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Abstract. The purpose of this paper is to present new results on the existence, uniqueness and monotonicity of positive
solutions for hybrid Caputo-Hadamard fractional integro-differential equations. Our results are based on the method of upper
and lower solutions, and the Dhage and Banach fixed point theorems. Two examples are given to illustrate our obtained
results.
AMS Subject Classifications: 40A05, 40A99, 46A70, 46A99.
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1. Introduction

Fractional differential equations with and without delay arise from a variety of applications including in
various fields of science and engineering such as applied sciences, physics, chemistry, biology, medicine, etc. In
particular, problems concerning qualitative analysis of fractional differential equations with and without delay
have received the attention of many authors, see [1]–[14], [16]–[22] and the references therein.

Hybrid Fractional differential equations arise from a variety of different areas of applied mathematics and
physics, e.g., in the deflection of a curved beam having a constant or varying cross section, a three-layer beam,
electromagnetic waves or gravity driven flows and so on [2, 3, 13, 14, 21, 22].

∗Corresponding author. Email address: abd ardjouni@yahoo.fr (Abdelouaheb Ardjouni), moussakoussa84@yahoo.fr (Moussa
Haoues)

https://www.malayajournal.org/index.php/mjm/index c©2021 by the authors.



Hybrid Caputo-Hadamard fractional integro-differential equations

Let J = [t0, T ]. Haoues et al. [18] investigated the existence, uniqueness and monotonicity of positive
solutions for the following hybrid fractional integro-differential equation

CDα
t0

(
x (t)

p (t) + 1
Γ(β)

∫ t
t0

(t− s)β−1
g (s, x (s)) ds

)
= f (t, x (t)) , t ∈ J,

x (t0) = p (t0) θ ≥ 0,

where CDα
t0 is the Caputo fractional derivative of order 0 < α ≤ 1, 0 < β ≤ 1, 0 ≤ t0 < T , f, g : J × R → R

and p : J → R are given continuous functions. By using the method of the upper and lower solutions and the
Dhage and Banach fixed point theorems, the authors obtained the existence, uniqueness and monotonicity of a
positive solution.

In this paper, we extend the results in [18] by proving the existence, uniqueness and monotonicity of positive
solutions for the following hybrid nonlinear Caputo-Hadamard fractional integro-differential equation

CHDα
t0

 x (t)

p (t) + 1
Γ(β)

∫ t
t0

(
log t

s

)β−1
g (s, x (s)) dss

 = f (t, x (t)) , t ∈ J,

x (t0) = p (t0) θ ≥ 0,

(1.1)

where CHDα
t0 is the Caputo-Hadamard fractional derivative of order 0 < α ≤ 1, 0 < β ≤ 1, 1 ≤ t0 < T ,

f, g : J × R → R and p : J → R are given continuous functions. To prove the existence, uniqueness and
monotonicity of positive solutions, we transform (1.1) into an integral equation and then by the method of upper
and lower solutions and use Dhage and Banach fixed point theorems.

2. Preliminaries

Let X = C (J) be the Banach space of all real-valued continuous functions defined on the compact interval
J , endowed with the maximum norm. Define the subset Cθ = {x ∈ X : x (t) ≥ p (t0) θ, t ∈ J} of X .

Definition 2.1 ([19]). The Hadamard fractional integral of order α > 0 for a continuous function x : [t0,+∞)→
R is defined as

HIαt0x (t) =
1

Γ (α)

∫ t

t0

(
log

t

s

)α−1

x (s)
ds

s
.

Definition 2.2 ([19]). The Caputo-Hadamard fractional derivative of order α > 0 for a continuous function
x : [t0,+∞)→ R is defined as

CHDα
t0x (t) =

1

Γ (n− α)

∫ t

t0

(
log

t

s

)n−α−1

δn (x) (s)
ds

s
,

where δn =
(
t ddt
)n

and n = [α] + 1.

Lemma 2.3 ([19]). Let α > 0 and x ∈ Cn−1 [t0,+∞) and δn (x) exists almost everywhere on any bounded
interval of [t0,+∞). Then

(
HIαCHt0 Dα

t0x
)

(t) = x (t)−
n−1∑
k=0

x(k) (t0)

k!
(log t)

k
.

In particular, when 0 < α ≤ 1,
(
HIαCHt0 Dα

t0x
)

(t) = x (t)− x (t0).
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A. Ardjouni and M. Haoues

Definition 2.4. For any x ∈ [a, b] ⊂ R+, we define the upper-control function by

U (t, x) = sup {f (t, s) : a ≤ s ≤ x} ,

and the lower-control function by

L (t, x) = inf {f (t, s) : x ≤ s ≤ b} .

It is obvious that these functions are non-decreasing on [a, b], i.e.

L (t, x) ≤ f (t, x) ≤ U (t, x) , t ∈ J.

Definition 2.5. A function x ∈ X is positive bounded below if x ∈ Cθ. In particular, we call x as nonnegative
function if p (t0) θ = 0 and positive function if p (t0) θ > 0.

The following fixed point theorem due to Dhage [15] is essential tool for the proof of the first result.

Theorem 2.6 ([15]). Let S be a nonempty bounded closed convex subset of a Banach algebraX . Let B : S → X

and A : S → X be two operators such that
i) A is Lipschiz with a Lipschitz constant σ,
ii) B is completely continuous,
iii) AxBy ∈ S for all x, y ∈ S.

Then the product operator equation
AxBx = x,

has a solution, whenever σM < 1, where M = sup {‖Bx‖ : x ∈ S}.

3. Existence of positive solutions

In this section, we will discuss the existence of positive solutions for (1.1). We introduce the following
conditions

(H1) For t ∈ J and x ∈ X , we have

p (t) +
1

Γ (β)

∫ t

t0

(
log

t

s

)β−1

g (s, x (s))
ds

s
> 0,

and

θ +
1

Γ (α)

∫ t

t0

(
log

t

s

)α−1

f (s, x (s))
ds

s
≥ 0.

(H2) Let x∗, x∗ ∈ Cθ, such that x∗ (t0) = x∗ (t0) = p (t0) θ and p (t0) θ ≤ x∗ (t) ≤ x∗ (t) ≤ b, t ∈ J .
Moreover, 

CHDα
t0

 x∗ (t)

p (t) + 1
Γ(β)

∫ t
t0

(
log t

s

)β−1
g (s, x∗ (s)) dss

 ≥ U (t, x∗ (t)) ,

CHDα
t0

 x∗ (t)

p (t) + 1
Γ(β)

∫ t
t0

(
log t

s

)β−1
g (s, x∗ (s)) dss

 ≤ L (t, x∗ (t)) ,

(3.1)

for any t ∈ J .
(H3) Let g be monotonic non-decreasing with respect to x and there exists Lg > 0 such that

|g (t, x)− g (t, y)| ≤ Lg |x− y| , t ∈ J, x, y ∈ R,
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Hybrid Caputo-Hadamard fractional integro-differential equations

where

0 < Lg

(
log T

t0

)β
Γ (β + 1)

|θ|+ cf

(
log T

t0

)α
Γ (α+ 1)

 < 1.

(H4) There exists Lf > 0 such that

|f (t, x)− f (t, y)| ≤ Lf |x− y| , t ∈ J, x, y ∈ R.

The functions x∗ and x∗ are respectively called the pair of upper and lower solutions for (1.1).
From Lemma 2.3, we deduce the following lemma.

Lemma 3.1. Suppose that
x

h
is differentiable on J . Then the equation

CHDα
t0

(
x (t)

h (t)

)
= f (t, x (t)) , t ∈ J,

x (t0) = p (t0) θ,
(3.2)

is equivalent to

x (t) = h (t)

(
θ +

1

Γ (α)

∫ t

t0

(
log

t

s

)α−1

f (s, x (s))
ds

s

)
, t ∈ J. (3.3)

By the previous lemma, (1.1) is equivalent to

x (t) =

(
p (t) +

1

Γ (β)

∫ t

t0

(
log

t

s

)β−1

g (s, x (s))
ds

s

)

×

(
θ +

1

Γ (α)

∫ t

t0

(
log

t

s

)α−1

f (s, x (s))
ds

s

)
, t∈ J.

Hence, according to the Dhage fixed point theorem 2.6, we define the operators A,B : Cθ → Cθ by

(Ax) (t) = p (t) +
1

Γ (β)

∫ t

t0

(
log

t

s

)β−1

g (s, x (s))
ds

s
, (3.4)

and

(Bx) (t) = θ +
1

Γ (α)

∫ t

t0

(
log

t

s

)α−1

f (s, x (s))
ds

s
, (3.5)

for t ∈ J .

Theorem 3.2. Suppose that (H1)− (H3) are satisfied, then the problem (1.1) has at last one positive bounded
below solution x ∈ Cθ satisfying x∗ (t) ≤ x (t) ≤ x∗ (t), t ∈ J .

Proof. Let S = {x ∈ Cθ : x∗ (t) ≤ x (t) ≤ x∗ (t) , t ∈ J}, endowed with the norm ‖x‖ = maxt∈J |x (t)|, then
for any x ∈ S, we have ‖x‖ ≤ b. Hence, S is a convex, bounded and closed subset of Cθ. Moreover, the
continuity of g and f implies the continuity of the operators A and B on S. Now, if x ∈ S there exists a positive
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constant cf such that max {|f (t, x (t))| : (t, x) ∈ J × S} ≤ cf . Then

|(Bx) (t)| =

∣∣∣∣∣θ +
1

Γ (α)

∫ t

t0

(
log

t

s

)α−1

f (s, x (s))
ds

s

∣∣∣∣∣
≤ |θ|+ 1

Γ (α)

∫ t

t0

(
log

t

s

)α−1

|f (s, x (s))| ds
s

≤ |θ|+ cf
Γ (α)

∫ t

t0

(
log

t

s

)α−1
ds

s

≤ |θ|+
cf

(
log t

t0

)α
Γ (α+ 1)

.

So,

‖Bx‖ ≤ |θ|+
cf

(
log T

t0

)α
Γ (α+ 1)

.

Hence, B (S) is uniformly bounded. Next, we show the equicontinuity of B. Let x ∈ S, then for any t1, t2 ∈ J ,
t2 > t1, we get

|(Bx) (t2)− (Bx) (t1)|

=
1

Γ (α)

∣∣∣∣∣
∫ t2

t0

(
log

t2
s

)α−1

f (s, x (s))
ds

s
−
∫ t1

t0

(
log

t1
s

)α−1

f (s, x (s))
ds

s

∣∣∣∣∣
≤ 1

Γ (α)

∫ t1

t0

((
log

t1
s

)α−1

−
(

log
t2
s

)α−1
)
|f (s, x (s))| ds

s

+
1

Γ (α)

∫ t2

t1

(
log

t2
s

)α−1

|f (s, x (s))| ds
s

≤ cf
Γ (α)

(∫ t1

t0

(
log

t1
s

)α−1

−
(

log
t2
s

)α−1
ds

s
+

∫ t2

t1

(
log

t2
s

)α−1
ds

s

)

≤ cf
Γ (α+ 1)

((
log

t1
t0

)α
−
(

log
t2
t0

)α
+ 2

(
log

t2
t1

)α)
≤ 2cf

Γ (α+ 1)

(
log

t2
t1

)α
.

As t1 → t2 the right-hand side of the previous inequality is independent of x and tends to zero. Therefore, B (S)

is equicontinuous. The Arzela-Ascoli theorem implies that B is compact. Hence B is completely continuous.
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Hybrid Caputo-Hadamard fractional integro-differential equations

By hypothesis (H3), for any x, y ∈ S, we get

|(Ax) (t)− (Ay) (t)|

=

∣∣∣∣∣ 1

Γ (β)

∫ t

t0

(
log

t

s

)β−1

g (s, x (s))
ds

s
− 1

Γ (β)

∫ t

t0

(
log

t

s

)β−1

g (s, y (s))
ds

s

∣∣∣∣∣
≤ 1

Γ (β)

∫ t

t0

(
log

t

s

)β−1

|g (s, x (s))− g (s, y (s))| ds
s

≤ Lg
Γ (β)

(∫ t

t0

(
log

t

s

)β−1
ds

s

)
‖x− y‖

≤
Lg

(
log T

t0

)β
Γ (β + 1)

‖x− y‖ .

Then A is Lipschiz mapping with Lipschitz constant σ = Lg

(
log T

t0

)β
Γ(β+1) , that satisfying σ sup {‖Bx‖ : x ∈ S} <

1.
We need to show that AxBy ∈ S for all x, y ∈ S. Indeed, by Definition 2.4 and the hypothesis (H3), we

obtain

(Ax) (t) (By) (t)

=

(
p (t) +

1

Γ (β)

∫ t

t0

(
log

t

s

)β−1

g (s, x (s))
ds

s

)(
θ +

1

Γ (α)

∫ t

t0

(
log

t

s

)α−1

f (s, y (s))
ds

s

)

≤

(
p (t) +

1

Γ (β)

∫ t

t0

(
log

t

s

)β−1

g (s, x (s))
ds

s

)(
θ +

1

Γ (α)

∫ t

t0

(
log

t

s

)α−1

U (s, y (s))
ds

s

)

≤

(
p (t) +

1

Γ (β)

∫ t

t0

(
log

t

s

)β−1

g (s, x∗ (s))
ds

s

)(
θ +

1

Γ (α)

∫ t

t0

(
log

t

s

)α−1

U (s, x∗ (s))
ds

s

)
≤ x∗ (t) ,

and

(Ax) (t) (By) (t)

≥

(
p (t) +

1

Γ (β)

∫ t

t0

(
log

t

s

)β−1

g (s, x (s))
ds

s

)(
θ +

1

Γ (α)

∫ t

t0

(
log

t

s

)α−1

L (s, y (s))
ds

s

)

≥

(
p (t) +

1

Γ (β)

∫ t

t0

(
log

t

s

)β−1

g (s, x∗ (s))
ds

s

)(
θ +

1

Γ (α)

∫ t

t0

(
log

t

s

)α−1

L (s, x∗ (s))
ds

s

)
≥ x∗ (t) .

Hence, x∗ (t) ≤ Ax (t)By (t) ≤ x∗ (t), t ∈ J , that is (AxBy) (S) ⊆ S. According to the Dhage fixed point
theorem, the operator equation AxBx = x has at last one fixed point x ∈ S. Therefore, the problem (1.1) has at
last one positive bounded below solution x ∈ Cθ. �

Next, we consider many particular cases of the previous theorem.

Corollary 3.3. Suppose that (H3) holds and there exist k1, k2, k3, k4 ∈ X , such that

k1 (t) ≤ g (t, x (t)) ≤ k2 (t) , (3.6)
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and
k3 (t) ≤ f (t, x (t)) ≤ k4 (t) . (3.7)

If

p (t) +
1

Γ (β)

∫ t

t0

(
log

t

s

)β−1

k1 (s)
ds

s
> 0, (3.8)

and

θ +
1

Γ (α)

∫ t

t0

(
log

t

s

)α−1

k3 (s)
ds

s
≥ 0, (3.9)

then the problem (1.1) has at least one positive bounded below solution. Moreover(
p (t) +

1

Γ (β)

∫ t

t0

(
log

t

s

)β−1

k1 (s)
ds

s

)(
θ +

1

Γ (α)

∫ t

t0

(
log

t

s

)α−1

k3 (s)
ds

s

)
≤ x (t)

≤

(
p (t) +

1

Γ (β)

∫ t

t0

(
log

t

s

)β−1

k2 (s)
ds

s

)(
θ +

1

Γ (α)

∫ t

t0

(
log

t

s

)α−1

k4 (s)
ds

s

)
.

Proof. By the assumption (3.7) and the definition of control functions, we have

k3 (t) ≤ L (t, x (t)) ≤ U (t, x (t)) ≤ k4 (t) ,

for any t ∈ J . Now, we consider the fractional differential equations

CHDα
t0

 x (t)

p (t) + 1
Γ(β)

∫ t
t0

(
log t

s

)β−1
k1 (s) dss

 = k3 (t) , x (t0) = p (t0) θ, (3.10)

and

CHDα
t0

 x (t)

p (t) + 1
Γ(β)

∫ t
t0

(
log t

s

)β−1
k2 (s) dss

 = k4 (t) , x (t0) = p (t0) θ. (3.11)

In accordance of Lemma 3.1, the solutions of (3.10) and (3.11) are given respectively by

x (t) =

(
p (t) +

1

Γ (β)

∫ t

t0

(
log

t

s

)β−1

k1 (s)
ds

s

)(
θ +

1

Γ (α)

∫ t

t0

(
log

t

s

)α−1

k3 (s)
ds

s

)
,

and

x (t) =

(
p (t) +

1

Γ (β)

∫ t

t0

(
log

t

s

)β−1

k2 (s)
ds

s

)(
θ +

1

Γ (α)

∫ t

t0

(
log

t

s

)α−1

k4 (s)
ds

s

)
.

Therefore,

x (t) =

(
p (t) +

1

Γ (β)

∫ t

t0

(
log

t

s

)β−1

k1 (s)
ds

s

)(
θ +

1

Γ (α)

∫ t

t0

(
log

t

s

)α−1

k3 (s)
ds

s

)

≤

(
p (t) +

1

Γ (β)

∫ t

t0

(
log

t

s

)β−1

k1 (s)
ds

s

)(
θ +

1

Γ (α)

∫ t

t0

(
log

t

s

)α−1

L (s, x (s))
ds

s

)
,
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and

x (t) =

(
p (t) +

1

Γ (β)

∫ t

t0

(
log

t

s

)β−1

k2 (s)
ds

s

)(
θ +

1

Γ (α)

∫ t

t0

(
log

t

s

)α−1

k4 (s)
ds

s

)

≥

(
p (t) +

1

Γ (β)

∫ t

t0

(
log

t

s

)β−1

k2 (s)
ds

s

)(
θ +

1

Γ (α)

∫ t

t0

(
log

t

s

)α−1

U (s, x (s))
ds

s

)
.

One can define the upper and lower solutions as

x∗ (t) =

(
p (t) +

1

Γ (β)

∫ t

t0

(
log

t

s

)β−1

k2 (s)
ds

s

)(
θ +

1

Γ (α)

∫ t

t0

(
log

t

s

)α−1

U (s, x∗ (s))
ds

s

)
,

and

x∗ (t) =

(
p (t) +

1

Γ (β)

∫ t

t0

(
log

t

s

)β−1

k1 (s)
ds

s

)(
θ +

1

Γ (α)

∫ t

t0

(
log

t

s

)α−1

L (s, x∗ (s))
ds

s

)
.

Hence by Theorem 3.2, the problem (1.1) has a positive bounded below solution x ∈ Cθ. �

Corollary 3.4. Let k ∈ X and ϕ ∈ R+ such that ϕ < k (t) = limx→∞ f (t, x) < ∞ for t ∈ J . If (H3), (3.6)
and (3.8) hold and θ ∈ R+, then the problem (1.1) has at least one positive bounded below solution. Moreover
for 0 < ω < ϕ,

(
p (t) +

1

Γ (β)

∫ t

t0

(
log

t

s

)β−1

k1 (s)
ds

s

)θ +
(ϕ− ω)

(
log t

t0

)α
Γ (α+ 1)


≤ x (t)

≤

(
p (t) +

1

Γ (β)

∫ t

t0

(
log

t

s

)β−1

k2 (s)
ds

s

)θ +
1

Γ (α)

∫ t

t0

(
log

t

s

)α−1

k (s)
ds

s
+
ω
(

log t
t0

)α
Γ (α+ 1)

 .

