98959125 f (3a)
−71364912 f (10a)− (43333357 + 19!) f (2a) + 5227(19!) f (a)‖

≤ ψ(0, 2a) + ψ(10a, a) + 19ψ(9a, a) + 172ψ(8a, a) + 988ψ(7a, a) + 4047ψ(6a, a) (3.36)

for all a ∈ X. Replacing (a, b) by (5a, a) in (3.25), we obtain
‖ f (15a)− 19 f (14a) + 171 f (13a)− 969 f (12a) + 3876 f (11a)− 11628 f (10a)

+27132 f (9a)− 50388 f (8a) + 75582 f (7a)− 92378 f (6a)
+92378 f (5a)− 75581 f (4a) + 50369 f (3a)− 26961 f (2a)

+(10659− 19!) f (a)‖ ≤ ψ(5a, a) (3.37)
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∀ a ∈ X. Multiplying (3.37) by 12597, and combining the resulting inequality with (3.36),
we arrive at
‖31008 f (14a)− 527136 f (13a) + 4226778 f (12a)− 21250816 f (11a)

+75113004 f (10a)− 198327168 f (9a) + 405638904 f (8a)− 657452288 f (7a)
+856320804 f (6a)− 903139008 f (5a) + 773077890 f (4a)− 535539168 f (3a)
+(296294360− 19!) f (2a) + 17824(19!) f (a)‖ ≤ ψ(0, 2a) + ψ(10a, a)

+ 19ψ(9a, a) + 172ψ(8a, a) + 988ψ(7a, a) + 4047ψ(6a, a) + 12597ψ(5a, a) (3.38)

for all a ∈ X. Replacing (a, b) by (4a, a) in (3.25), we get
‖ f (14a)− 19 f (13a) + 171 f (12a)− 969 f (11a) + 3876 f (10a)− 11628 f (9a)

+27132 f (8a)− 50388 f (7a) + 75582 f (6a)− 92377 f (5a)

+92359 f (4a)− 75411 f (3a) + 49419 f (2a)− (23256 + 19!) f (a)‖ ≤ ψ(4a, a) (3.39)

∀ a ∈ X. Multiplying (3.39) by 31008, and combining the resulting inequality with (3.38),
we obtain
‖62016 f (13a)− 1075590 f (12a) + 8795936 f (11a)− 45074004 f (10a)

+162233856 f (9a)− 435670152 f (8a) + 904978816 f (7a) + 1802805120 f (3a)
−1487325852 f (6a) + 1961287008 f (5a)− 2090789982 f (4a) + 48832(19!) f (a)
−(1236089992 + 19!) f (2a)‖ ≤ ψ(0, 2a) + ψ(10a, a) + 19ψ(9a, a) + 172ψ(8a, a)

+ 988ψ(7a, a) + 4047ψ(6a, a) + 12597ψ(5a, a) + 31008ψ(4a, a) (3.40)

for all a ∈ X. Replacing (a, b) by (3a, a) in (3.25), we get
‖ f (13a)− 19 f (12a) + 171 f (11a)− 969 f (10a) + 3876 f (9a)− 11628 f (8a)

+27132 f (7a)− 50387 f (6a) + 75563 f (5a)− 92207 f (4a)

+91409 f (3a)− 71706 f (2a) + (38760− 19!) f (a)‖ ≤ ψ(3a, a) (3.41)

∀ a ∈ X. Multiplying (3.53) by 62016, and combining the resulting inequality with (3.40),
we obtain
‖102714 f (12a)− 1808800 f (11a) + 15019500 f (10a)− 78140160 f (9a)

+285451896 f (8a)− 2724828000 f (5a) + 3627519330 f (4a)− 3866015424 f (3a)
−777639296 f (7a) + 1637474340 f (6a) + (3210829304− 19!) f (2a)
+110848(19!) f (a)‖ ≤ ψ(0, 2a) + ψ(10a, a) + 19ψ(9a, a) + 12597ψ(5a, a)

+ 172ψ(8a, a) + 988ψ(7a, a) + 4047ψ(6a, a) + 31008ψ(4a, a) + 62016ψ(3a, a) (3.42)

for all a ∈ X. Replacing (a, b) by (2a, a) in (3.25), we get
‖ f (12a)− 19 f (11a) + 171 f (10a)− 969 f (9a) + 3876 f (8a)− 11627 f (7a)

+27113 f (6a)− 50217 f (5a) + 74613 f (4a)− 88502 f (3a)

+80750 f (2a)− (48450− 19!) f (a)‖ ≤ ψ(2a, a) (3.43)

for all a ∈ X. Multiplying (3.43) by 102714, and combining the resulting inequality
with (3.42), we obtain
‖142766 f (11a)− 2544594 f (10a) + 21389706 f (9a)− 112667568 f (8a)

+416616382 f (7a)− 1147410342 f (6a) + 2433160938 f (5a)
−4036280352 f (4a) + 5224379004 f (3a)− (5083326196 + 19!) f (2a)
+213562(19!) f (a)‖ ≤ ψ(0, 2a) + ψ(10a, a) + 19ψ(9a, a) + 12597ψ(5a, a)

+172ψ(8a, a) + 988ψ(7a, a) + 4047ψ(6a, a)

+ 31008ψ(4a, a) + 62016ψ(3a, a) + 102714ψ(2a, a) (3.44)

for all a ∈ X. Replacing (a, b) by (a, a) in (3.25), we get
‖ f (11a)− 19 f (10a) + 171 f (9a)− 968 f (8a) + 3857 f (7a)− 11457 f (6a)

+26163 f (5a)− 46512 f (4a) + 63954 f (3a)− 65246 f (2a)

+(41990− 19!) f (a)‖ ≤ ψ(a, a) (3.45)
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for all a ∈ X. Multiplying (3.45) by 142766, and combining the resulting inequality
with (3.44), we get
‖167960 f (10a)− 3023280 f (9a) + 25529920 f (8a)− 134032080 f (7a)

+488259720 f (6a)− 1302025920 f (5a) + 2604051840 f (4a)
−3906077760 f (3a) + (4231584240− 19!) f (2a) + 356328(19!) f (a)‖
≤ ψ(0, 2a) + ψ(10a, a) + 19ψ(9a, a) + 12597ψ(5a, a) + 172ψ(8a, a) + 988ψ(7a, a)

+ 4047ψ(6a, a) + 31008ψ(4a, a) + 62016ψ(3a, a) + 102714ψ(2a, a) + 142766ψ(a, a) (3.46)

for all a ∈ X. Replacing (a, b) by (0, a) in (3.25), we get
‖ f (10a)− 18 f (9a) + 152 f (8a)− 798 f (7a) + 2907 f (6a)− 7752 f (5a)

+15504 f (4a)− 23256 f (3a) + 25194 f (2a)− (16796 + 19!) f (a)‖ ≤ ψ(0, a) (3.47)

for all a ∈ X. Multiplying (3.47) by 167960, and combining the resulting inequality
with (3.46), we obtain
‖−19! f (2a) + 524288(19!) f (a)‖ ≤ ψ(0, 2a) + ψ(10a, a) + 19ψ(9a, a) + 12597ψ(5a, a)

+172ψ(8a, a) + 988ψ(7a, a) + 4047ψ(6a, a) + 31008ψ(4a, a)

+ 62016ψ(3a, a) + 102714ψ(2a, a) + 142766ψ(a, a) + 167960ψ(0, a) (3.48)

for all a ∈ X. From (3.48), we can obtain∥∥− f (2a) + 219 f (a)
∥∥ ≤ 1

19!
[ψ(0, 2a) + ψ(10a, a) + 19ψ(9a, a) + 172ψ(8a, a)

+988ψ(7a, a) + 4047ψ(6a, a) + 12597ψ(5a, a)
+31008ψ(4a, a) + 62016ψ(3a, a) + 102714ψ(2a, a)

+142766ψ(a, a) + 167960ψ(0, a)] (3.49)

Therefore, ∥∥∥ f (2a)− 219 f (a)
∥∥∥ ≤ ψ(a) ∀ a ∈ X. (3.50)

Thus ∥∥∥∥ f (a)− 1
219l f (2la)

∥∥∥∥ ≤ η(
1−l

2 )

219 ψ(a) ∀ a ∈ X. (3.51)

We consider the setM = { f : X → Y} and introduce the generalized metric ρ onM as follows:

ρ( f , g) = inf
{

µ ∈ R+ : ‖ f (a)− g(a)‖ ≤ µψ(a), ∀a ∈ X
}

,

It is easy to check that (M, ρ) is a complete generalized metric (see also [11]). Define the mapping
P :M→M by

P f (a) =
1

219l f (2la) ∀ f ∈ M and a ∈ X.

Let f , g ∈ M and ν be an arbitrary constant with ρ( f , g) = ν. Then
‖ f (a)− g(a)‖ ≤ νψ(a) for all a ∈ X.

Utilizing (3.22), we find that

‖P f (a)−Pg(a)‖ =
∥∥∥∥ 1

219l f (2la)− 1
219l g(2la)

∥∥∥∥ ≤ ηνψ(a) for all a ∈ X.

Hence it holds that ρ(P f ,Pg) ≤ ην, that is, ρ(P f ,Pg) ≤ ηρ( f , g) for all f , g ∈ M.

It follows from (3.51) that ρ( f ,P f ) ≤ η(
1−l

2 )

219 .

Therefore according to Theorem 2.2 in [3], there exists a mapping ND : X → Y which satisfying:

1. ND is a unique fixed point of P in the set S = {g ∈ M : ρ( f , g) < ∞}, which is satisfied

ND(2la) = 219lND(a) ∀ a ∈ X. (3.52)

In other words, there exists a µ satisfying

‖ f (a)− g(a)‖ ≤ µψ(a)∀ a ∈ X.



424 R. Murali et al./ The General Solution and Stability of Nonadecic Functional Equation in Matrix Normed Spaces

2. ρ(P k f ,ND)→ 0 as k→ ∞. This implies that

lim
k→∞

1
219kl f (2kla) = ND(a) ∀ a ∈ X.

3. ρ( f ,ND) ≤
1

1− η
ρ( f ,P f ), which implies the inequality ρ( f ,ND) ≤

η
1−l

2

219(1− η)
.

So ‖ f (a)−ND(a)‖ ≤ η
1−l

2

219(1− η)
ψ(a) ∀ a ∈ X. (3.53)

It follows from (3.22) and (3.23) that

‖GND(a, b)‖ = lim
k→∞

1
219kl

∥∥∥G f (2kla, 2klb)
∥∥∥

≤ lim
k→∞

1
219kl ψ(2kla, 2klb) ≤ lim

k→∞

2klηk

219kl ψ(a, b) = 0

for all a, b ∈ X. Hence
ND(a + 10b)− 19ND(a + 9b) + 171ND(a + 8b)− 969ND(a + 7b) + 3876ND(a + 6b)

+ 27132ND(a + 4b)− 50388ND(a + 3b) + 75582ND(a + 2b)− 92378ND(a + b)
+ 92378ND(a)− 75582ND(a− b) + 50388ND(a− 2b)− 27132ND(a− 3b)
+ 11628ND(a− 4b)− 3876ND(a− 5b) + 969ND(a− 6b)− 171ND(a− 7b)

− 11628ND(a + 5b) + 19ND(a− 8b)−ND(a− 9b) = 19!ND(b)
Therefore, the mapping ND : X → Y is nonadecic mapping.
By Lemma 2.1 in [9] and (3.53),

∥∥ fn([xij])−NDn([xij])
∥∥ ≤ n

∑
i,j=1

∥∥ f (xij)−ND(xij)
∥∥

≤
n

∑
i,j=1

η
1−l

2

219(1− η)
ψ(xij) ∀ x = [xij] ∈ Mn(X),

where ψ(xij) =
1

19!
[ψ(0, 2xij) + ψ(10xij, xij) + 19ψ(9xij, xij) + 172ψ(8xij, xij)

+988ψ(7xij, xij) + 4047ψ(6xij, xij) + 12597ψ(5xij, xij)

+31008ψ(4xij, xij) + 62016ψ(3xij, xij) + 102714ψ(2xij, xij)

+142766ψ(xij, xij) + 167960ψ(0, xij)],
Thus ND : X → Y is a unique nonadecic mapping satisfying (3.24).

Corollary 3.1. Let l = ±1 be fixed and let t, ε be positive real numbers with t 6= 19. Let f : X → Y be a mapping such
that ∥∥G fn([xij], [yij])

∥∥
n ≤

n

∑
i,j=1

ε(
∥∥xij

∥∥t
+
∥∥yij

∥∥t
) ∀ x = [xij], y = [yij] ∈ Mn(X). (3.54)

Then there exists a unique nonadecic mapping ND : X → Y such that∥∥ fn([xij])−NDn([xij])
∥∥

n ≤
n
∑

i,j=1

εs

l(219 − 2t)

∥∥xij
∥∥t ∀ x = [xij] ∈ Mn(X),

where εs =
ε

19!
[667054 + 102715(2t) + 62016(3t) + 31008(4t) + 12597(5t)

+ 4047(6t) + 988(7t) + 172(8t) + 19(9t) + 10t]

Proof. The proof follows from Theorem 3.2 by taking ψ(a, b) = ε(‖a‖t + ‖b‖t) for all a, b ∈ X. Then we can
choose η = 2l(t−19), and we can obtain the required result.

Now we will provide an example to illustrate that the functional equation (1.1) is not stable for t = 19 in
corollary 3.1.
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Example 3.1. Let ψ : R→ R be a function defined by

ψ(x) =

{
εx19, i f |x| < 1

ε, otherwise

where ε > 0 is a constant, and define a function f : R→ R by

f (x) =
∞

∑
n=0

ψ(2nx)
219n

for all x ∈ R. Then f satisfies the inequality
‖ f (x + 10y)− 19 f (x + 9y) + 171 f (x + 8y)− 969 f (x + 7y) + 3876 f (x + 6y)

+27132 f (x + 4y)− 50388 f (x + 3y) + 75582 f (x + 2y)− 92378 f (x + y)
+92378 f (x)− 75582 f (x− y) + 50388 f (x− 2y)− 27132 f (x− 3y)
+11628 f (x− 4y)− 3876 f (x− 5y) + 969 f (x− 6y)− 171 f (x− 7y)

−11628 f (x + 5y) + 19 f (x− 8y)− f (x− 9y)− 19! f (y)‖

≤ (121645100400000000)
524287

(524288)2ε(|x|19 + |y|19) (3.55)

for all x, y ∈ R. Then there does not exist a nonadecic mapping ND : R→ R and a constant λ > 0 such that

| f (x)−ND(x)| ≤ λ |x|19 ∀ x ∈ R. (3.56)

Proof. It is easy to see that f is bounded by
524288ε

524287
on R.

If |x|19 + |y|19 = 0, then (3.55) is trivial.

If |x|19 + |y|19 ≥ 1
219 , then L.H.S of (3.55) is less than

(121645100400000000)(524288)ε
524287

.

Suppose that 0 < |x|19 + |y|19 < 1
219 , then there exists a non-negative integer k such that

1
219(k+1)

≤ |x|19 + |y|19 <
1

219k , (3.57)

so that 219(k−1) |x|19 < 1
219 , 219(k−1) |y|19 < 1

219 , and
2n(x), 2n(y), 2n(x + 10y), 2n(x + 9y), 2n(x + 8y), 2n(x + 7y),
2n(x + 6y), 2n(x + 5y), 2n(x + 4y), 2n(x + 3y), 2n(x + 7y), 2n(x + 2y),
2n(x + y), 2n(x− y), 2n(x− 2y), 2n(x− 3y), 2n(x− 4y), 2n(x− 5y),

2n(x− 6y), 2n(x− 7y), 2n(x− 8y), 2n(x− 9y) ∈ (−1, 1)
for all n = 0, 1, 2, ..., k− 1. Hence
ψ(2n(x + 10y))− 19ψ(2n(x + 9y)) + 171ψ(2n(x + 8y))− 969ψ(2n(x + 7y))

+ 3876ψ(2n(x + 6y))− 11628ψ(2n(x + 5y)) + 27132ψ(2n(x + 4y))
− 50388ψ(2n(x + 3y)) + 75582ψ(2n(x + 2y))− 92378ψ(2n(x + y))
+ 92378ψ(2nx)− 75582ψ(2n(x− y)) + 50388ψ(2n(x− 2y))
− 27132ψ(2n(x− 3y)) + 11628ψ(2n(x− 4y))− 3876ψ(2n(x− 5y))
+ 969ψ(2n(x− 6y))− 171ψ(2n(x− 7y)) + 19ψ(2n(x− 8y))

− ψ(2n(x− 9y))− 19!ψ(2ny) = 0
for n = 0, 1, 2, ..., k− 1. From the definition of f and (3.57), we obtain that
| f (x + 10y)− 19 f (x + 9y) + 171 f (x + 8y)− 969 f (x + 7y) + 3876 f (x + 6y)

+27132 f (x + 4y)− 50388 f (x + 3y) + 75582 f (x + 2y)− 92378 f (x + y)
+92378 f (x)− 75582 f (x− y) + 50388 f (x− 2y)− 27132 f (x− 3y)
+11628 f (x− 4y)− 3876 f (x− 5y) + 969 f (x− 6y)− 171 f (x− 7y)

−11628 f (x + 5y) + 19 f (x− 8y)− f (x− 9y)− 19! f (y)|

≤ ∑∞
n=0

1
219n |ψ(2

n(x + 10y))− 19ψ(2n(x + 9y)) + 171ψ(2n(x + 8y))

+3876ψ(2n(x + 6y))− 11628ψ(2n(x + 5y)) + 27132ψ(2n(x + 4y))
−50388ψ(2n(x + 3y)) + 75582ψ(2n(x + 2y))− 92378ψ(2n(x + y))
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+92378ψ(2nx)− 75582ψ(2n(x− y)) + 50388ψ(2n(x− 2y))
−27132ψ(2n(x− 3y)) + 11628ψ(2n(x− 4y))− 3876ψ(2n(x− 5y))
+969ψ(2n(x− 6y))− 171ψ(2n(x− 7y)) + 19ψ(2n(x− 8y))

−969ψ(2n(x + 7y))− ψ(2n(x− 9y))− 19!ψ(2ny)|

≤ ∑∞
n=k

(121645100400000000)ε
219n =

(524288)(121645100400000000)ε
219k524287

≤ (121645100400000000)
524287

(524288)2ε(|x|19 + |y|19).
Therefore, f satisfies (3.55) for all x, y ∈ R. Now, we claim that functional equation (1.1)
is not stable for t = 19 in corollary 3.1. Suppose on the contrary that there exists a nonadecic mapping
ND : R → R and a constant λ > 0 satisfying (3.56). Then there exists a constant c ∈ R such that
ND(x) = cx19 for any x ∈ R. Thus we obtain the following inequality

| f (x)| ≤ (λ + |c|) |x|19 (3.58)

Let m ∈ N with mε > λ + |c|. If x ∈ (0, 1
2m−1 ), then 2nx ∈ (0, 1) for all n = 0, 1, 2, ..., m− 1, and for this case

we get

f (x) =
∞

∑
n=0

ψ(2nx)
219n ≥

m−1

∑
n=0

ε(2nx)19

219n = mεx19 > (λ + |c|) |x|19

which is a contradiction to (3.58). Therefore the nonadecic functional equation (1.1) is not stable for t = 19.

4 Conclusion

In this investigation, we identified a general solution of nonadecic functional equation and establised the
generalized Ulam -Hyers stability of this functional equation in matrix normed spaces by using the fixed
point method and also provided an example for non-stability.
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Abstract

In this article, the asymptotic behavior of oscillatory solutions of a class of first order neutral delay
difference equations with variable co-efficients and constant delays is investigated. We established a
sufficient conditions of the equations under consideration approach zero as the independent variable tends
to infinity.
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1 Introduction

We consider the first order neutral delay difference equation with variable co-efficients of the form

∆[x(n)− p(n)x(n− τ)]− q(n)x(n− σ) = 0; n ≥ n0; (1)

where {p(n)}, {q(n)} are sequences of real numbers, τ and σ are positive integers with τ > σ and ∆ is the
forward difference operator defined by the equation

∆x(n) = x(n + 1)− x(n).

In the oscillation theory of difference equations one of the important problems is to find sufficient
conditions in order that all oscillatory solutions of (1) tends to zero as n → ∞. Considerably less is known
about the behavior of oscillatory solutions to first order neutral delay difference equations with variable
co-efficients. We choose to refer to the papers [9,10,13].

By a solutions of equation (1), we mean a real sequence {x(n)} which is defined for n ≥ n0 −max {τ, σ}
and satisfies equation (1) for all n ∈ N(n0) = {n0, n0 + 1, n0 + 2, ...}. A non trivial solution of equation
(1) is said to be oscillatory if it is neither eventually positive nor eventually negative, otherwise it is called
nonoscillatory.

Philos et al. [7] consider the first order neutral delay differential equation

[x(t)− p(t)x(t− σ)]
′
= φ(t)x(t− τ), t ≥ t0 (1′)

and obtained sufficient conditions for all solutions of the equation (1′) to tend to zero as t→ ∞.
The purpose of the present paper is to obtain sufficient conditions for all oscillatory solutions of (1) tend

to zero as n → ∞. Our obtained results are discrete analogues of some well known results due to [7]. With

∗Corresponding author.
E-mail address: amurugesan3@gmail.com (A. Murugesan), venkatmaths8@gmail.com (K. Venkataramanan).
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respect to the oscillation and asymptotic behavior of difference equation, reader can refer to [3-6, 8-14]. For
the several background in difference equation, one can refer to [1,2].

Throughout this paper, we define N(a) = {a, a + 1, a + 2, ...} and N(a, b) = {a, a + 1, a + 2, ...b} where a
and b are integers with a ≤ b.

The following conditions are assumed to be hold throughout the paper.

(C1) {p(n)} is a sequence of nonnegative real numbers,

(C2) {q(n)} is a sequence of positive real numbers,

(C3) τ and σ are positive integers such that τ > σ.

In section 2, we shall state and prove some lemmas, which play a crucial role in proving our theorem.