Corollary 3.5. Suppose that (H3), (3.6) and (3.8) hold, and

lim
x→θ

f (t, x)

x
= γ (t) ,

where γ ∈ X , t ∈ J . Then there exists a positive bounded below solution of the problem (1.1).

Corollary 3.6. Let µ, ν and ξ are real positive numbers such that µ ≤ f (t, x (t)) ≤ νx (t) + ξ, for t ∈ J . If
(3.6), (3.8) and (H3) hold and θ ∈ R+, then the problem (1.1) has at least one positive bounded below solution.
Moreover(

p (t) +
1

Γ (β)

∫ t

t0

(
log

t

s

)β−1

k1 (s)
ds

s

)θ +
µ
(

log t
t0

)α
Γ (α+ 1)


≤ x (t)

≤

(
p (t) +

1

Γ (β)

∫ t

t0

(
log

t

s

)β−1

k2 (s)
ds

s

)(
θ +

1

Γ (α)

∫ t

t0

(
log

t

s

)α−1

(νx (s) + ξ)
ds

s

)
.
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4. Uniqueness of positive solutions

In this portion, we will prove the uniqueness of the bounded below positive solution of (1.1) using the Banach
contraction mapping principle.

Theorem 4.1. Suppose that (H1)− (H4) hold. If

Lg

(
log T

t0

)β
Γ (β + 1)

θ + cf

(
log T

t0

)α
Γ (α+ 1)

+

pm + cg

(
log T

t0

)β
Γ (β + 1)

Lf

(
log T

t0

)α
Γ (α+ 1)

< 1, (4.1)

then the problem (1.1) has a unique positive bounded below solution.

Proof. Let cf and cg are positive real numbers such that,

|f (t, x (t))| ≤ cf , |g (t, x (t))| ≤ cg,

for any t ∈ J and x, y ∈ Cθ. According to Theorem 3.2, the problem (1.1) has at least one positive bounded
below solution in S. Now, we need only to prove that the product operator AxBx is a contraction mapping on
X , where A and B are defined as in (3.4) and (3.5). Indeed, for any x, y ∈ Cθ and t ∈ J , we get

|(AxBx) (t)− (AyBy) (t)|

≤

(
1

Γ (β)

∫ t

t0

(
log

t

s

)β−1

|g (s, x (s))− g (s, y (s))| ds
s

)(
θ +

1

Γ (α)

∫ t

t0

(
log

t

s

)α−1

|f (s, x (s))| ds
s

)

+

(
|p (t)|+ 1

Γ (β)

∫ t

t0

(
log

t

s

)β−1

|g (s, y (s))| ds
s

)

×

(
1

Γ (α)

∫ t

t0

(
log

t

s

)α−1

|f (s, x (x))− f (s, y (s))| ds
s

)

≤

Lg
(

log t
t0

)β
Γ (β + 1)

‖x− y‖


θ + cf

(
log t

t0

)α
Γ (α+ 1)



+

|p (t)|+ cg

(
log t

t0

)β
Γ (β + 1)


Lf

(
log t

t0

)α
Γ (α+ 1)

‖x− y‖



≤

Lg
(

log T
t0

)β
Γ (β + 1)

θ + cf

(
log T

t0

)α
Γ (α+ 1)

+

pm + cg

(
log T

t0

)β
Γ (β + 1)

Lf

(
log T

t0

)α
Γ (α+ 1)

 ‖x− y‖ ,
where pm = maxt∈J |p (t)|. Hence, by (4.1) the product operator AxBx is a contraction mapping. Therefore,
the problem (1.1) has a unique positive bounded below solution x ∈ Cθ. �

5. Monotonicity of positive solutions

Theorem 5.1. Let p, g and f be non-decreasing functions with respect to both variables, f (t0, x (t0)) ≥ 0 and
g (t0, x (t0)) ≥ 0. Moreover, let (H1)− (H4) hold, then there is a monotonic non-decreasing positive bounded
below solution of the problem (1.1).
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Proof. Define a subset R = {x ∈ S : x is nondecreasing on J}, then R is a closed and convex subset of S. The
operator B is uniformly bounded and completely continuous and the operator A is Lipschitzian with Lipschitz
constant σ, and satisfying σ sup {‖Bx‖ : x ∈ R} ≤ 1. It remains for applying the Dhage theorem that AxBx ∈
R whenever x, y ∈ R. To this end, it suffices to consider x, y ∈ R, t1, t2 ∈ J with t1 < t2. It follows that

Ax (t2)By (t2)−Ax (t1)By (t1)

= Ax (t2) (By (t2)− By (t1)) + (Ax (t2)−Ax (t1))By (t1)

=
1

Γ (α)

(
p (t2) +

1

Γ (β)

∫ t2

t0

(
log

t2
s

)β−1

g (s, x (s))
ds

s

)

×

(∫ t1

t0

((
log

t2
s

)α−1

−
(

log
t1
s

)α−1
)
f (s, y (s))

ds

s
+

∫ t2

t1

(
log

t2
s

)α−1

f (s, y (s))
ds

s

)

+

(
p (t2)− p (t1) +

1

Γ (β)

∫ t1

t0

((
log

t2
s

)β−1

−
(

log
t1
s

)β−1
)
g (s, x (s))

ds

s

+
1

Γ (β)

∫ t2

t1

(
log

t2
s

)β−1

g (s, x (s))
ds

s

)(
θ +

1

Γ (α)

∫ t1

t0

(
log

t1
s

)α−1

f (s, y (s))
ds

s

)
.

Since
(
log t2

s

)α−1 −
(
log t1

s

)α−1
< 0 and

(
log t2

s

)β−1 −
(
log t1

s

)β−1
< 0, then

Ax (t2)By (t2)−Ax (t1)By (t1)

≥ f (t1, y (t1))

Γ (α)

(
p (t2) +

1

Γ (β)

∫ t2

t0

(
log

t2
s

)β−1

g (s, x (s))
ds

s

)

×

(∫ t1

t0

((
log

t2
s

)α−1

−
(

log
t1
s

)α−1
)
ds

s
+

∫ t2

t1

(
log

t2
s

)α−1
ds

s

)

+

(
p (t2)− p (t1) +

g (t1, x (t1))

Γ (β)

(∫ t1

t0

((
log

t2
s

)α−1

−
(

log
t1
s

)α−1
)
ds

s

+

∫ t2

t1

(
log

t2
s

)α−1
ds

s

))(
θ +

1

Γ (α)

∫ t1

t0

(
log

t1
s

)α−1

f (s, y (s))
ds

s

)

≥ f (t1, y (t1))

Γ (α+ 1)

(
p (t2) +

1

Γ (β)

∫ t2

t0

(
log

t2
s

)β−1

g (s, x (s))
ds

s

)((
log

t2
t0

)α
−
(

log
t1
t0

)α)

+

(
p (t2)− p (t1) +

g (t1, x (t1))

Γ (β + 1)

((
log

t2
t0

)β
−
(

log
t1
t0

)β))

×

(
θ +

1

Γ (α)

∫ t1

t0

(
log

t1
s

)α−1

f (s, y (s))
ds

s

)
≥ 0.

Therefore, with the Dhage fixed point theorem the product operator AB : R → R has a fixed point with the
positivity and monotonicity nondecreasing properties which is a solution of the problem (1.1). �

Remark 5.2. The results of Theorem 5.1 are valid in Corollaries 3.3-3.6 if the assumptions of Theorem 5.1 are
added to Corollaries 3.3-3.6.

177



A. Ardjouni and M. Haoues

6. Examples

Example 6.1. Consider the Caputo-Hadamard fractional integro-differential equation
CD

2
3

 x (t)

5+3t
8 + 1

Γ( 1
4 )

∫ t
1

(
log t

s

)− 3
4

(
x(s)+2
x(s)+3

)
ds
s

 = 1
5+t

(
tx(t)
x(t)+4 + 5

)
, t ∈ (1, e] ,

x (1) = 0,

(6.1)

where α = 2/3, β = 1/4, θ = 0, p (t) = 5+3t
8 , f (t, x) = 1

5+t

(
tx
x+4 + 5

)
and g (t, x) = x+2

x+3 . Since g is
nondecreasing on x,

2

3
≤ g (t, x) ≤ 1 and

5

5 + e
≤ f (t, x) ≤ 1 for t ∈ [1, e] , x ∈ [0,+∞) ,

and

Lg

(
log T

t0

)β
Γ (β + 1)

|θ|+ cf

(
log T

t0

)α
Γ (α+ 1)

 ' 0.136 < 1.

Then, by Corollary 3.3, (6.1) has a positive solution which verifies x∗ (t) ≤ x (t) ≤ x∗ (t) where

x∗ (t) =

(
5 + 3t

8
+

2 (log t)
1
4

3Γ
(

5
4

) ) 5

5 + e

(log t)
2
3

Γ
(

5
3

) ,

and

x∗ (t) =

(
5 + 3t

8
+

(log t)
1
4

Γ
(

5
4

) ) (log t)
2
3

Γ
(

5
3

) .

This positive solution is unique due to the condition (4.1) is satisfied since

Lg

(
log T

t0

)β
Γ (β + 1)

|θ|+ cf

(
log T

t0

)α
Γ (α+ 1)

+

pm + cg

(
log T

t0

)β
Γ (β + 1)

Lf

(
log T

t0

)α
Γ (α+ 1)

' 0.404 < 1.

The property of non-decreasing of this solution is not valid in spite of f .

Example 6.2. Consider the Caputo-Hadamard fractional integro-differential equation
CD

1
3

 x (t)

t
3 + 1 + 1

Γ( 2
5 )

∫ t
1

(
log t

s

)− 3
5 (2− cos (x (s))) dss

 = t
6 sin (x (t)) , t ∈ (1, e] ,

x (1) = 4,

(6.2)

where α = 1/3, β = 2/5, θ = 1/3, p (t) = t
3 + 1, f (t, x) = t

6 sinx and g (t, x) = 2 − cosx for t ∈ [1, e],
x ∈

[
0, π2

]
. Hence, g is nondecreasing on x and

0 ≤ f (t, x) ≤ e

6
, 1 ≤ g (t, x) ≤ 2.
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Since

Lg

(
log T

t0

)β
Γ (β + 1)

|θ|+ cf

(
log T

t0

)α
Γ (α+ 1)

 ' 0.947 < 1.

Then, by Corollary 3.3, (6.2) has a positive solution which verifies x∗ (t) ≤ x (t) ≤ x∗ (t) where

x∗ (t) =
t

9
+

1

3
+

(log t)
2
5

3Γ
(

7
5

) ,
and

x∗ (t) =

(
t

3
+ 1 +

2 (log t)
2
5

Γ
(

7
5

) )(
1

3
+
e (log t)

1
3

6Γ
(

4
3

) ) .
We could not guarantee this positive solution is unique due to the condition (4.1) is not satisfied. The property
of non-decreasing of this positive solution is valid since f and g are increasing on

[
0, π2

]
and p is increasing on

[1, e].

7. Conclusion

The hybrid nonlinear Caputo-Hadamard fractional integro-differential equation is considered. So, we have
studied the existence, uniqueness and monotonicity of positive solutions. The main tool of this work is the method
of upper and lower solutions and the Dhage and Banach fixed point theorems. However, by introducing a new
fixed mapping, we obtain new positivity conditions.
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Abstract. In this study, we investigate a rectifying curve by using a dilation of a unit speed curve on pseudo-sphere or
pseudo-hyperbolic space and its centrode. Firstly, considering a causal character of any curve, we study the connection
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1. Introduction

Characterization of a curve allows to classify curves according to some properties. Thus, instead of doing
analysis for each curve, working on these classes is appeared as a more convenient way. One example for the
characterized curves is a rectifying curve. The curve was put forward by B. Y. Chen in [1]. In three dimensional
Euclidean space E3, if α : I ⊆ R → E3 be a unit speed regular curve with Frenet frame {T,N,B} where T is
a tangent vector field, N is a normal vector field and B is a binormal vector field, then an osculating plane is a
plane spanned by the vector fields {T,N}, a rectifying plane is a plane spanned by the vector fields {T,B} and
a normal plane is a plane spanned by the vector fields {N,B}. The rectifying curve is a curve whose position
vector field is located on the rectifying plane. Thus, Chen showed that a rectifying curve α is denoted by the
equation

α (s) = η (s)T (s) + ξ (s)B (s)

where the functions η and ξ are differentiable. Also, it is known that the rectifying curve is characterized as
the curve whose ratio of torsion and curvature is a linear fuction of arc parameter in E3 [1]. By analyzing the
characterization of rectifying curve, it is interpreted kinematically because the position vector field of the curve
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states the axis of instantaneous rotation at each point. In addition to that, the connection between rectifying curves
and their centrodes is used to study in general mechanics. Firstly, Chen [2] established the connection between
rectifying curves and their centrodes in Euclidean 3-space. Since these curves are important, many studies have
been conducted on this subject. In this section, we just mention some of them. One of them was made by İlarslan
et. al [5]. According to that, they gave some characterizations of timelike, spacelike, null rectifying curves.
Moreover, these curves in dual space were examined in [9]. So, they were explored by taking advantage of the
relationship between the curve on a unit dual sphere and the surface theory. Additionally, the modified Darboux
vector of curve was described and it was shown that this vector is a rectifying curve [8]. Deshmukh et.al [3]
developed the necessary circumstances for the centrode of a curve to be a rectifying curve in Euclidean 3-space
and also, they presented the results about the dilation for rectifying curves and centrodes. This study has been the
main motivation of our study.

In this study, we research on the rectifying curves in the Minkowski 3-space. First of all, we use that the
dilation of u (t) is written as α (t) = f (t)u (t) where u (t) is a curve on the unit sphere S2 centered at the origin
and the fuction f (t) is positive differentiable. If the curve α (t) is the rectifying curve, then the dilation factor
f (t) is given by f (t) = a sec (t+ t0) . Here, a > 0 and t0 are constants [1]. However, this dilation factor in
Minkowski 3-space is defined as different ways for the curves α (t) and u (t) [5]. Considering this difference,
Frenet-Serret apparatus of α are given in terms of the curve u (t). It was also shown in [4] that the centrode of α (t)

is rectifying curve in Minkowski 3-space when it has non-zero constant curvature and non-constant torsion. Here,
we generalize this result. For this, we show that the centrode of any helix is not a rectifying curve in Minkowski
3-space. Then, using this feature and considering the causal characters of Frenet-Serret vectors, we obtain that
the centrode of non-helix curve is the rectifying curve if and only if it satisfies the condition aκ− bτ = c where
a, b, c are constants. Finally, there are many cases from the choices of plane and curve, so we consider all the
cases and give some notations for the centrode of α (t). We find the relations between Frenet-Serret apparatus of
the centrode, which is a rectifying curve, and the Frenet-Serret apparatus of α.

2. Preliminaries

Let E3
1 be a space with the metric g denoted by

g = −dx21 + dx22 + dx23 (2.1)

where x = (x1, x2, x3) is a rectangular coordinate system of E3
1 and also, it is called the three-dimensional

Minkowski space. Pseudo-sphere of radius 1 centered at origin is a hyperquadric in E3
1 and is given by

S2
1 (1) =

{
v ∈ E3

1 | g (v, v) = 1
}

(2.2)

and pseudo-hyperbolic space of radius 1 centered at origin is defined by

H2
0 (1) =

{
v ∈ E3

1 | g (v, v) = −1
}
. (2.3)

Let α (s) be a curve with an arc-length parameter s. It is the non-null curve that satisfies the property
g (α′ (s) , α′ (s)) = ±1 where ′ is the derivation of α [7]. For the Frenet frame {T,N,B} of a unit speed
non-null curve α (s) in E3

1, the Frenet formulas are given in [6] by

T ′ (s) = ε1κ (s)N (s) ,

N ′ (s) = −ε0κ (s)T (s) + ε2τ (s)B (s) ,

B′ (s) = −ε1τ (s)N (s) (2.4)

for g (T, T ) = ε0 = ±1, g (N,N) = ε1 = ±1 and g (B,B) = −ε0ε1 = ε2 where T,N,B are known as the
tangent vector field, the principal normal vector field, the binormal vector field, respectively. Assume that for
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Frenet frame of α, there exists the vector product as

B = T ×N,−ε1T = N ×B,−ε0N = B × T. (2.5)

The centrode of α : I → E3
1 is defined by

d = −ε0ε1τT − ε0ε1κB (2.6)

which is the angular velocity vector of the motion of a mass particle along the curve α and it obeys the laws of
motion [4]

T ′ = d× T,N ′ = d×N,B′ = d×B. (2.7)

In addition, the rectifying curves are formed by expanding a unit speed curve on a unit sphere with a special factor
f . To characterize such rectifying curves in E3

1, İlarslan et.al [5] gave a theorem. According to this theorem, a
unit speed non-null curve α = α (s) is written as the dilation of the curve u (t) to be rectifying curve. So, it is a
rectifying curve with a spacelike rectifying plane if and only if it satisfies the condition

α (t) = u (t)
l

cos t
(2.8)

where l ∈ R+
0 and u (t) is a unit speed spacelike curve on S2

1 (1). Also, it is a spacelike (or timelike) rectifying
curve with a spacelike (or timelike) position vector if and only if it satisfies the condition

α (t) = u (t)
l

sinh t
(2.9)

where u (t) is a unit speed timelike (or spacelike) curve on S2
1 (1). Finally, it is a spacelike (or timelike) rectifying

curve with a spacelike (or timelike) position vector if and only if it satisfies the condition

α (t) = u (t)
l

cosh t
(2.10)

where u (t) is a unit speed spacelike (or timelike) curve on H2
0 (1) (or S2

1 (1)).

3. On the Rectifying Curves and the Dilation of Curves

In Minkowski 3-space, let u (t) be a unit speed spacelike or timelike curve lying on S2
1 (1) or H2

1 (1) and α (t)

be a dilated rectifying curve of u (t). Now, we give the connections between the Frenet-Serret apparatus of the
curves α (t) and u (t) in Minkowski 3-space. For this, the different results are obtained by considering some
theorems in [5], because the dilation α (t) of u (t) is defined according to the causal characters of the curves α (t)

and u (t).
We assume that α is a spacelike rectifying curve with spacelike position vector on timelike rectifying plane

and u (t) is a unit speed timelike curve on pseudo-sphere S2
1 (1). Then, there exists the dilation α (t) =

a

sinh t
u (t). In this case, since the rectifying plane is timelike, clearly its normal vector Nα is spacelike, so

g (Nα, Nα) = 1. If the curve α is spacelike, the tangent of α is also spacelike. Furthermore, its position vector is
spacelike, so we have g (α, α) > 0, g (u′, u′) = −1 and g (u, u) = 1.

We know that Tu = u′ and {u, u′, u× u′} is an orthonormal frame of E3
1. We easily write

u′′ = T ′u = au+ bTu + cu× Tu.