2 Some Lemmas

Lemma 2.1. Assume that {p(n)} is a sequence of nonnegative real numbers and 0 ≤ p(n) ≤ p < 1. Assume also that
{q(n)} is a sequence of positive real numbers. Then every oscillatory solution of the neutral delay difference equation (1)
which is eventually of one sign (ie, it is either eventually nonnegative or eventually non positive), tends to zero at ∞.

Proof. Without loss of generality, we suppose that {x(n)} is an oscillatory solution of (1) which is eventually
nonnegative. We observe that, if {x(n)} is eventually identically zero, then it tends to zero at ∞. So, we
assume that {x(n)} is not eventually identically zero. Set

z(n) = x(n)− p(n)x(n− z). (2)

By taking into account (2) and the fact that {x(n)} is nonnegative, from (1) we conclude that {∆z(n)} is
eventually nonnegative and {∆z(n)} is not eventually identically zero. They {z(n)} is increasing on N(n1)

where n1 ≥ n0 such that x(n) ≥ 0, n ≥ n1 − τ and it is not eventually identically zero. This guarantees that
{z(n)} is either negative eventually positive or eventually negative. Assume that {z(n)} is eventually positive
i.e. {z(n)} is positive on N(n2) when n2 ≥ n1. Since {x(n)} is oscillatory, there exists an integer ξ ≥ n2 with
x(ξ) = 0 then

0 < z(ξ) = x(ξ)− p(ξ)x(ξ − τ) (3)

= −p(ξ)x(ξ − z)

consequently p(ξ)x(ξ − z) < 0.
Hence given {p(n)} is assume to nonnegative on N(n0), it follows immediately that x(ξ − z) < 0. This

contradicts the fact that {x(n)} is nonnegative on N(n1). This contradiction establishes that {z(n)} is always
eventually negative on N(n1).

Therefore
z(n) = x(n)− p(n)x(n− τ) < 0, n ≥ n1

and so we have
x(n) < p(n)x(n− τ). (4)

Let us suppose that {x(n)} is unbounded. Then as {x(n)} is nonnegative on N(n1 − τ). We can consider
a sequence of integers {mk} with n1 ≤ m0 < m1 < m2 < ... and limk→∞ mk = ∞ k = 0, 1, ... such that

max
n∈N(n1−τ,mk)

x(n) = x(mk) > 0 (k = 0, 1, 2, 3, ...)

and limk→∞ x(mk) = ∞.
Then by taking into account that {p(n)} is nonnegative on N(n0) and using (4) and 0 ≤ p(n) ≤ p < 1, we

obtain

0 < x(m0) < p(m0)x(m0) ≤ px(m0).



430 A. Murugesan et al. / Asymptotic behavior of the oscillatory solutions...

That is, 0 < x(m0) < px(m0). As 0 ≤ m < 1, this is a contradiction, which shows that {x(n)} is necessary
bounded on N(n1 − τ). Hence there exists a positive real constant k such that

0 ≤ x(n) < K f or all n ∈ N(n1 − τ). (5)

Now, we take into account the hypothesis that {p(n)} is nonnegative on N(n0) and we use (4) and (5) to
obtain to n ≥ n1.

0 ≤ x(n) < p(n)x(n− τ) ≤ pK, f or all n ∈ N(n1).

Finally, by an easily induction, we can prove that

0 ≤ x(n) < piK f or all n ∈ N(n1 + (i− 1)τ), (i = 0, 1, 2, 3, ...) (6)

But, as 0 ≤ p < 1 we have
lim
i→∞

pi = 0

Hence it follows easily from (6) that
lim

n→∞
x(n) = 0

The proof of the lemma is finished.

Lemma 2.2. Assume that {p(n)} is a sequence of nonnegative real numbers on N(n0) and {q(n)} is a sequence of
positive real numbers on N(n0). Let {x(n)} be an oscillatory solution of the neutral delay difference equation (1) and
let n̄ be an integer with n̄ > n0. If

x(n̄) > 0 and z(n̄) > 0, (7)

then either x(ξ) ≤ 0 or z(ξ) ≤ 0 for at least one ξ ∈ N(n̄ + 1, n̄ + τ − 1).

Proof. First of all, we will prove the following claim.
Claim: Let n1 ≥ n0. If both x(n) and z(n) are positive on N(n1, n1 + τ), then x(n) and z(n) are also

positive on N(n1 + τ, n1 + τ + σ). In order to establish our claim, we assume that x(n) > 0 and z(n) > 0
for all n ∈ N(n1, n1 + τ). So, we have x(n − σ) > 0, for all n ∈ N(n1 + σ, n1 + τ + σ). From this and (3),
we concluded that ∆z(n) > 0 for all n ∈ N(n1 + σ, n1 + τ + σ). This guarantees that {z(n)} is increasing on
N(n1 + σ, n1 + τ + σ) which together with the facts that N(n1 + τ, n1 + τ + σ) ⊂ N(n1 + σ, n1 + τ + σ) and
z(n1 + σ) > 0 implies that {z(n)} is always positve on N(n1 + τ, n1 + τ + σ). We see that x(n− τ) > 0 on
N(n1 + τ, n1 + τ + σ). Hence, by taking into account the fact that {z(n)} is positive on N(n1 + τ, n1 + τ + σ)

and using the assumption that {p(n)} is nonnegative on N(n0), we obtain, for every n ∈ N(n1 + τ, n1 + τ + σ)

x(n) = z(N) + p(n)x(n− τ) > p(n)x(n− τ) ≥ 0.

This implies that {x(n)} is always positive on N(n1 + τ, n1 + τ + σ) and completes the proof of our claim.

Now, let us suppose that (7) holds.
We will show that either

x(ξ) ≤ 0 or z(ξ) ≤ 0 f or atleast one ξ ∈ N(n̄ + 1, n̄ + τ − 1) (8)

If (8) is not true, then x(n) > 0 and z(n) > 0 for every n ∈ N(n̄ + 1, n̄ + τ − 1). So, because of (6), both
{x(n)} and {z(n)} must be positive on N(n̄, n̄ + τ − 1). By our claim, {x(n)} and {z(n)} are also positive on
N(n̄ + τ − 1, n̄ + τ + σ− 1). Consequently, {x(n)} and {z(n)} are positive on N(n̄, n̄ + τ + σ− 1). By using
again our claim (with n1 = n̄+ σ− 1), we see that {x(n)} and {z(n)} are also positive on N(n̄+ τ + σ− 1, n̄+

τ + 2σ− 1). Thus, {x(n)} and {z(n)} are positive on N(n̄, n̄ + τ + 2σ− 1). Following the procedure, we can
conclude that, for any nonnegative integer k, both {x(n)} and {z(n)} are positive on N(n̄, n̄ + τ + kσ − 1).
This guarantees that {x(n)} and {z(n)} are positive on N(n̄). But, the fact that {x(n)} is positive on N(n̄)
contradictory the oscillatory character of {x(n)}. So (8) has been proved.

Lemma 2.3. Let 0 ≤ p(n) ≤ p < 1 and { f (n)} be an unbounded sequence of real numbers on N(n0 − τ). We define

g(n) = f (n)− p(n) f (n− τ), n ≥ n0.
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Then the sequence {g(n)} is also unbounded. Moreover, there exists m0 ≥ n0, such that for any m ≥ m0, the following
statement is true:

If
|g(n)| ≤ |g(m)| , f or every n ∈ N(m0, m), (9)

then

| f (n)| ≤ 1
1− p

|g(m)| f or all n ∈ N(n0 − τ, m) (10)

Proof. The hypothesis that { f (n)} is unbounded guarantees the existence of a sequence of integer {mk}k=0,1,...
with n0 ≤ m0 < m1 < ... and limk→∞ mk = ∞ such that

max
n∈N(n0−τ,mk)

| f (n)| = | f (mk)| , (k = 0, 1, 2, 3, ...) (11)

and
lim
k→∞
|mk| = ∞. (12)

By taking into account, the assumption that {p(n)} is nonnegative on N(n0) and using 0 ≤ p(n) ≤ p < 1 and
(11) we obtain for k = 0, 1, 2, ...

|g(mk)| = | f (mk)− p(mk) f (mk − τ)|
≥ | f (mk)| − p(mk) | f (mk − τ)|
≥ | f (mk)| − p | f (mk)|

Hence, we have
|g(mk)| ≥ (1− p) | f (mk)| , (k = 0, 1, 2, ...)

So in view of (12) and because of the fact that 1− p > 0, it follows that

lim
k→∞
|g(mk)| = ∞.

This guarantees that |g(n)| is necessary unbounded.
Now, let m be an arbitrary point with m ≥ m0, and assume that (9) is satisfied. As {p(n)} is assume to be

nonnegative on N(n0), we can use (9) and 0 ≤ p(n) ≤ p < 1 to obtain, for n ∈ N(m0, m),

|g(m)| ≥ |g(n)| = | f (n)− p(n) f (n− τ)|
≥ | f (n)| − p | f (n− τ)|
≥ | f (n)| − p max

s∈N(n0−τ,m)
| f (s)| .

Thus,
|g(m)| ≥ max

n∈N(m0,m)
| f (n)| − p max

n∈N(n0−τ,m)
| f (n)| , n ∈ N(n0 − τ, m). (13)

On the otherhand, by using (11) with k = 0, we can immediately see that

max
n∈N(m0,m)

| f (n)| = max
n∈N(n0−τ,m)

| f (n)| ,

Hence (13), yields
|g(m)| ≥ (1− p) max

n∈N(n0−τ,m)
| f (n)| .

So since 1− p > 0, we have

max
n∈N(n0−τ,m)

| f (n)| ≤ 1
1− p

|g(m)| .

The proof of the lemma is now complete.
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3 Main Results

Theorem 3.1. Assume that
0 ≤ p(n) ≤ p <

1
2

. (14)

If

lim sup
n→∞

n+τ−1

∑
s=n

q(s) < 2(1− 2p) (15)

then every oscillatory solution of equation (1) tends to zero as n→ ∞.

Proof. Let {x(n)} be an oscillatory solution of (1). First it will be shown that the solution {x(n)} is bounded.
Next, by the use of the boundedness of {x(n)}, we shall prove that the solution {x(n)} tend to zero as n→ ∞.

Suppose, that the sake of contradiction, that the solution {x(n)} is unbounded. We see that condition (15)
implies, in particular, that

n+τ−1

∑
s=n

q(s) < 2(1− 2p) f or all n

and consequently there exists an integer n1 ≥ n0 such that

n+τ−1

∑
s=n

q(n) < 2(1− 2p) f or every n ≥ n1. (16)

By taking into account the fact that {p(n)} is nonnegative on N(n0) and that (14) holds and using the fact
that {x(n)} is unbounded, we can apply Lemma 2.3 to conclude that the sequence {z(n)} is also unbounded,
where z(n) is defined by (2). Moreover, there exists a m0 ≥ n0 such that, for any m ≥ m0, the following
statements is true.

If
|z(n)| ≤ |z(m)| f or every n ∈ N(m0, m), (17)

then
|x(n)| ≤ 1

1− p
|z(m)| f or all n ∈ N(n0 − τ, m). (18)

Also, as {x(n)} is unbounded, it is obvious that {x(n)} does not tend to zero at n→ ∞.
In view of Lemma 2.1, {x(n)} cannot be eventually of one sign, i.e., it is neither eventually nonnegative

nor eventually nonpositive. This means that {x(n)} changes sign for arbitrarly large values of n. So, in view
of (1) and (2), the sequence {∆z(n)} changes sign for arbitrarly large values of n and consequently {z(n)}
cannot be eventually monotone. From this fact and the unboundness of {z(n)} we conclude that there exists
an integer m ≥ max {n1 + σ, m0, n0 + τ} with z(m) 6= 0 such that

z(m)∆z(m) ≤ 0 (19)

and
|z(n)| ≤ |z(m)| f or every n ∈ N(n0, m). (20)

We observe that m ≥ m0 and that (20) implies (17). Hence (18) holds true. Furthermore, we see that {−x(n)}
is also an oscillatory solution of (1), which is unbounded, and that

−z(n) = −x(n) + p(n)x(n− τ) f or n ≥ n0.

Thus, as z(m) 6= 0, we may (and do) assume that

z(m) > 0. (21)

So (18) becomes

|x(n)| ≤ 1
1− p

z(m) f or all n ∈ N(n0 − τ, m). (22)

Now, we will show that
x(m) > 0.



A. Murugesan et al. / Asymptotic behavior of the oscillatory solutions... 433

Assume, for the sake of contradiction, that x(m) ≤ 0. As m ≥ n0 + τ, we have n0 ≤ m− τ < m. Consequently,
(22) susures that

|x(m− τ)| ≤ 1
1− p

z(m).

By using this inequality as well as (21) and taking into account the fact that {p(n)} is nonnegative on N(n0),
we obtain

0 < z(m) = x(m)− p(m)x(m− τ)

≤ −p(m)x(m− τ)

≤ p(m) |x(m− τ)|

≤ p
1

1− p
z(m)

and consequently

1 ≤ p
1− p

, i.e. p ≥ 1
2

.

This contradiction proves that x(m) ≤ 0. In view of (19) and (21), we have

∆z(m) ≤ 0.

Prove this and (1), we have x(m− σ) ≤ 0. Note that m− σ ≥ n1. Let us denote the integer ξ1 less then m such
that x(ξ1)z(ξ1) ≤ 0 and

x(n) > 0 and z(n) > 0 f or every n ∈ N(ξ1 + 1, m).

It is obvious that m− σ ≤ ξ1 ≤ m− 1. Since {x(n)} is oscillatory, then there exists an integers ξ2 > m such
that

x(ξ2)z(ξ2) ≤ 0

and
x(n) > 0 and z(n) > 0, f or every n ∈ N(m, ξ2 − 1).

We note that x(n) > 0 and z(n) > 0 as N(ξ1 + 1, ξ2 − 1).
We shall establish the following inequality

2z(m) ≤
{

2p +
ξ1+τ−1

∑
n=ξ1

q(n)

}
max

n∈N(m−2τ,m−1)
|x(n)| . (23)

Inequality (23) is an immediate consequence of the next inequalities:

z(m) ≤
{

p +
m−1

∑
n=ξ1

q(n)

}
max

n∈N(m−2τ,m−1)
|x(n)| (24)

and

z(m) ≤
{

p +
ξ1+τ−1

∑
n=m

q(n)

}
max

n∈N(n−2τ,m−1)
|x(n)| . (25)

So, we will prove that (24) and (25) hold.
Proof of inequality (24). We see that (1) and (2) gives

z(m) = z(ξ1) +
m−1

∑
n=ξ1

q(n)x(n− σ) (26)

First, let us assume that z(ξ1) ≤ 0. Then from (26) we obtain

z(m) ≤
m−1

∑
n=ξ1

q(n)x(n− σ) ≤
m−1

∑
n=ξ1

q(n) |x(n− σ)| .
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As m− σ ≤ ξ1 ≤ m− 1, we have

m− 2τ ≤ m− 2σ ≤ ξ1 − σ ≤ m− σ− 1 < m− 1.

Hence n− σ ∈ N(m− 2τ, m− 1) whenever n ∈ N(ξ1, m− 1). So, we get

z(m) ≤
{

m−1

∑
n=ξ1

q(n)

}
max

n∈N(n−2τ,m−1)
|x(n)|

which, as p ≥ 0, implies (24), Next, we assume that x(ξ1) ≤ 0. Then from (26), we obtain

z(m) = x(ξ1)− p(ξ1)x(ξ1 − τ) +
m−1

∑
n=ξ1

q(n)x(n− σ)

≤ −p(ξ1)x(ξ1 − τ) +
m−1

∑
n=ξ1

q(n)x(n− σ)

≤ p(ξ1) |x(ξ1 − τ|+
m−1

∑
n=ξ1

q(n) |x(n− σ)| .

But, as m− σ ≤ ξ1 ≤ m− 1, we have

m− 2τ ≤ m− τ − σ ≤ ξ1 − τ ≤ ξ1 − σ ≤ m− 1− σ < m− 1

or
m− 2τ ≤ m− σ− τ ≤ ξ1 − τ ≤ ξ1 − σ ≤ m− 1− σ < m− 1.

Thus,
|x(ξ1 − τ)| ≤ max

n∈N(m−2τ,m−1)
|x(n)| .

Also as we have previously seen,

n− σ ∈ N(m− 2τ, m− 1) whenever n ∈ N(ξ1, m− 1).

Thus the last inequality becomes

z(m) ≤ p max
n∈N(m−2τ,m−1)

|x(n)|+
{

m−1

∑
n=ξ1

q(n)

}
max

n∈N(m−2τ,m−1)
|x(n)| .

Consequently (24) is fulfilled. The proof of (24) is finished.

Proof of inequality (25)
We distinguish between two cases: Either ξ2 > ξ1 + τ, or ξ2 ≤ ξ1 + τ.
Case 1: ξ2 > ξ1 + τ. Then there is an integer n̄ with ξ1 < n̄ < ξ2 − τ such that x(n̄) > 0 and z(n̄) > 0.

So by Lemma 2, either x(ξ) ≤ 0 or z(ξ) ≤ 0 for atleast one ξ ∈ N(n̄ + 1, n̄ + τ − 1). Since ξ1 < n̄ < ξ <

n̄ + τ − k < ξ2. This is a contradiction to the fact that both x(n) > 0 and z(n) > 0 on N(ξ1 + 1, ξ2 − 1)
Case 2: ξ2 ≤ ξ1 + τ. From (1) and (2), we have

z(m) = z(ξ2)−
ξ2−1

∑
n=m

q(n)x(n− σ). (27)

We examine the two subcases, where either ξ2 ≤ m + σ or ξ2 > m + σ.
Subcase 2.1 ξ2 ≤ m + σ. Suppose first that z(ξ2) ≤ 0 Then from (26),

z(m) = −
ξ2−1

∑
n=m

q(n)x(n− σ)

≤
ξ2−1

∑
n=m

q(n) |x(n− σ)| .
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We observe that

m− τ ≤ m− σ ≤ n− σ ≤ ξ2 − 1− σ ≤ m− 1.

So, n− σ ∈ N(m− τ, m− 1) whenever n ∈ N(m, ξ2 − 1). Hence from the above inequality, we obtain

z(m) ≤
{

ξ2−1

∑
n=m

q(n)

}
max

n∈N(m−τ,m−1)
|x(n)|

≤
{

ξ1+τ−1

∑
n=m

q(n)

}
max

n∈N(m−τ,m−1)
|x(n)| .

Consequently, as p ≥ 0 inequality (25) is always fulfilled. Next, let us suppose that x(ξ2) ≤ 0. Then from (1)
and (2), we have

z(m) = [x(ξ2)− p(ξ2)x(ξ2 − τ)]−
ξ2−1

∑
n=m

q(n)x(n− σ)

≤ −p(ξ2)x(ξ2 − τ)−
ξ2−1

∑
n=m

q(n)x(n− σ)

≤ p(ξ2) |x(ξ2 − τ)|+
ξ2−1

∑
n=m

q(n) |x(n− σ)|

≤ p |x(ξ2 − τ)|+
ξ2−1

∑
n=m

q(n) |x(n− σ)| .

But, m− τ < ξ2 − τ ≤ (m + σ)− (σ + 1) = m− 1. Also, as we have seen above, we have n− σ ∈ N(m−
τ, m− 1) whenever n ∈ N(m, ξ2 − 1). From these, we obtain

z(m) ≤ p max
n∈N(m−τ,m−1)

|x(n)|+
(

ξ2−1

∑
n=m

q(n)

)
max

n∈N(m−τ,m−1)
|x(n)|

≤ p max
n∈N(m−τ,m−1)

|x(n)|+
[

ξ1+τ−1

∑
n=m

q(n)

]
max

n∈N(m−τ,m−1)
|x(n)|

≤
{

p +
ξ1+τ−1

∑
n=m

q(n)

}
max

n∈N(m−2τ,m−1)
|x(n)| .

So (25) holds true

Subcase 2.2: ξ2 > m + σ. First, let z(ξ2) ≤ 0. Then (27) is written as

z(m) ≤ −
ξ2−1

∑
n=m

q(n)x(n− σ). (28)

If n ∈ N(m + σ, ξ2 − 1), then ξ1 < m ≤ n− σ ≤ ξ2 − 1− σ ≤ ξ2 − 1. Consequently, n− σ ∈ N(ξ1 + 1, ξ2 − 1).
So we have x(n− σ) > 0 for every n ∈ N(m + σ, ξ2 − 1). Hence, it follows from (26), that

z(m) ≤ −
m+σ−1

∑
n=m

q(n)x(n− σ)−
ξ2−1

∑
n=m+σ

q(n)x(n− σ)

< −
m+σ−1

∑
n=m

q(n)x(n− σ)

≤
m+σ−1

∑
n=m

q(n) |x(n− σ)| .
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But, for any n ∈ N(m, m + σ− 1), it holds m− τ ≤ m− σ− 1 ≤ n− σ− 1 ≤ m− 1. Thus, we derive

z(m) ≤
{

m+σ−1

∑
n=m

q(n)

}
max

n∈N(m−τ,m−1)
|x(n)|

≤
{

ξ2−1

∑
n=m

q(n)

}
max

n∈N(m−τ,m−1)
|x(n)|

≤
{

ξ1+τ−1

∑
n=m

q(n)

}
max

n∈N(m−τ,m−1)
|x(n)| ,

which, as p ≥ 0, guarantees that (25) holds true. Next, let x(ξ2) ≤ 0. Then (27) becomes,

z(m) ≤ −p(ξ2)x(ξ2 − τ)−
ξ2−1

∑
n=m

q(n)x(n− σ). (29)

As above, n − σ ∈ N(ξ1 + 1, ξ2 − 1) for every N ∈ N(m + σ, ξ2 − 1). Consequently x(n − σ) > 0 for each
n ∈ N(m− σ, ξ2 − 1). We notice that ξ2 − τ ≤ ξ1 < m < ξ2 − σ. If n ∈ N(m, ξ2 − σ), then from (29), we get

z(m) ≤ −p(ξ2)x(ξ2 − τ)−
m+σ−1

∑
n=m

q(n)x(n− σ)−
ξ2−1

∑
n=m+σ

q(n)x(n− σ)

≤ −p(ξ2)x(ξ2 − τ)−
m+σ−1

∑
n=m

q(n)x(n− σ)

z(m) ≤ p |x(ξ2 − τ)|+
m+σ−1

∑
n=m

q(n) |x(n− σ)|

But m − τ < ξ2 − τ ≤ ξ1 < m. Moreover, as before, we have [n− σ ∈ N(m− τ, m− 1)], for every n ∈
N(m, m + σ− 1). Thus, we obtain

z(m) ≤ p max
n∈N(m−τ,m−1)

|x(n)|+
{

ξ2−1

∑
n=m

q(n)

}
max

n∈N(m−τ,m−1)
|x(n)|

≤
{

p +
ξ1+τ−1

∑
n=m

q(n)

}
max

n∈N(m−τ,m−1)
|x(n)| .

So inequality (25) is always satisfied.
Now, we will make use of inequality (23), which has been already established, to arrive at a contradiction.

Since m is choose so that m ≥ n0 + τ, we have m− 2τ ≥ n0 − τ and consequently from (22) in particular that

|x(n)| ≤ 1
1− p

z(m) f or all n ∈ N(m− 2τ, m).

This can equivalently be written as

max
n∈N(m−2τ,m)

|x(n)| ≤ 1
1− p

z(m)

and so inequality (23) yields

2z(m) ≤
{

2p +
ξ1+τ−1

∑
n=ξ1

q(n)

}
1

1− p
|z(m)| .

Thus, in view of (21), we have

2 ≤
{

2p +
ξ1+τ−1

∑
n=ξ1

q(n)

}
1

1− p

i.e.,
ξ1+τ−1

∑
n=ξ1

q(n) ≥ 2(1− 2p)
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As ξ1 ≥ m− σ ≥ n1 the last inequality contradicts (16). This contradiction finishes the proof of the fact that
the solution {x(n)} is bounded.

The proof of the theorem will be accomplished by proving that the solution {x(n)} tends to zero as n→ ∞.
To this end, we will make use of the fact that the solution {x(n)} is always bounded.

Suppose, for the sake of contradiction, that {x(n)} does not tend to zero as n→ ∞, and define

µ = lim sup
n→∞

|x(n)| .

It is obvious that 0 < µ < ∞. Moreover, we put

λ = lim sup
n→∞

|z(n)| .

Now, for n ≥ n0

|z(n)| = |x(n)− p(n)x(n− τ)|
≤ |x(n)|+ p |x(n− τ)|
≤ |x(n)|+ m |x(n− τ)| .

So, as {x(n)} is bounded, it follows that {z(n)} is also bounded. Consequently λ must be finite. Furthermore,
it holds.

λ ≥ µ(1− p), (30)

which guarantees, in particular that λ > 0. In fact, let ∈ be an arbitrary positive real number. From the
definition of µ it follows that, for some point n∈ ≥ n0 − τ, we have

|x(n)| ≤ µ+ ∈ f or every n ≥ n∈. (31)

Hence by using (31) we obtain for each n ≥ n∈ + τ

|z(n)| = |x(n)− p(n)x(n− τ)|
≥ |x(n)| − p |x(n− τ)|
≥ |x(n)| −m(µ+ ∈).

Consequently,
lim sup

n→∞
|z(n)| ≥ lim sup

n→∞
|x(n)| − p(µ+ ∈)

i.e.,
λ ≥ µ−m(µ+ ∈).

This inequality holds true for all real numbers ∈> 0 and so (30) is always satisfied.
Since the solution {x(n)} is not eventually of one sign, i.e., it changes sign for arbitrarly large values of

n. Thus the sequence {∆z(n)} changes sign for arbitrarly large values of n, which ensures that {z(n)} is not
monotone. By this fact and fact that λ > 0. we conclude that there exists a sequence of integers {mk}∞

k=1 with
n0 ≤ m1 < m2 < ... and limk→∞ mk = ∞ such that z(mk) 6= 0 (k = 1, 2, ...) and

z(mk)∆z(mk) ≤ 0 (32)

and
lim

n→∞
|z(mk)| = λ. (33)

We remark that the sequence {mk}∞
k=1 can be chosen so that either z(mk) > 0 for all k = 1, 2, ... or z(mk) < 0

for all n = 1, 2, 3, .... We see that

−z(n) = −x(n) + p(n)x(n− τ) f or n ≥ n0

and that
lim sup

n→∞
|−z(n)| = λ.
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Also, it is obvious that {−x(n)} is a bounded oscillatory solution of (1), which does not tend to zero as n→ ∞.
After there observations, we may (and do) restrict ourselves only to the case where

z(mk) > 0 (k = 1, 2, 3, ...) (34)

In view of (34), equality (33) becomes
lim

n→∞
z(mk) = λ. (35)

It is clear that we have either x(mk) = 0 for infinitely many k ∈ {1, 2, 3, ...} or x(mk) 6= 0. So, we examine
separately the following two cases:

Case I: x(mk) ≤ 0 for infinitely many k ∈ {1, 2, 3, ...}. Let
{

mki

}∞
i=1 be a sub sequence of {mk}∞

k=1 such that

x(mki
) ≤ 0 (i = 1, 2, 3, ...). (36)

Clearly, limn→∞ mki
= ∞. It follows from (32) (34) and (35) that

∆z(mki
) ≤ 0 (i = 1, 2, 3, ...), (37)

z(mki
) > 0 (i = 1, 2, 3, ...) (38)

and
lim
i→∞

z(mki
) = λ, respectively. (39)

By (37), (1) and (2), we have
q(mki

)x(mki
− σ) ≤ 0 (i = 1, 2, 3, ...).

Consequently, we get
x(mki

− σ) ≤ 0 (i = 1, 2, 3, ...). (40)

Using (2), (36) and (38) we obtain for i = 1, 2, 3, ...

0 < z(mki
) = x(mki

)− p(mki
)x(mki

− τ)

≤ −p(mki
)x(mki

− τ)

≤ p
∣∣x(mki

− τ)
∣∣

≤ p max
n∈N(mki

−τ,mki
−1)
|x(n)| .

We consider an integer j ∈ {1, 2, 3, ...} such that mki
≥ τ. Then we obviously have mki

≥ τ for all i ≥ j, so, it
holds

z(mki
) ≤ m max

n∈N(mki
−2τ,mki

−1)
|x(n)| , f or i ≥ j. (41)

Next using (1), (2) and (40) we obtain, for i ≥ j,

z(mki
) = z(mki

− τ) +

mki
−1

∑
n=mk−τ

q(n)x(n− σ)

=
[
x(mki

− τ)− p(mki
− τ)x(mki

− 2τ)
]
+

mki
−1

∑
n=mki

−τ

q(n)x(n− σ)

≤ −p(mki
− τ)x(mki

− 2τ) +

mki
−1

∑
n=mki

−τ

q(n)x(n− σ)

≤ p(mki
− τ)

∣∣x(mki
− 2τ)

∣∣+ mki
−1

∑
n=mki

−τ

q(n) |x(n− σ)|

≤ p max
n∈N(mki

−2τ,mki
−1)
|x(n)|+

 mki
−1

∑
n=mki

−τ

q(n)

 max
n∈N(mki

−2τ,mki
−1)
|x(n)| .
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Therefore,

z(mki
) ≤

p +

mki
−1

∑
n=mki

−τ

q(n)

 max
n∈N(mki

−2τ,mki
−1)
|x(n)| (42)

A combinations of (41) and (42) leads to

2z(mki
) ≤

2p +

mki
−1

∑
n=mki

−τ

q(n)

 max
n∈N(mki

−2τ,mki
−1)
|x(n)| f or i ≥ j. (43)

Let ∈< 0 be an arbitrary real numbers. In view of definition of µ, there exists an integer n∈ ≥ n0 − τ so that
(31) holds. Choose an integer l ≥ j such that mkl

≥ n∈ + 2τ. It is obvious that mki
≥ n∈ + 2τ for all integers

i ≥ l. It follows from (31) that

max
n∈N(mki

−2τ,mki
−1)
|x(n)| ≤ µ+ ∈ f or i ≥ l.

Hence, from (43) we get

2z(mki
) ≤ (µ+ ∈)

2p +

mki
−1

∑
n=mki

−τ

q(n)

 f or every i ≥ l,

which gives

2 lim
i→∞

z(mki
) ≤ (µ+ ∈)

2p + lim sup
i→∞

mki
−1

∑
n=mki

−τ

q(n)


≤ (µ+ ∈)

{
2p + lim sup

n→∞

n−1

∑
s=n−τ

q(s)

}

= (µ+ ∈)
{

2p + lim sup
n→∞

n+τ−1

∑
s=n

q(s)

}
.

So because of (39), we have

2λ ≤ (µ+ ∈)
{

2p + lim sup
n→∞

n+τ−1

∑
s=n

q(s)

}
. (44)

By combining (28) and (42), we obtain

2µ(1− p) ≤ (µ+ ∈)
{

2p + lim sup
n→∞

n+τ−1

∑
s=n

q(s)

}
.

As this inequality is satisfied for every real number ∈> 0, we always have

2µ(1− p) ≤ µ

{
2p + lim sup

n→∞

n+τ−1

∑
s=n

q(s)

}
.

Thus, since µ > 0, it holds

2(1− p) ≤ 2p + lim sup
n→∞

n+τ1

∑
s=n

q(s).

i.e.,

lim sup
n→∞

n+τ−1

∑
s=n

q(s) ≥ 2(1− 2p). (45)

Inequality (45) contradicts condition (15).
Case II: x(mk) > 0 for all large n. This means that there exists an integer r ∈ {1, 2, 3, ...} such that

x(mk) > 0 f or all k ≥ r. (46)
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It is clear that the integer r can be chosen to be arbitrary large; so it will be considered that mr ≥ n0 + τ. Then
we have mk ≥ n0 + τ for all k ≥ r.

Let as consider an arbitrary large k with k ≥ r. We observe that in view of (34) and (46) it holds x(mk) > 0
and z(mk) > 0.

Furthermore by (32) and (34), it holds ∆z(mk) ≤ 0. From this and (1), we have x(mk − σ) ≤ 0, where
mk − σ ≥ n0. Let ξ1

k be the integer with mk − σ ≤ ξ1
k ≤ mk such that either x(ξ1

k) ≤ 0 or z(ξ1
k) ≤ 0 and

x(n) > 0 and z(n) > 0 on N(ξ1
k + 1, mk).

On the otherhand, by the oscillatory character of {x(n)} we may find an integer ξ2
k with mk < ξ2

k such that
either x(ξ2

k) ≤ 0 of z(ξ2
k) ≤ 0 and x(n) > 0 and z(n) > 0 on N(mk, ξ2

k − 1). It follows that both x(n) > 0
and z(n) > 0 on N(ξ1

k , ξ2
k). Thus we have defined two sequence

{
ξ1

k
}

and
{

ξ2
k
}

of integers such that {x(n)}
and {z(n)} are positive on N(ξ1

k + 1, ξ2
k − 1). Since ξ1

k ≥ mk − σ for k ≥ r, we always have limk→∞ ξ1
k = ∞.

Following the same procedure as when establishing (23), we can prove that

2z(mk) ≤

2p +
ξ1

k+τ−1

∑
n=ξ1

k

q(n)

 max
n∈N(mk−2τ,mk−1)

|x(n)| f or k ≤ r. (47)

Consider an arbitrary real number ∈> 0 and let n∈ ≥ n0− τ be an integer such that (31) is satisfied. Moreover,
let l ≥ r, be an integer such that ml ≥ n∈ + 2τ. Then we obviously have mk ≥ n∈ + 2τ for every k ≥ l. So (31)
guarantees that

max
n∈N(mk−2τ,mk−1)

|x(n)| ≤ µ+ ∈ f or k ≥ l

Thus, from (47)we obtain

2z(mk) ≤ (µ+ ∈)

2p +
ξ1

k+τ−1

∑
n=ξ1

k

q(n)

 f or all k ≥ l.

Therefore,

2 lim
k→∞

z(mk) ≤ (µ+ ∈)

2p + lim sup
k→∞

ξ1
k+τ−1

∑
n=ξk

q(n)


≤ (µ+ ∈)

{
2p + lim sup

k→∞

n+τ−1

∑
s=n

q(n)

}
which because of (33), leads to (44). By the method used previously we can see that (45) is always satisfied.
But (45) contradicts condition (15).

In both Cases I and II we have arrived at a contradiction. This contradiction shows that the solution {x(n)}
tend to zero as n→ ∞.

The proof of the theorem is complete.
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Abstract

In this paper we are concerned with the existence of strongly continuous solution x ∈ C[I, E] of the
nonlinear functional integral inclusion

x(t) ∈ F(t,
∫ t

0
g(s, x(m(s)))ds), t ∈ [0, T]

under the assumption that the set-valued function F has Lipschitz selection in the Banach space E.

Keywords: Set-valued function, continuous solutions, Functional integral inclusions, selections of the set-valued
function, Lipschitz selections.
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1 Introduction

Let E be a Banach space, I = [0, T] and let L1(I) be the class of all Lebesgue integrable functions defined
on the interval I.
Denote by C[I, E] the Banach space of strongly continuous functions x : I → E with sup-norm.

‖x‖C = sup ‖x‖E.

Consider the functional integral inclusion

x(t) ∈ F(t,
∫ t

0
g(s, x(m(s)))ds), t ∈ [0, T] (1.1)

where F : I × E → P(E) is a nonlinear set-valued mapping, and P(E) denote the family of nonempty subsets
of the Banach space E.
Indeed a set-valued functional equations have been extensively investigated by a number of authors and there
are many interesting results concerning this problem (see [2], [9]-[13]), and a functional integral inclusion was
studied by B.C. Dhage and D. O’Regan (see [3], [4] and [14]).
Here we study the existence of strongly continuous solution x ∈ C[I, E] of the functional integral inclusion
(1.1) in the Banach space E under a set of several suitable assumptions on the set-valued function F.
Our study is based on the selections of the set-valued function F, on which we have a functional integral
equation, such a type has been studied in several papers (see [1], [7]-[8] and [15]).
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2 Preliminaries

We present some definitions and results that will be used in this work.
Let E be a Banach space and let x : I → E.

Definition 2.1. [6] A set-valued map F from I× E to the family of all nonempty closed subsets of E is called Lipschitzian
if there exists L > 0 such that for all t1, t2 ∈ I and all x1, x2 ∈ E, we have

H(F(t1, x1), F(t2, x2)) ≤ L(|t1 − t2|+ ‖x1 − x2‖),

where H(A, B) is the Hausdorff metric between the two subsets A, B ∈ I × E.

Denote SF = Lip(I, E) be the set of all Lipschitz selections of the set-valued function F with values in the
Banach space E.

Let E = Rn. The following theorem assures the existence of Lipschitzian selection.

Theorem 2.1. [6] Let M be a metric space and F be Lipschitzian set-valued function from M into the nonempty compact
convex subsets of Rn. Assume, moreover, that for some λ > 0, F(x) ⊂ λB for all x ∈ M where B is the unit ball of Rn.
Then there exists a constant C and a single-valued function f : M → Rn, f (x) ∈ F(x) for x ∈ M; this function is
Lipschitzian with constant l.

Denote S∗F = Lip(M, Rn) to be the set of all Lipschitz selections of the set-valued function F with values in
the space Rn.

Theorem 2.2. [5] ”Schauder fixed point theorem”.
Let Q be a convex subset of a Banach space X, T : Q→ Q be a compact, continuous map. Then T has at least one fixed
point in Q.

3 Existence of solution in E

In this section, we present our main result by proving the existence of strongly continuous solution x ∈
C[I, E] of the functional integral inclusion (1.1) in the Banach space E, under the assumption that the set-
valued function F has Lipschitz selection in E.
Consider now the functional integral inclusion (1.1) under the following assumptions
(H1) The set F(t, x) is compact and convex for all (t, x) ∈ I × E.
(H2) The set-valued map F is Lipschitzian with a Lipschitz constant L > 0.
(H3) The set of all Lipschitz selections SF is nonempty.
(H4) The function g : [0, T] × E → E satisfies Caratheodory condition i.e. g(t, .) is continuous in x ∈ E for
each t ∈ I and g(., x) is measurable in t ∈ I for each x ∈ E.
(H5) There exists an integrable function a ∈ L1[I, E] and a positive constant b > 0 such that

‖g(t, x)‖ ≤ ‖a(t)‖+ b‖x‖, ∀ t ∈ I, x ∈ E.

(H6) m : [0, T]→ [0, T] is continuous.

Remark 3.1. From assumptions (H1) and (H3), there exists f ∈ SF such that

‖ f (t2, x)− f (t1, y)‖C ≤ L(|t2 − t1|+ ‖x− y‖C),

and

x(t) = f (t,
∫ t

0
g(s, x(m(s)))ds, t ∈ [0, T] (3.2)

Then the solution of the functional integral equation (3.2), if it exists, is a solution of the functional integral inclusion
(1.1).
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Definition 3.2. By a solution of the functional integral inclusion (1.1) we mean the function x(.) ∈ C[I, E] satisfying
(1.1).

For the existence of strongly continuous solution x ∈ C[I, E] of the functional integral inclusion (1.1) we
have the following theorem.

Theorem 3.3. Let the assumptions (H1)-(H6) be satisfied. Then there exists a strongly continuous solution x ∈ C[I, E]
of the functional integral inclusion (1.1).

Proof. Let the set-valued function F satisfy the assumptions (H1)-(H3), then there exists a selection f ∈ SF, f :
I × E→ E, such that

‖ f (t2, x)− f (t1, y)‖C ≤ L(|t2 − t1|+ ‖x− y‖C),

for every t1, t2 ∈ I and x, y ∈ E.
And f satisfy the functional integral equation (3.2).
Define the operator A by

Ax(t) = f (t,
∫ t

0
g(s, x(m(s)))ds, t ∈ [0, T]

Let the set Qr be defined as

Qr = {x ∈ C[I, E], ‖x‖C ≤ r}; r =
LK + M
1− LbT

.

Then, it is clear that it is nonempty, bounded, closed and convex set.
Let x ∈ Qr be an arbitrary element, then

‖Ax(t)‖ = ‖ f (t,
∫ t

0
g(s, x(m(s)))ds‖

≤ L‖
∫ t

0
g(s, x(m(s)))ds‖+ ‖ f (t, 0)‖

≤ L‖
∫ t

0
g(s, x(m(s)))ds‖+ sup | f (t, 0)|

≤ L
∫ t

0
‖g(s, x(m(s)))‖ds + sup | f (t, 0)|

≤ L
∫ t

0
{‖a(s)‖+ b‖x(m(s))‖}ds + sup | f (t, 0)|

≤ L
∫ t

0
‖a(s)‖ds + Lb

∫ t

0
‖x(m(s))‖ds + sup | f (t, 0)|

≤ L
∫ t

0
‖a(s)‖ds + Lb

∫ t

0
sup

m(s)∈[0,T]
‖x(m(s))‖ds + sup | f (t, 0)|

≤ L
∫ t

0
‖a(s)‖ds + Lb

∫ t

0
sup

s∈[0,T]
‖x(m(s))‖ds + sup | f (t, 0)|

≤ LK + Lb‖x‖T + M,

where K =
∫ t

0 ‖a(s)‖ds, and M = sup | f (t, 0)|.
Then
‖Ax(t)‖ ≤ LK + LbrT + M = r, where r = LK+M

1−LbT
Hence

‖Ax‖C ≤ r.

Which proves that AQr ⊂ Qr, i.e. A : Qr → Qr.
Finally, we will show that A is compact.
Let x ∈ Qr, since Ax ∈ Qr, ‖Ax‖ ≤ r, then Ax is bounded ∀ x ∈ Qr.
Therefore, A is bounded and the class {Ax} is uniformly bounded.
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Now, let t1, t2 ∈ [0, T], then ∀ ε > 0, ∃ δ(ε) > 0, such that |t2 − t1| < δ, whenever

‖Ax(t2)− Ax(t1)‖ = ‖ f (t2,
∫ t2

0
g(s, x(m(s)))ds− f (t1,

∫ t1

0
g(s, x(m(s)))ds‖

≤ L{|t2 − t1|+ ‖
∫ t2

0
g(s, x(m(s)))ds−

∫ t1

0
g(s, x(m(s)))ds‖}

≤ L{|t2 − t1|+
∫ t2

t1

‖g(s, x(m(s)))‖ds}

≤ L{|t2 − t1|+
∫ t2

t1

{‖a(s)‖+ b‖x(m(s))‖}ds}

≤ L{|t2 − t1|+
∫ t2

t1

‖a(s)‖ds + b
∫ t2

t1

‖x(m(s))‖ds}

≤ L{|t2 − t1|+
∫ t2

t1

‖a(s)‖ds + b
∫ t2

t1

sup
m(s)∈[0,T]

‖x(m(s))‖ds}

≤ L{|t2 − t1|+
∫ t2

t1

‖a(s)‖ds + b
∫ t2

0
sup

s∈[0,T]
‖x(m(s))‖ds}

≤ L{|t2 − t1|+
∫ t2

t1

‖a(s)‖ds + b‖x‖|t2 − t1|}

≤ L{δ +
∫ t2

t1

‖a(s)‖ds + brδ} = ε.

Then
‖Ax(t2)− Ax(t1)‖ ≤ ε.

Hence the class {Ax} is equicontinuous, x ∈ Qr, and by Arzela theorem, A is compact.
Then by Schauder fixed point theorem, there exists at least one fixed point, and then there exists at least one
strongly continuous solution x ∈ C[I, E] for the functional integral equation (3.2).
Consequently, there exists a strongly continuous solution x ∈ C[I, E] for the functional integral inclusion
(1.1).