When we use timelike curve u and 〈u′, u〉 = 0, we find a = 1. Similarly, b = 0 is found. Also, we assume
c = 〈u′′, u× u′〉 = r. Then, we get

u′′ = u+ ru× u′. (3.1)
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From (3.1) and using Frenet equations for u (t), there exists

‖u′′‖ =
√

1 + r2 = κu (3.2)

where κu is a curvature of the unit speed timelike curve u (t) and we find

Tu = u′, Nu =
1

κu
u+

r

κu
u× u′. (3.3)

Theorem 3.1. Let u (t) be a unit speed timelike curve on the unit sphere S2
1 (1) in E3

1, α (t) be a spacelike
rectifying curve on a timelike rectifying plane and its position vector be a spacelike vector defined by α (t) =

a

sinh (t+ t0)
u (t) , a ∈ R+. Then, the relation between the Frenet-Serret apparatus of α (t) and u (t) is as

follows:

Tα = sinh (t+ t0)u
′ − cosh (t+ t0)u,

Nα = u× u′,
Bα = sinh (t+ t0)u− cosh (t+ t0)u

′,

κα =
1

a

√
κ2u − 1 sinh3 (t+ t0) ,

τα =
1

a

√
κ2u − 1 cosh (t+ t0) sinh

2 (t+ t0)

where Tα, Nα, Bα, κα, τα are the tangent vector, normal vector, binormal vector, curvature, torsion of α (t),
respectively, and κu is the curvature of u (t).

Proof. Let α is given by α (t) =
a

sinh (t+ t0)
u (t) and {u, u′, u× u′} is an orthonormal frame of E3

1. Thus, we

get ‖α′ (t)‖ = a

sinh2 (t+ t0)
= υα and

Tα = sinh (t+ t0)u
′ − cosh (t+ t0)u. (3.4)

Then differentiating Tα, we obtain

T ′α = cosh (t+ t0)u
′ + sinh (t+ t0)u

′′ − sinh (t+ t0)u− cosh (t+ t0)u
′

= r sinh (t+ t0)u× u′

= ε1υακαNα.

From (3.2) we write r =
√
κ2u − 1. Furthermore, for the left side of (3.2) we say that u × u′ is equal to Nα

because both of them are unit vectors. So, if we write
[
r sinh (t+ t0)

a
sinh2 (t+ t0)

]
u×u′ = aκαNα, then we

get Nα = u× u′ and also

κα =
1

a

√
κ2u − 1 sinh3 (t+ t0) . (3.5)

We know that Bα = Tα ×Nα. Then

Bα = sinh (t+ t0)u− cosh (t+ t0)u
′. (3.6)

After differentiating (3.6), we find

B′α = cosh (t+ t0)u+ sinh (t+ t0)u
′ − sinh (t+ t0)u

′ − cosh (t+ t0)u
′′

= −r cosh (t+ t0)u× u′

= −ε1υαταNα
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which gives [r cosh (t+ t0)]u× u′ = υαταNα that is,

τα =
1

a

√
κ2u − 1 cosh (t+ t0) sinh

2 (t+ t0) . (3.7)

Thus, we establish the desired relationships. �

Every curves, which is constituted by α (t) =
a

sinh (t+ t0)
u (t), do not have to be a rectifying curve. This

result is valid for the curves which are not arc of the great circle. To show that, let u (t) be an arc of the great circle

on S2
1 (1) given by u (t) = (sinh t, 0, cosh t). We write α (t) = a

(
sinh t

sinh (t+ t0)
, 0,

cosh t

sinh (t+ t0)

)
. Hence, we

have ‖α′ (t)‖ = a

sinh2 (t+ t0)
and Tα = (sinh t0, 0,− cosh t0). Thus, κα = 0 and finally we say that α (t) is

not a rectifying curve.

Theorem 3.2. Let u (t) be a unit speed spacelike curve on the unit sphere S2
1 (1) in E3

1, α (t) be a rectifying
curve on a spacelike rectifying plane defined by α (t) =

a

cos (t+ t0)
u (t) , a ∈ R+. Then the relation between

the Frenet-Serret apparatus of α (t) and u (t) is as follows:

Tα = cos (t+ t0)u
′ + sin (t+ t0)u,

Nα = u× u′,
Bα = − cos (t+ t0)u+ sin (t+ t0)u

′,

κα =
1

a

√
1− κ2u cos3 (t+ t0) ,

τα =
−1
a

√
1− κ2u sin (t+ t0) cos

2 (t+ t0)

where Tα, Nα, Bα, κα, τα are the tangent vector, normal vector, binormal vector, curvature, torsion of α (t),
respectively, and κu is the curvature of u (t).

Theorem 3.3. Let u (t) be a unit speed spacelike curve on the unit sphere S2
1 (1) in E3

1, α (t) be a timelike
rectifying curve on a timelike rectifying plane and its position vector be a timelike vector defined by α (t) =

a

sinh (t+ t0)
u (t) , a ∈ R+. Then the relation between the Frenet-Serret apparatus of α (t) and u (t) is as

follows:

Tα =
sinh (t+ t0)√
cosh 2 (t+ t0)

u′ − cosh (t+ t0)√
cosh 2 (t+ t0)

u,

Nα =
−2 sinh(t+ t0)

f(t)
√
cosh 2(t+ t0)

(cosh(t+ t0)u
′ + sinh(t+ t0)u)

− 1

f(t)

√
(1− κ2u) cosh 2(t+ t0)u× u′,

Bα =

√
1− κ2u
f(t)

{sinh (t+ t0)u+ cosh (t+ t0)u
′}+ 2 sinh (t+ t0)

f(t)
u× u′,

κα =
sinh3 (t+ t0)

a cosh3/2 2 (t+ t0)
{4 sinh2 (t+ t0)− (1− κu)2 cosh 2 (t+ t0)}1/2,

τα =

√
cosh 2(t+ t0)

f2(t)

[
−2κu sinh(t+ t0)−

√
1− κ2u cosh(t+ t0)

(
1 + κ2u

)
−2f

′(t)

f(t)

√
1− κ2u sinh(t+ t0)

(
1 +

√
1− κ2u

)]
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where Tα, Nα, Bα, κα, τα are the tangent vector, normal vector, binormal vector, curvature, torsion of α (t),
respectively, and κu is the curvature of u. Also, f(t) is the function such that f(t) = {(1− cosh2(t+ t0))

2 −(
1− κ2u

)
cosh2(t+ t0) sinh

2(t+ t0)}.

Theorem 3.4. Let u (t) be a unit speed spacelike curve on the unit sphere H2
0 (1) in E3

1, α (t) be a spacelike
rectifying curve on a timelike rectifying plane and its position vector be a timelike vector defined by α (t) =

a

cosh (t+ t0)
u (t). Then the relation between the Frenet apparatus of α (t) and u (t) is as follows:

Tα = cosh (t+ t0)u
′ − sinh (t+ t0)u,

Nα = u× u′,
Bα = − cosh (t+ t0)u+ sinh (t+ t0)u

′,

κα =
1

a

√
1 + κ2u cosh

3 (t+ t0) ,

τα = −1

a

√
1 + κ2u sinh (t+ t0) cosh

2 (t+ t0)

where Tα, Nα, Bα, κα, τα are the tangent vector, normal vector, binormal vector, curvature, torsion of α (t),
respectively, and κu is the curvature of u (t).

Theorem 3.5. Let u (t) be a unit speed timelike curve on the unit sphere S2
1 (1) in E3

1, α (t) be a timelike
rectifying curve on a timelike rectifying plane and its position vector be a spacelike vector defined by α (t) =

a

cosh (t+ t0)
u (t). Then the relation between the Frenet-Serret apparatus of α (t) and u (t) is as follows:

Tα = cosh (t+ t0)u
′ − sinh (t+ t0)u,

Nα = u× u′,
Bα = cosh (t+ t0)u− sinh (t+ t0)u

′,

κα =
1

a

√
κ2u − 1 cosh3 (t+ t0) ,

τα =
1

a

√
κ2u − 1 sinh (t+ t0) cosh

2 (t+ t0)

where Tα, Nα, Bα, κα, τα are the tangent vector, normal vector, binormal vector, curvature, torsion of α (t),
respectively, and κu is the curvature of u (t).

4. Centrodes as Rectifying Curves

In this section, considering the Frenet vectors of the curve α in E3
1 and their causal characters, we give a

proposition that if the curve α is the helix, then its centrode is a line segment. Then using this proposition,
we examine the features, which should be provided by the curves whose centrodes are the rectifying curves
except the helix. In the previous studies [1, 4], it was shown for the curves with the constant (or non-constant)
curvature κ and the non-constant (or constant) torsion τ . Here, this result has been expanded.

Let α : I ⊆ R→ E3
1 be a unit speed curve with Frenet frame {Tα, Nα, Bα} and also,

g(Tα, Tα) = ε0, g(Nα, Nα) = ε1, g(Bα, Bα) = ε2. (4.1)

Morever, let d : I ⊆ R → E3
1 be the centrode of α with its Frenet frame {Td, Nd, Bd}. Then we have T ′α =

d×Tα, N ′α = d×Nα and B′α = d×Bα. For all the cases of the unit speed curve α, the centrode d is written by

d = −ε0ε1ταTα − ε0ε1καBα. (4.2)
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Now, we find the Serret-Frenet apparatus of d. For this, we use d′ = −ε0ε1τ ′αTα − ε0ε1κ′αBα. Using d′

we obtain ‖d′‖2 = (τ ′α)
2
ε0 + ε2 (κ

′
α)

2, then the speed of centrode d is given by υd =

√
ε0 (τ ′α)

2
+ ε2 (κ′α)

2
.

Additionally,

Td = −
ε0ε1τ

′
αTα

υd
− ε0ε1κ

′
αBα

υd
. (4.3)

Differentiating (4.3) we find

T ′d =

(
−ε0ε1τ

′
α

υd

)′
Tα −

ε0ε1τ
′
α

υd
T ′α +

(
−ε0ε2κ

′
α

υd

)′
Bα −

ε0ε2κ
′
α

υd
B′α.

The centrode d does not have to be unit speed, then we get

εd1κdυdNd =

(
−ε0ε1τ

′
α

υd

)′
Tα −

ε0τ
′
α

υd
καNα −

(
ε0ε1κ

′
α

υd

)′
Bα +

ε0κ
′
α

υd
ταNα

= −
(
ε0ε1τ

′
α

υd

)′
Tα −

ε0τ
′
ακα − ε0κ′ατα

υd
Nα −

(
ε0ε1κ

′
α

υd

)′
Bα. (4.4)

Using this equation we give the following proposition about helices.

Proposition 4.1. Let α : I → E3
1 be a unit speed curve whose curvature κα and torsion τα satisfy κα > 0 and

ε0 (τ
′
α)

2
+ ε2 (κ

′
α)

2 6= 0. Then α is a helix if and only if its centrode d is a line segment.

Proof. We assume that the centrode of α is a line segment, then its curvature is zero, namely κd = 0. In (4.4),
the coefficients of Tα, Nα, Bα are also zero since Tα, Nα, Bα vectors are linearly independent. Then, we write
the following:

(i)
(
ε0ε1τ

′
α

υd

)′
= 0,

(ii)
ε0τ
′
ακα − ε0κ′ατα

υd
= 0,

(iii)
(
ε0ε1κ

′
α

υd

)′
= 0.

For (ii), from υd 6= 0 there is ε0τ ′ακα − ε0κ′ατα = 0. We know that ε0 6= 0. If we divide both sides of the

equation to ε0, then we find τ ′ακα − κ′ατα = 0. Thus, we write that
τ ′α
κ′α

=
τα
κα

and

(
τα
κα

)′
=
τ ′ακα − τακ′α

κ2α
= 0.

Consequently,
τα
κα

is constant and α is a helix. Conversely, if α is a helix, then we write τα = cκα, c 6= 0. Using

(4.4),

εd1κdυdNd =−
(
ε0ε1cκ

′
α

υd

)′
Tα −

ε0cκ
′
ακα − ε0κ′αcκα

υd
Nα −

(
ε0ε1κ

′
α

υd

)′
Bα

=
(−ε0κ′′αυd + ε0κ

′
αυ
′
d)

υ2d
(ε1cTα + ε1Bα) .

Now, we investigate the cases in Minkowski 3-space. Firstly, we obtain

κ2dυ
2
dg (Nd, Nd) =

(
ε0c

2 + ε2
) [(κ′α

υd

)′]2
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Gülşah AYDIN ŞEKERCİ Sibel SEVİNÇ and Abdilkadir Ceylan ÇÖKEN

and also

εd0 = ε0

(
cκ′α
υd

)2

+ ε2

(
κ′α
υd

)2

where εd0 is the signature of Td, that is g(Td, Td) = εd0. Here, differentiating both sides, we write

2ε0
cκ′α
υd

(
cκ′α
υd

)′
+ 2ε2

κ′α
υd

(
κ′α
υd

)′
= 0.

Hence, it is ε0c2 + ε2 = 0,
κ′α
υd

= 0 or
(
κ′α
υd

)′
= 0.

(1) For ε0c2 + ε2 = 0, there exists κ2dυ
2
dg (Nd, Nd) = 0. From g (Nd, Nd) 6= 0 and υ2d 6= 0, then κd = 0.

(2) For
κ′α
υd

= 0, clearly κd = 0.

(3) For
(
κ′α
υd

)′
0, clearly κd = 0.

Therefore, if α is a helix, then the centrode of α is a line segment. �

Theorem 4.2. Let α be a unit speed spacelike (timelike) curve in E3
1 with a timelike(spacelike) binormal,

κα, τα 6= 0 and (τ ′α)
2 − (κ′α)

2 6= 0. If α is not a helix, then the centrode d of α is a rectifying curve if and
only if κα and τα satisfy the equation aκα − bτα = c where a, b, c are constants and they provide the conditions
c 6= 0, a2 − b2 6= 0.

Proof. Let α = α (t) be a unit speed curve in E3
1 and κα, τα 6= 0, ε0 (τ ′α)

2
+ ε2 (κ

′
α)

2 6= 0, namely α is not a
null curve. If α is not a helix, then we use (4.4) and (4.2). So, we get

εd1κdυdg(Nd (t) , d (t)) =ε0τα

(
τ ′α
υd

)′
+ ε2κα

(
κ′α
υd

)′
. (4.5)

If the centrode d of α is a rectifying curve, the multiplication of the position vector field of d and Nd is zero.
Since α is not a helix, d is not a line segment and κd 6= 0. From κd > 0 and υd 6= 0, we write g(Nd, d) = 0.

Then we find

ε0τα

(
τ ′α
υd

)′
+ ε2κα

(
κ′α
υd

)′
= 0. (4.6)

This equation shows that, if the centrode d of α is rectifying curve, then it satisfies (4.2). Now, we use (4.6) and
try to obtain better notation. Let α be a unit speed curve in E3

1 with a timelike binormal vector. We have

τα

(
τ ′α
υd

)′
− κα

(
κ′α
υd

)′
= 0

and from the hypotesis of the theorem, we take (τ ′α)
2 − (κ′α)

2 6= 0. Then, it is (τ ′α)
2 − (κ′α)

2
> 0 or (τ ′α)

2 −
(κ′α)

2
< 0.

Case 1 : We assume that (τ ′α)
2−(κ′α)

2
> 0. In this situation, if τ ′α is zero, then the condition (τ ′α)

2−(κ′α)
2
>

0 is not satisfied. So τ ′α 6= 0. Then, let θ1(t) be a function defined by sin−1
(
κ′α
τ ′α

)
. Using the equations

sin θ1 (t) =
κ′α
τ ′α
, cos θ1 (t) =

√
(τ ′α)

2 − (κ′α)
2

τ ′α
,

tan θ1 (t) =
κ′α√

(τ ′α)
2 − (κ′α)

2
, sec θ1 (t) =

τ ′α√
(τ ′α)

2 − (κ′α)
2
,
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then we get

τα (sec θ1 (t))
′ − κα (tan θ1 (t))′ = 0,

θ′1 (t) sec θ1 (t) [τα tan θ1 (t)− κα sec θ1 (t)] = 0.

For τα tan θ1 (t)− κα sec θ1 (t) = 0, we find easily that τα tan θ1 (t) = κα sec θ1 (t). Then

τα
κα

=
sec θ1 (t)

tan θ1 (t)
=

1

sin θ1 (t)
= csc θ1 (t) =

τ ′α
κ′α
.

So, α is a helix. But, it is contrast to the hypotesis. For sec θ1 (t) = 0, we write
τ ′α√

(τ ′α)
2 − (κ′α)

2
= 0, namely,

τ ′α = 0 and this is contrast to the hypotesis, too. For θ′1 (t) = 0, then it is clear that θ1 (t) = constant.

Furthermore sin θ1 (t) =
κ′α
τ ′α

= c1 and c1 is a constant. If we choose
b

a
= c1, then there is aκ′α− bτ ′α = 0. From

here, aκα − bτα = c.
Case 2 : We assume that (τ ′α)

2 − (κ′α)
2
< 0. In this situation, κ′α 6= 0 . Let θ2(t) be a function defined by

sin−1
(
τ ′α
κ′α

)
. Using the equations

sin θ2 (t) =
τ ′α
κ′α
, cos θ2 (t) =

√
(κ′α)

2 − (τ ′α)
2

κ′α
,

tan θ2 (t) =
τ ′α√

(κ′α)
2 − (τ ′α)

2
, sec θ2 (t) =

κ′α√
(κ′α)

2 − (τ ′α)
2
,

we get

θ′2 (t) sec θ2 (t) [−τα sec θ2 (t) + κα tan θ2 (t)] = 0.

Thus, we obtain aκα − bτα = c. Conversely, if κα and τα provides the equation aκα − bτα = c, then we find

τα

(
τ ′α
υd

)′
− κα

(
κ′α
υd

)′
= 0 from

(
κ′α
υd

)′
= 0 and

(
τ ′α
υd

)′
= 0. Also, the proof is done for timelike curve with

spacelike binormal vector, similarly. �

Theorem 4.3. Let α be a unit speed spacelike curve in E3
1 with a spacelike binormal vector, κα, τα 6= 0 and

(τ ′α)
2
+ (κ′α)

2 6= 0. If α is not a helix, then the centrode d of α is a rectifying curve if and only if κ and τ satisfy
the equation aκα − bτα = c where a, b, c are constants and they provide the conditions c 6= 0, a2 + b2 6= 0.

Proof. We assume that ε0 = 1 and ε2 = 1. Then, there exists

τα

(
τ ′α
υd

)′
+ κα

(
κ′α
υd

)′
= 0

and (τ ′α)
2
+ (κ′α)

2 6= 0. Thus, we get κ′α 6= 0 or τ ′α 6= 0.

Case 1 : We assume that κ′α 6= 0. Let γ1 (t) be a function given by γ1 (t) = tan−1
(
τ ′α
κ′α

)
. Then, using

sin (γ1 (t)) =
τ ′α√

(τ ′α)
2
+ (κ′α)

2
, cos (γ1 (t)) =

κ′α√
(τ ′α)

2
+ (κ′α)

2
,
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we get

τα cos (γ1 (t)) γ
′
1 (t)− κα sin (γ1 (t)) γ′1 (t) = 0.