4 Existence of solution in Rn

In this section, we present the existence of strongly continuous solution x ∈ C[I, Rn] of the functional
integral inclusion (1.1) in the space Rn, under the assumption that the set-valued function F has Lipschitz
selection in Rn.
Consider now the functional integral inclusion (1.1) under the following assumptions
(I) The set F(t, x) is compact and convex for all (t, x) ∈ I × Rn.
(II) The set-valued map F is Lipschitzian with a Lipschitz constant L > 0

‖F(t2, x)− F(t1, y)‖C ≤ L(|t2 − t1|+ ‖x− y‖C),

for every t1, t2 ∈ I and x, y ∈ Rn.
(III) The function g : [0, T]× Rn → Rn satisfies Caratheodory condition i.e. g(t, .) is continuous in x ∈ Rn for
each t ∈ I and g(., x) is measurable in t ∈ I for each x ∈ Rn.
(IV) There exists an integrable function a ∈ L1[I, Rn] and a positive constant b > 0 such that

‖g(t, x)‖ ≤ ‖a(t)‖+ b‖x‖, ∀ t ∈ I, x ∈ Rn.

(V) m : [0, T]→ [0, T] is continuous.

Definition 4.3. By a solution of the functional integral inclusion (1.1) we mean the function x(.) ∈ C[I, Rn] satisfying
(1.1).

Now for the existence of strongly continuous solution x ∈ C[I, Rn] of the functional integral inclusion (1.1)
we have the following theorem.
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Theorem 4.4. Let the assumptions (I)-(V) be satisfied. Then there exists a strongly continuous solution x ∈ C[I, Rn]

of the functional integral inclusion (1.1).

Proof. Let the set-valued function F satisfy the assumptions (I)-(II), then from Theorem (2.1) with
M = I × Rn, we deduce that there exists a selection f ∈ F, which satisfies:
(i) f : I × Rn → Rn is continuous
(ii) f satisfy Lipschitz condition with a Lipschitz constant L > 0

‖ f (t2, x)− f (t1, y)‖C ≤ L(|t2 − t1|+ ‖x− y‖C),

for every t1, t2 ∈ I and x, y ∈ Rn.
And f satisfy the functional integral equation (3.2).
Define the operator A by

Ax(t) = f (t,
∫ t

0
g(s, x(m(s)))ds), t ∈ [0, T]

Let the set Qr be defined as

Qr = {x ∈ C[I, Rn], ‖x‖C ≤ r}; r =
LK + M
1− LbT

.

Then, it is clear that it is nonempty, bounded, closed and convex set.
Let x ∈ Qr be an arbitrary element, then

‖Ax(t)‖ = ‖ f (t,
∫ t

0
g(s, x(m(s)))ds‖

≤ L‖
∫ t

0
g(s, x(m(s)))ds‖+ ‖ f (t, 0)‖

≤ L‖
∫ t

0
g(s, x(m(s)))ds‖+ sup | f (t, 0)|

≤ L
∫ t

0
‖g(s, x(m(s)))‖ds + sup | f (t, 0)|

≤ L
∫ t

0
{‖a(s)‖+ b‖x(m(s))‖}ds + sup | f (t, 0)|

≤ L
∫ t

0
‖a(s)‖ds + Lb

∫ t

0
‖x(m(s))‖ds + sup | f (t, 0)|

≤ L
∫ t

0
‖a(s)‖ds + Lb

∫ t

0
sup

m(s)∈[0,T]
‖x(m(s))‖ds + sup | f (t, 0)|

≤ L
∫ t

0
‖a(s)‖ds + Lb

∫ t

0
sup

s∈[0,T]
‖x(m(s))‖ds + sup | f (t, 0)|

≤ LK + Lb‖x‖T + M,

where K =
∫ t

0 ‖a(s)‖ds, and M = sup | f (t, 0)|.
Then
‖Ax(t)‖ ≤ LK + LbrT + M = r, where r = LK+M

1−LbT
Hence

‖Ax‖C ≤ r.

Which proves that AQr ⊂ Qr, i.e. A : Qr → Qr.
Finally, we will show that A is compact.
Let x ∈ Qr, since Ax ∈ Qr, ‖Ax‖ ≤ r, then Ax is bounded ∀ x ∈ Qr.
Therefore, A is bounded and the class {Ax} is uniformly bounded.
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Now, let t1, t2 ∈ [0, T], then ∀ ε > 0, ∃ δ(ε) > 0, such that |t2 − t1| < δ, whenever

‖Ax(t2)− Ax(t1)‖ = ‖ f (t2,
∫ t2

0
g(s, x(m(s)))ds− f (t1,

∫ t1

0
g(s, x(m(s)))ds‖

≤ L{|t2 − t1|+ ‖
∫ t2

0
g(s, x(m(s)))ds−

∫ t1

0
g(s, x(m(s)))ds‖}

≤ L{|t2 − t1|+
∫ t2

t1

‖g(s, x(m(s)))‖ds}

≤ L{|t2 − t1|+
∫ t2

t1

{‖a(s)‖+ b‖x(m(s))‖}ds}

≤ L{|t2 − t1|+
∫ t2

t1

‖a(s)‖ds + b
∫ t2

t1

‖x(m(s))‖ds}

≤ L{|t2 − t1|+
∫ t2

t1

‖a(s)‖ds + b
∫ t2

t1

sup
m(s)∈[0,T]

‖x(m(s))‖ds}

≤ L{|t2 − t1|+
∫ t2

t1

‖a(s)‖ds + b
∫ t2

0
sup

s∈[0,T]
‖x(m(s))‖ds}

≤ L{|t2 − t1|+
∫ t2

t1

‖a(s)‖ds + b‖x‖|t2 − t1|}

≤ L{δ +
∫ t2

t1

‖a(s)‖ds + brδ} = ε.

Then
‖Ax(t2)− Ax(t1)‖ ≤ ε.

Hence the class {Ax} is equicontinuous, x ∈ Qr, and by Arzela theorem, A is compact.
Then by Schauder fixed point theorem, there exists at least one fixed point, and then there exists at least one
strongly continuous solution x ∈ C[I, Rn] for the functional integral equation (3.2).
Consequently, there exists a strongly continuous solution x ∈ C[I, Rn] for the functional integral inclusion
(1.1).

Corollary 4.1. Let n = 1. If F satisfy the assumptions (I)-(II), then from Theorem (2.1) with M = I × R, we deduce
that there exists a selection f ∈ F, which satisfies (i)-(ii), and f satisfy the functional integral equation (3.2).
Hence there exists a strongly continuous solution x ∈ C[I, R] for the functional integral inclusion (1.1).
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Abstract

In this paper, we introduce and study the new separation axioms called g∗ωα-Ti (i= 0,1,2) and weaker
forms of regular and normal spaces called g∗ωα-normal and g∗ωα-regular spaces using g∗ωα-closed sets in
topological spaces.

Keywords: g∗ωα-closed sets, g∗ωα-T0 spaces, g∗ωα-T1 spaces, g∗ωα-T2 spaces, g∗ωα-regular spaces, g∗ωα-
normal spaces.
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1 Introduction

General Topology plays an important role in many fields of applied sciences as well as branches of
mathematics. More importantly, generalized closed sets suggest some new separation axioms which have
been found to be very useful in the study of certain objects of digital topology.

Maheshwari and Prasad [7] introduced the new class of spaces called s-normal spaces using semi open
sets [4]. It was further studied by Noiri and Popa [6], Dorsett [2] and Arya [1]. Munshi [8] and R. Devi [3]
introduced g-regular and g-normal spaces and their properties in topological spaces. Recently, Patil P. G.
et. al. [9],[11] introduced and studied the concepts of g∗ωα-closed sets and g∗ωα-continuous functions in
topological spaces.

In this paper, we introduce new weaker forms of separation axioms called g∗ωα-T0, g∗ωα-T1, g∗ωα-T2
spaces and new class of spaces namely g∗ωα-regular and g∗ωα-normal spaces and their characterizations are
obtained.

2 Preliminary

Throughout this paper space (X, τ) and (Y, σ) (or simply X and Y) always denote topological spaces
on which no separation axioms are assumed unless explicitly stated.

For a subset A of a space X, the closure (resp. α-closure [5]) and interior (resp. α-interior) of A is denoted
by cl(A) (resp. α-cl(A)) and int(A) (resp. α-int(A)).

Definition 2.1. [9] A subset A of a topological space X is said to be a generalized star ωα-closed (briefly g∗ωα-closed)
if cl(A) ⊆ U whenever A ⊆ U and U is ωα-open in X.
The family of all g∗ωα-closed (resp.g∗ωα-open) subsets of a space X is denoted by G∗ωαC(X) (resp.G∗ωαO(X)).

Definition 2.2. [10] The intersection of all g∗ωα-closed sets containing a subset A of X is called g∗ωα-closure of A and
is denoted by g∗ωα-cl(A).
A set A is g∗ωα-closed if and only if g∗ωα-cl(A) = A.
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Definition 2.3. [10] The union of all g∗ωα-open sets contained in a subset A of X is called g∗ωα-interior of A and it is
denoted by g∗ωα-int(A).
A set A is called g∗ωα-open if and only if g∗ωα-int(A) = A.

Definition 2.4. A function f : X→ Y is called a
(i) g∗ωα-continuous[11] if f−1(V) is g∗ωα-closed in X for every closed set V in Y.
(ii) g∗ωα-irresolute[11] if f−1(V) is g∗ωα-closed in X for every g∗ωα-closed set V in Y.
(iii) g∗ωα-open[11] if f(V) is g∗ωα-open in Y for every open set V in X.
(iv) pre g∗ωα-open[11] if f(V) is g∗ωα-open set in Y for every g∗ωα-open set V in X.

Definition 2.5. [10] A topological space X is said to be a Tg∗ωα-space if every g∗ωα-closed set is closed.

3 g∗ωα-Separation Axioms

In this section, we introduce weaker forms of separation axioms such as g∗ωα-T0, g∗ωα-T1 and g∗ωα-T2
spaces and obtain their properties.

Definition 3.1. A topological space X is said to be a g∗ωα-T0 if for each pair of distinct points in X, there exists a
g∗ωα-open set containing one point but not other.

Example 3.2. Let X = {a, b, c} and τ = {X, φ, {a}}. Then the space (X, τ) is g∗ωα-T0 space.

Theorem 3.3. A space X is g∗ωα-T0 if and only if g∗ωα-closures of distinct points are distinct.
Proof: Let x, y ∈ X with x 6= y and X be g∗ωα-T0 space. Since, X is g∗ωα-T0, there exists g∗ωα-open set G such that
x ∈ G but y /∈ G. Also x /∈ X-G and y ∈ X-G where X-G is g∗ωα-closed in X. Since g∗ωα-cl({y}) is the intersection
of all g∗ωα-closed sets which contains y and hence y ∈ g∗ωα-cl({y}). But x /∈ g∗ωα-cl({y}) as x /∈ X-G. Therefore
g∗ωα-cl({x}) 6= g∗ωα-cl({ y }).
Conversely, suppose for any pair of distinct points x, y ∈ X, g∗ωα-cl({x}) 6= g∗ωα-cl({y}). Then, there exists at least
one point z ∈ X such that z ∈ g∗ωα-cl({x}) but z /∈ g∗ωα-cl({y}). We claim that x /∈ g∗ωα-cl({y}). If x ∈ g∗ωα-
cl({y}), then g∗ωα-cl({x}) ⊆ g∗ωα-cl({y}), so z ∈ g∗ωα-cl({y}) which is contradiction. Hence x /∈ g∗ωα-cl({y})
implies x ∈ X - g∗ωα-cl({y}), which is g∗ωα-open set in X containing x but not y. Hence X is g∗ωα-T0-space.

Theorem 3.4. Every subspace of a g∗ωα-T0 space is g∗ωα-T0 space.
Proof: Let y1, y2 be two distinct points of Y then y1 and y2 are also distinct points of X. Since X is g∗ωα-T0, there exists
g∗ωα-open set G such that y1 ∈ G, y2 /∈ G. Then G ∩ Y is g∗ωα-open set in Y containing y1 but not y2. Hence Y is
g∗ωα-T0-space.

Definition 3.5. [11] A mapping f : X→ Y is said to be a pre g∗ωα-open if the image of every g∗ωα-open set of X is
g∗ωα-open in Y.

Lemma 3.6. The property of a space being g∗ωα-T0 space is preserved under bijective and pre g∗ωα-open.
Proof: Let X be a g∗ωα-T0-space and f : X→ Y be bijective, pre g∗ωα-open. Let y1, y2 ∈ Y with y1 6= y2. Since f is
bijective, there exist x1, x2 ∈ X such that f(x1) = y1 and f(x2) = y2. Also, since X is g∗ωα-T0, there exists g∗ωα-open
set G in X such that x1 ∈ G but x2 /∈ G. Then f(G) is g∗ωα-open set containing f(x1) but not f(x2) as X is g∗ωα-open.
Thus, there exists g∗ωα-open set f(G) in Y such that y1 ∈ f(G) and y2 /∈ f(G). Hence Y is g∗ωα-T0 space.

Theorem 3.7. If G∗ωαO(X) is open under arbitrary union for a topological space X, then each of the following properties
are equivalent:
(a) X is g∗ωα-T0
(b) each one point set is g∗ωα-closed in X
(c) each subset of X is the intersection of all g∗ωα-open set containing it
(d) the intersection of all g∗ωα-open set containing the point x ∈ X is the set {x}.
Proof: (a)⇒ (b): Let x ∈ X and X be g∗ωα-T0 space. Then for any y ∈ X such that y 6= x, then there exists g∗ωα-open
set Gy containing y but not x. Therefore y ∈ Gy ⊆ {x}c. Now varying y over {x}c, we get {x}c = ∪{ Gy : y ∈ {x}c},
{x}c is union of g∗ωα-open set. That is {x} is g∗ωα-closed in X.
(b)⇒ (c): Let us assume that each one point set is g∗ωα-closed in X. If A ⊆ X, then for each point y /∈ A, there exists
{y}c such that A ⊆ {y}c and each of these sets {y}c is g∗ωα-open. Therefore A = Y ∩{{y}c : y ∈ Ac}. Thus the
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intersection of all g∗ωα-open sets containing A is the set A itself.
(c)⇒ (d): Obvious.
(d)⇒ (a): Let us assume that the intersection of all g∗ωα-open set containing the point x ∈ X is {x}. Let x, y ∈ X with
x 6= y. By hypothesis, there exists g∗ωα-open set Gx such that x ∈ Gx and y /∈ Gx. That is, X is g∗ωα-T0 space.

Theorem 3.8. If X is g∗ωα-T0, Tg∗ωα-space and Y is g∗ωα-closed subspace of X, then Y is g∗ωα-T0-space.

Theorem 3.9. If f : X→ Y is bijective, pre g∗ωα-open and X is g∗ωα-T0 space, then Y is also g∗ωα-T0 space.
Proof: Let y1 and y2 be two distinct points of Y. Then there exist x1 and x2 of X such that f(x1) = y1 and f(x2) = y2.
As X is g∗ωα-T0, there exists g∗ωα-open set G such that x1 ∈ G and x2 /∈ G. Therefore, y1 = f(x1) ∈ f(G), y2 = f(x2)
/∈ f(G). Then f(G) is g∗ωα-open in Y. Thus, there exists g∗ωα-open set f(G) in Y such that y1 ∈ f(G) and y2 /∈ f(G).
Therefore Y is g∗ωα-T0 space.

Definition 3.10. A topological space X is said to be a g∗ωα-T1 if for each pair of distinct points x, y in X, there exist a
pair of g∗ωα-open sets, one containing x but not y and the other containing y but not x.

Remark 3.11. Every T1-space is g∗ωα-T1-space.

Example 3.12. X = {a, b, c} and τ = {X, φ, {a}, {b, c}}. Then (X, τ) is g∗ωα-T1 space but not T1-space.

Remark 3.13. Every g∗ωα− T1 space is g∗ωα− T0 space.

Example 3.14. Let X = {a, b} and τ = {X, φ, {a}}. Then the space X is g∗ωα-T0 but not g∗ωα-T1 space.

Theorem 3.15. A space X is g∗ωα-T1 if and only if every singleton subset {x} of X is g∗ωα-closed in X.
Proof: Let x, y be two distinct points of X such that {x} and {y} are g∗ωα-closed. Then {x}c and {y}c are g∗ωα-open
in X such that y ∈ {x}c but x /∈ {x}c and x ∈ {y}c but y /∈ {y}c. Hence X is g∗ωα-T1-space.
Conversely, let x be any arbitrary point of X. If y ∈ {x}c, then y 6= x. Now the space being g∗ωα-T1 and y is different
from x, there must exists g∗ωα-open set Gy such that y ∈ Gy but x /∈ Gy. Thus for each y ∈ {x}c, there exists a g∗ωα-
open set Gy such that y ∈ Gy ⊆ {x}c. Therefore ∪{y : y 6=x} ⊆ ∪{ Gy : y 6=x} ⊆ {x}c which implies that {x}c ⊆ ∪{
Gy: y 6=x} ⊆ {x}c. Therefore {x}c = ∪{ Gy : y 6=x}. Since, Gy is g∗ωα-open set in X and the union of g∗ωα-open set
is again g∗ωα-open in X, so {x}c is g∗ωα-open in X. Hence {x} is g∗ωα-closed in X.

Corollary 3.16. A space X is g∗ωα-T1 if and only if every finite subset of X is g∗ωα-closed.

Theorem 3.17. Let f : X→ Y be bijective and g∗ωα-open. If X is g∗ωα-T1 and Tg∗ωα-space then, Y is g∗ωα-T1-space.
Proof: Let y1 and y2 be any two distinct points of Y. Since f is bijective, then there exist distinct points x1 and x2 of X
such that y1 = f (x1) and y2 = f (x2). Then there exist g∗ωα-open sets G and H such that x1 ∈ G, x2 /∈ G and x1 /∈ H,
x2 ∈ H. Therefore y1 = f (x1) ∈ f (G) but y2 = f (x2) /∈ f (G) and y2 = f (x2) ∈ f (H) and y1 = f (x1) /∈ f (H).
As X is Tg∗ωα-space, G and H are open sets in X and as f is g∗ωα-open, f(G) and f(H) are g∗ωα-open subsets of Y. Thus,
there exist g∗ωα-open sets such that y1 ∈ f (G), y2 /∈ f (G) and y2 ∈ f (H), y1 /∈ f (H). Hence Y is g∗ωα-T1-space.

Theorem 3.18. Let f : X→ Y be g∗ωα-irresolute and injective. If Y is g∗ωα-T1 then X is g∗ωα-T1.
Proof: Let x, y ∈ Y such that x 6= y. Then there exist g∗ωα-open sets U and V in Y such that f(x) ∈ U, f(y) ∈ V and
f(x) /∈ V, f(y) /∈ U. Then x ∈ f−1(U), y ∈ f−1(V) and x /∈ f−1(V), y /∈ f−1(U), since f is g∗ωα-irresolute. Hence X is
g∗ωα-T1 space.

Theorem 3.19. If f : X→ Y is g∗ωα-continuous, injective and Y is T1 then, X is g∗ωα-T1 space.
Proof: For any two distinct points x1 and x2 in X there exist disjoint points y1 and y2 of Y such that f(x1) = y1 and
f(x2) = y2. Since Y is T1, there exist open sets U and V in Y such that y1 ∈ U, y2 /∈ U and y1 /∈ V, y2 ∈ V. That is,
x1 ∈ f−1(U), x1 /∈ f−1(V) and x2 ∈ f−1(V), x2 /∈ f−1(U). Again, since f is g∗ωα-continuous, f−1(U) and f−1(V) are
g∗ωα-open sets in X. Thus, for two distinct points x1 and x2 of X, there exist g∗ωα-open sets f−1(U) and f−1(V) such
that x1 ∈ f−1(U), x1 /∈ f−1(V) and x2 ∈ f−1(V), x2 /∈ f−1(U). Therefore X is g∗ωα-T1 space.

Definition 3.20. A space X is said to be g∗ωα-T2 if for each pair of distinct points x, y of X, there exist disjoint
g∗ωα-open sets U and V such that x ∈ U and y ∈ V.

Example 3.21. Let X = {a, b, c} and τ = {X, φ, {a}, {b}, {a, b}}. Then the space (X, τ) is g∗ωα-T2 space, but not
g∗ωα-T1 and g∗ωα-T0 space.
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Theorem 3.22. Let X be a topological space. Then X is g∗ωα-T2 if and only if the intersection of all g∗ωα-closed
neighborhood of each point of X is singleton set.
Proof: Let x and y be any two distinct points of X. Since, X is g∗ωα-T2 there exist g∗ωα-open sets G and H such that
x ∈ G, y ∈ H and G ∩ H = φ. Since, G ∩ H = φ, x ∈ G ⊆ X-H, so X-H is g∗ωα-closed neighborhood of x which does
not contains y. Thus y does not belong to the intersection of all g∗ωα-closed neighborhood of x. Since y is arbitrary, the
intersection of all g∗ωα-closed neighborhood of x is the singleton {x}.
Conversely, let {x} be the intersection of all g∗ωα-closed neighborhood of an arbitrary point x ∈ X and y be a point of
X different from x. Since y does not belong to the intersection, there exists g∗ωα-closed neighborhood N of x, such that
y /∈ N. Since, N is g∗ωα neighborhood of x there exists g∗ωα-open set G such that x ∈ G ⊆ N. Thus G and X-N are
g∗ωα-open sets such that x ∈ G, y ∈ X-N and G ∩ (X-N) = φ. Hence X is g∗ωα-T2 space.

Theorem 3.23. If f : X→ Y is an injective, g∗ωα-irresolute and Y is g∗ωα-T2 then, X is g∗ωα-T2.
Proof: Let x1 and x2 be any two distinct points in X. So, x1 = f−1(y1), x2 = f−1(y2) as f is bijective. Then y1 and y2 ∈
Y such that y1 6= y2. Since, Y is g∗ωα-T2, there exist g∗ωα-open sets G and H such that y1 ∈ G, y2 ∈ H and G ∩ H
= φ. Then f−1(G) and f−1(H) are g∗ωα-open sets of X as f is g∗ωα-irresolute. Now f−1(G) ∩ f−1(H) = f−1(G ∩ H) =
f−1(φ) = φ. Then y1 ∈ G implies f−1(y1) ∈ f−1(G) and x1 ∈ f−1(G), y2 ∈ H that is, f−1(y2) ∈ f−1(H) so x2 ∈ f−1(H).
Thus for every pair of distinct points x1 and x2 of X, there exist disjoint g∗ωα-open sets f−1(G) and f−1(H) such that x1
∈ f−1(G), x2 ∈ f−1(H). Hence X is g∗ωα-T2 space.

Theorem 3.24. If f : X→ Y is g∗ωα-continuous, injective and Y is T2 then X is g∗ωα-T2 space.
Proof: For any two distinct points x1 and x2 of X, there exist disjoint points y1 and y2 of Y such that y1 = f(x1) and y2
= f(x2). Since Y is T2, there exist disjoint open sets U and V in Y such that y1 ∈ U and y2 ∈ V, that is x1 ∈ f−1(U) and
x2 ∈ f−1(V). Again, since f is g∗ωα-continuous, f−1(U) and f−1(V) are g∗ωα-open sets in X. Further f−1(U) ∩ f−1(V)
= f−1(U ∩ V) = f−1(φ) = φ. Thus for two disjoint points x1 and x2 of X, there exist disjoint g∗ωα-open sets f−1(U) and
f−1(V) such that x1 ∈ f−1(U) and x2 ∈ f−1(V). Therefore X is g∗ωα-T2 space.

Theorem 3.25. The following properties are equivalent for any topological space X:
(a) g∗ωα-T2 space
(b) for each x 6= y, there exists g∗ωα-open set U such that x ∈ U and y /∈ g∗ωα-cl(U)
(c) for each x ∈ X, {x} = ∩{g∗ωα-cl(U): U is g∗ωα-open in X and x ∈ U}.
Proof: (a)⇒ (b): Let x ∈ X and x 6= y, then there exist disjoint g∗ωα-open sets U and V such that x ∈ U and y ∈ V.
Then X − V is g∗ωα-closed. Since U ∩ V = φ, U ⊆ X − V. Therefore g∗ωα-cl(U) ⊆ g∗ωα-cl(X − V) = X − V.
Now y /∈ X−V implies that y /∈ g∗ωα-cl(U).
(b)⇒ (c): For each x 6= y, there exists g∗ωα-open set U such that x ∈ U and y /∈ g∗ωα-cl(U). So y /∈ ∩{g∗ωα-cl(U):
U is g∗ωα-open in X, x ∈ U} = {x}.
(c)⇒ (a): Let x, y ∈ X and x 6= y. Then by hypothesis, there exists g∗ωα-open set U such that x ∈ U and y /∈ g∗ωα-
cl(U). This implies that, there exists g∗ωα-closed set V such that y /∈ V. Therefore y ∈ X−V and X−V is g∗ωα-open
set. Thus, there exist two disjoint g∗ωα-open sets U and X − V such that x ∈ U and y ∈ X − V . Therefore X is
g∗ωα-T2 space.

4 g∗ωα-Normal Spaces

In this section, the concept of g∗ωα-normal spaces are introduced and obtained their characterizations.

Definition 4.1. A space X is said to be a g∗ωα-normal if for any pair of disjoint g∗ωα-closed sets A and B in X, there
exist disjoint open sets U and V in X such that A ⊆ U, B ⊆ V.

Remark 4.2. Every g∗ωα-normal space normal.
However, the converse is not true in general as seen from the following example.

Example 4.3. Let X = {a, b, c}, τ = {X, φ, {a}, {b, c}}. Then the space (X, τ) is normal but not g∗ωα-normal.

Remark 4.4. If X is normal and Tg∗ωα-space then X is g∗ωα-normal.

Theorem 4.5. The following are equivalent for a space X:
(a) X is normal
(b) for any disjoint closed sets A and B, there exist disjoint g∗ωα-open sets U and V such that A ⊆ U and B ⊆ V
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(c) for any closed set A and any open set V containing A, there exists g∗ωα-open set U in X such that A ⊆ U ⊆ cl(U)
⊆ V.
Proof: (a)⇒ (b): Follows from [9].
(b)⇒ (c): Let A be a closed and V be an open set containing A. Then A and X-V are disjoint closed sets in X. Then there
exist g∗ωα-open sets U and W such that A ⊆ U and X-V ⊆W. Since X-V is closed, X-V is g∗ωα-closed [9]. We have,
X-V ⊆ int(W) and U ∩ int(W) = φ and so, cl(U) ∩ int(W) = φ and hence A ⊆ U ⊆ cl(U) ⊆ X-int(W) ⊆ V.
(c)⇒ (a): Let A, B be disjoint closed sets in X. Then A ⊆ X-B and X-B is open. Then there exists g∗ωα-open set G of X
such that A⊆ G⊆ cl(G)⊆ X-B. Then A is g∗ωα-closed by [9]. We have A ⊆ int(G), put U = int(G) and V = int(X-G).
Then U and V are disjoint open sets of X such that A ⊆ U and B ⊆ V. Therefore X is normal.

Theorem 4.6. The following statements are equivalent for a topological space X:
(a) X is g∗ωα-normal
(b) for each closed set A and for each open set U containing A, there exists g∗ωα-open set V containing A such that
g∗ωα-cl(V) ⊆ U
(c) for each pair of disjoint closed sets A and B there exists g∗ωα-open set U containing A such that g∗ωα-cl(U) ∩B = φ.
Proof (a) ⇒ (b): Let A be closed and U be an open set containing A. Then A ∩ (X \U) = φ and therefore disjoint
closed sets in X. Since X is g∗ωα-normal, there exist disjoint g∗ωα-open sets V and W such that A ⊆ U, X−U ⊆W,
that is X −W ⊆ U. Now V ∩W = φ, implies V ⊆ X −W. Therefore g∗ωα-cl(V) ⊆ g∗ωα-cl(X −W) = X −W
since X−W is g∗ωα-closed. Thus, A ⊆ V ⊆ g∗ωα-cl(V) ⊆ X−W ⊆ U. That is A ⊆ V ⊆ g∗ωα-cl(V) ⊆ U.
(b)⇒ (c): Let A and B be disjoint closed sets in X then A ⊆ X− B and X− B is an open set containing A. Then there
exists g∗ωα-open set U such that A ⊆ U and g∗ωα-cl(U) ⊆ X− B, which implies g∗ωα-cl(U) ∩ B = φ.
(c) ⇒ (a): Let A and B be disjoint closed sets in X. Then there exists g∗ωα-open set U such that A ⊆ U and g∗ωα-
cl(U) ∩ B = φ or B ⊂ X − g∗ωα-cl(U). Now U and X − g∗ωα-cl(U) are disjoint g∗ωα-open sets of X such that
A ⊆ U and B ⊆ X− g∗ωα-cl(U). Hence X is g∗ωα-normal.

Theorem 4.7. If X is normal and F ∩ A = φ where F is ωα-closed and A is g∗ωα-closed then there exist open sets U
and V such that F ⊆ U and A ⊆ V.
Proof: Let X be a normal and F ∩ A = φ. Since, F is ωα-closed and A is g∗ωα-closed such that A ⊆ X− F and X− F
is ωα-open. Therefore cl(A) ⊆ X − F implies that cl(A) ∩ F = φ. Now F is closed, so F and cl(A) are disjoint closed
sets in X. As X is a normal, there exist disjoint open sets U and V of X such that F ⊆ U and cl(A) ⊆ V.

Theorem 4.8. If X is g∗ωα-normal and Y is g∗ωα-closed subset of X then, the subspace Y is also g∗ωα-normal.
Proof: Let A and B be any two disjoint g∗ωα-closed sets in Y, then A and B are g∗ωα-closed sets in X by [9]. Since
X is g∗ωα-normal, there exist disjoint open sets U and V in X such that A ⊆ U, B ⊆ V. Therefore U∩Y and V∩Y are
disjoint open subsets of the subspace Y such that A ⊆ U∩Y and B ⊆ V∩Y. Hence the subspace Y is g∗ωα-normal.

Remark 4.9. The property of being g∗ωα-normal is closed hereditary.

Theorem 4.10. If f : X→ Y is pre g∗ωα-closed, continuous injective and Y is g∗ωα-normal then, X is g∗ωα-normal.
Proof: Let A and B be disjoint g∗ωα-closed sets in X. Since, f is pre g∗ωα-closed, f(A) and f(B) are disjoint g∗ωα-closed
sets in Y. Again, since Y is g∗ωα-normal there exist disjoint open sets U and V such that f(A) ⊆ U, f(B) ⊆ V. Thus A ⊆
f−1(U), B ⊆ f−1(V) and f−1(U) ∩ f−1(V) = φ. Then f−1(U) and f−1(V) are open sets in X as f is continuous. Hence X
is g∗ωα-normal.

Theorem 4.11. If f : X → Y is g∗ωα-irresolute, bijective, open map from a g∗ωα-normal space X on to a space Y then
Y is g∗ωα-normal.
Proof: Let A and B be two disjoint g∗ωα-closed sets in Y. Since, f is g∗ωα-irresolute and bijective, f−1(A) and f−1(B)
are disjoint g∗ωα-closed sets in X. As X is g∗ωα-normal, there exist disjoint open sets U and V such that f−1(A) ⊆ U
and f−1(B) ⊆ V, that is A ⊆ f (U) and B ⊆ f (V). Then f (U) and f (V) are open sets in Y and f (U) ∩ f (V) = φ.
Thus Y is g∗ωα-normal.

5 g∗ωα-Regular Spaces

The concept of g∗ωα-regular spaces and their properties are studied in this section.

Definition 5.1. A topological space X is said to be a g∗ωα-regular if for each g∗ωα-closed set F and each point x /∈ F
there exist disjoint open sets U and V in X such that x ∈ U and F ⊆ V.
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Remark 5.2. Every g∗ωα-regular space is regular.
However, the converse need not be true as seen from the following example.

Example 5.3. From Example 4.3, the space (X, τ) is regular but not g∗ωα-regular.

Theorem 5.4. Every g∗ωα-regular T0-space is g∗ωα-T2.
Proof: Let x and y be any two points in X such that x 6= y. Let V be an open set which contains x but not y. Then, X−V
is a closed set containing y but not x. Then there exist disjoint open sets U and W such that x ∈ U and X − V ⊂ W.
Since y ∈ X−V, y ∈ W. Thus for x, y ∈ X with x 6= y there exist disjoint g∗ωα-open sets U and W such that x ∈ U
and y ∈W. Hence X is g∗ωα-T2 space.

Theorem 5.5. In a topological spaces X, the following properties are equivalent:
(a) X is g∗ωα-regular space
(b) for each point x ∈ X and each g∗ωα-open neighborhood A of X, there exists open neighborhood V of X such that cl(V)
⊆ A.
Proof: (a)⇒ (b): Suppose X is g∗ωα-open neighborhood of x. Then there exists g∗ωα-open set G such that x ∈ G ⊆ A.
Since X − G is g∗ωα-closed and x /∈ X − G. By hypothesis there exist open sets U and V such that X − G ⊆ U, x ∈
V and U ∩ V = φ and so V ⊆ X −U. Now cl(V) ⊆ cl(X −U) = X −U and X − G ⊆ U implies X −U ⊆ G ⊆ A.
Therefore cl(V) ⊆ A.
(b) ⇒ (a): Let F be a closed set in X with x /∈ F. Then x ∈ X − F and X − F is g∗ωα-open and so X − F is g∗ωα-
neighborhood of X. By hypothesis, there exists open neighborhood V of X such that x ∈ V and cl(V) ⊆ X − F, which
implies F ⊆ X − cl(V). Then X − cl(V) is an open set containing F and V ∩ (X − cl(V)) = φ. Therefore X is
g∗ωα-regular.

Theorem 5.6. If X is g∗ωα-regular and Y is open, g∗ωα-closed subspace of X, then the subspace Y is g∗ωα-regular.
Proof: Let A be g∗ωα-closed subspace of Y and y /∈ A then A is g∗ωα-closed in X. Since X is g∗ωα-regular there exist
open sets U and V in X such that y ∈ U and A ⊆ V. Therefore U∩Y and V∩Y are disjoint open sets of the subspace Y,
such that y ∈ U∩Y and A ⊆ V∩Y. Hence Y is g∗ωα-regular.

Theorem 5.7. Let f : X→ Y be bijective, g∗ωα-irresolute and open. If X is g∗ωα-regular then Y is also g∗ωα-regular.
Proof: Let F be g∗ωα-closed set of Y and y /∈ F. Since f is g∗ωα-irresolute, f−1(F) is g∗ωα-closed in X. Let f(x) = y,
so x = f−1(y) and x /∈ f−1(F). Again, X is g∗ωα-regular there exist open sets U and V such that x ∈ U and f−1(F) ⊆
V, U∩V = φ. Since, f is open and bijective, so y ∈ f(U), F ⊆ f(V) and f(U) ∩ f(V) = f(U ∩ V) = f(φ) = φ. Hence Y is
g∗ωα-regular.

Theorem 5.8. If f : X→ Y is bijective, pre g∗ωα-closed and open map from a space X in to a g∗ωα-regular space Y. If
X is Tg∗ωα space then X is g∗ωα-regular.
Proof: Let x ∈ X and F be a g∗ωα-closed set in X with x /∈ F. Since X is Tg∗ωα space so, F is closed in X. Then f(F) is
g∗ωα-closed with f(x) /∈ f(F) in Y as f is pre g∗ωα-closed. Again, since Y is g∗ωα-regular there exist open sets U and V
such that f(x) ∈ U and f(F) ⊆ V. Therefore x ∈ f−1(U) and F ⊆ f−1(V). Hence X is g∗ωα-regular space.

Theorem 5.9. Every subspace of a g∗ωα-regular space is g∗ωα-regular.
Proof: Let Y be subspace of a g∗ωα-regular space X. Let x ∈ Y and F be a g∗ωα-closed set in Y such that x /∈ F. Then
there exists g∗ωα-closed set A of X with F = Y ∩ A and x /∈ A. Therefore, we have x ∈ X, A is g∗ωα-closed in X such
that x /∈ A. Since, X is g∗ωα-regular, there exist open sets G and H such that x ∈ G, A ⊆ H and G ∩ H = φ. Note that
Y ∩ G and Y ∩ H are open sets in Y. Also x ∈ G and x ∈ Y which implies x ∈ Y ∩ G and A ⊆ H implies Y ∩ G ⊆ Y ∩
H, F ⊆ Y ∩ H. Also (Y ∩ G) ∩ (Y ∩ H) = φ. Hence Y is g∗ωα-regular space.

Theorem 5.10. Let f : X → Y be continuous, g∗ωα-closed, surjective and open map. If X is regular then Y is also
regular.
Proof: Let y ∈ Y and V be an open set containing y in Y. Let x be a point of X such that y = f(x). Since, X is regular and
f is continuous there exists open set U such that x ∈ U ⊆ cl(U) ⊆ f−1(V). Hence y ∈ f(U) ⊆ f(cl(U)) ⊆ V. Again, since
f is g∗ωα-closed map, f(cl(U)) is g∗ωα-closed set contained in the open set V. Hence cl(f(cl(U))) ⊆ V. Therefore y ∈ f(U)
⊆ f(cl(U)) ⊆ cl(f(cl(U))) ⊆ V. This implies y ∈ f(U) ⊆ cl(f(U)) ⊆ V and f(U) is open. Hence Y is regular.

Theorem 5.11. If f : X→ Y is g∗ωα-irresolute, open, bijective and X is g∗ωα-regular then, Y is g∗ωα-regular.
Proof: Let F be a g∗ωα-closed set in Y and y /∈ F. Take y = f (x) for some x ∈ X. Since, f is g∗ωα-irresolute, f−1(F)
is g∗ωα-closed in X and x 6= f−1(F). Then there exist disjoint open sets U and V such that x ∈ U and f−1(F) ⊆ V,
that is y = f (x) ∈ f (U), F ⊆ f (V) and f (U) ∩ f (V) = φ. Therefore Y is g∗ωα-regular.
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Theorem 5.12. If f : X→ Y be pre g∗ωα-open, closed, injective and Y is g∗ωα-regular then, X is g∗ωα-regular.
Proof: Let F be a g∗ωα-closed set in X and x /∈ F. Since, f is pre g∗ωα-closed, f (F) is g∗ωα-closed in Y such that
f (x) /∈ f (F). Now Y is g∗ωα-regular, there exist open sets G and H such that f (x) ∈ G and f (H) ⊆ H. his implies
that x ∈ f−1(G) and F ⊆ f−1(H). Further f−1(G) ∩ f−1(H) = φ. Hence X is g∗ωα-regular.

6 Conclusion

The research in topology over last two decades has reached a high level in many directions. By researching
generalizations of closed sets, some new separation axioms have been founded and they turn out to be useful
in the study of digital topology. Therefore, g∗ωα-separation axioms are defined by using g∗ωα-closed sets will
have many possibilities of applications in digital topology and computer graphics.
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In this paper, we investigate the existence of solutions for implicit impulsive fractional order differential
equations with non-local conditions. An example is included to prove the applicability of the results.
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1 Introduction

The theory of fractional differential equations is a new branch of mathematics by valuable tools in the
modelling of many phenomena in various fields of science and engineering. Indeed, we can find numerous
applications in viscoelasticity, electrochemistry, control, porous media, electromagnetic, etc.(For details [1–
4, 6, 11–14, 18–21]).

Impulsive differential equations have become important in recent years as mathematical models of
phenomena in both the physical and social sciences. There has a significant development in impulsive theory
especially in the area of impulsive differential equations with fixed moments; see for instance the
monographs by Benchohra et al [7], Lakshmikantham et al [17], and Samoilenko and Perestyuk [22],
K.Balachandran and J.Y.Park [5] and the references therein [15, 16].

Benchohra et al. studied the following Fractional Differential Equations Caputo’s derivative:
In [8], u is bounded on J, t ∈ J = [0, ∞) and 1 < α ≤ 2.

cDαu(t) = f (t, u(t),c Dα−1u(t)), u(0) = u0

In [9], The existence results for nonlinear implicit fractional-order differential equations given by

cDαy(t) = f (t, y(t),c Dαy(t)), y(0) = y0, t ∈ J = [0, T], 0 < α ≤ 1.

Inspiration by the above works, we study the existence of solutions for the implicit fractional order
differential equations with impulsive and nonlocal conditions of the form

cDαy(t) = f (t, y(t),c Dαy(t)), t ∈ J′ := J\{t1, ..., tm}, J = [0, T], 0 < α ≤ 1. (1)

y(t+k ) = y(t−k ) + yk, k = 1, 2, ..., m yk ∈ X (2)

y(0) = y0 − η(t), (3)

∗Corresponding author.
E-mail address: angurajpsg@yahoo.com (A. Anguraj), joevarshini@gmail.com (M. Kasthuri), karthi−p@yahoo.com (P. Karthikeyan).
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where cDα is the Caputo fractional derivative, f : J × X × X → X is a given function, η : C → X is
continuous, and y0 ∈ X and tk satisfy 0 = t0 < t1 < ... < tm < tm+1 = T.

In this paper is planned as shadows. Section 2 has definitions and elementary results of the fractional
calculus. In section 3, implicit impulsive fractional differential equations is attained and proved the theorems
on the existence and uniqueness of a solution to the problem (1.1 - 1.3). In section 4, an illustrative example is
provided in support of the results of a problem (1.1 - 1.3).

2 Preliminaries

In this section, we introduce notations, definition and preliminary facts. We introduce the Banach space
PC(J, X) = {x : J → X : x ∈ C(tk, tk+1], X} , k = 0, 1, 2, ..., m and their exist x(t−k ) and x(t+k ), k = 0, 1, 2, .., m
with x(t−k ) = x(tk) with the norm ||x||PC := sup {||x(t)|| : t ∈ J} .

Definition 2.1. The fractional order integral of the function h ∈ L1([0, T], X+) of order α ∈ X+ is defined by

Iαh(t) =
1

Γ(α)

∫ t

0
(t− s)α−1h(s)ds,

where Γ is the gamma function.

Definition 2.2. For a function h given on the interval [0, T], the Caputo fractional order derivative of order α of h, is
defined by

(cDαh)(t) =
1

Γ(n− α)

∫ t

0
(t− s)n−α−1h(n)(s)ds,

where n = |α|+ 1, |α| denoted the integral part of real number α, provided h(n)(t) exists.

Lemma 2.1. Let a function f (t, u, v) : J ×X×X → X be continuous. Then the problem (1.1)-(1.3) is equivalent to
the problem:

y(t) =



y0 − η(t) + Iαg(t), f or t ∈ [0, t1]

y0 − η(t) + y1 + Iαg(t), f or t ∈ (t1, t2]

y0 − η(t) + y1 + y2 + Iαg(t), f or t ∈ (t2, t3]
...

y0 − η(t) +
m

∑
i=1

yi + Iαg(t), f or t ∈ (tm, T]

(2.1)

where g ∈ C(J, X) satisfies the functional equation

g(t) =



f (t, y0 − η(t) + Iαg(t), g(t)), f or t ∈ [0, t1]

f (t, y0 − η(t) + y1 + Iαg(t), g(t)), f or t ∈ (t1, t2]

f (t, y0 − η(t) + y1 + y2 + Iαg(t), g(t)), f or t ∈ (t2, t3]
...

f (t, y0 − η(t) +
m

∑
i=1

yi + Iαg(t), g(t)), f or t ∈ (tm, T]

Proof. If
cDαy(t) = g(t)

then
Iα cDαy(t) = Iαg(t).

So we obtain for t ∈ [t0, t1],

y(t) = y(0)− η(t) + Iαg(t),

y(t) = y0 − η(t) + Iαg(t), f or t ∈ [0, t1]
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For t ∈ (t1, t2] we have

y(t) = y(t+1 )− η(t)− 1
Γ(α)

∫ t1

0
(t1 − s)α−1 f (t, u(t),c Dαu(t))du + Iαg(t),

= y(t1)− η(t) + y1 + Iαg(t),

y(t) = y0 − η(t) + y1 + Iαg(t), f or t ∈ (t1, t2]

Similarly t ∈ (tm, T] we get

y(t) = y0 − η(t) +
m

∑
i=1

yi + Iαg(t), f or t ∈ (tm, T]

Therefore, we have

y(t) =



y0 − η(t) + Iαg(t), f or t ∈ [0, t1]

y0 − η(t) + y1 + Iαg(t), f or t ∈ (t1, t2]

y0 − η(t) + y1 + y2 + Iαg(t), f or t ∈ (t2, t3]
...

y0 − η(t) +
m

∑
i=1

yi + Iαg(t), f or t ∈ (tm, T]

The proof is completed.