Thus, we write γ′1 (t) = 0 and it is a constant. So, we obtain aκ− bτ = c. Since
τα
κα

is non-constant, it is c 6= 0

and a2 + b2 6= 0.

Case 2 : We assume that τ ′α 6= 0. Let γ2 (t) is a function given by γ2 (t) = tan−1
(
κ′α
τ ′α

)
. Then,

tan (γ2 (t)) =
κ′α
τ ′α

and using

sin (γ2 (t)) =
κ′α√

(τ ′α)
2
+ (κ′α)

2
, cos (γ2 (t)) =

τ ′α√
(τ ′α)

2
+ (κ′α)

2
,

we get

(κα cos (γ2 (t))− τα sin (γ2 (t))) γ′2 (t) = 0.

It is easy to show that aκα − bτα = c. �

Now, we find the relations between the Frenet-Serret apparatus of the centrode d, which is a rectifying curve,
and the Frenet-Serret apparatus of α.

Theorem 4.4. Let α be a unit speed spacelike curve in E3
1 with a timelike binormal vector and its Serret-Frenet

apparatus be {Tα, Nα, Bα, κα, τα}. The centrode d(t) of α(t) is a rectifying curve.
(1) If d(t) is a spacelike curve, then the Serret-Frenet apparatus {Td, Nd, Bd, κd, τd} of centrode is given by

Td =
−δ√
1− ĉ2

Tα −
δĉ√
1− ĉ2

Bα,

Nd = Nα,

Bd =
−δ√
1− ĉ2

Bα −
δĉ√
1− ĉ2

Tα,

κd =
ĉτα − κα
τ ′α (1− ĉ2)

,

τd =
ĉκα − τα
τ ′α (1− ĉ2)

where δ is the signature of τ ′α, ĉ =
b

a
and a, b is defined as in Theorem 4.2.

(2) If d(t) is a timelike curve, then the Serret-Frenet apparatus {Td, Nd, Bd, κd, τd} of centrode is given by

Td =
−δc√
1− c2

Tα −
δ√

1− c2
Bα,

Nd = Nα,

Bd =
−δc√
1− c2

Bα −
δ√

1− cc2
Tα,

κd =
τα − cκα
κ′α
(
1− c2

) ,
τd =

κα − cτα
κ′α
(
1− c2

)
where δ is the signature of κ′α, c =

a

b
and a, b is defined as in Theorem 4.2.
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Proof. From aκ′α − bτ ′α = 0, since d(t) is a spacelike rectifying curve and τ ′α 6= 0, we write κ′α =
b

a
τ ′α. For υd,

we write

υd =

√
| (τ ′α)

2 − (κ′α)
2 | = |τ ′α|

√
1− ĉ2

where ĉ =
b

a
. For the Frenet-Serret apparatus, we give the following:

Td =−
ε0ε1τ

′
α

υd
Tα −

ε0ε1κ
′
α

υd
Bα = − τ ′α

|τ ′α|
√
1− ĉ2

Tα −
ĉτ ′α

|τ ′α|
√
1− ĉ2

Bα,

εd1κdυdNd =

(
−τ
′
α

υd

)′
Tα −

τ ′ακα − κ′ατα
υd

Nα −
(
κ′α
υd

)′
Bα.

Then we get

Nd = Nα,

κd =
−τ ′ακα + κ′ατα(
|τ ′α|
√
1− ĉ2

)2 =
ĉτα − κα
τ ′α (1− ĉ2)

.

Finally, we see easily that

Bd = Td ×Nd =
−δ√
1− ĉ2

Bα −
ĉδ√
1− ĉ2

Tα,

−τdεd1υdNd =
−δ√
1− ĉ2

(−ε1ταNα)−
ĉδ√
1− ĉ2

ε1καNα,

then we have τd =
ĉκα − τα
τ ′α (1− ĉ2)

. �

Theorem 4.5. Let α be a unit speed timelike curve in E3 with a spacelike binormal vector. The centrode d(t) of
α(t) is a rectifying curve.

(1) If d(t) is a spacelike curve, then the Serret-Frenet apparatus {Td, Nd, Bd, κd, τd} of centrode is given by

Td =
δc√
1− c2

Tα +
δ√

1− c2
Bα,

Nd = Nα,

Bd =
δc√
1− c2

Bα +
δ√

1− c2
Tα,

κd =
cκα − τα
κ′α
(
1− c2

) ,
τd =

cτα − κα
κ′α
(
1− c2

)
where δ is the signature of κ′α, c =

a

b
and a, b is defined as in Theorem 4.2.
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(2) If d(t) is a timelike curve, then the Serret-Frenet apparatus {Td, Nd, Bd, κd, τd} of centrode is given by

Td =
δ√

1− ĉ2
Tα +

δĉ√
1− ĉ2

Bα,

Nd = Nα,

Bd =
δ√

1− ĉ2
Bα +

δĉ√
1− ĉ2

Tα,

κd =
κα − ĉτα
τ ′α (1− ĉ2)

,

τd =
τα − ĉκα
τ ′α (1− ĉ2)

where δ is the signature of τ ′α, ĉ =
b

a
and a, b is defined as in Theorem 4.2.

Theorem 4.6. Let α be a unit speed spacelike curve in E3
1 with a spacelike binormal and the centrode d(t) of

α(t) be a rectifying curve.
(1) If τ ′α 6= 0, then the Frenet-Serret apparatus of centrode is given by

Td =
δ√

1 + ĉ2
Tα +

δĉ√
1 + ĉ2

Bα,

Nd = Nα,

Bd =
δ√

1 + ĉ2
Bα −

δĉ√
1 + ĉ2

Tα,

κd =
κα − ĉτα
τ ′α (1 + ĉ2)

,

τd =
τα + καĉ

τ ′α (1 + ĉ2)

where δ is the signature of τ ′α, ĉ =
b

a
and a, b is defined as in Theorem 4.3.

(2) If κ′α 6= 0, then the Frenet-Serret apparatus of centrode is given by

Td =
δc√
1 + c2

Tα +
δ√

1 + c2
Bα,

Nd = Nα,

Bd =
δc√
1 + c2

Bα −
δ√

1 + c2
Tα,

κd =
cκα − τα
κ′α
(
1 + c2

) ,
τd =

cτα + κα

κ′α
(
1 + c2

)
where δ is the signature of τ ′α, c =

a

b
and a, b is defined as in Theorem 4.3.
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VECDİ AYTAÇ∗1 AND TUFAN TURACI 2

1 Faculty of Engineering, Department of Computer Engineering, Ege University, 35100 Izmir, Turkey.
2 Faculty of Engineering, Department of Computer Engineering, Pamukkale University, 20160 Denizli, Turkey.

Received 12 June 2021; Accepted 28 August 2021

Abstract. Networking has been an essential field of multidisciplinary study, including computational theory, mathematics,
social sciences, computer science, and other theoretical and applied sciences. The vulnerability determines the network’s
resistance to interruption of information flow after the breakdown of particular stations or transmission connections. Recently,
new vulnerability parameter namely the disjunctive total domination number has been defined by Henning and Naicker [14].
This measure finds the critical vertices with an important position in the graph. In this context, we consider and compute exact
formulae for the disjunctive total domination number in some tree networks.
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1. Introduction

The connected graph can model the network, the vertex in the graph represents a network node, and the
edge represents a contact connection between the two nodes [7, 16]. There are many parameters in graph
theory for network analysis and to determine some properties of the network. Graph theory techniques facilitate
representation and analysis during a vulnerability assessment of complex networks. The theory is based on a set
of measurements that evaluate networks and include graph vulnerability parameters. The proposed solutions for
the network’s vulnerability were rooted in the graph theoretical principles, especially the concepts of domination
[19].

Theory of domination is one of the most important branches of graph vulnerability, which has wide application
in network designings. It has a wide variety of uses in many areas, such as computer science, communication
networks, transportation networks, biological and social networks, operations research, chemistry, economics,
engineering, and applied mathematics; the principle of domination has recently become the center of graph
theory research activity. This is largely due to a variety of new parameters that can be developed from the basic
definition of domination [10, 14, 15]. Disjunctive total domination is the new domination parameter defined
recently. Henning and Naicker [14] defined the disjunctive total domination as a relaxation of total domination.

A set S ⊆ V (G) is a dominating set if every vertex in V (G)− S is adjacent to at least one vertex in S. The
minimum cardinality taken over all dominating sets of G is called the domination number of G and is denoted

∗Corresponding author. Email address: vecdi.aytac@ege.edu.tr (Vecdi Aytaç), tturaci@pau.edu.tr (Tufan Turacı)

https://www.malayajournal.org/index.php/mjm/index c©2021 by the authors.
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by γ(G) [3, 10]. A total dominating set, abbreviated a TD-set, of a graph G, with no isolated vertex is a set S of
vertices of G such that every vertex in V (G) is adjacent to at least one vertex in S. The total domination number
of G, denoted by γt(G), is the minimum cardinality of a TD-set of G [3, 15]. Let S ⊆ V (G). The set S can be
the disjunctive total dominating set of the graph G if and only if it satisfies any of the following properties. For
every vertex v ∈ V (G);

(i) v is adjacent to a vertex of S,
(ii) at least two vertices at a distance of 2 from the vertex v must be in the set S.

The disjunctive total dominating set of the graph G is briefly called DDT-set. The disjunctive total domination
number of G is the minimum cardinality of a DTD-set of G and denoted by γdt (G). A DTD-set of cardinality
γdt (G) is called a γdt (G)-set. Clearly, every TD-set is a DTD-set, furthermore the result γdt (G) ≤ γt(G) is
obtained in [12–14]. This parameter is studied on grids, trees, permutation graphs, claw-free graphs, shadow
distance graph of some special graphs and it is applied on some graph modifications such as bondage and
subdivision [1, 2, 12–14].

We consider the disjunctive total domination number as a metric for network vulnerability. In this model,
we find the critical vertices with an important position in the graph. Since disjunctive total domination number
is considered to be a reasonable measure for the vulnerability of graphs, it is of particular interest to evaluate
the disjunctive total domination number of different classes of graphs. Suppose one can break a more complex
network into smaller networks, then under some conditions. In that case, the optimization problem’s solutions on
the smaller networks can be combined to solve the optimization problem on the larger network. Thus, calculation
of the disjunctive total domination number for simple graph types is important.

For notation and graph theory terminology, we in general follow [10, 19]. Specifically, letG = (V (G), E(G))

be a simple undirected graph with vertex set V (G) and edge set E(G). The set of all adjacent vertices to vertex
v ∈ V (G) in G is called neighborhood and denoted by NG(v) or N(v). The close neighborhood of this vertex
is defined as NG(v) ∪ {v} and denoted by NG[v] or N [v]. The other basic parameter for graphs is the degree of
vertex v ∈ V (G), which is defined as the number of vertices in NG(v) and denoted by deg(v) . Assume that the
vertices u and v belong to the graph G. For these vertices, d(u, v) is defined as the distance of the shortest path
between these vertices.Furthermore, diam(G) is defined as the diameter ofG, and it is the highest distance value
within the vertices of G. ∆(G) = max{deg(v)|v ∈ V (G)} and δ(G) = min{deg(v)|v ∈ V (G)} represent the
maximum and minimum degree, respectively. The vertex with deg(v) = 1 is said to be a pendant vertex or leaf
vertex. The vertex adjacent to the pendant vertex is called the support vertex.

Now, we make use of the following known theorems in our results.

Theorem 1.1. [14] For n ≥ 3, γdt (Cn) = 2n
5 if n ≡ 0(mod5); and γdt (Cn) =

⌈ 2(n+1)
5

⌉
, otherwise.

Theorem 1.2. [14] For n ≥ 3, γdt (Pn) =
⌈ 2(n+1)

5

⌉
+ 1 if n ≡ 1(mod5); and γdt (Pn) =

⌈ 2(n+1)
5

⌉
, otherwise.

Lemma 1.3. [14] If v is a support vertex in a graph G with exactly one neighbor w that is not a leaf, then there
is a γdt (G)-set that contains v. Further if deg(w) = 2, then there is a γdt (G)-set that contains both v and w.

2. Disjunctive Total Domination Numbers of Some Trees

In this section, the distinctive total dominance numbers of certain tree-type networks such as the double comet
graph, the double star graph, the comet graph, the generalized caterpillars, the comb graph, the thorn graph P ∗n ,
the binomial tree and the complete k-ary tree are computed and exact formulae are presented.

Definition 2.1. [8] The double star graph S(x, y), where x, y ≥ 0, is the graph consisting of the union of two
star graphs K1,x and K1,y together with an edge joining their centers.

Theorem 2.2. If G ∼= S(x, y) of order x+ y, where x, y ≥ 0, then, γdt (G) = 2.
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Proof. Note that V (G) = V (K1,x) ∪ V (K1,y). Furthermore, let u1 and u2 be the central vertices of K1,x and
K1,y , respectively. It is easily seen that deg(xi) = deg(yi) = 1 for every vertices xi and yi, where xi ∈ V (K1,x)

and yi ∈ V (K1,y), deg(u1) = x + 1 and deg(u2) = y + 1. If a DTD-set of G is considered S, then taking
u1 and u2 to the set S yields γdt (G) ≤ 2. Furthermore, we have γdt (G) ≥ 2 for any graph G by the definition
of disjunctive total domination number. So, γdt (G) ≥ 2. As a consequence, by combining the lower and upper
bounds, we obtain γdt (G) = 2. �

Definition 2.3. [4] The comet graph C(t, r) is the graph obtained by identifying one end of the path Pt with the
center of the star graph K1,r. This graph is illustrated in Figure 1.

Figure 1: The comet graph C(t, r).

Theorem 2.4. If G ∼= C(t, r) of order t+ r, then γdt (G) =


⌈
2(t+1)

5

⌉
+ 1 , if t ≡ 0, 1, 4(mod5);

⌈
2(t+1)

5

⌉
, otherwise.

Proof. Note that V (G) = V (Pt−1) ∪ V (K1,r). Furthermore, V (Pt−1) = {u2, u3, ..., ut} and V (K1,r) =

{u1, v1, ..., vr}, where u1 is the center vertex. Suppose S is a DTD-set in G. By Lemma 1.3, u1 must be
in S. Thus, all vertices vi and u2 are disjunctively totally dominated by the vertex u1. The disjunctive total
undominated vertices by S are the vertices of the path graph with (t−1) vertices. So, the rest of the proof has to be
made similar to the proof of Theorem 1.2. In this case, if t ≡ 0, 1, 4(mod5), then γdt (G) = |S| = d2(t+1)/5e+1,
while if t ≡ 2, 3(mod5) ,then γdt (G) = |S| = d2(t+ 1)/5e are obtained. �

Definition 2.5. [5] The graph obtained by adding x and y vertices, which are pendant, to the end vertices of the
path graph with n − x − y vertices is called double comet DC(n, x, y). For x, y ≥ 1 and n ≥ x + y + 2 the
double comet DC(n, x, y) is one of the tree graphs. DC(n, x, y) is a graph with n vertices, x + y of which is
leaves. This graph is illustrated in Figure 2.

Figure 2: The double comet graph DC(n, x, y).
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Theorem 2.6. If G ∼= DC(n, x, y) with x, y ≥ 2 and n ≥ x+ y + 3, then

γdt (G) =



⌈
2(n−x−y+1)

5

⌉
+ 2 , if (n− x− y) ≡ 4(mod5);

⌈
2(n−x−y+1)

5

⌉
, if (n− x− y) ≡ 2(mod5);

⌈
2(n−x−y+1)

5

⌉
+ 1 , otherwise.

Proof. Note that V (G) = V (Pn−x−y−2) ∪ V (K1,x) ∪ V (K1,y) in which
V (Pn−x−y−2) = {u2, u3, ..., un−x−y−1}, V (K1,x) = {u1, x1, x2..., xx} and
V (K1,y) = {un−x−y, y1, y2..., yy}. Suppose S is a DTD-set in G. By Lemma 1.3, the vertices u1 and un−x−y
must be taken to the set S. Thus the vertices not disjunctively totally dominated by the set S form the path
graph. As in the proof of Theorem 1.2, the construction of the set S is continued. In this case, if
(n− x− y) ≡ 4(mod5) , then γdt (G) = |S| = d(2(n− x− y + 1)/5)e+ 2; if (n− x− y) ≡ 2(mod5) , then
γdt (G) = |S| = d(2(n−x− y+ 1)/5)e and otherwise γdt (G) = |S| = d(2(n−x− y+ 1)/5)e+ 1 are obtained.

�

Definition 2.7. [17] The graph obtained by joining a pendant edge at each vertex of a path Pn is called a comb
graph and is denoted by Pn�K1. The graph P5�K1 is illustrated in Figure 3.

Figure 3: The comb graph P5�K1.

Theorem 2.8. If G ∼= Pn�K1 of order 2n, then γdt (G) = 4 + b(n− 4)/2c.

Proof. Note that V (G) = {ui, vi |1 ≤ i ≤ n} and E(G) = {uivi |1 ≤ i ≤ n} ∪ {uiui+1 |1 ≤ i ≤ n − 1}. It
is obvious that |V (G)| = 2n, |E(G)| = 2n− 1, deg(vi) = 1 where i ∈ {1, ..., n}, deg(u1) = deg(un) = 2 and
deg(ui) = 3 where i ∈ {2, ..., n − 1}. We set the upper limits to the disjunctive total domination number of G,
first. Suppose D is a DTD-set in G. According to degree of vertices of G, some ui-vertices (i ∈ {2, ..., n− 1})
must be taken to the set D. To disjunctively totally dominate the vertices v1 and vn, it must be {u1, un} ⊆ D.
Since NG(u1) = {v1, u2} and NG(un) = {vn, un−1} , {u2, un−1} ⊂ D should be to disjunctively totally
dominate the vertices u1 and un. Thus, the set D is as follows:

D =

bn−4
2 c+1⋃
i=0

{
u2i+4

}
∪
{
u1, u2, un−1, un

}
.

Clearly, the set D is a DTD-set for every n ≥ 5. Furthermore, we get |D| = 4 + b(n − 4)/2c, also is an
upper bound. Thus, γdt (G) ≤ 4 + b(n− 4)/2c is obtained.
To prove the inverse of equality, let the set T be a γdt (G)-set of G. Assume that the two vertices are adjacent in
T . Furthermore, the set S is as follows:

S =

bn3 c−1⋃
i=0

{
u3i+1, u3i+2

}
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, where S ⊆ T . If n ≡ 1(mod3), we have T = S ∪ {vn−1, vn}; if n ≡ 0(mod3), we have T = S ∪ {vn} and if
n ≡ 2(mod3), we have T = S. Thus, we obtain |T | = 2bn/3c + 2 for n ≡ 1(mod3), |T | = 2bn/3c + 1 for
n ≡ 0(mod3) and |T | = 2bn/3c for n ≡ 2(mod3). These results contradict the previous upper bound for
n ≥ 7.

Furthermore, we get {u1, u2, un−1, un} ⊂ T . However, apart from these vertices, no two vertices in T should
be adjacent to each other. If the distance between the two vertices is at least three, all vertices in G cannot be
disjunctively totally dominated. So, the distance between two vertices must be exactly 2. Thus, it is easy to see
that γdt (G) ≥ 4 + b(n− 4)/2c, also we have γdt (G) = 4 + b(n− 4)/2c.

�

Corollary 2.9. If G ∼= Pn�K1 of order 2n, then γdt (G) = 4 + γ(Pn−4).

Definition 2.10. [9] Let p1, p2, . . . , pn be non-negative integers and the graph G be such a graph, where
|V (G)| = n. The thorn graph of the graph G with parameters p1, p2, . . . , pn is obtained by attaching pi
new vertices of degree one to the vertex ui of the graph G, where i = 1, n. The thorn graph of the graph G
will be denoted by G∗ or if the respective parameters need to be specified, by G∗(p1, p2, . . . , pn). The graph
P ∗7 (2, 1, 1, 3, 2, 1, 4) is illustrated in Figure 4.

Figure 4: The thorn graph P ∗
7 (2, 1, 1, 3, 2, 1, 4).

Theorem 2.11. If G ∼= P ∗n is a thorn graph of Pn with pi ≥ 2 , then γdt (G) = γdt (Pn�K1).

Proof. The proof is quite close to that of Theorem 2.8, so we omit it.
�

Definition 2.12. [18] C(t,0)Pn is a generalized Caterpillar obtained from the path graph Pn by attaching t
vertices of degree one to each vertex of degree two of Pn. The tree C(t,1)Pn is a generalized Caterpillar obtained
from the path graph Pn by attaching m vertices of degree two to each vertex of degree two of Pn. The graph
C(3,0)P7 and C(3,1)P7 are illustrated in Figure 5.

Figure 5: (a) The graph C(3,0)P7 and (b) the graph C(3,1)P7.

Theorem 2.13. Let G ∼= C(t,0)Pn be generalized caterpillar graph with (n+ t(n− 2))-vertices. Then, for t ≥ 2

and pi = t, γdt (G) = γdt (P ∗n−2).

Proof. The proof is quite close to that of Theorem 2.8, so we omit it. �
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Theorem 2.14. LetG ∼= C(t,1)Pn be generalized caterpillar graph with (n+ t(n−2))-vertices. Then, for t ≥ 3,
γdt (G) = t(n− 2).

Proof. The graphG has (n+t(n−2))-vertices. Let V (G) = V1∪V2∪V3, where V1 = {ui ∈ V (Pn) |1 ≤ i ≤ n},
V2 = {vi ∈ (V (G)−V (Pn)) |deg(vi) = 2 and 1 ≤ i ≤ t(n−2)} and V3 = {wi ∈ (V (G)−V (Pn)) |deg(wi) =

1 and 1 ≤ i ≤ t(n − 2)}. Clearly, we have deg(u1) = deg(un) = 1 and deg(ui) = 2 for the vertices of V1,
where i ∈ {2, ..., n − 1}. Suppose S is a γdt (G)-set of G. Since deg(wi) = 1 for each vertex wi ∈ V3, the
all vertices of V2 must be taken to the set S. Therefore, each vertex of V1 is disjunctively totally dominated by
the set S. Thus, all vertices in G are disjunctively totally dominated by S. It is easily seen that the set S is
unique and there is no other set of γdt (G)-set. Note that |V2| = t(n − 2). Then, |S| = t(n − 2). Hence, we get
γdt (G) = t(n− 2). Thus, the proof holds. �

Definition 2.15. [6] The binomial tree Bn with root R is the tree defines as follows:

i. If n = 0, then Bn = B0 = R, i.e., the binomial tree of order zero consists of a single root R.

ii. If n > 0, then Bn = R,B0, B1, . . . , Bn−1, i.e., the binomial tree of order n > 0 comprises the root R and
n binomial subtrees B0, B1, . . . , Bn−1.

In Figures 6 and 7, the binomial trees B4 and B5 are illustrated.

Figure 6: The binomial tree B4.

Figure 7: The binomial tree B5.

Theorem 2.16. If G ∼= Bn of order 2n with n ≥ 5, then γdt (G) = 7(2n−4).

Proof. The binomial tree Bn has 2n-vertices. It is clear that γdt (B0) = 1, γdt (B1) = γdt (B2) = 2, and γdt (B3) =

4 for n ≤ 3. Let n = 4, and let S1 be a γdt (G)-set of B4. It is easily seen that S1 = {v2, v3, v6, v10, v11, v14, v15}
(see Figure 6). Then, we get γdt (B4) = 7.

Suppose S is a γdt (G)-set of B5. Since B5 has two copies of B4, the vertices {v2, v3, v6, v10, v11, v14, v15}
and {v′2, v′3, v′6, v′10, v′11, v′14, v′15} in the first and second copies of B4, respectively, must be taken to the set S
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(see Figure 7). Thus, we have S = {v2, v3, v6, v10, v11, v14, v15, v′2, v′3, v′6, v′10, v′11, v′14, v′15}. Then, we obtain
γdt (B5) = 2γdt (B4) = 14. With the same thought, γdt (B6) = 2γdt (B5) = 28 and γdt (B7) = 2γdt (B6) = 56 are
obtained. If this continue for n ≥ 5, we get the following recurrence formula:

γdt (Bn) = 2γdt (Bn−1) for n ≥ 5. (1)
From this formula, we have:

γdt (Bn) = 2γdt (Bn−1) = 2(2γdt (Bn−2)) = 22γdt (Bn−1) = ... = 2n−4γdt (B4).

Furthermore, we obtain
γdt (Bn) = 2iγdt (Bn−i), i ∈ {1, 2, n− 1}. (2)

This equality can be seen by the induction method.
Let i = 1.
Thus, we have γdt (Bn) = 2γdt (Bn−1), also is clear by Eq. (1). We prove this statement with induction on i.
When i = 1, we have γdt (Bn) = 2iγdt (Bn−i) and via the Eq. (1), this is valid. We suppose that the result is true
for i = k and prove it for i = k + 1. By induction hypothesis and Eq. (1), we get

γdt (Bn) = 2kγdt (Bn−k) = 2k(2γdt (Bn−k−1)) = 2k+1γdt (Bn−k−1).

This means the claim is valid where i = k + 1. Hence, we get
γdt (Bn) = 2iγdt (Bn−i), where 1 ≤ i ≤ n− 4,

γdt (Bn) = 7.

Since the first case obtained when i = n− 4 is n = 4, the following is obtained from Eq. (2).
γdt (Bn) = 2n−4(Bn−(n−4)) = 2n−4(γdt (B4)) = 7(2n−4).

�

Definition 2.17. [6] The complete k-ary tree of height h, T k
h , is a rooted tree with each leaf having the same

depth and each vertex except the leaves in degree k. T k
h in which every non-leaf vertex has exactly k-children

and the distance from the root to each leaf is exactly h. The complete k-ary tree for k ≥ 2 has
kh+1 − 1

k − 1
vertices

and
kh+1 − 1

k − 1
− 1 =

kh+1 − k
k − 1

edges. The complete binary tree is the complete k-ary tree with k = 2. Figure

8 shows an example of a complete k-ary tree T 2
4 (k = 2 and h = 4). In Figure 8, the value of L expresses the

depth of each vertex.

Figure 8: The complete 2-ary tree T 2
4 (k = 2 and h = 4).
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Theorem 2.18. If G ∼= T k
h of order

kh+1 − 1

k − 1
, where h ≥ 4 and k ≥ 3, then

γdt (G) =



dh/4e−1∑
i=0

k4i+3

+ 1 , h ≡ 0(mod4);

dh/4e−1∑
i=0

k4i+4

+ 2 , h ≡ 1(mod4);

dh/4e−1∑
i=0

k4i+1

 , h ≡ 2(mod4);

dh/4e−1∑
i=0

k4i+2

 , h ≡ 3(mod4).

Proof. By the definition of complete k-ary tree T k
h , we know that there are k0, k1, ..., kh vertices in the levels

0th, 1th, ..., hth, respectively. Suppose S is a DTD-set in T k
h for h ≥ 4 and k ≥ 3. We know that the vertices

that in the level hth are called leaf vertices. Since the degree of each leaf vertex is 1, the set S must include
support vertices in the level (h − 1)th. Furthermore, the distance between each vertex in S and at least two
vertices in S is two. Thus, the vertices which are in the levels hth, (h − 2)th and (h − 3)th are disjunctively
totally dominated by the set S. Then, the vertices that in the level (h− 5)th must be added to the set S. It is easy
to see that distance of the any two vertices which are in distinct levels is four. With the same thought, the set will
be occurred. But, we have four cases according to h.

Case 1. h ≡ 0(mod4).

Let L =

dh/4e−1∑
i=0

{4i + 3}, where the elements of L is the levels of tree T k
h . Let the set S includes the vertices

which are in the levels in L. Thus, we get |S| =

dh/4e−1∑
i=0

k4i+3. But the root vertex of T k
h is not disjunctively

totally dominated by S. If any vertex in the first level is added to S, then root vertex is disjunctively totally

dominated. So, γdt (T k
h ) = |S| =

dh/4e−1∑
i=0

k4i+3

+ 1 is obtained.

Case 2. h ≡ 1(mod4).

Let L =

dh/4e−1∑
i=0

{4i + 4}, where the elements of L is the levels of tree T k
h . Let the set S includes the vertices

which are in the levels in L. Thus, we get |S| =
dh/4e−1∑

i=0

k4i+4. But the root vertex and the vertices which are in

first level of T k
h are not disjunctively totally dominated by S. If any vertex in the first level and the root vertex

are added to S, then all vertices of T k
h are disjunctively totally dominated by S. So,

γdt (T k
h ) = |S| =

dh/4e−1∑
i=0

k4i+4

+ 2 is obtained.
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Case 3. h ≡ 2(mod4).

Let L =

dh/4e−1∑
i=0

{4i + 1}, where the elements of L is the levels of tree T k
h . Let the set S includes the vertices

which are in the levels in L. Thus, we get |S| =

dh/4e−1∑
i=0

k4i+1. Clearly, all vertices of T k
h are disjunctively

totally dominated by S. So, γdt (T k
h ) = |S| =

dh/4e−1∑
i=0

k4i+1 is obtained.

Case 4. h ≡ 3(mod4).

Let L =

dh/4e−1∑
i=0

{4i + 2}, where the elements of L is the levels of tree T k
h . This case is similar to the Case 3.

So, γdt (T k
h ) = |S| =

dh/4e−1∑
i=0

k4i+2 is obtained.

Thus, the proof of theorem is completed by the Cases 1, 2, 3 and 4.
�

Theorem 2.19. If G ∼= T k
h of order

kh+1 − 1

k − 1
, where h ≤ 3 and k ≥ 3, then γdt (G) = kh−1.

Proof. Suppose S is a DTD-set in T k
h . Due to leaf vertices of T k

h , the all support vertices must be taken to the
set S. It is clear that all vertices of T k

h are disjunctively totally dominated by S. So, we get γdt (T k
h ) = kh−1.

�

Theorem 2.20. If G ∼= T 2
h is a complete 2-ary tree of order 2h+1 − 1, where h ≥ 4, then

γdt (G) =


2(2h−1)

3 , if t ≡ 0(mod2);

2h−1 + 2h−3 , otherwise.

Proof. By the definition of complete k-ary tree T k
h , we know that T 2

h consists of 2 copies of T 2
h−1 , also T 2

h−1
consists of 2 copies of T 2

h−2 , etc. Clearly, we get T 2
1
∼= S1,2, where S1,2 is a star graph. It is easily seen that

γdt (T 2
1 ) = 2. Let D be a γdt (G)-set of T 2

h for h ≤ 3. To be disjunctively totally dominated each vertex of T 2
h , all

vertices which are in (h − 1)th level must be added to the set D. Thus, all vertices except the vertices in D are
disjunctively totally dominated. Therefore, the vertex which in level zero must be added to D. So, all vertices of
T 2
h are disjunctively totally dominated by the set D. Clearly, |D| = 2h−1 + 1, also the set D is the minimum

DTD-set. As a result, γdt (T 2
h ) = 2h−1 + 1 for h ≤ 3.

Let h ≥ 4, and let S1 be a γdt (G)-set of T 2
4 . Clearly, the set S1 has the vertices of v1, v2, vi, where

i ∈ {7, 8, ..., 14} in the Figure 8. So, all vertices in T 2
4 and S1 are disjunctively totally dominated by S1. It is

easy to see that |S1| = 23 + 2 = 10. Hence, γdt (T 2
4 ) = 10. Let S be γdt (G)-set of T 2

5 . Since the tree T 2
5 has

k-copies of T 2
4 , all vertices which are correspond to vertices of S1 in all copies of T 2

4 must be added to the set S.
That is, S =

⋃2
j=1 S1. Thus, we get |S| = 2|S1|. So, γdt (T 2

5 ) = 2(γdt (T 2
4 )) = 24 + 22 is obtained.

With the same thought, we consider the tree T 2
6 . If the vertices of γdt (G)-set of the tree T 2

5 which is copy
of T 2

6 , all vertices of T 2
6 are not disjunctively totally dominated. Because, the vertices which are in the DTD-set

are not dominated. To disjunctively total dominate of these vertices, the vertices which are in 1-level must be
taken in to the γdt (G)-set. Thus, we obtain γdt (T 2

6 ) = 2(γdt (T 2
5 )) + 2. Furthermore, we get following recursive

formulas for γdt (T 2
h ), where h ≥ 5:
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γdt (T 2
h ) =


2γdt (T 2

h−1) + 2 , if h ≡ 0(mod2);

γdt (T 2
h−1) , otherwise.

Let h = 2k + 1, where k ∈ Z+. Then we have

γdt (T 2
h ) = 2γdt (T 2

h−1) = 2(2γdt (T 2
h−2)) = 22γdt (T 2

h−2) = ... = 2n−4(T 2
4 ).

Let h = 2k, where k ∈ Z+. Then we have

γdt (T 2
h ) = 2γdt (T 2

h−1) + 2

= 2(2γdt (T 2
h−2) + 2) = 22(γdt (T 2

h−2)) + 2

= 22(2γdt (T 2
h−3) + 2 = 23(γdt (T 2

h−3)) + 23 + 2

.

.

.

= 2h−4γdt (T 2
4 ) + 2h−5 + 2h−7 + ...+ 2h−(h−3) + 2h−(h−1).

Clearly, we get following result for 1 ≤ i ≤ h− 4.

γdt (T 2
h ) = 2iγdt (T 2

h−i), if h = 2k + 1;

γdt (T 2
h ) = 2iγdt (T 2

h−i) +

h−4
2 −1∑
i=0

22i+1, if h = 2k.

If we use geometric series for h = 2k, then we have γdt (T 2
h ) = 2iγdt (T 2

h−i) + 2
(

2i−1
22−1

)
.

These equalities can be proved by induction method, also remaining of the proof is similar to the proof of
Theorem 2.16. So, the remaining of proof is omitted. Thus, the proof holds.

�

3. Conclusion

Various measures to determine the network robustness were suggested in the literature, and a number of graph-
theoretical parameters were used to assess network reliability. We have discussed the disjunctive total domination
number for some tree networks in this work. Suppose one can break a more complex network into smaller
networks, then under some conditions. In that case, the optimization problem’s solutions on the smaller networks
can be combined to solve the optimization problem on the larger network. Thus, calculation of the disjunctive
total domination number for simple graph types is important.
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Abstract. In this paper, the numerical scheme for solving singular Volterra integral equation is obtained by considering non-
variable subinterval and the function under the integrals were approximated by the Simpson’s rule. The error bound for the
numerical scheme is established where the scheme derived has convergence of order 3. The scheme obtained is compared
with exact solution of the tested problems which shows that the scheme is effective.

Keywords: Singular Volterra integral equation, convergence order, Simpson’s rule, exact solution, error bound.

1. Introduction and Background

Singular Volterra integral equation of this form

u(t) =

∫ t

0

sµ−1

tµ
u(s)ds+ g(t), t ∈ (0, T ], (1.1)

with µ > 0, g(t) ∈ C[0, T ] is a given function and the kernel is weakly type has been considered by many
authors. Diogo et al.[3], investigated the application of product integration method for the numerical solutions
base on graded meshes by Trapezoidal method. Diogo et al. [1], utilized the analytic results for the existence
and uniqueness solution of (1.1). Further more, Euler’s and Trapezoidal methods were used to develop new
schemes, comparison between them was made and error bound analysis were developed. Diogo et al. [2], used
a class of singular Volterra integral equation of the form (1.1) and obtained the numerical schemes which uses
Euler method and Trapezoidal rules. The numerical approximation base on the product Euler scheme converges
to the smooth solution but with poor order of convergence. However, Diogo and Lima [4], analyzed discrete
supperconvergence properties of spline collocation results and for a certain choice of parameter the attainable
convergence order of (1.1) was considered. Diogo and Lima [5], proved that a higher order attained at the
meshes points by special choice of the collocation methods. Also Diogo [6], utilized the iterated methods on the
collocation results.

In this article we consider the work in Diogo et al. (2006) which we used the Simpson’s method in the case of
when 0 < µ ≤ 1, Eqn (1.1) has a family of solutions in the space C[0, T ]. The work has been organized as
follows; In section 2, we derived the scheme by applying the Simpson’s method. In section 3, we estimates the
error bound analysis for the convergence results of the propose scheme. Also, in section 4 we tested the scheme
by means of some examples and finally in section 5 the conclusion was given.

∗Corresponding author. Email address: ymustapha830@fud.edu.ng ( MUSTAPHA YAHAYA)

https://www.malayajournal.org/index.php/mjm/index c©2021 by the authors.
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2. Derivation of the Scheme by Simpson’s rule Approach

2.1. Definitions of the basic concepts

We start by presenting some definitions, theorems and lemmas;

Definition 2.1. A kernel is called separable if it can be expressed as the outer product of two variables (vectors).
For examples

u(t) =

∫ t

0

sµ−1

tµ
u(s)ds+ g(t), t ∈ [0, T ],

where k(t, s) = sµ−1

tµ that can be expressed as k(t, s) = 1
tµ s

µ−1

otherwise, it is nonseparable.

Theorem 2.2. Mean Value Theorem: Let u(x) be a function which is continuous on the closed interval [a, b] and
which is differentiable at every point of (a,b). Then there is a point c ∈ (a, b) such that

u′(c) =
u(b)− u(a)

b− a
,

Lemma 2.3. Special Gronwall lemma: Let (en) and (ej) be nonnegative sequences andC a nonnegative constant
if

un ≤C +

n−1∑
k=0

gkuk for n ≥ 0,

then

un ≤C
n−1∏
j=0

(1 + gj) ≤ C exp(
∑n−1
j=0 gj) for n ≥ 0.