Lemma 2.2. [10] Let E be a Banach space, C a closed, convex subset of E, U an open subset of C and 0 ∈ U. Suppose
that F : U → C is a continuous, compact map. Then either (i) F has a fixed point in U, or (ii) there is a u ∈ ∂U and
λ ∈ (0, 1) with u = λF(u).

Theorem 2.1. (Krasnoselkii) Let M be a closed convex and nonempty subset of a Banach space X. Let A and B be
two operators such that (i) Ax + By ∈ M whenever x,y ∈ M; (ii) A is compact and continuous; (iii) B is a contraction
mapping. Then there exists z ∈ M such that z = Az + Bz.

3 Main Results

To prove the main result we need the following assumptions :
(A1) The function f : J ×X×X→ X, w are continuous.
(A2) There exist constants K1 > 0 and 0 < K2 < 1 such that

|| f (t, u1, v1)− f (t, u2, v2)|| ≤ K1||u1 − u2||+ K2||v1 − v2||

for any u1, u2, v1&v2 ∈ X and t ∈ J.
(A3) η is continuous, and there exists a constant b < 1 such that

||η(y1)− η(y2)|| ≤ b||y1 − y2||

∀ y1, y2 ∈ X,

(A4) The function f : J ×X×X→ X, w are continuous and η : C → X is continuous.

Theorem 3.2. Assume that the assumptions (A1)− (A3) holds. If

m

∑
i=1

xi +
ηK1Tα

(1− K2)Γ(α + 1)
< 1 (3.1)

then there exists a unique solution for (1.1)− (1.3) on J
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Proof. Define the operator M : C(J, X)→ C(J, X) by
The formula of solutions for equation (1.1)− (1.3) should be

M(y)(t) =



y0 − η(t) + Iαg(t), f or t ∈ [0, t1]

y0 − η(t) + y1 + Iαg(t), f or t ∈ (t1, t2]

y0 − η(t) + y1 + y2 + Iαg(t), f or t ∈ (t2, t3]
...

y0 − η(t) +
m

∑
i=0

yi + Iαg(t), f or t ∈ (tm, T]

(3.2)

where g(t) = f (t, y(t), g(t)), g ∈ C(J, X).

In general case t ∈ (tm, T]):

M(y)(t) = y0 − η(t) +
m

∑
i=1

yi + Iαg(t), for t ∈ (tm, T]) (3.3)

where
g(t) = f (t, y(t), g(t)), g ∈ C(J, X).

Clearly, the fixed points of operation M are solutions of problem (1.1)− (1.3).
Let y1, y2 ∈ C(J, X). Then for t ∈ J, we have

(My1)(t)− (My2)(t) = η(y1)− η(y2) +
m

∑
i=1

yi +
1

Γ(α)

∫ t

0
(t− s)α−1(g(s)− h(s))ds,

where g, h ∈ C(J, X) be such that

g(t) = f (t, y1(t), g(t)),

h(t) = f (t, y2(t), h(t)),

Then, for t ∈ J

||(My1)(t)− (My2)(t)|| = ||η(y1)− η(y2)||+
m

∑
i=1
||yi||+

1
Γ(α)

∫ t

0
(t− s)α−1||(g(s)− h(s))||ds (3.4)

By (A2) we have

||g(t)− h(t)|| = || f (t, y1(t), g(t))− f (t, y2(t), h(t))||
≤ K1||y1(t)− y2(t)||+ K2||y1(t)− y2(t)||

≤ K1

1− K2
||y1(t)− y2(t)||

Therefore (3.4)

||(My1)(t)− (My2)(t)|| ≤
m

∑
i=1
||yi||+

b||y1 − y2||K1

(1− K2)Γ(α)

∫ t

0
(t− s)α−1||y1(t)− y2(t)||ds,

≤
m

∑
i=1
||yi||+

bK1Tα

(1− K2)Γ(α + 1)
||y1 − y2||∞.

Thus

||My1 −My2||∞ ≤
m

∑
i=1
||yi||+

bK1Tα

(1− K2)Γ(α + 1)
||y1 − y2||∞.

By (3.2), the operator M is a continuous. Hence, by Banach’s contraction principle, M has a unique fixed point
which is a unique solution of the problem (1.1)− (1.3). The proof is completed.
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Theorem 3.3. Assume the (A1)− (A3). Then the problem (1.1)-(1.3) has at least one solution on [0, T].

Proof. Choose

||y||

y0 − η(t) +
m

∑
i=1
||yi||+

ϕ(||x||)||p||L1

Γ(α + 1)
Tα

≤ 1.

Case: (i) M maps bounded sets (balls) into bounded sets in C([0, T], X).
For a positive number r, let Br = {x ∈ C([0, T], X) : ||x|| ≤ r} be a bounded ball in C([0, T], X). Then for

t ∈ (tm, T] we have

||M(y)(t)|| ≤ y0 − η(t) +
m

∑
i=1
||yi||+

1
Γ(α)

∫ t

0
(t− s)α−1||g(s)||ds,

≤ y0 − η(t) +
m

∑
i=1
||yi||+

1
Γ(α)

∫ t

0
(t− s)α−1|| f (t, y(t), g(t))||ds,

≤ y0 − η(t) +
m

∑
i=1
||yi||+

ϕ(||x||)||p||L1

Γ(α + 1)
Tα

Consequently

||M(y)|| ≤ y0 − η(t) +
m

∑
i=1
||yi||+

ϕ(r)||p||L1

Γ(α + 1)
Tα.

Case: (ii) M maps bounded sets (balls) into equicontinuous sets in C([0, T], X).

Let sup
(t,x)∈[0,T]×Br

|| f (t, u, v)|| = f ∗ < ∞, µ1, µ2 ∈ [0, T] with µ1, µ2 ∈ (tm, T] and x ∈ Br. Then we have

||M(y)(µ1)−M(y)(µ2)|| = y0 − η(t) +
m

∑
i=1
||yi||+

1
Γ(α)

∫ µ1

0
(µ1 − s)α−1|| f (t, y(t), g(t))||ds

+
1

Γ(α)

∫ µ2

µ1

(µ2 − s)α−1|| f (t, y(t), g(t))||ds,

≤ y0 − η(t) +
m

∑
i=1
||yi||+

f ∗

Γ(α + 1)
||µα

2 − µα
1 ||

Obvisously the right-hand side of the above inequality tends to zero independently of x ∈ Br as µ2 −
µ1 → 0. As M satisfies the above assumptions, therefore it follows by the Arzela-Ascoli theorem that M :
C([0, T], X) → C([0, T], X) is completely continuous. Let y be a solution. Then, for t ∈ [0, T] and following
the similar computations as in the first step, we have

||y|| ≤ y0 − η(t) +
m

∑
i=1
||yi||+

ϕ(||x||)||p||L1

Γ(α + 1)
Tα.

Consequently, we have

||y||

y0 − η(t) +
m

∑
i=1
||yi||+

ϕ(||x||)||p||L1

Γ(α + 1)
Tα

≤ 1.

There exist N∗ such that ||x|| 6= N∗. Let us set c

U = {x ∈ C([0, T], X) : ||x|| < N∗}.

Note that the operator M : U → C([0, T], X) is continuous and completely continuous. Consequently, by the
nonlinear alternative of Lerary-Schauder type, we deduce that M has fixed point y ∈ U which is a solution of
the problem (1.1)− (1.3). The proof is completed.



A. Anguraj et al. / Some Existence results for implicit fractional... 461

Theorem 3.4. (Existence results via Krasnoselskii’s fixed point theorem) Assume that | f (t, u, v)| ≤ µ||u− v||, µ ∈
C([0, T], X+). Then the problem (1.1-(1.3) has at least one solution on [0, T] if

L
m

∑
i=1
||yi|| < 1 (3.5)

Proof. Choose a suitable constant r as

r ≥ (µ− b)Tα

Γ(α + 1)
||u− v||+ y0 +

m

∑
i=1
||yi||

Define the operators P and Q on Br = {y ∈ C([0, T], X) : ||y|| ≤ r} as

(Py)(t) = Iαg(t)

(Qy)(t) = y0 − η(t) +
m

∑
i=1

yi

For u, v ∈ Br, we obtain

||Py +Qy|| ≤ µTα

Γ(α + 1)
||u− v||+ y0 − b||u− v||+

m

∑
i=1
||yi||

≤ (µ− b)Tα

Γ(α + 1)
||u− v||+ y0 +

m

∑
i=1
||yi||

≤ r

Thus, Px +Qy ∈ Br. It follows from the assumption to gether with (3.5) that Q is a contraction mapping.
Continuity of f implies that the operator P is continuous. Also, P is uniformly bounded on Br as

||Px|| ≤ (µ− b)Tα

Γ(α + 1)
||u− v||

Now we prove the compactness of the operator P .
Let sup

(t,x)∈[0,T]×Br

|| f (t, u, v)|| = f ∗ < ∞, µ1, µ2 ∈ [0, T] with µ1, µ2 ∈ (tm, T] and x ∈ Br. Then we have

||P(y)(µ1)−P(y)(µ2)|| =
1

Γ(α)

∫ µ1

0
(µ1 − s)α−1|| f (t, y(t), g(t))||ds

+
1

Γ(α)

∫ µ2

µ1

(µ2 − s)α−1|| f (t, y(t), g(t))||ds,

≤ f ∗

Γ(α + 1)
||µα

2 − µα
1 ||

which is independent of y and tends to zero as µ2 − µ1 → 0. Thus, P is equicontinuous. So P is relatively
compact on Br. Hence, by the Arzela-Ascoli theorem, P is compact on Br. Thus all the assumations of Theorem
1 are satisfied. So the conclusion of Theorem 1 implies that the impulsive implicit fractional non-local problem
(1.1)-(1.3) has at least one solution on [0, T]. The proof is completed.

4 Example

Consider the following Implicit fractional differential equation with nonlocal impulsive condition of the
form

cDαy(t) =
1

(t + 2)2

[
|y(t)|

1 + |y(t)| −
|Dαy(t)|

1 + |Dαy(t)|

]
(4.1)

y(t+k ) = y(t−k ) +
1
4

, (4.2)

y(0) = y0 −
m

∑
i=1

ciy(ti) (4.3)
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Take J = [0, 1]. Set

f (t, y(t),c Dαy(t)) =
1

(t + 2)2

[
|y(t)|

1 + |y(t)| −
|Dαy(t)|

1 + |Dαy(t)|

]
, t ∈ J

′
.x ∈ X

Let y1, y2 ∈ X and t ∈ J
′
. Then we have

|| f (t, y1(t),c Dαy1(t))− f (t, y2(t),c Dαy2(t))|| ≤
K1

4(1− K2)
||y1 − y2||

Hence the condition (A1)− (A3) hold. Note that K1 = 1
4 and K2 = 1

8 . Then by Theorem 2, the problem
equations (1.1)− (1.3) has an unique solution on [0, 1] for the values of α satisfying equation (4.1).

5 Conclusion

We have proven an existence result for implicit fractional differential equations with impulsive condition.
In the future, we will extend the results to other fractional derivatives and boundary value problems.
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Abstract

For each finite group G we associate a simple undirected graph OD(G), order divisor graph. We
investigate the interconnection between the group theoretic properties of G and the graph theoretic properties
of order divisor graph OD(G). For a finite group G, we obtain the density, the girth and the diameter of
OD(G). Further, we obtain the relation G ∼= G′ if and only if OD(G) ∼= OD(G′), for every distinct finite
groups G and G′, and Auto(G) ⊆ Auto(OD(G)).
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1 Introduction

Graph theory is a branch of mathematics started by Euler [1] as early as 1736. In recent years, graph theory
has found many applications in engineering and applied science, and many books have been published on
graph theory and applied graph theory such as those by Chen [2], Thulasiraman and Swamy [3], Wilson and
Beineke [4], Mayeda [5], and Deo citedeo. Further, the applications of graph theory are much extensive and
powerful in the context of engineering science.

Algebraic graph theory is a specific branch of modern mathematics in which algebraic methods are applied
to problems about graphs (Biggs [7]). It is the application of abstract algebra to graph theory. For this reason,
group theory is the crowning glory of algebraic graph theory.

The concept of finite groups plays a fundamental role in theory of algebraic graphs. Few decades back the
algebraic graph theory was not applicable to ordinary human activities. Now it has been used successfully for
information transmission, protecting, coding and decoding with high security through public communication
networks. For further studying of algebraic graph theory see [8].

The idea of a divisor graph of a finite set of positive integers was introduced by Sing and Santhosh [9].
According to these authors, a divisor graph X is an ordered pair (V, E) where V is a subset of positive integers
N and ab ∈ E if and only if either a divides b or b divides a for all a 6= b. They were studied basic properties of
divisor graphs. In [10], Chartrand, Muntean, Saenpholophant and Zhang were studied further properties of
divisor graphs. Moreover, the author Yu-Ping Tsau [11] introduced another notation D[n] for a divisor graph
of the set [n] = {1, 2, · · · , n}. He studied several specific properties of D[n] such as the vertex-chromatic
number, the clique number, and the independence number.

Rajkumar and Devi [12] defined an undirected Co-prime graph of subgroups, denoted by P(G) having all
the proper subgroups of G as its vertices and two distinct vertices H and K are adjacent in P(G) if and only if
|H| and |K| are relatively prime. These authors proved that P(G) is weakly χ-perfect and every simple graph
is an induced subgraph of P(Zn), for some n.

∗Corresponding author.
Email address: chalapathi.tekuri@gmail.com(Chalapathi), kksaisiva@gmail.com (R V M S S Kiran Kumar).
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Subgroup of a group is the shadow that precedes everything in this paper, and we are using subgroups of
a finite group as vertices of an order divisor graph. Orders of subgroups of a finite group play an important
role in this paper, and they motivated us to define order divisor graph OD(G), where G is a finite group. We
hope that this order divisor graph will be a foundation for a new construction in graph theory and algebraic
graph theory.

Let G be a finite group with identity e and let S(G) be its set of subgroups. We associate simple undirected
graph OD(G) to G with vertices S(G), and for distinct H, K ∈ S(G), the vertices H and K are adjacent in
OD(G) if and only if either |H| divides |K| or |K| divides |H|. Thus OD(G) is the empty graph if and only if
|G| = 1, and OD(G) in the nonempty graph if and only if |G| 6= 1.

The main aim of this paper is to study the interplay of group theoretic properties of G with graph theoretic
properties of OD(G). This study helps illuminate the structure of S(G) through the structure of OD(G). For
H, K ∈ S(G), define H ∼ K if either |H| divides |K| or |K| divides |H|. So, the relation ∼ is always not
reflexive, not symmetric but transitive because OD(G) is undirected simple graph having without multiple
edges. Further the relation ∼ is transitive if and only of OD(G) is complete.

In this paper, some properties of the order divisor graph OD(G) are studied, the number of vertices in
each order divisor graph, the density, the girth and diameter are found. Complete characterizations, in
terms of |G| 6= p, are given of the cases in which the graph OD(G) is never Eulerian, never a path, never
a bipartite, never a star, or never a complete bipartite. Further we verify that the results G ∼= G′ if and only if
OD(G) ∼= OD(G′) and Auto(G) ⊆ Auto(OD(G)) with few examples. This study investigates compositions
between finite group theory, number theory and graph theory via studying properties of order division graph
OD(G) of a finite group G.

2 Basic Definitions and Notations

In this paper basic definitions and concepts of graph theory are briefly presented. A graph X consist of a
nonempty set V(X) of vertices and a set E(X) of elements called edges together with a relation of a incidence
which associates with each member a pair of vertices, called its ends. A graph with no loops and no multiple
edges is called a simple graph whose order and size are |V(X)| and |E(X)| respectively.

For any vertex x in a graph X, deg(x) be the number of edges with the vertex x as an end point. A graph
in which all vertices have the same degree is called a regular graph. A graph X is called connected if there is
a path between any two distinct vertices in X. A graph X is complete if every two distinct vertices in X are
adjacent. A complete graph with n vertices is denoted by Kn.

A graph X is called planar if it can drawn in the plane so that its edges intersect only at their ends. Also, a
connected graph X is called Eulerian if their exist a closed trial congaing every edge of X. A path of length n is
called an n-path and is denoted by Pn. A cycle of length n is called n-cycle and is denoted by Cn. A complete
bipartite graph denoted by Km,n and the graph K1,n is called star graph. For further definitions and proofs of
graph theory the reader may refer to Pirzada [13] and West [14].

Let G be a finite set. Then a group G is called finite. So, the number of elements in G is the order of G and
is denoted by |G|. Unless mentioned otherwise, all groups considered in this paper are finite. A nonempty
subset H of G is called subgroup of G if H is itself a group under the same binary operation on G. Every group
G has at least two subgroups, G itself and the set {e} consisting of the identity element alone, called trivial
subgroups of G, otherwise subgroups of G are called proper. Throughout the paper, we consider S(G) as a set
of subgroups of G and |S(G)| denote cardinality of S(G).

A subgroup of a given group G can always be constructed by choosing any element a in G and forming
the set of all its powers an, n = 0,±1,±2, · · · this is called the cyclic subgroup generated by an element a and
is denoted by Cn = {a, a2, · · · , an−1, an = e} = 〈a〉.

Usually, Z, Zn, Un, Sn, An, Q8, D4 and V4 denotes by the group of integers, integers modulo n, non zero
integers modulo n, permutations, even permutations, Quaternions, Dihedral and Kelians respectively. Basic
definitions for group theory see [15, 16].

Theorem 2.1. (Lagranges theorem) [15] Let H be a subgroup of a finite group G. Then the order of H divides the order
of G.

Theorem 2.2. Let a be any element of a group G. Then 〈a〉 is a cyclic subgroup of G.
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Let n ≥ 1 be a positive integer. Then the cardinality of the set D(n) = {d : d|n} is called divisor function
of n and denoted by d(n). In particular, |D(n)| = d(n), n ≥ 1 an integer. If m and n are positive integers, then
gcd(m, n) is the greatest common divisor and lcm[m, n] is the least common multiple of m and n. However,
gcd(m, n) = 1 if and only m and n are relatively primes, which play an important role in the algebraic graph
theory. For further definitions of number theory, the reader may refer to Rose [17].

Theorem 2.3. If G is a finite cyclic group, then |S(G)| = d(|G|), and if G is a finite non cyclic group, then
|S(G)| > d(|G|).

3 Properties of Order Divisor graph

In this section, we show that OD(G) is always connected and has small density, girth and diameter, and
we determine a necessary and sufficient condition for OD(G) is complete.

Definition 3.1. Let S(G) = {H : H is a subgroup of G}. An undirected simple graph OD(G) is called an order
divisor graph of subgroups of a finite group G whose vertex set is S(G) and two distinct vertices H, K ∈ S(G) are
adjacent in OD(G) if and only if either |H|

∣∣|K| or |K|
∣∣|H|, where |H|, |K| denotes the order of H and K respectively.

Before studying properties of the order divisor graph of a group we give an example to illustrates their
usefulness.

Example 3.1. The graphs shown in Figure 1 are the order divisor graphs of groups Z6 and S6 respectively.

Theorem 3.4. For any finite group G, the order divisor graph OD(G) is connected.

Proof. Let G be a finite group with identity element e. Then the vertex 〈e〉 is adjacent to all the remaining
vertices of the order divisor graph OD(G), since | 〈e〉 |

∣∣|H| for every vertex H 6= 〈e〉 in OD(G). This implies
that there exist a path between any two vertices in OD(G), and hence OD(G) is connected.

Theorem 3.5. Let order of a finite group G is not a power of single prime. Then OD(G) is never complete.

Proof. Consider the group G, whose order is |G| = pα1
1 , pα2

2 , · · · , pαr
r , r > 1, a prime decomposition. Suppose

the graph OD(G) is complete. Then any two vertices Hi and Hj are adjacent in OD(G), i 6= j. That is, either
|Hi|

∣∣|Hj| or |Hj|
∣∣|Hi| for i 6= j. So without loss of generality, we may assume that |Hi| = pi and |Hj| = pj. It is

clear that |Hi|6 | |Hj| and |Hj|6 | |Hi| in OD(G), since pi 6 | pj and pj 6 | pi for each i 6= j. It turns out that OD(G)

is never complete.

Theorem 3.6. Let G be a group of Composite order. Then the order divisor graph of G must contain a cycle of length 3.

Proof. Suppose |G| 6= p, a prime. Then there is at least one proper subgroup H of G. By the Lagranges
Theorem [2.1], |H|

∣∣|G|, | 〈e〉 |∣∣|H| and | 〈e〉 |
∣∣|G|. It is clear that the unordered pairs (〈e〉 , H), (H, G) and (G, 〈e〉)

form a cycle C3 = (〈e〉 , H, G, 〈e〉) of length 3 in OD(G).

Theorem 3.7. [15] Let H and K be two subgroups of a finite group G. Then |HK| = |H||K|
|H ∩ K| . In particular,

|HK| = |H||K| if either H ∩ K = {e} or gcd(|H|, |K|) = 1.
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Theorem 3.8. [16] Let Cp and Cq be cyclic groups with respect to multiplication of prime orders p and q respectively.
Then Cp × Cq ∼= Cpq.

Theorem 3.9. (Syllows Third Theorem)[16] Let G be a group of order pnm, where p is a prime, n ≥ 1 and
gcd(p, m) = 1. Then the number of Sylow p-subgroups of G by np is of the form 1 + kp, k ≥ 0 and 1 + kp divides m.

Theorem 3.10. [13] A graph is non-planar if and only if it has a subgraph homomorphic to either K5 or K3,3.

Theorem 3.11. [13] Let X be simple planar graph having |V(X)| ≤ 3 vertices and |E(X)| edges. Then |E(X)| ≤
3|V(X)| − 6.

Theorem 3.12. [13] For a maximal planar graph X of order |V(X)| ≥ 3, |E(X)| = 3|V(X)| − 6.

Theorem 3.13. Let p and q be distinct prime with p < q. If G is a group of order pq, then the order divisor graph of G
is either planar or maximal planar.