Lemma 2.4. (i) If 0 < µ ≤ 1 and g ∈ C1[0, T ] (with g(0) = 0 if µ = 1) then equation(1) has a family of
solutions u ∈ C[0, T ] given by the formula

u(t) = c0t
1−µ + g(t) + γ + t1−µ

∫ t

0

sµ−2(g(s)− g(0))ds, (2.1)

where

γ :=

{ 1
µ−1g(0) if µ < 1,

0 if µ = 1,

and c0 is an arbitrary constant. Out of this family of solutions there is one particular solution u ∈ C1[0, T ].
(ii) If µ ≤ 1 and g ∈ Cm[0, T ],m ≥ 0 then the unique solution u ∈ Cm[0, T ] of (1) is given by

u(t) = g(t) + t1−µ
∫ t

0

sµ−2g(s)ds.,

We note that Eqn (2.4) can be obtained from Eqn (2.1) with c0 = 0. Indeed; it follows from Eqn (2.1) that

c0 = lim
t→0+

tµ−1u(t),

and this limit is zero when µ > 1.
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2.2. Derivation of the scheme

Let us reformulate (1.1) into a new form by choosing some fixed real number α > 0. Substituting t by t + α in
(1.1) we have

u(t+ α) =

∫ t+α

0

sµ−1

(t+ α)µ
u(s)ds+ g(t+ α), t ∈ [0, T ], (2.2)

by splitting of the interval we have

u(t+ α) =
1

(t+ α)µ

∫ α

0

sµ−1u(s)ds+

∫ t+α

α

sµ−1

(t+ α)µ
u(s)ds+ g(t+ α), t ∈ [α, T ], (2.3)

or, equivalently,

u(t+ α) =
Iα

(t+ α)µ
+

∫ t

0

(s+ α)µ−1

(t+ α)µ
u(s+ α)ds+ g(t+ α), (2.4)

where

Iα =

∫ α

0

sµ−1u(s)ds. (2.5)

Since Iα is known exactly for a chosen the exact solution by using the solution formula then we can apply the
numerical method in (2.4) and obtain the approximation.
Now, let us define a uniform grid Xh with stepsize h = t

n

Xh := {ti = ih+ α, 0 ≤ i ≤ N}.

Setting t = nh in (2.4) we have

u(tn) =
Iα
tµn

+
1

tµn

∫ nh

0

(s+ α)µ−1u(s+ α)ds+ g(tn). (2.6)

In the Simpson’s method, we approximates the integral on the right-hand side of (2.6) by considering each
subinterval using:

u(s+ α) ≈ 1

6

[
u(tj+1)(s− jh) + 4u

(
tj + tj+1

2

)
(tj+1 − tj) + u(tj)((j + 1)h− s)

]
, (2.7)

on each subinterval s ∈ [jh, (j + 1)h]. Defining the following

D1
j : =

∫ (j+1)h

jh

(s+ α)µ−1(s− jh)ds

D2
j : =

∫ (j+1)h

jh

(s+ α)µ−1ds

D3
j : =

∫ (j+1)h

jh

(s+ α)µ−1((j + 1)h− s)ds

which can be obtain analytically.
Hence the scheme:

u(tn)
h
n =

Iα
tµn

+
h

tµn

n−1∑
j=0

(D1
ju
h
j+1 +D2

j4u
h
j/2 +D3

ju
h
j )

6
+ g(tn), n = 1, 2, ..., N. (2.8)
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2.3. Algorithm: Simpson’s rule approach

Step1: Given n = 1, ε = 10−3, t ∈ [0, T ], µ ∈ (0, 1], α > 0, u(t), g(t), Iα.
Step2: Set h = t

n

Step3: Compute

tn = nh+ α

tµn = (nh+ α)µ

uhn =
Iα
tµn

+
h

tµn

n−1∑
j=0

(D1ju
h
j+1 +D2ju

h
j/2 +D3ju

h
j )

6
+ g(tn)

where
D1j :=

(jh+α)µ+1−((j+1)h+α)µ+1+h((j+1)h+α)µ(µ+1)
(µ+1)µ ,

D2j :=
h(((j+1)h+α)µ−(jh+α)µ)

µ ,

D3j :=
((j+1)h+α)µ+1−(jh+α)µ+1−h(jh+α)µ(µ+1)

(µ+1)µ ,

uhj+1 := u ((j + 1)h+ α) ,

uhj/2 := 4u
(

(jh+α)+((j+1)h+α)
2

)
uhj := u (jh+ α)

If |u(t)− uhn| ≤ 10−2 stop, else
Step4: set n = n+ 1 and go to Step3.

3. Error Bound of the Scheme in Simpson’s Rule Approach

In this section we present the error bound for the convergence of the scheme.

Theorem 3.1. Consider (1.1) with 0 < µ ≤ 1 and u ∈ C1[0, T ]. Let α 6= 0 be fixed in the equivalent (2.4) and
assume the integral Iα is known exactly for a chosen particular solution (corresponding to a certain value of the
parameter c0). Then the approximate solution obtained by the product Simpson’s method converges with order 3
to the particular exact solution.

Proof. The solution u of the exact solution satisfies

u(tn)
h
n =

Iα
tµn

+
h

tµn

n−1∑
j=0

(D1
ju
h
j+1 +D2

j4u
h
j/2 +D3

ju
h
j )

6
+ g(tn) + η(h, tn), n ≥ 1, (3.1)

where η(h, tn) is the consistency error given by

η(h, tn) =

∫ tn

0

sµ−1

tµn
u(s)ds− h

tµn

n−1∑
j=0

(D1
ju
h
j+1 +D2

j4u
h
j/2 +D3

ju
h
j )

6
, (3.2)

but the exact solution is

u(tn) =
Iα
tµn

+
1

tµn

∫ T

α

sµ−1u(s)ds+ g(tn). (3.3)
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Setting en = u(tn)− u(tn)h for n ≥ 1 and by utilizing (3.3) and (3.1) this gives

en =
1

tµn

∫ T

α

sµ−1u(s)ds− h

tµn

n−1∑
j=0

(D1
ju
h
j+1 +D2

j4u
h
j/2 +D3

ju
h
j )

6
+ η(h, tn)

=
1

tµn

n−1∑
j=0

∫ tj+1

tj

sµ−1u(tj)ds−
h2

tµn

n−1∑
j=0

∫ tj+1

tj

sµ−1

(
u(tj+1)

h + u(tj/2)
h + u(tj)

h

6

)
ds

+ η(h, tn)

=
h2

tµn

n−1∑
j=0

∫ tj+1

tj

(
u(tj)− Su(tj)h

)
sµ−1ds+ η(h, tn)

let Su(tj)h =
u(tj+1)

h+u(tj/2)
h+u(tj)

h

6 and defining esj := Sej =
(
u(tj)− Su(tj)h

)
yield

en =
h2

tµn

n−1∑
j=0

esj

∫ tj+1

tj

sµ−1ds+ η(h, tn), n ≥ 1, (3.4)

but

1

tµn

∫ tj+1

tj

sµ−1ds ≤
tµ−1j

tµn

∫ tj+1

tj

ds

= h
tµ−1j

tµn

≤ h

(
tj
tn

)µ
1

tj

≤ h

α
. (3.5)

Since α 6= 0 and for α > 0 choose α ≤ tj
(
tn
tj

)µ
. By utilizing (3.5) in (3.4) we have

en ≤
h3

α

n−1∑
j=0

esj + η(h, tn), n ≥ 1. (3.6)

Taking the modulus in (3.6) we have

|en| ≤
h3

α

n−1∑
j=0

∣∣esj∣∣+ |η(h, tn)| , n ≥ 1 (3.7)

On the other hand from equation (3.2) we have

|η(h, tn)| =

∣∣∣∣∣∣
∫ tn

0

sµ−1

tµn
u(s)ds− h

tµn

n−1∑
j=0

(D1
ju
h
j+1 +D2

j4u
h
j/2 +D3

ju
h
j )

6

∣∣∣∣∣∣
=

∣∣∣∣∣∣ 1tµn
n−1∑
j=0

Dju(tj)−
h2

tµn

n−1∑
j=0

Dj

(
u(tj+1)

h + u(tj/2)
h + u(tj)

h

6

)∣∣∣∣∣∣
=

∣∣∣∣∣∣h
2

tµn

n−1∑
j=0

Dj

(
u(s)− Su(tj)h

)∣∣∣∣∣∣
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but

Dj :=

∫ tj+1

tj

sµ−1ds

Therefore,

|η(h, tn)| ≤
h2

tµn

n−1∑
j=0

∫ tj+1

tj

sµ−1
∣∣(u(s)− Su(tj)h)∣∣ ds (3.8)

by applying the mean value theorem in (3.8), we have

|η(h, tn)| ≤
h3

tµn
max
s∈[α,T ]

|u′(s)|
∫ tn

α

sµ−1ds (3.9)

Defining M(α) := maxs∈[α,T ] |u′(s)|

|η(h, tn)| ≤
M(α)h3

tµn

∫ tn

α

sµ−1ds

=
M(α)h3

µ

(
tµn − αµ

tµn

)
=

(
1− αµ

tµn

)
M(α)h3

µ

we obtained the following bound

|η(h, tn)| ≤
(
1− αµ

tµn

)
M(α)h3

µ
(3.10)

substitute (3.10) into (3.7) we have

|en| ≤
(
1− αµ

tµn

)
M(α)h3

µ
+
h3

α

n−1∑
j=0

∣∣esj∣∣ (3.11)

by applying the special Gronwall lemma for the discrete in (3.11) we have

|en| ≤
(
1− αµ

tµn

)
M(α)h3

µ

n−1∏
j=0

(
1 +

n− 1

α

)
we obtained the error bound as

|en| ≤
(
1− αµ

tµn

)
M(α)h3

µ
exp

(
T − 1

α

)
Hence, a third order convergence follows.

4. Main Results

In this section we tested the scheme using Maple13 version 10 with the stoping rule as |uhn − u(t)| ≤ 10−3.

Problem 4.1. Given g(t) = 1 + t+ t2 and 0 < µ ≤ 1 in (1.1), then using (2.1) we obtained the general form of
its family of solutions:

u(t) = c0t
1−µ +

µ

µ− 1
+
µ+ 1

µ
t+

µ+ 2

µ+ 1
t2 (4.1)

where c0 is an arbitrary constant. The exact solution (4.1) when t = 1.02 is compared with numerical solution
(2.8) and errors are presented in Table 1
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Table 1: The results obtained by the numerical scheme (2.8) on problem1.

n uhn
Eqn (2.8) |u(t)− uhn|

80 2.4543 6.664E − 1

82 2.5122 6.085E − 1

84 2.5707 5.500E − 1

86 2.6299 4.908E − 1

88 2.6899 4.308E − 1

90 2.7506 3.701E − 1

92 2.1190 3.088E − 1

94 2.8741 2.466E − 1

96 2.9369 1.838E − 1

98 3.0004 1.203E − 1

100 3.0647 5.600E − 2

102 3.1297 9.000E − 3

Table (1) shows that the numerical results of problem 4.1 obtained from scheme (2.8) which has exact solution
of u(t) = 3.1207 and the best result is obtained when n = 102 with corresponding to an error of 9.000E − 3.

Problem 4.2. Given g(t) = 1 + t and 0 < µ ≤ 1 in (1.1), then using (2.1) we obtained the general form of its
family of solutions:

u(t) = c0t
1−µ +

µ

µ− 1
+
µ+ 1

µ
t (4.2)

where c0 is an arbitrary constant. The exact solution (4.2) when t = 1.02 is compared with numerical solution
(2.8) and errors are presented in Table (2)

Table 2: The results obtained by the numerical scheme (2.8) on problem2.

n uhn
Eqn (2.8) |u(t)− uhn|

80 1.7946 2.652E − 1

82 1.8195 2.403E − 1

84 1.8442 2.156E − 1

86 1.8689 1.909E − 1

88 1.8934 1.664E − 1

90 1.9179 1.419E − 1

92 1.9423 1.175E − 1

94 1.9666 9.320E − 2

96 1.9908 6.900E − 2

98 2.0149 4.490E − 2

100 2.0389 2.090E − 2

102 2.0663 6.500E − 3
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Table (2) shows that the numerical results of problem 4.2 obtained from scheme (2.8) which has exact solution
of u(t) = 2.0598 and the best result is obtained when n = 102 with corresponding to an error of 6.50E − 3.
The error decreases when the number of iterations are increased. The results is an improvement when compared
with the work of [5] which uses Euler’s method with number of iterations up to 1600 corresponding to an error
of 4.82E − 2.

Problem 4.3. Given g(t) = 1 + t+ t3 and 0 < µ < 1 in (1.1), then using (2.1) we obtained the general form of
its family of solutions:

u(t) = c0t
1−µ +

µ

µ− 1
+
µ+ 1

µ
t+

µ+ 3

µ+ 2
t3 (4.3)

where c0 is an arbitrary constant. The exact solution (4.3) when t = 1.02 is compared with numerical solution
(2.8) and errors are presented in Table (3)

Table 3: The results obtained by the numerical scheme (2.8) on problem3.

n uhn
Eqn (2.8) |u(t)− uhn|

80 2.3278 8.247E − 1

82 2.3932 7.593E − 1

84 2.4604 6.921E − 1

86 2.5296 6.229E − 1

88 2.6008 5.517E − 1

90 2.6739 4.786E − 1

92 2.7493 4.032E − 1

94 2.8268 3.257E − 1

96 2.9065 2.460E − 1

98 2.9884 1.641E − 1

100 3.0727 7.980E − 2

102 3.1593 6.800E − 3

Table (3) shows that the numerical results of problem (4.3) obtained from scheme (2.8) which has exact
solution of u(t) = 3.1525 and the best result is obtained when n = 102 with corresponding to an error of
6.800E−3. The error decreases when the number of iterations are increased. The results is an improvement when
compared with the work of [5] which uses Euler’s method with number of iterations up to 1600 corresponding to
an error of 4.82E − 2.

213



M. YAHAYA and S.L. BICHI

4.1. The comparison of the numerical schemes

Here we presented the scheme (2.8) derived from Midpoint’s rule when compared with Euler’s method in [5].

Table 4: The comparison of scheme (2.8) and Euler’s methods in [5] using errors of problem 1 and 2.

n scheme (2.8) scheme (2.8) Euler’s in [5]
Errors1 Errors2 Errors

80 5.759E − 1 2.321E − 1 3.919E − 1

82 5.183E − 1 2.072E − 1 4.173E − 1

84 4.599E − 1 1.825E − 1 4.423E − 1

86 4.009E − 1 1.578E − 1 4.671E − 1

88 3.412E − 1 1.333E − 1 4.817E − 1

90 2.807E − 1 1.089E − 1 5.159E − 1

92 2.196E − 1 8.460E − 2 5.400E − 1

94 1.578E − 1 6.030E − 2 5.638E − 1

96 9.520E − 2 3.620E − 2 5.874E − 1

98 3.190E − 2 1.210E − 2 6.108E − 1

99 1.000E − 4 1.000E − 4 6.224E − 1

Table (4) Shows that the errors obtained from the scheme (2.8) is an improvement when compared with the
work of [5] which uses Euler’s method, since the error decreases when the number of iterations are increased.
This shows that the scheme obtained has a better result when compared with the Euler’s method with number of
iterations up to 1600 corresponding to an error of 4.82E − 2.

5. Conclusion

The function under the integrals were approximated base on the concepts of Simpson’s rule. We used error bound
estimates for the convergence of the scheme obtained. The numerical results were obtained by means of some
examples so as to test the efficiency, accuracy and effectiveness of the new scheme derived. The new approach of
the numerical scheme obtained from Simpson’s rule was compared with exact solutions.
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1. Introduction and Background

A double sequence {amn}∞m,n=0 is called the convergent in Pringsheim’s sense [14] provided that there exists
a number a such that amn converges to a as both m and n approach to infinity independently of one another

lim
m,n→∞

amn = a,

that is if for every ε > 0 there exists K = K (ε) ∈ N such that |amn − a| < ε for every m,n ≥ K and also a
is said to the Pringsheim’s limit of amn. It is obvious that {amn} is convergent in Pringsheim’s sense if and only
if for every ε > 0 there exists an integer K = K (ε) ∈ N such that |amn − aij | < ε for min {m,n, i, j} ≥ K.
A double sequence {amn} is bounded provided that there exists a positive number N such that |amn| ≤ N for
every m and n, i.e., sup

m,n
|amn| <∞.

A double sequence {amn} is said to be convergent regularly provided that it is convergent in Pringsheim’s
sense and the following limits hold:

lim
m,n→∞

amn = xm (m = 1, 2, ...) ,

lim
m,n→∞

amn = xn (n = 1, 2, ...) .

It is well known that a convergent double sequence in Pringsheim’s sense fails in general to be bounded. The
concept of regular convergence, which was introduced by Hardy in [7], lacks this advantage. Moreover, the
regular convergence requires the convergence of rows and columns of a double sequence. (For more information
about several type convergence for double sequences, see [18] and its references.)

∗Corresponding author. Email address: ulasyamanci@sdu.edu.tr (Ulaş Yamancı)

https://www.malayajournal.org/index.php/mjm/index c©2021 by the authors.



(e)-Convergence for double sequences

A reproducing kernel Hilbert space (shorty, RKHS)H = H(Ω) on some set Ω is a Hilbert space of functions
on Ω such that for every λ ∈ Ω the linear functional (evaluation functional) f → f (λ) is bounded on H. If H is
RKHS on set Ω, then by the classical Riesz Representation Theorem for every λ ∈ Ω there is a unique element
kλ ∈ H for which f(λ) = 〈f, kλ〉 for all f ∈ H. The function kλ is said to be reproducing kernel at λ. We know
that (see, Aronzajn [1] and Saitoh [15]) provided that (ej)j∈J is an orthonormal basis for the RKHSH,

kλ (z) =

∞∑
j∈J

ej (λ)ej (z) , z ∈ Ω.

The function
k̂λ =

kλ
‖kλ‖H

=
1∑

j∈J
|ej (λ)|2

1/2

∑
j∈J

ej (λ)ej (z)

is called the normalized reproducing kernel at λ.
Berezin [2, 3] introduced the concept of contravariant and covariant symbols of an operator. The contravariant

symbol of a Toeplitz operator, which is the so-called Berezin symbol, was firstly used by Berger and Coburn in
[4, 5].

Let A be a bounded operator on reproducing kernel Hilbert spaces. Then the function

Ã(λ) :=< Ak̂λ, k̂λ >, λ ∈ Ω,

is called the Berezin symbol, which is a bounded function by the norm of the operator (see [2]). On the
reproducing kernel Hilbert spaces, Ã1 (λ) = Ã2 (λ) for all λ implies A1 = A2, that is, the Berezin symbol
uniquely determines the operator. Therefore, the Berezin symbol includes many information about the operator
that induces it. Prosperous applications of the Berezin symbol are up to now commonly in the study of operator
theory, such as Toeplitz and Hankel operators [19]. The Berezin symbol technique is motivated by its connections
with quantum physics (see, for example, [2, 3]). Readers can found more informations about Berezin symbols
and its applications, for instance in [9, 13, 19].

A RKHS H(Ω) is standard provided that the underlying set Ω is a subset of a topological space and the
boundary of Ω is non-empty and has the property that (kH,λn

)n converges weakly to 0 whenever (λn)n is a
sequence in Ω that converges to a point in ∂Ω. It is obvious that limn→∞ K̃ (λn) = 0 for any compact operator
K on the standard RKHS H whenever (λn)n ⊂ Ω converges to a point of ∂Ω. In this case, the Berezin symbol
of a compact operator on a standard RKHS vanishes on the boundary (see [13]).

Karaev [11] introduced (e)-convergent for single sequences and series of complex numbers. Later, he [12]
gave a Tauberian-type therom for (e)-convergent sequences. Using the Berezin symbol technique, new proofs for
(L)-convergence and Abel convergence were given in [8, 16].

2. Main Results

In this section, we define a concept of (e)-convergence for double sequences and series of complex numbers. We
obtain a criteria for this summability method with regards to Berezin symbols of an diagonal operator, and show
regularity of (e)-summability method for double sequences.

Recall that a method is called the regular provided that it sums each convergent sequence to its ordinary limit.
For instance, Abel, Cezaro and Borel methods are regular (see [6]).

Let H = H (Ω× Ω) be a reproducing kernel Hilbert space on some set Ω × Ω , {emn}m,n≥0 be an
orthonormal basis ofH and

kλ,µ (z, w) :=
∑
m,n≥0

emn (λ, µ)emn (z, w) ,

be a reproducing kernel ofH = H (Ω× Ω).
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Definition 2.1. Let {amn}m,n≥0 be a double sequence of complex numbers.
(a) The sequence {amn}m,n≥0 is (e)-convergent to L provided that

∞∑
m,n=0

amn |emn (λ, µ)|2

converges for all (λ, µ) ∈ Ω× Ω and

lim
(λ,µ)→(ζ,ξ)

1∑∞
m,n=0 |emn (λ, µ)|2

∞∑
m,n=0

amn |emn (λ, µ)|2 = L,

for every (ζ, ξ) ∈ ∂Ω× ∂Ω.

(b) The series
∑∞
m,n=0 amn is (e)-summable to L provided that

∞∑
m,n=0

amn |emn (λ, µ)|2

converges for each (λ, µ) ∈ Ω× Ω and

lim
(λ,µ)→(ζ,ξ)

∞∑
m,n=0

amn |emn (λ, µ)|2 = L

for each (ζ, ξ) ∈ ∂Ω× ∂Ω.

It was shown that Abel and Borel summability for double sequences coincide with concept of (e)-summability
for Hardy space and Fock space, respectively (see [10, 17]).

Let {amn}m,n≥0 be a double sequence of complex numbers. Diagonal operator D{amn} onH is defined by

D{amn}emn (λ, z) = amnemn (λ, z) , m, n = 0, 1, 2, ...,

with respect to the orthonormal basis e = {emn (λ, z)}m,n≥0 ofH.
The following result is main theorem of this section.

Theorem 2.2. Let {amn}m,n≥0 be a bounded double sequence of complex numbers.
(a) The sequence {amn}m,n≥0 is (e)-convergent to L if and only if

lim
(λ,µ)→(ζ,ξ)

D̃{amn} (λ, µ) = L

for every (ζ, ξ) ∈ ∂Ω× ∂Ω.

(b) The series
∑∞
m,n=0 amn is (e)-summable to L if and only if

lim
(λ,µ)→(ζ,ξ)

( ∞∑
m,n=0

|emn (λ, µ)|2
)
D̃{amn} (λ, µ) = L

for every (ζ, ξ) ∈ ∂Ω× ∂Ω.

(c) (e)-summability method for double sequences is regular provided that H is a standard functional Hilbert
space.
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Proof. As {amn}m,n≥0 is a bounded double sequence, D{amn} is a bounded operator on H. Calculating the
Berezin symbol of diagonal operator, we have

D̃{amn} (λ, µ) =
〈
D{amn}k̂λ,µ, k̂λ,µ

〉
=

1

‖kλ,µ‖2

〈
D{amn}

∞∑
m,n=0

emn (λ, µ)en (z, w) , kλ,µ

〉

=
1∑∞

m,n=0 |emn (λ, µ)|2

〈 ∞∑
m,n=0

emn (λ, µ)amnemn (z, w) , kλ,µ

〉

=
1∑∞

m,n=0 |emn (λ, µ)|2
∞∑

m,n=0

am,n |emn (λ, µ)|2

for all (λ, µ) ∈ Ω× Ω. Therefore

D̃{amn} (λ, µ) =
1∑∞

m,n=0 |emn (λ, µ)|2
∞∑

m,n=0

amn |emn (λ, µ)|2 , (λ, µ) ∈ Ω× Ω. (1)

As sup
(λ,µ)∈Ω×Ω

∣∣∣D̃{amn} (λ, µ)
∣∣∣ ≤ ∥∥∥D̃{amn}

∥∥∥ = sup
m,n≥0

|amn| < ∞, formula (1) immediately implies the claims

(a) and (b) of the theorem.
Let us show the claim (c). Let {amn}∞m,n=0 converges to L. Then D{amn−L} is a compact operator, and

hence D̃{amn−L} vanishes on the boundary of Ω × Ω (since H is a standard reproducing kernel Hilbert space),
that is, D̃{amn−L} (λ, µ)→ 0 as (λ, µ)→ (ζ, ξ) ∈ ∂Ω× ∂Ω. Taking into consideration this and formula (1), we
get

lim
(λ,µ)→(ζ,ξ)

D̃{amn} (λ, µ) = lim
(λ,µ)→(ζ,ξ)

1
∞∑

m,n=0
|emn (λ, µ)|2

∞∑
m,n=0

amn |emn (λ, µ)|2

= lim
(λ,µ)→(ζ,ξ)

1
∞∑

m,n=0
|emn (λ, µ)|2

∞∑
m,n=0

(amn − L+ L) |emn (λ, µ)|2

= lim
(λ,µ)→(ζ,ξ)

1
∞∑

m,n=0
|emn (λ, µ)|2

∞∑
m,n=0

(amn − L) |emn (λ, µ)|2 + L

= lim
(λ,µ)→(ζ,ξ)

D̃{amn−L} + L,

which gives that (e)-limm,n amn = L. So, the proof is completed. �

We can obtain the following result from Theorem 1 by puttingH = D
(
D2
)

andH = F
(
C2
)
.

Corollary 2.3. Let {amn}m,n≥0 be a bounded double sequence of complex numbers.
(a) If D{amn} is a diagonal operator on the Dirichlet spaceD

(
D2
)

with diagonal elements amn, m, n ≥ 0, with
respect to the orthonormal basis of D, then the double sequence {amn}m,n≥0 is (L)-convergent (logarithmic
convergent) to L if and only if

lim
λ,µ→1−

D̃{amn}
(√
x,
√
y
)

= L,

where x = |λ|2 and y = |µ|2.
(b) If D{amn} is a diagonal operator on the Fock space F

(
C2
)

with diagonal elements amn, m, n ≥ 0, with
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respect to the orthonormal basis of D, then the double sequence {amn}m,n≥0 is Borel convergent to L if and
only if

lim
λ,µ→∞

D̃{amn}

(√
2x,
√

2y
)

= L,

where x =
|λ|2

2
and y =

|µ|2

2
.
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1. Introduction

In Mathematical analysis, general topology and functional analysis the fixed point theory play a very
important role. Many applications of fixed point theory in computer science, engineering field, image processing
and mathematics etc. Banach contraction mapping principle play a crucial role in the fixed poin theory. The
concept of dislocated metric space was first introduced by Hitzler in 2001. He generalized the Banach
contraction mapping principle in the dislocated metric space. The beauty of dislocated metric space that the self
distance between two points need not be necessarily zero. The logical programming, topology, electronic
engineering and computer science etc. these are the fields which the dislocated metric space play a very vital
role. Azam et al. introduced the complex valued metric spaces and proved Banach contraction mapping
principle. So many researchers proved many contraction principle by this complex valued metric spaces. Ozgur
edge and Ismet karaca introduced the complex valued disclocated metric spaces. Now we are going to prove the
complex valued dislocated metric spaces in the fixed point theorem satisfying rational contraction mapping.
Before entering into our main results we shall recall some basic definition and results which are needful.

∗Corresponding author. Email address: vnm@igntu.ac.in (Vishnu Narayan Mishra)

https://www.malayajournal.org/index.php/mjm/index c©2021 by the authors.
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2. Preliminaries

We recollect some basic definitions and notions which is useful for proving our main results.
Let C be the set of complex numbers and v1, v2 ∈ C. Define a partial order ≤ on C as follows:
v1 ≤ v2 if and only if Re(v1) ≤ Re(v2), Im(v1) ≤ Im(v2).
Consequently, one can infer that v1 ≤ v2 if one of the following conditions is satisfied:
(i) Re(v1) = Re(v2), Im(v1) < Im(v2),
(ii)Re(v1) < Re(v2), Im(v1) = Im(v2),
(iii)Re(v1) < Re(v2), Im(v1) < Im(v2),
(iv)Re(v1) = Re(v2), Im(v1) = Im(v2).
In particular,we write v1 � v2 if v1 6= v2 and one of (i), (ii) and (iii) is satisfied and we write v1 < v2 if only
(iii) is satisfied. Notice that
(a) If 0 ≤ v1 � v2, then |v1| < |v2|,
(b) If v1 ≤ v2 and v2 < v3 then v1 < v3,
(c) If p, q ∈ R and p ≤ q then pv ≤ qv for all v ∈ C.
Now we define a complex valued dislocated metric space

Definition 2.1. Consider γd be a non void set and define a function γd : H × H → C satisfies the following
conditions such that for all u, r, w ∈ H
(1)γd(u, r) = γd(r, u)

(2)γd(u, r) = γd(r, u) = 0 if and only if u = r

(3)γd(u, r) ≤ γd(u,w) + γd(w, r)

Then γd is said to be complex valued dislocated metric space and call (H, γd) is a complex valued dislocated
metric space.

Example 2.2. Consider the function that γd : H ×H → C be defined by γd(u, r) = max{u, r} where H = C

then it is called as complex valued dislocated metric space.

Remark 2.3. Every complex valued metric space is a complex valued dislocated metric space but converse need
not be true.

Definition 2.4. Consider (H, γd) be a complex valued dislocated metric space and define a sequence {un} in H
for each u ∈ H
(i)let the sequence {un} be convergent to u in (H, γd) is said to be complex valued dislocated metric space then
for each ε > 0 we can find n0 ∈ N such that γd(un, u) < ε for each n > n0 which is denoted by un → u

(ii)Consider the sequence {un} be cauchy sequence in (H, γd) is called complex valued dislocated metric space
if limn→∞γd(un, un+b) = 0 for each b > 0

(iii)Let (H,γd) be a complex valued complete dislocated metric space if every complex valued cauchy sequence
in H converges to some u ∈ H.

We state the two lemmas which are useful to prove our main theorem

Lemma 2.5. Consider (H,γd) be a complex valued dislocated metric space.Let {un} be sequence in H. Then
{un} converges to u if and only if |γd(un, u)| → 0 as n→∞

Lemma 2.6. Consider (H,γd) be a complex valued dislocated metric space.Let {un} be sequence in H. Then
{un} is a complex valued dislocated metric cauchy sequence if and only if |γd(un, un+b)| → 0 as n→∞

3. Main Results

In this section, we prove the theorem by using new rational contraction mapping in complex valued dislocated
metric space.
Now we first define the rational contraction mapping in complex valued dislocated metric space
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Definition 3.1. Let (H, γd) be a complete complex valued dislocated metric space. Consider the function G,T :

H → H which satisfies the rational contraction conditions
γd(Gu, Tr) ≤ a[γd(u, r)] +

3b[γd(u,Tr)]
2

1+γd(u,r)+γd(r,Tr)
+ c[γd(u, Tr) + γd(u,Gu)] for each u, r ∈ H and the non

negativity constants are a, b, c

Theorem 3.2. Let (H, γd) be a complete complex valued dislocated metric space. Consider the function G,T :

H → H which satisfies the rational contraction conditions of (3.1) with 2a + 6b + 3c < 1 .Then G has unique
common fixed point.

Proof. Let u0 be the arbitrary point in H. Now define uk+1 = Guk,uk+2 = Tuk+1, for each k ∈ Z+ Therefore,
γd(uk+1, uk+2) = γd(Guk, Tuk+1)

≤ a[γd(uk, uk+1)] +
3b[γd(uk,Tuk+1)]

2

1+γd(uk,uk+1)+γd(uk+1,Tuk+1)
+

c[γd(uk, Tuk+1) + γd(uk, Guk)]

≤ a[γd(uk, uk+1)] +
3b[γd(uk,uk+2)]

2

1+γd(uk,uk+1)+γd(uk+1,uk+2)
+

c[γd(uk, uk+2) + γd(uk, uk+1)]

≤ a[γd(uk, uk+1)] +
3b[γd(uk,uk+1)+γd(uk+1,uk+2)]

2

1+γd(uk,uk+1)+γd(uk+1,uk+2)
+

c[γd(uk, uk+1) + γd(uk+1, uk+2) + γd(uk, uk+1)]

|γd(uk+1, uk+2)| ≤ a|γd(uk, uk+1)|+ 3b|γd(uk, uk+1) + γd(uk+1, uk+2)|+
c|2γd(uk, uk+1) + γd(uk+1, uk+2)|

Since
|1 + d(uk, uk+1) + d(uk+1, uk+2)| > |d(uk, uk+1) + d(uk+1, uk+2)|
Now
|γd(uk+1, uk+2)| ≤ a|γd(uk, uk+1)|+ 3b|γd(uk, uk+1)|+ 3b|γd(uk+1, uk+2)|+

2c|γd(uk, uk+1)|+ c|γd(uk+1, uk+2)|
Therefore |γd(uk+1, uk+2)| ≤ a+3b+2c

1−(3b+c) |γd(uk, uk+1)|
Similarly,
γd(uk+2, uk+3) = γd(Guk+1, Tuk+2)

≤ a[γd(uk+1, uk+2)] +
3b[γd(uk+1,Tuk+2)]

2

1+γd(uk+1,uk+2)+γd(uk+2,Tuk+2)
+

c[γd(uk+1, Tuk+2) + γd(uk+1, Guk+1)]

≤ a[γd(uk+1, uk+2)] +
3b[γd(uk+1,uk+3)]

2

1+γd(uk+1,uk+2)+γd(uk+2,uk+3)
+

c[γd(uk+1, uk+3) + γd(uk+1, uk+2)]

≤ a[γd(uk+1, uk+2)] +
3b[γd(uk+1,uk+2)+γd(uk+2,uk+3)]

2

1+γd(uk+1,uk+2)+γd(uk+2,uk+3)
+

c[γd(uk+1, uk+2) + γd(uk+2, uk+3) + γd(uk+1, uk+2)]

|γd(uk+2, uk+3)| ≤ a|γd(uk+1, uk+2)|+ 3b|γd(uk+1, uk+2) + γd(uk+2, uk+3)|+
c|2γd(uk+1, uk+2) + γd(uk+2, uk+3)|

Since
|1 + d(uk+1, uk+2) + d(uk+2, uk+3)| > |d(uk+1, uk+2) + d(uk+2, uk+3)|
Now
|γd(uk+2, uk+3)| ≤ a|γd(uk+1, uk+2)|+ 3b|γd(uk+1, uk+2)|+ 3b|γd(uk+2, uk+3)|+

2c|γd(uk+1, uk+2)|+ c|γd(uk+2, uk+3)|
Therefore
|γd(uk+2, uk+3)| ≤ a+3b+2c

1−(3b+c) |γd(uk+1, uk+2)|
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Since a+ 3b+ 2c < 1 therefore α = a+3b+2c
1−(3b+c) < 1

Then, we have
|γd(un+1, un+2)| ≤ α|γd(un, un+1)| ≤ ........ ≤ αn+1|γd(u0, u1)|
Therefore for every m > n we have
|γd(un, um)| ≤ |γd(un, un+1)|+ |γd(un+1, un+2)|+ ........+ |γd(um−1, um)|
|γd(un, um)| ≤ [αn + αn+1 + ........+ αm−1]|γd(u0, u1)|

≤ αn

1−α |γd(u0, u1)|
γd(un, um)| ≤ αn

1−α |γd(u0, u1)| → 0 as n,m→∞
Hence {un} is a cauchy sequence. Since H is complete there must exist x ∈ H such that {un} → x as n→∞
Suppose on contrary that x 6= Gx so γd(x,Gx) = y

Now
y ≤ γd(x, xk+2) + γd(uk+2, Gx)

≤ γd(x, uk+2) + γd(Tuk+1, Gx)

≤ a[γd(x, uk+1)] +
3b[γd(x,Tuk+1)]

2

1+γd(x,uk+1)+γd(uk+1,Tuk+1)
+ c[γd(x, Tuk+1) + γd(x,Gx)]

≤ a[γd(x, uk+1)] +
3b[γd(x,uk+2)]

2

1+γd(x,uk+1)+γd(uk+1,uk+2)
+ c[γd(x, uk+2) + γd(x,Gx)]

|y| ≤ a|γd(x, uk+1)|+ 3b|γd(x, uk+1) + γd(uk+1, uk+2)|+ c|γd(x, uk+1) + γd(uk+1, uk+2) + γd(x,Gx)|
Since
|1 + γd(x, uk+1) + γd(uk+1, uk+2)| > |γd(x, uk+1) + γd(uk+1, uk+2)|
Therefore
|y| ≤ a|γd(x, uk+1)|+ 3b|γd(x, uk+1)|+ 3b|γd(uk+1, uk+2)|+ c|γd(x, uk+1)|+

c|γd(uk+1, uk+2)|+ c|γd(x,Gx)|
Letting n→∞ we have
|γd(x,Gx)| ≤ a+6b+2c

1−c |γd(x, x)| Since a+ 6b+ 2c < 1

Therefore, we have |γd(x,Gx)| → 0 which is the contradiction.
Hence Gx = x similarly we prove that Tx = x

To prove the uniqueness of common fixed point of G and T, let d ∈ H be the another common fixed point of G
and T, we have
γd(x, d) = γd(Gx, Td) ≤ a[γd(x, d)] + 3b[γd(x,Td)]

2

1+γd(x,d)+γd(d,Td)
+ c[γd(x, Td) + γd(x,Gx)]

≤ a[γd(x, d)] + 3b[γd(x,d)]
2

1+γd(x,d)+γd(d,d)
+ c[γd(x, d) + γd(x, x)]

≤ a[γd(x, d)] + 3b[γd(x,d)+γd(d,d)]
2

1+γd(x,d)+γd(d,d)
+ c[γd(x, d) + γd(x, x)]

|γd(x, d)| ≤ a|γd(x, d)|+ 3b|γd(x, d) + γd(d, d)|+ c|γd(x, d) + γd(x, x)|
Since |1 + γd(x, d) + γd(d, d)| > |γd(x, d) + γd(d, d)|
Now,
|γd(x, d)| ≤ a|γd(x, d)|+ 3b|γd(x, d)|+ 3b|γd(d, d)|+ c|γd(x, d)|+ c|γd(x, x)|
|γd(x, d)| ≤ 3b

1−(a+3b+c) |γd(d, d)|+
c

1−(a+3b+c) |γd(x, x)|
Since a+ 6b+ 3c < 1 therefore we have x = d which shows the uniqueness of common fixed point. �

Corollary 3.3. Let (H, γd) be a complete complex valued dislocated metric space. Consider the function G,T :

H → H which satisfies the rational contraction conditions γd(Gu, Tr) ≤ a[γd(u, r)]+c[γd(u, Tr)+γd(u,Gu)]
for each u, r ∈ H and the non negativity constants are a, c with 2a+ 3c < 1 .Then G has unique common fixed
point.