Proof. Suppose |G| = pq, where p and q are distinct primes with p < q. Then, by the third Sylow Theorem
[3.6], there is a unique q-Sylow subgroup, say Q of order q. So there exist two cases on p and q.

Case:1 If p 6 | q − 1, then there is a normal p-subgroup, say P of G such that P ∩ Q = {e} and |PQ| =
|P||Q| = pq = |G|. Thus G = P× Q ∼= Cp × Cq ∼= Cpq, by Theorem [3.5]. So, in this case the vertex set of the
order divisor graph OD(G) is S(G) =

(
〈e〉 , H, K, G

)
where H and K are proper subgroup of Cpq with H is not

adjoint to K, since |H|6 | |K| and |K|6 | |H|. It is clear that the order and side of OD(G) are 4 and 5 respectively.
Therefore by the Theorem [3.10], OD(G) 6∼= K5 or K3,3, and hence OD(G) is planar.

Case:2 If p
∣∣q− 1, then the group G isomorphic to either of the following groups:

〈a, b : aq = bp = 1, ab = ba〉 and 〈a, b : aq = bp = 1, ab = aα〉 where α 6= 1.

(i) Suppose G ∼= 〈a, b : aq = bp = 1, ab = ba〉 . Then

G ∼= 〈a : aq = 1〉 × 〈b : bp = 1〉 ⇒ G ∼= Cp × Cq ∼= Cpq this is similar to case(1).

(ii) Suppose G ∼=
〈

a, b : aq = bp = 1, b−1ab = aα
〉

. Then G 6= Cpq. This implies that G is a non abelian
group of order pq generate by a and b. Thus the vertex set of the graph OD(G) is S(G) =

{〈e〉 , 〈a〉 , 〈b〉 , 〈ab〉 ,
〈

a2b
〉

, G} where
〈

a2b
〉

=
〈

ab2〉. It is clear that | 〈e〉 | = 1, | 〈a〉 | = q| 〈b〉 | =

| 〈ab〉 |
∣∣| 〈a2b

〉
| = p and |G| = pq. Consequently, order and size of the graph OD(G) are 6 and 12

respectively. We shall now show that OD(G) is maximal planar. Suppose OD(G) is not maximal planar.
Then it must satisfy the relation |E

(
OD(G)

)
| 6= 3|V

(
OD(G)

)
| − 6, by the Theorem [3.9]. This implies

that that 12 6= 3× 6− 6⇒ 12 6= 12, which is not true. So our assumption is wrong, and hence OD(G) is
a maximal planar grpah.

Lemma 3.1. Let H and K be two subgraphs of a finite non-cyclic group G. Then |H ∩ K| 6= gcd
(
|H|, |K|

)
.

Proof. Since H ∩ K is a subgroup of both H and K in G. So, by the Lagranges Theorem [2.1], |H ∩ K|
∣∣|H|

and |H ∩ K|
∣∣|K|. Hence |H ∩ K|

∣∣gcd
(
|H|, |K|

)
. Further, suppose gcd

(
|H|, |K|

)∣∣|H ∩ K|, then there exists
two positive integers q and q′ such that qgcd

(
|H|, |K|

)
= q′|H ∩ K| = |G|, since gcd

(
|H|, |K|

)
and |H ∩ K|

both divides |G|. Hence q 6= q′. Therefore, if q′|q then q = nq′ for some positive integer n. Then
|H ∩ K| = ngcd

(
|H|, |K|

)
, a contradiction since H ∩ K is the subgroup of both H and K. Hence |H ∩ K| 6=

gcd
(
|H|, |K|

)
.

Our next example turns out to be a very useful one for abelian groups and another for non-abelian groups.

Example 3.2. Consider the subgroups H = 〈a〉 = {e, a} and K = 〈b〉 = {e, b} of the finite abelian group V4 =

{e, a, b, c : a2 = b2 = c2 = e}. Therefore, |H| = 2, |K| = 2, |H ∩ K| = 1. Hence gcd
(
|H|, |K|

)
= 2 6= 1 = |H ∩ K|.

Next, H = 〈(12)(345)〉 , K = 〈(123)(45)〉, are both cyclic subgroups of order 6 and H ∩ K = {I} in the
finite non-abelain group S5. Therefore gcd

(
|H|, |K|

)
= 6 6= 1 = |H ∩ K|.

The Example [3.2] tells us that the result |HK| 6= lcm
[
|H|, |K|

]
for finite non-cyclic groups, but it must be

true for finite cyclic groups. This illustrates the following lemmas.

Lemma 3.2. Let H and K be two subgraphs of a finite non-cyclic group G. Then |HK| 6= lcm
[
|H|, |K|

]
.
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Proof. Follows from Lemma [3.1 ] and Theorem [3.7].

Lemma 3.3. Let H and K be two subgraphs of a finite cyclic group G. Then |HK| = lcm
[
|H|, |K|

]
.

Proof. Let d = gcd
(
|H|, |K|

)
.Then d divides both H and K. Also, by the Lagranges Theorem [2.1], d

∣∣|G|, so
there exists a unique subgroup, say L such that |L| = d, since G is cyclic. But H and K must have a subgroup
of this order d and there is only one subgroup in G. Therefore L is a subgroup of H ∩ K. But |H ∩ K| divides
both H and K. It is clear that |H ∩ K|

∣∣gcd
(
|H|, |K|

)
⇒ |H ∩ K|

∣∣d ⇒ |H ∩ K|
∣∣|L|. Hence L = H ∩ K and

|L| = |H ∩ K| = d = gcd
(
|H|, |K|

)
. Applying Theorem [3.7] yields |HK| = |H||K|

gcd
(
|H|, |K|

) = lcm
[
|H|, |K|

]
.

Theorem 3.14. Let |G| be a composite number. Then deg(H) ≥ 2, for every vertex H in OD(G).

Proof. Let |G| 6= p, a prime. Then G has at least one proper subgroup, say H. It is clear that deg
(
〈e〉
)
≥ 2 and

deg(G) ≥ 2 for 〈e〉 , G ∈ S(G), since 〈e〉 − H − G− 〈e〉 is a cycle of length 3 in the graph OD(G).
Now we show that deg(H) ≥ 2, for every vertex H in OD(G). First suppose S(G) = {〈e〉 , H, G} be the

vertex set of OD(G). Then, by the Lagranges Theorem [2.1], vertex H is adjacent to both the vertices 〈e〉 and
G in OD(G). Therefore, deg(H) = 2. Further, if K is another vertex of OD(G) such that K 6= H, 〈e〉 , G. Now
consider two cases on the group G.

Case (1): If G is a finite cyclic group then we have the following subcases.
Subcase (1): Suppose H is adjacent to K in OD(G).Then trivially deg(H) > 2.
Subcase (2): Suppose H is not adjacent to K in OD(G). Then |H|

∣∣|K| and |K|
∣∣|H|.

⇒ |H|
∣∣lcm

[
|H|, |K|

]
⇒ |H|

∣∣|HK|, by the Lemma [3.3]

⇒ H is adjoint to another vertex HK in OD(G).

This shows that deg(H) > 2.
Case (2): If G is a finite non-cyclic group, then the edges in OD(G) has any one of the following

possibilities:
Subcase (1): Suppose either |H|

∣∣|K| or |K|
∣∣|H|. Then H is adjacent to K, and hence deg(H) > 2.

Subcase (2): Suppose |H|6 | |K| and |K|6 | |H|. Then either gcd
(
|H|, |K|

)
= 1 or gcd

(
|H|, |K|

)
= d, d > 1. If

gcd
(
|H|, |K|

)
= 1, then |H|

∣∣|H|∣∣|K|
⇒ |H|

∣∣|HK|, by the Theorem [3.4]

⇒ H is adjoint to HK and thus deg(H) > 2.

Otherwise, if gcd
(
|H|, |K|

)
= d, d > 1, then gcd

(
|H|
d

,
|K|
d

)
= 1 this implies that the vertex H is adjacent to

another new vertex whose order is
|H|
d
|K|
d

in OD(G). Therefore, deg(H) > 2.

Summarizing the results of the two cases we find deg(H) ≥ 2 for every vertex H in OD(G).

Now we are going to study the useful consequences of the Theorem [3.14].

Corollary 3.1. For any finite group G, the order divisor graph is never a path of length 2.

Proof. Suppose OD(G) is the path Pn : H0 − H1 − · · · − Hn−1 − Hn of length n > 2, where H0 and Hn are the
initial and terminal vertices of Pn. Then, by the definition of the path, we have deg(H0) = deg(Hn) = 1. This
violates result of the Theorem [3.14]. Hence OD(G) is never a path of length n > 2.

Corollary 3.2. If G is a group of composite order, then OD(G) is never a star graph.

Proof. Let |G| 6= p, a prime. Assume OD(G) is a star graph of order |S(G)|. If H1, H2, · · · , H|S(G)|−1, H|S(G)|
are the vertices of the OD(G), where |S(G)| > 2, then the graph OD(G) contains |S(G)| − 1 pendent vertices.
That is, deg(Hi) = 1, for every 1 ≤ i ≤ |S(G)| − 1. This is a contradiction to the Theorem [ 3.14] . So our
assumption is wrong, and hence OD(G) is never a star graph.

Theorem 3.15. [14] A simple graph is Eulerian if and only if degree of each vertex is even.
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Corollary 3.3. Let |G| 6= P2n, n ≥ 1. Then OD(G) is never Eulerian.

Proof. suppose that the graph OD(G) is Eulerian. Then the degree of each vertex is even. From the Theorem
[3.14], degree of each vertex in OD(G) is at least 2, that is deg(Hi) ≥ 2, for every Hi ∈ S(G) and 1 ≤ i ≤ |S(G)|.
So without loss of generality, we may assume that deg(H1) = 2, deg(H2) = 3, deg(H3) = 4, and so on. Then,
we found that degree of each vertex can not be even. This is a contradiction to the result of the Theorem [3.15].
Thus, by contraposition, the result follows.

Before going to the study of further properties of order divisor graph we shall prove that the following
consequences of the Theorem [3.14]. First we study the completeness of the order divisor graph OD(G). In
particular, we give a necessary and sufficient condition for OD(G) to be completed.

Theorem 3.16. The order divisor graph of a group G is complete if and only if no two proper divisors of |G| are relatively
prime.

Proof. Necessity: Suppose OD(G) is a complete graph of order |S(G)|. Then any two vertices Hi, Hj ∈ S(G)

are adjacent in OD(G), i 6= j. Therefore, |Hi|
∣∣|Hj| or |Hj|

∣∣|Hi| for each i 6= j.⇒ gcd
(
|Hi|, |Hj|

)
6= 1, for each

i 6= j. This implies that |Hi| and |Hj| are two proper divisors of |G| which are not relatively prime. So no two
proper divisors of |G| are relatively prime.

Sufficient: Suppose no two proper divisor of |G| are relatively prime. That is, gcd
(
|Hi|, |Hj|

)
6= 1, for every

two proper subgroups Hi and Hj of G. We shall now show that OD(G) is a complete graph. Suppose that
OD(G) is not complete. Then there exists two vertices Hi and Hj in S(G) such that |Hi|6 | |Hj| and |Hj|6 | |Hi|
. That is, either gcd

(
|Hi|, |Hj|

)
= 1 or gcd

(
|Hi|, |Hj|

)
= d, d > 1. But, by hypothesis gcd

(
|Hi|, |Hj|

)
6= 1,

for proper divisors |Hi| and |Hj| of |G|, i 6= j. Therefore, gcd
(
|Hi|, |Hj|

)
= d, d > 1 ⇒ gcd

(
|Hi|

d
,
|Hj|

d

)
and

|Hi|
d

∣∣∣∣|G| and
|Hj|

d

∣∣∣∣|G| ⇒ |Hi|
d

and
|Hj|

d
are both proper divisors of |G| and which are relatively prime, a

contradiction to our hypothesis. Hence OD(G) is a complete graph.

The following results are immediate consequences of the Theorem [3.16].

Theorem 3.17. Let G be a finite group. Then the following statements are equivalent.

(a) The graph OD(G) is complete.

(b) |G| = Pn, n ≥ 1 an integer.

Proof. For (a) implies (b), first assume that OD(G) is a complete graph of a graph G. There are two possibilities:
either G is cyclic or not. If G is cyclic group and |G| is a composite number not divisible by pn+1 for any prime
p, since in this case 〈p〉 is not adjacent to

〈
pn+1〉 in OD(G). Moreover, |G| is not divisible by square free integer

P1, p2, · · · , pn, pi’s are distinct primes, since in this case 〈pi〉 ,
〈

pj
〉
∈ S(G), i 6= j, are not adjacent in OD(G)

because
(
| 〈pi〉 |, |

〈
pj
〉
|
)
= 1. Finally, qn 6 |pn, since if q is prime, then 〈q〉 is not adjacent to 〈p〉 in OD(G). So,

〈G〉 = pn. If G is not a cyclic group, then we have to prove that 〈G〉 = pn. Assume that 〈G〉 6= pn. In view of
the Theorem [3.16], OD(G) is never complete. Thus 〈G〉 = pn.

For (b) implies (a), we assume that 〈G〉 = pn. Then we shall now show that OD(G) is a complete graph.
We consider the following two cases:

Case (1): If G is a cyclic group, then the order of OD(G) is |S(G)| = d(pn) = n + 1, which are
1, p, p2, · · · , pn−1, pn. It is clear that for any two vertices H, K ∈ S(G), |H|, |K| ∈ {1, p, p2, · · · , pn−1, pn}. This
implies that |H|

∣∣|K| or |K|
∣∣|H|, since pi

∣∣pj or pj
∣∣pi for i 6= j. That is, no two proper divisors of |G| are relatively

prime, hence OD(G) is complete.
Case (2): If G is not a cyclic graph, then |S(G)| > d

(
|G|
)
. But by Lagranges Theorem [2.1], order of each

and every subgroup divides |G|, that is |H|
∣∣pn, for every H ∈ S(G). Therefore |H| ∈ {1, p, p2, · · · , pn−1, pn}.

This implies that no two proper divisors in |G| are relatively prime, so in this case also OD(G) is complete.

The following example show how the result in the Theorem [3.17] can be used to study the structures of
order divisor graphs of abelian and nonabelian groups.
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Example 3.3. Figure 2 illustrates the Theorem [3.14].

Remark 3.1. Theorem [3.14] tells us that the following properties, if |G| = pn, n > 1 then OD(G) is
(
|S(G)| − 1

)
-

regular graph and the size of OD(G) is

(
|S(G)|

)(
|S(G)| − 1

)
2

.

(1) If G is a cyclic group of order pn, then complete order divisor graph OD(G) is n-regular.

(2) If G is not a cyclic group of order pn, then the order divisor graph OD(G) is also complete but not n-regular. This
point is illustrated as follows.

Example 3.4. (1) The order divisor graph of a cyclic group Z8 is complete 3-regular.

(2) The order divisor graph of a non-cyclic group Q8 is complete but 5-regular.

(3) If is an abelian but not cyclic group of order pn, then the order divisor graph of G is also complete but never
n-regular.

For example, the Figure 3 shows that Lattice of subgroups of Klein 4 group V4 and its order divisor graph.

Corollary 3.4. Let G be a finite group. Then the order divisor graph OD(G) is isomorphic to K2 if and only if G is

isomorphic to one of the groups: Zp, Cp,
Sn

An
, Aut(Z),

A4

V4
.

Proof. It is obvious, since OD(G) ∼= K2 if and only if |G| = p, a prime.

Corollary 3.5. The order divisor graph of a group G is complete if and only if G is isomorphic to one of the groups:

(a) p-group

(b) Diag(n, Z).

Proof. (a) Since G is a p-group if and only if |G| = pn, n ≥ 1. Hence OD(G) is complete.
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(b) Since Diag(n, Z) is an abelian group of all n×n diagonal matrices over the set of integers whose diagonal
elements are ±1. So, Diag(n, Z) = 2n. Hence OD(Diag(n, Z)) is complete.

Definition 3.2. The density of a simple graph is the ratio of order and size of the graph respectively.

Theorem 3.18. Let |G| = pn, n ≥ 1, Then density(OD(G)) =
2

|S(G)| − 1
.

Proof. We have, density(OD(G)) =
|S(G)|

1
2 |S(G)|(|S(G)| − 1)

=
2

|S(G)| − 1
.

Corollary 3.6. If G is a cyclic group of order pn, n ≥ 1 then density(OD(G)) =
2
n

.

Proof. The number of subgroups of a cyclic group of order pn, n ≥ 1 is |S(G)| = d
(
|G|
)
= d(pn) = n + 1.

Therefore density(OD(G)) =
2

(n + 1)− 1
=

2
n

.

The girth of a simple graph X, denoted by gir(X) is the length of a shortest cycle in X. If X is acyclic graph,
then gir(X) = ∞. Let m and n be two distinct vertices of a simple graph X. Then the diameter of X, denoted
by diam(X), is given by diam(X) = sup{d(m, n) : m, n distinct vertices of X}, where d(m, n) is the length of
the shortest path between m and n.

Theorem 3.19. For |G| > 1, the girth of order divisor graph of a group G is given by

gir
(
OD(G)

)
=

{
∞ if |G| = p

3 if |G| 6= p.

Proof. If |G| = p, a prime, then OD(G) ∼= K2, an acyclic graph. It is clear that the girth of OD(G) is infinite.
If |G| 6= p, then there are two possibilities on |G|: either |G| = pn, n > 1, or |G| 6= pn, n ≥ 1. Suppose
|G| = pn. Then, in view of Theorem [3.17], OD(G) is complete graph with three or more than three vertices
and so gir

(
OD(G)

)
= 3. On the other hand, if |G| 6= pn, in view of Theorem [3.5], the order divisor graph

OD(G) always have a three cycle C3 =
(
〈e〉 , H, G, 〈e〉

)
which is smallest for any proper subgroup H of G.

Hence gir
(
OD(G)

)
= 3.

Corollary 3.7. Let G be a group of composite order. Then the graph OD(G) is never complete bipartite.

Proof. Follows directly from Theorem [3.19], since the girth of complete bipartite graph is 4.

Theorem 3.20. Let G be a finite group. Then diam(OD(G)) ≤ 2.

Proof. Let p be a prime and n ≥ 1 be a positive integer. Then we consider the following two cases on |G|, G is
a finite group.

Case (1) Suppose |G| = pn, n ≥ 1. Then the diameter of OD(G) is 1, since this is possible from the Theorem
[3.14] and the diameter of a compete graph is 1.

Case (2) Suppose |G| 6= pn, n ≥ 1. Then OD(G) is never complete graph by the Theorem [3.5]. Therefore
diam(OD(G)) ≥ 1. But we have to prove that diam(OD(G)) ≤ 2. For this let H and K be any two distinct
vertices of OD(G). If H is adjacent to K, then obviously d(H, K) = 1 because H − K is a path of length 1.
Otherwise if H is not adjacent to K, then H and K must be proper subgroups of G. So there exist a path of
length 2 in OD(G), which is either of the following:

(1) H − 〈e〉 − K

(2) H − G− K

(3) H − H ∩ K− K

(4) H − HK− K. Therefore, d(H, K) = 2.

From the above two cases we conclude that diam(OD(G)) ≤ 2.
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4 Isomorphisms of Order Divisor Graphs

This section describes the necessary and sufficient condition for two isomorphic groups and their order
divisor graphs. Further we study Auto(OD(G)), the group of graph automorphisms of OD(G), and we show
that Auto(G) ⊆ Auto(OD(G)).

We know that a graph isomorphism f of a graph X to a graph Y is a bijection f : X → Y which preserves
adjacency. The set Auto(X) of all graph automorphisms of X forms a group under the usual composition of
functions.

Theorem 4.21. Let G and G′ be any two distinct finite groups. Then G is isomorphic to G′ if and only if |G| = |G′|
and |S(G)| = |S(G′)|.

Proof. Let S(G) and S(G′) be the set of subgroups of finite groups G and G′ respectively.
Sufficient: Suppose G ∼= G′. Then there exist an isomorphism ϕ from G onto G′.

(i) Since ϕ is bijetive, G and G′ have the same cardinality, that is, |G| = |G′|.

(ii) Let H ∈ S(G). Then ϕ(H) = {ϕ(x) : x ∈ H} is a subgroup of G′. Now define a map f : S(G) → S(G′)
by the relation f (H) = ϕ(H), for every H ∈ S(G).

f is one-to-one: Suppose that f (H) = f (K). Then ϕ(H) = ϕ(K)⇒ H = K, since ϕ is bijection.
f is onto: Let H′ belongs to S(G′). We must find a subgroup H in S(G) such that f (H) = H′. If such

a subgroup H is to exist, it must have the property that ϕ(H) = H′. For we can solve for H to obtain
H = ϕ−1(H′) = {g ∈ G : ϕ(g) ∈ H′} and verify that ϕ(ϕ−1(H′)) = H′. It is clear that f is onto.

Therefore f is a bijection from S(G) onto S(G′), hence |S(G)| = |S(G′)|.
Necessity: Let |G| = |G′| and |S(G)| = |S(G′)|. Then we shall show that G ∼= G′.
For this we define a map ψ : G → G′ by ψ(a) = a′, for every a ∈ G. Put a′ = ψ(a) and b′ = ψ(b) for

a, b ∈ G, then a bijection ψ : G → G′ satisfying ψ(ab) = a′b′ = ψ(a)ψ(b). Then we say that G and G′ are
isomorphic under the corresponding group elements. Further we shall show that G and G′ are isomorphic
under corresponding subgroups. Let a ∈ G. Then we define a map g : G → G′ by the relation g

(
〈a〉
)
= 〈ψ(a)〉

where 〈a〉 ∈ S(G) and 〈ψ(a)〉 ∈ S(G′).
g is one-to-one: For this let a, b ∈ G, then g

(
〈a〉
)
= g

(
〈b〉
)
⇒ 〈ψ(a)〉 = 〈ψ(b)〉

⇒ ψ
(
〈a〉
)
= ψ

(
〈b〉
)
⇒ 〈a〉 = 〈b〉, since ψ is a bijection.

g is onto: By the way of construction of map g, for every subgroup 〈ψ(a)〉 of G′, there exist a subgroup 〈a〉
in G such that g

(
〈a〉
)
= 〈ψ(a)〉. Therefore g is onto.

g is a homomorphism Let 〈a〉 , 〈b〉 ∈ S(G). Then

g
(
〈a〉 〈b〉

)
= g

(
〈ab〉

)
= 〈ψ(ab)〉 = ψ

(
〈ab〉

)
= ψ

(
〈a〉 〈b〉

)
= ψ

(
〈a〉
)
ψ
(
〈b〉
)

= 〈ψ(a)〉 〈ψ(b)〉 = g
(
〈a〉
)(
〈b〉
)
.

Therefore g preserves subgroups from G onto G′. Hence G ∼= G′.

Example 4.5. (1) The symmetric group S3 is isomorphic to the Dihedral group D3 because |S3| = |D3| = 6 and
|S(S3)| = |S(D3)| = 6.

(2) The symmetric group S3 is not isomorphic to Z6 since |S3| = |Z6| = 6 but |S(Z6)| = 4 and |S(Z6)| = 4.

(3) The Klein-4 group V4 is not isomorphic to Z4 since |V4| = |Z4| = 4 but |S(V4)| = 5 and |S(Z4)| = 3.

Theorem 4.22. [16] Let ϕ be an isomorphism from a group G onto G′. Then |a| = |ϕ(a)|, for every a ∈ G. Moreover,
|H| = |ϕ(H)|, for every H ∈ S(G). In particular, a group isomorphism preserves the order of elements and the order of
subgroups respectively.

The next theorem provides a necessary and sufficient condition for order divisor graphs are isomorphic.

Theorem 4.23. Let G and G′ be two finite groups. Then G ∼= G′ if and only if OD(G) ∼= OD(G′).
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Proof. Sufficient: Suppose G ∼= G′. Then there exist an isomorphism f from G onto G′. Now to show that
OD(G) ∼= OD(G′). For this we define a map ϕ : OD(G) → OD(G′) by the relation φ(H) = f (H), for every
H ∈ S(G). It is clear that φ is well defined bijective map, and further we show that φ preserves adjacency.
To do this, let (H, K) be an edge of the graph OD(G) with end vertices H and K. Then by the definition
of order divisor graph, either |H|

∣∣|K| or |K|
∣∣|H|. By the Theorem [4.22], this implies that | f (H)|

∣∣| f (K)| or
| f (K)|

∣∣| f (H)| ⇒ |φ(H)|
∣∣|φ(K)| or |φ(K)|

∣∣|φ(H)| is adjacent to φ(K) in OD(G′), it follows that φ preserves
adjacency. Hence OD(G) ∼= OD(G′).

Necessity: Suppose OD(G) ∼= OD(G′). Then there exist an isomorphism φ from a graph OD(G) to a
graph OD(G′) is a bijection that maps V

(
OD(G)

)
to V

(
OD(G′)

)
and E

(
OD(G)

)
to E

(
OD(G′)

)
such that

each edge of OD(G) with end vertices H and K is mapped to an edge with end vertices φ(H) and φ(K).
Therefore |V

(
OD(G)

)
| = |V

(
OD(G′)

)
| and |E

(
OD(G)

)
| = |E

(
OD(G′)

)
|. This shows that |G| = |G′| and

|S(G)| = |S(G′)|. Applying Theorem [4.21] yields G ∼= G′.

Example 4.6. Figure 4 shows that the relation Z2 × Z3 ∼= Z6 ⇔ OD(Z2 × Z3) ∼= OD(Z6) is true.

The following remarks, which are the main results of this section contains the complete description for
isomorphic and non-isomorphic finite groups with their corresponding order divisor graphs.

Remark 4.2. (1) OD(Zm × Zn) ∼= OD(Zm,n)⇔ gcd(m, n) = 1.

(2) OD(Um ×Un) ∼= OD(Um,n)⇔ gcd(m, n) = 1.

Remark 4.3. Let G and G′ be two finite groups. Then G 6∼= G′ ⇔ OD(G) 6∼= OD(G′). Below are the order divisor
graphs of groups V4 and Z4. This example shows that non-isomorphic groups may have the non-isomorphic order divisor
graphs.

Theorem 4.24. Let G be a finite group. Then Auto(G) ⊆ Auto(OD(G)).

Proof. Let G be a finite group. Then Auto(G) and Auto(OD(G)) are both finite groups. Now we show that
Auto(G) ⊆ Auto(OD(G)). For this we consider ϕ ∈ Auto(G), then ϕ is an isomorphism of G onto G.
Suppose two vertices H, K ∈ S(G) are adjacent in OD(G). Then either |H|

∣∣|K| or |K|
∣∣|H|. This implies that

either |ϕ(H)|
∣∣|ϕ(K)| or |ϕ(K)|

∣∣|ϕ(H)|, since |H| = |ϕ(H)|, for every H ∈ S(G).

⇒ ϕ(H) and ϕ(K) are adjacent in OD(G).

⇒ ϕ is an isomorphism from OD(G) to OD(G).

⇒ ϕ ∈ Auto(OD(G)).

Hence Auto(G) ⊆ Auto(OD(G)).
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Abstract

This paper presents an efficient method namely He’s Homotopy Perturbation Method (HHPM) is
introduced for solving hybrid fuzzy differential equations based on Seikkala derivative with initial value
problem [2]. The proposed method is tested on hybrid fuzzy differential equations. The discrete solutions
obtained through He’s Homotopy Perturbation Method are compared with Leapfrog method [13]. The
applicability of the He’s Homotopy Perturbation Method is more suitable to solve the hybrid fuzzy
differential equations. Error graphs are presented to highlight the efficiency of the He’s Homotopy
Perturbation Method.

Keywords: Fuzzy differential equations, Fuzzy initial value problems, Hybrid Fuzzy Differential Equations,
Leapfrog method, He’s Homotopy Perturbation Method.
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1 Introduction

Hybrid systems are devoted to modelling, design, and validation of interactive systems of computer
programs and continuous systems. That is, control systems that are capable of controlling complex systems
which have discrete event dynamics as well as continuous time dynamics can be modelled by hybrid system.
The differential systems containing fuzzy valued functions and interaction with a discrete time controller
are named hybrid fuzzy differential systems. For analytical results on stability properties and comparison
theorems we refer reader to [V. Lakshmikantham and X. Z. Liu [9]; V.Lakshmikantham and R. N. Mohapatra
[8]; M. Sambandham [11]].

Hyunsoo Kim and Rathinasamy Sakthivel [7] obtained the numerical solution of hybrid fuzzy differential
equations using improved predictorcorrector method. T.Jayakumar and K. Kanakarajan [2] obtained
numerical solution for hybrid fuzzy system by improved Euler method. T. Jayakumar and K. Kanagarajan
[4] derived the numerical solution for hybrid fuzzy system by Runge-Kutta method of order five, T.
Jayakumar and K. Kanakarajan [2] claimed that the numerical solution for hybrid fuzzy system by improved
Euler method. K. Kanagarajan and M. Sambath [6] stated the numerical solution hybrid fuzzy differential
equations by improved predictor- corrector method. K. Kanagarajan and S. Muthukumar [5] extended
Runge-Kutta method of order four for hybrid fuzzy differential equations. S. Pederson and M.Sambandham
[10] proposed the numerical solution to hybrid fuzzy systems.

Recently, T.Jayakumar and K. Kanagarajan [3] solved the hybrid fuzzy differential equations using
Adams Fifth Order Predictor-Corrector Method. S. Sekar and K. Prabhavathi [13] solved the same hybrid
fuzzy differential equations using Leapfrog method. The objective of this paper is to use the He’s Homotopy

∗Corresponding author.
E-mail address: sekar nitt@rediffmail.com (S. Sekar), sakthivelazhagumalai@gmail.com (A. Sakthivel).
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Perturbation Method (discussed by Sekar et al. [14–16]) to solve the hybrid fuzzy differential equations
(discussed by T.Jayakumar and K. Kanagarajan [3] and S. Sekar and K. PRabhavathi [13]).

2 He’s Homotopy Perturbation Method

In this section, we briefly review the main points of the powerful method, known as the He’s homotopy
perturbation method [14–16]. To illustrate the basic ideas of this method, we consider the following
differential equation:

A(u)− f (t) = 0, u(0) = u0, t ∈ Ω (2.1)

where A is a general differential operator, u0 is an initial approximation of Eq. (2.1), and f (t) is a known
analytical function on the domain of Ω. The operator A can be divided into two parts, which are L and N,
where L is a linear operator, but N is nonlinear. Eq. (2.1) can be, therefore, rewritten as follows:

L(u) + N(u)− f (t) = 0

By the homotopy technique, we construct a homotopy U(t, p) : Ω× [0, 1]→ <, which satisfies:

H(U, p) = (1− p)[LU(t)− Lu0(t)] + p[AU(t)− f (t)] = 0, p ∈ [0, 1], t ∈ Ω (2.2)

or
H(U, p) = LU(t)− Lu0(t) + pLu0(t) + p[NU(t)− f (t)] = 0, p ∈ [0, 1], t ∈ Ω (2.3)

where p ∈ [0, 1] is an embedding parameter, which satisfies the boundary conditions. Obviously, from Eqs.
(2.2) or (2.3) we will have H(U, 0) = LU(t)− Lu0(t) = 0, H(U, 1) = AU(t)− f (t) = 0.

The changing process of p from zero to unity is just that of U(t, p) from u0(t) to u(t). In topology, this
is called homotopy. According to the He’s Homotopy Perturbation method, we can first use the embedding
parameter p as a small parameter, and assume that the solution of Eqs. (2.2) or (2.3) can be written as a power
series in p :

U =
∞

∑
n=0

pnUn = U0 + pU1 + p2U2 + p3U3 + ... (2.4)

Setting p = 1, results in the approximate solution of Eq.(2.1)

U(t) = lim
p→1

U = U0 + U1 + U2 + U3 + ...

Applying the inverse operator L−1 =
∫ t

0 (.)dt to both sides of Eq. (2.3), we obtain

U(t) = U(0) +
∫ t

0
Lu0(t)dt− p

∫ t

0
Lu0(t)dt− p[

∫ t

0
(NU(t)− f (t))dt] (2.5)

where U(0) = u0.
Now, suppose that the initial approximations to the solutions, Lu0(t), have the form

Lu0(t) =
∞

∑
n=0

αnPn(t) (2.6)

where αn are unknown coefficients, and P0(t), P1(t), P2(t), ... are specific functions. Substituting (2.4) and (2.6)
into (2.5) and equating the coefficients of p with the same power leads to

p0 : U0(t) = u0 + ∑∞
n=0 αn

∫ t
0 Pn(t)dt

p1 : U1(t) = −∑∞
n=0 αn

∫ t
0 Pn(t)dt−

∫ t
0 (NU0(t)− f (t))dt

p2 : U2(t) = −
∫ t

0 NU1(t)dt
...

pj : Uj(t) = −
∫ t

0 NUj−1(t)dt

(2.7)
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Now, if these equations are solved in such a way that U1(t) = 0, then Eq. (2.7) results in U1(t) = U2(t) =
U3(t) = . . . = 0 and therefore the exact solution can be obtained by using

U(t) = U0(t) = u0 +
∞

∑
n=0

αn

∫ t

0
Pn(t)dt (2.8)

It is worth noting that, if U(t) is analytic at t = t0, then their Taylor series

U(t) =
∞

∑
n=0

an(t− t0)
n

can be used in Eq. (2.8), where a0, a1, a2, ... are known coefficients and αn are unknown ones, which must be
computed.

3 Some basic results on hybrid fuzzy differential equations

Denote by E1 the set of all functions u : R→ [0, 1] such that

(i) u is normal, that is, there exist an x0 ∈ R such that u(x0) = 1,

(ii) u is a fuzzy convex, that is, for x, y ∈ R and 0 ≤ λ ≤ 1, u(λx + (1λ)y) ≥ min{u(x), u(y)}

(iii) u is upper semicontinuous, and

(iv) [u]0 = {x ∈ R : u(x) > 0} is compact. For 0 < α ≤ 1, we define [u]α = {x ∈ R : u(x) ≥ α}.

An example of a u ∈ E1 is given by

u(x) =


4x− 3, if x ∈ (0.75, 1],

−2x + 3, if x ∈ (1, 1.5),

0, if x /∈ (0.75, 1.5).

The α-level sets of u in (6.1) are given by [u]α = [0.75 + 0.25α, 1.50.5α]. For later purpose, we define ô ∈ E1 as
ô(x) = 1 if x = 0 and ô(x) = 0 if x 6= 0.

Next we review the Seikkala derivative [12] of x : I → E1 where I ⊂ R is an interval. If [x(t)a] =

[xa(t), x̄a(t)] for all t ∈ I and a ∈ [0, 1], then [x′(t)a] = [x′(t)a, (x̄a)′(t)] if x′(t) ∈ E1. Next consider the initial
value problem (IVP)

u(x) =

{
x′(t) = f (t, x(t)),

x(0) = x0
(3.9)

where f : [0, ∞) × R → R is continuous. We would like to interpret (3.9) using the Seikkala derivative
and x0 ∈ E1. Let [x0]

a = [xa
0, x̄a

0] and [x(t)]a = [xa(t), x̄a(t)]. By the Zadeh extension principle we get
f : [0, ∞) × E1 → E1 where [ f (t, x)]a = min f (t, u) : u ∈ [xa(t), x̄a(t)], max f (t, u) : u ∈ [xa(t), x̄a(t)]. Then
x : [0, ∞)→ E1 is a solution of (6.1) using the Seikkala derivative and x0 ∈ E1 if

(xa)′(t) = min f (t, u) : u ∈ [xa(t), x̄a(t)], xa(0) = xa
0,

(x̄a)′(t) = max f (t, u) : u ∈ [xa(t), x̄a(t)], x̄a(0) = x̄a
0, for all t ∈ [0, ∞) and a ∈ [0, 1]. Lastly consider an

f : [0, ∞)× R× R→ R which is continuous and the IVP{
x′(t) = f (t, x(t), k),

x(0) = x0
(3.10)

As in (3.9), to interpret (3.10) using the Seikkala derivative and x0, k ∈ E1, by the Zadeh extension principle
we use f : [0, ∞)× E1 × E1 → E1 where

[ f (t, x, k)]a = [min f (t, u, uk) : u ∈ [xa(t), x̄a(t)], uk ∈ [ka, k̄a],
max f (t, u, uk) : u ∈ [xa(t), x̄a(t)], uk ∈ [ka, k̄a]],

where ka = [ka, k̄a]]. Then x : [0, ∞)→ E1 is a solution of (6.2) using the Seikkala derivative and x0, k ∈ E1 if
(xa)′(t) = min f (t, u, uk) : u ∈ [xa(t), x̄a(t)], uk ∈ [ka, k̄a], xa(0) = xa

0,
(x̄a)′(t) = max f (t, u, uk) : u ∈ [xa(t), x̄a(t)], uk ∈ [ka, k̄a], xa(0) = xa

0,
for all t ∈ [0, ∞) and a ∈ [0, 1].
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4 The hybrid fuzzy differential systems

In this section, we study the fuzzy initial value problem for a hybrid fuzzy differential systems.

x′(t) = f (t, x(t), λkx(tk)), t ∈ [tk, tk+1], x(tk) = xtk (4.11)

where x′ denotes Seikkala differentiation, 0 ≤ t0 < t1 < ... < tk < ..., tk → ∞, f ∈ C[R+ × E1 × E1, E1], λk ∈
C[E1, E1]. To be specific the system look like

x′(t) =



x′0(t) = f (t, x0(t), λ0x(t0)), x0(t0) = x0, t0 ≤ t ≤ t1,

x′1(t) = f (t, x1(t), λ1x(t1)), x1(t1) = x1, t1 ≤ t ≤ t2,

...

x′k(t) = f (t, xk(t), λkx(tk)), xk(tk) = xk, tk ≤ t ≤ tk+1,

...

(4.12)

Assuming that the existence and uniqueness of solution of (4.11) hold for each [tk, tk+1], by the solution of
(4.12) we mean the following function:

x(t) = x(t, t0, x0)



x0(t), t0 ≤ t ≤ t1,

x1(t), t1 ≤ t ≤ t2,

...

xk(t), tk ≤ t ≤ tk+1,

...

(4.13)

We note that the solution of (4.13) are piecewise differentiable in each interval for t ∈ [tk, tk+1] for a fixed
xk ∈ E1 and k = 0, 1, 2, ...

Using a representation of fuzzy numbers studied by Goestschel and Woxman [1] and Wu and Ma [17], we
may represent x ∈ E1 by a pair of functions (x(r), x̄(r)), 0 ≤ r ≤ 1, such that

(i) (x(r), is bounded, left continuous, and non decreasing,
(ii) x̄(r) is bounded, left continuous, and non increasing, and
(iii) (x(r) ≤ x̄(r)), 0 ≤ r ≤ 1.

For example, u ∈ E1 given in (1) is represented by (u(r), ūr) = (0.75 + 0.25r, 1.5− 0.5r), 0 ≤ r ≤ 1, which is
similar to [u]a given by (3.10).

Therefore we may replace (4.13) by an equivalent system{
x′(t) = f (t, x, λkx(tk)) ≡ Fk(t, x, x̄), (x(tk) = x̄k),

x′(t) = f̄ (t, x, λkx(tk)) ≡ Gk(t, x, x̄), (x(tk) = x̄k),

which possesses a unique solution (x, x̄) which is a fuzzy function. That is for each t, the pair [x(t; r), x̄(t; r)]
is a fuzzy number, where x(t; r), x̄(t; r) are respectively the solutions of the parametric form given by{

x′(t) = Fk(t, x(t; r), x̄(t, r)), x(tk; r) = xk(r),

x′(t) = Gk(t, x(t; r), x̄(t, r)), x(tk; r) = xk(r),

for r ∈ [0, 1].

5 Numerical Experiments

In this section, the exact solutions and approximated solutions obtained by Leapfrog method and He’s
Homotopy Perturbation Method. To show the efficiency of the He’s Homotopy Perturbation Method, we
have considered the following problem taken from [13], with step size r = 0.1 along with the exact solutions.

The discrete solutions obtained by the two methods, Leapfrog method and He’s Homotopy Perturbation
Method. The absolute errors between them are tabulated and are presented in Table 1. To distinguish the
effect of the errors in accordance with the exact solutions, graphical representations are given for selected
values of ′r′ and are presented in Figures 1 – 2 for the following problem, using three dimensional effects.
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5.1 Example

Consider the following hybrid fuzzy IVP, [13]

x′(t) = x(t) + m(t)λkx(tk), t ∈ [tk, tk+1], tk = k, k = 0, 1, 2, 3, ...
x(t, r) = [(0.75 + 0.25r)et, (1.125− 0.125r)et], 0 ≤ r ≤ 1,

}
(5.14)

Where

m(t) =

{
2(t(mod1)) if t(mod1) ≤ 0.5

2(1− t(mod1)) if t(mod1) > 0.5

λk(µ) =

{
0̂ if k = 0

µ if k = 1, 2, ...

The hybrid fuzzy IVP (5.14) is equivalent to the following systems of fuzzy IVPs:
x′0(t) = x0(t), t ∈ [0, 1],
x(0; r) = [(0.75 + 0.25r)et, (1.125− 0.125r)et], 0 ≤ r ≤ 1,
x′i(t) = xi(t) + m(t)xi−1(t), t ∈ [ti, ti+1], xi(t) = xi−1(ti), i = 1, 2, ...

In (5.14) x(t) + m(t)λkx(tk) is continuous function of t, x and λkx(tk). Therefore by Example 5.1 of Kaleva [?
], for each k = 0, 1, 2, ... the fuzzy IVP

x′(t) = x(t) + m(t)λkx(tk), t ∈ [tk, tk+1], tk = k,
x(tk) = xtK

}
(5.15)

has a unique solution [tk, tk+1]. To numerically solve the hybrid fuzzy IVP (5.15) we applied the He’s
Homotopy Perturbation Method for hybrid fuzzy differential equation with N = 2 to obtain y1,2(r)
approximating x(2.0; r). The Exact and Approximate solutions by Leapfrog method and He’s Homotopy
Perturbation Method are compared and the absolute error were shown in Table 1. From the Table 1, shows
that He’s Homotopy Perturbation Method approximate solutions have less error compare to Leapfrog
method solutions [? ] in the all the stages.

Table 1: Error calculations

Leapfrog Error HHPM Error
t Y1(ti; r) Y2(ti; r) Y1(ti; r) Y2(ti; r)

0.1 1.01E-09 1.11E-09 1.01E-11 1.11E-11
0.2 2.01E-09 2.11E-09 2.01E-11 2.11E-11
0.3 3.01E-09 3.11E-09 3.01E-11 3.11E-11
0.4 4.01E-09 4.11E-09 4.01E-11 4.11E-11
0.5 5.01E-09 5.11E-09 5.01E-11 5.11E-11
0.6 6.01E-09 6.11E-09 6.01E-11 6.11E-11
0.7 7.01E-09 7.11E-09 7.01E-11 7.11E-11
0.8 8.01E-09 8.11E-09 8.01E-11 8.11E-11
0.9 9.01E-09 9.11E-09 9.01E-11 9.11E-11
1.0 1.01E-08 1.11E-08 1.01E-10 1.11E-10

6 Conclusion

The obtained results of the fuzzy hybrid differential equation show that the He’s Homotopy Perturbation
method works well for finding the solutions. From the Table 1, it can be observed that for most of the time
intervals, the absolute error is less in He’s Homotopy Perturbation method when compared to the Leapfrog
method [13], which yields a little error, along with the exact solutions of the problem.

From the results shown in the Figures 1 – 2, it can be said that the error is very less in He’s Homotopy
Perturbation method when compared to the Leapfrog method [S. Sekar and K. Prabhavathi [13]]. Moreover,
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Figure 1: Error estimation of Example 5.1 at Y1(ti; r)

Figure 2: Error estimation of Example 5.1 at Y2(ti; r)
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the He’s Homotopy Perturbation method is highly stable because it is based on the Perturbation method and
hence one can get the results for any length of time.
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