Corollary 3.4. Let (H, γd) be a complete complex valued dislocated metric space. Consider the function G :

H → H which satisfies the contraction conditions γd(Gun, Grn) ≤ a[γd(u, r)] for each u, r ∈ H and the non
negativity constant a with a < 1 .Then G has unique fixed point.

Example 3.5. Let X= C be set of complex numbers.Define f : C × C → Cas follows where z1 = x1 + iy1
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z2 = x2 + iy2 .Then (C, f) is a complete complex valued dislocated metric space.
Define G : C → C as

G(x) =



0, if x, y ∈ Q.
1 + 2i, if x, y ∈ Qc

2 if x ∈ Qc, y ∈ Q
5i if x ∈ Q, y ∈ Qc

Let us consider x =
√
3 and y = 0 we obtain,

f(G(
√
3), L(0)) = f(3, 0) = 3 4 αf(

√
3, 0) = α

√
3

Therefore ,α <
√
3, which is a contradiction as 0 4 α ≺ 1

We notice that G2z = 0 so that 0 = f(G2z1, G
2z2) 4 αf(z1, z2) which shows that G2 satisfies the requirement

of Bryant theorem and z=0 is the unique fixed point of T.

4. Acknowledgement

The author is thankful to the referee for his valuable suggestions which improved the presentation of the paper.

References

[1] F.ROUZKARD AND M.IMDAD, Some common fixed point theorems on complex valued metric spaces,
Computers and Mathematics with Applications, 64(2012), 1866–1874.

[2] V.W.BRYANT, A Remark on a fixed point theorem for iterated mappings, Amer. Math. Monthly, 75(1968),
399–400.

[3] W.SINTUNAVARAT AND P.KUMAM, Generalized common fixed point theorems in complex valued metric
spaces and applications, Journal of Inequalities and Applications, 84(2012), 2012:84.

[4] A.AZAM,B.FISHER,M.KHAN, Common fixed point theorems in complex valued metric spaces, Num. Func.
Anal. Opt., 32(2011), 243–253.

[5] M.IMDAD, T.I.KHAN, On Common fixed point of pairwise coincidently commuting non-continuous
mappings satisfying a rational inequality, Bull. Calcutta Math. Soc., 93(4)(2001), 263–268.

[6] M.ABBAS, V.CAJBAIC, T.NAZIR AND S.RADENOVIC, Common fixed pointof mappings satisfying rational
inequalities in ordered complex valued generalized metric spaces, Afrika Matematika, (2013), doi:10.1007.

[7] P.DHIVYA AND M.MARUDAI, Common fixed point theorems for mappings satisfying a contractive condition
of rational expression on a ordered complex partial metric spaces , Cogent Mathematics, (2017),4:1389622.

[8] MS.KHAN, M.SWALEH AND S.SESSA, Fixed point theorems by altering distances between the points, Bull
Aust Math. Soc., 30(1984), 1–9.

[9] K. SAWANGSUP, W. SINTUNAVARAT, AND Y. J. CHO, Fixed point theorems for orthogonal F -contraction
mappings on O-complete metric spaces, J. Fixed Point Theorey Appl., 10(2020), 22:10.

[10] D. WARDOWSKI, Fixed points of a new type of contractive mappings in complete metric spaces, Fixed Point
Theory Appl., 94(2012).

226



Common fixed point theorem satisfying rational contraction in complex valued dislocated metric space

[11] L. N. MISHRA, S. K. TIWARI, V. N. MISHRA, I. A. KHAN,Unique Fixed Point Theorems for Generalized
Contractive Mappings in Partial Metric Spaces, Journal of Function Spaces, 24(2015), Article ID 960827,
8 pages.

[12] L. N. MISHRA, S. K. TIWARI, V. N. MISHRA, Fixed point theorems for generalized weakly S-contractive
mappings in partial metric spaces, Journal of Applied Analysis and Computation, 04(2015), 600–612.
doi:10.11948/2015047.

This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

227



MALAYA JOURNAL OF MATEMATIK
Malaya J. Mat. 9(04)(2021), 228–238.
http://doi.org/10.26637/mjm904/007

On solutions of the Diophantine equation Ln + Lm = 3a

PAGDAME TIEBEKABE ∗1,2 AND ISMAÏLA DIOUF1
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Abstract. Let (Ln)n≥0 be the Lucas sequence given by L0 = 2, L1 = 1 and Ln+2 = Ln+1 + Ln for n ≥ 0. In this
paper, we are interested in finding all powers of three which are sums of two Lucas numbers, i.e., we study the exponential
Diophantine equation Ln +Lm = 3a in nonnegative integers n,m, and a. The proof of our main theorem uses lower bounds
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1. Introduction

The determination of perfect powers of Lucas and Fibonacci sequences does not date from today. The real
contribution of determination of perfect powers of Lucas and Fibonacci sequences began in 2006. By classical
and modular approaches of Diophantine equations, Bugeaud, Mignotte, and Siksek [5] defined all perfect powers
of Lucas and Fibonacci sequences by solving the equations Fn = yp and Ln = yp respectively. From there,
many researchers tackled similar problems. It is in the same thought that, others have determined the powers of
2 of the sum/difference of two Lucas numbers [3], powers of 2 of the sum/difference of Fibonacci numbers [4],
powers of 2 and of 3 of the product of Pell numbers and Fibonacci numbers.
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We move our interest on the powers of 3 as a sum of two Lucas numbers. This paper follows the following
steps : We first give the generalities on binary linear recurrence, then we demonstrate an important inequality on
Lucas numbers and finally determine and reduce a coarse bound by section 3. The section 4 is devoted to the
reduction of the obtained bound in section 3 and discussion of possible different cases. We know from Bravo and
Lucas [3] that the only solutions of the Diophantine equation Fn +Fm = 2a in positive integers n, m and a with
n ≥ m are given by

2F1 = 2, 2F2 = 2, 2F3 = 4, 2F6 = 16,

and
F2 + F1 = 2, F4 + F1 = F4 + F2 = 4, F5 + F4 = 8, F7 + F4 = 16.

and in [4] that all solutions of the Diophantine equation Ln +Lm = 2a in nonnegative integers n ≥ m and a, are

2L0 = 4, 2L1 = 2, 2L3 = 8, L2 + L1 = 4, L4 + L1 = 8, and L7 + L2 = 32.

Here in this paper, we determine all the solutions of the following Diophantine equation:

Ln + Lm = 3a (1.1)

in nonnegative integers n ≥ m and a.
We are interested in finding all powers of three which are sums of two Lucas numbers, i.e., we study the

exponential Diophantine equation Ln + Lm = 3a in nonnegative integers n, m, and a. The proof of our main
theorem uses lower bounds for linear forms in logarithms, properties of continued fractions, and a version of the
Baker-Davenport reduction method in Diophantine approximation.

We notice that many authors have already tackled this type of problems.

2. Preliminaries

2.1. Generalities

Definition 2.1. Let k ≥ 1. The sequence {Hn}n≥0 ⊆ C is called a recurrent linear sequence of order k if the
sequence satisfies

Hn+k = a1Hn+k−1 + a2Hn+k−2 + · · ·+ akHn

for all n ≥ 0 with a1, . . . , ak ∈ C, fixed.

We suppose that ak 6= 0 (otherwise, the sequence {Hn}n≥0 satisfies a recurrence of order less than k). If
a1, . . . , ak ∈ Z and H0, . . . ,Hk−1 ∈ Z, then we can easily prove by induction on n that Hn is an integer for all
n ≥ 0. The polynomial

f(X) = Xk − a1X
k−1 − a2X

k−2 − · · · − ak ∈ C,

is called the characteristic polynomial of (Hn)n≥0. We suppose that

f(X) =

m∏
i=1

(X − αi)σi ,

where α1, . . . , αm are distinct roots of f(X) with respectively σ1, . . . , σm their multiplicities.

Definition 2.2. We define the sequences (An)n≥0 and (Bn)n≥0 for all positive integers N by{
An+2 = aAn+1 +An, A0 = 0, A1 = 1

Bn+2 = aBn+1 +Bn, B0 = 2, B1 = a.

For a = 1, (An)n≥0 = (Fn)n≥0 and (Bn)n≥0 = (Ln)n≥0 , which are Fibonacci and Lucas sequences
respectively, defined above.
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Remark 2.3. If k = 2, the sequence (Hn)n≥0 is called a binary recurrent sequence. In this case, the
characteristic polynomial is of the form

f(X) = X2 − a1X − a2 = (X − α1)(X − α2).

Suppose that α1 6= α2, then Hn = c1α
n
1 + c2α

n
2 for all n ≥ 0.

Definition 2.4. The binary recurrent sequence {Hn}n≥0 is said to be non degenerated if c1c2α1α2 6= 0 and
α1/α2 is not a root of unity.

Binet’s formula for the general term of Fibonacci and Lucas sequences is obtained using standard methods
for solving recurrent sequences, which are given by :

Fn =
αn − βn

α− β
and Ln = αn + βn

where (α, β) =

(
1 +
√

5

2
,

1−
√

5

2

)
are the zeros of the characteristic polynomial X2 −X − 1.

Definition 2.5. For all algebraic numbers γ, we define its measure by the following identity :

M(γ) = |ad|
d∏
i=1

max{1, |γi|},

where γi are the roots of f(x) = ad
d∏
i=1

(x− γi) is the minimal polynomial of γ.

Let us define now another height, deduced from the last one, called the absolute logarithmic height. It is the
most used one.

Definition 2.6. ( Absolute logarithmic height)

For a non-zero algebraic number of degree d on Q where the minimal polynomial on Z is f(x) = ad
d∏
i=1

(x−

γi), we denote by

h(γ) =
1

d

(
log |ad|+

d∑
i=1

log max{1, |γi|}

)
=

1

d
log M(γ).

the usual logarithmic absolute height of γ.

The following properties of the logarithmic height, will also be used in the next section:

• h(γ ± η) ≤ h(γ) + h(η) + log 2.

• h(γη±1) ≤ h(γ) + h(η).

• h(γs) = |s|h(γ).

2.2. Inequalities involving the Lucas numbers

In this section, we state and prove important inequalities associated with the Lucas numbers that will be used in
solving the equation (1.1).

Proposition 2.7. For n ≥ 2, we have

0.94αn < (1− α−6)αn ≤ Ln ≤ (1 + α−4)αn < 1.15αn (2.1)

Proof. This follows directly from the formula Ln = αn + (−1)nα−n. �
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2.3. Linear forms in logarithms and continued fractions

In order to prove our main result, we have to use a Baker-type lower bound several times for a non-zero linear
forms of logarithms in algebraic numbers. There are many of these methods in the literature like that of Baker
and Wüstholz in [1]. We recall the result of Bugeaud, Mignotte, and Siksek which is a modified version of the
result of Matveev [8]. With the notation of section 2, Laurent, Mignotte, and Nesterenko [7] proved the following
theorem:

Theorem 2.8. Let γ1, γ2 be two non-zero algebraic numbers, and let log γ1 and log γ2 be any determination of
their logarithms. Put D = [Q(γ1, γ2) : Q]/[R(γ1, γ2) : R], and

Γ := b2 log γ2 − b1 log γ1,

where b1 and b2 are positive integers. Further, let A1, A2 be real numbers > 1 such that

logAi ≥ max

{
h(γi),

| log γi|
D

,
1

D

}
, (i = 1, 2).

Then, assuming that γ1 and γ2 are mutiplicatively independent, we have

log |Γ| > −30.9 ·D4

(
max

{
log b′,

21

D
,

1

2

})2

logA1 · logA2,

where
b′ =

b1
D logA2

+
b2

D logA1
.

We shall also need the following theorem due to Matveev, Lemma due to Dujella and Pethő and Lemma due
to Legendre [6, 8].

Theorem 2.9. (Matveev [8])
Let n ≥ 1 an integer. Let L a field of algebraic number of degree D. Let η1, . . . , ηl non-zero elements of L

and let b1, b2, . . . , bl integers,
B := max{|b1|, ..., |bl|},

and

Λ := ηb11 · · · η
bl
l − 1 =

(
l∏
i=1

ηbii

)
− 1.

Let A1, . . . , Al reals numbers such that

Aj ≥ max{Dh(ηj), | log(ηj)|, 0.16}, 1 ≤ j ≤ l.

Assume that Λ 6= 0, So we have

log |Λ| > −3× 30l+4 × (l + 1)5.5 × d2 ×A1...Al(1 + logD)(1 + log nB)

Further, if L is real, then

log |Λ| > −1.4× 30l+3 × (l)4.5 × d2 ×A1...Al(1 + logD)(1 + logB).

During our calculations, we get upper bounds on our variables which are too large, so we have to reduce them.
To do this, we use some results from the theory of continued fractions. In particular, for a non-homogeneous linear
form with two integer variables, we use a slight variation of a result due to Dujella and Pethő, (1998) which is in
itself a generalization of the result of Baker and Davemport [2].

For a real number X , we write ‖X‖ := min{| X − n |: n ∈ Z} for the distance of X to the nearest integer.
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Lemma 2.10. (Dujella and Pethő, [6])
Let M a positive integer, let p/q the convergent of the continued fraction expansion of κ such that q > 6M

and let A, B, µ real numbers such that A > 0 and B > 1. Let ε := ‖µq‖ −M ‖κq‖.
If ε > 0 then there is no solution of the inequality

0 < mκ− n+ µ < AB−m

in integers m and n with
log(Aq/ε)

logB
6 m 6M.

Lemma 2.11. (Legendre)
Let τ real number such that x, y are integers such that∣∣∣∣τ − x

y

∣∣∣∣ < 1

2y2
.

then
x

y
=
pk
qk

is the convergence of τ .

Further, ∣∣∣∣τ − x

y

∣∣∣∣ > 1

(qk+1 + 2)y2
.

3. Main Results

Our main result can be stated in the following theorem.

Theorem 3.1. The only solutions (n,m, a) of the exponential Diophantine equation
Ln + Lm = 3a in nonnegative integers n ≥ m and a, are : (1, 0, 1) and (4, 0, 2)

i.e L1 + L0 = 3, and L4 + L0 = 9.

Proof. First, we study the case n = m, next we assume n > m and study the case n ≤ 200 with SageMath in
the range 0 ≤ m < n ≤ 200 and finally we study the case n > 200. Assume throughout that equation (1.1)
holds. First of all, observe that if n = m, then the original equation (1.1) becomes

Ln =
3a

2
.

This equation has no solution because, ∀n > 0, Ln ∈ Z. So from now, we assume n > m.
If n ≤ 200, the search with SageMath in the range 0 ≤ m < n ≤ 200 gives the solutions (n,m, a) ∈
{(1, 0, 1), (4, 0, 2)}. Now for the rest of the paper, we assume that n > 200 . Let first get a relation between a
and n which is important for our purpose. Combining (1.1) and the right inequality of (2.1), we get:

3a = Ln + Lm ≤ 2αn + 2αm < 2n+1 + 2m+1 = 2n+1(1 + 2n−m) ≤ 2n+1(1 + 1/2) < 2n+2.

Taking log both sides, we obtain

a log 3 ≤ (n+ 2) log 2 =⇒ a ≤ (n+ 2)c1 where c1 =
log 2

log 3
.

Rewriting equation (1.1) as:

Ln + Lm = αn + βn + Lm = 3a =⇒ αn − 3a = −βn − Lm.
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Taking absolute value both sides, we get

|αn − 3a| = |βn + Lm| ≤ |β|n + Lm <
1

2
+ 2αm ∵ |β|n < 1

2
, and Lm < 2αm.

Dividing both sides by αn and considering that n > m, we get:

∣∣1− α−n · 3a∣∣ < α−n

2
+ 2αm−n <

1

αn−m
+

2

αn−m
∵

1

2αn
<

1

αn−m
; n > m

Hence ∣∣1− α−n · 3a∣∣ < 3

αn−m
(3.1)

Let’s take
γ1 := α, γ2 := 3, b1 := n, b2 := a, Γ := a log 3− n logα

in order to apply Theorem 2.8. Therefore equation (3.1) can be rewritten as:∣∣1− eΓ
∣∣ < 3

αn−m
where eΓ = α−n3a. (3.2)

Since Q(
√

5) is the algebraic number field containing γ1, γ2; so we can take D := 2. Using equation (1.1)
and Binet formula for Lucas sequence, we have :

αn = Ln − βn < Ln + 1 ≤ Ln + Lm = 3a

which implies 1 < 3aα−n and so Γ > 0. Combining this with (3.2), we get

0 < Γ <
3

αn−m
(3.3)

where we used the fact that x ≤ ex − 1, ∀x ∈ R. Applying log on right and left hand side of (3.3), we get

log Γ < log 3− (n−m) logα. (3.4)

Logarithm height of γ1 and γ2 are:

h(γ1) =
1

2
logα = 0.2406 · · · , h(γ2) = log 3 = 1.09862 · · · , thus we can choose

logA1 := 0.5 and logA2 := 1.1.

Finally, by recalling that a ≤ (n+ 2)c1; c1 = 0.63093, we get :

b′ :=
b1

D logA2
+

b2
D logA1

=
n

2.2
+ a = 0.45n+ a < 0.45n+ (n+ 2)c1 < 2n.

It is easy to see that α and 3 are multiplicatively independent. Then by Theorem 2.8, we have

log Γ ≥ −30.9 · 24

(
max

{
log(2n),

21

2
,

1

2

})2

· 0.5 · 1.1

log Γ > −272

(
max

{
log(2n),

21

2
,

1

2

})2

. (3.5)

Combining (3.4) and (3.5), we obtain the following important result

(n−m) logα < 276

(
max

{
log(2n),

21

2
,

1

2

})2

. (3.6)
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Let us find a second linear form in logarithm. For this, we rewrite (1.1) as follows:

αn(1 + αn−m)− 3a = −βn − βm.

Taking absolute values in the above relation, we get

|αn(1 + αm−n)− 3a| < 2, β = (1−
√

5)/2, |β|n < 1 and |β|m < 1;∀n > 200, m ≥ 0.

Dividing both sides of the above inequality by αn(1 + αm−n), we obtain

∣∣1− 3aα−n(1 + αm−n)−1
∣∣ < 2

αn
i.e |Λ| < 2

αn
. (3.7)

All the conditions are now met to apply a Matveev’s theorem (Theorem 2.9).

• Data:

t := 3; γ1 := 3; γ2 := α; γ3 := 1 + αm−n

b1 := a; b2 := −n, b3 = −1.

As before, K = Q(
√

5) contains γ1, γ2, γ3 and has D := [K : Q] = 2. Before continuing with the
calculations, let’s check whether Λ 6= 0.

Λ 6= 0 comes from the fact that if it was zero, we would have

3a = αn + αm (3.8)

Taking the conjugate of the above relation in Q(
√

5), we get :

3a = βn + βm. (3.9)

Combining (3.8) and (3.9), we get :

αn < αn + αm = |βn + βm| ≤ |β|n + |β|m < 2.

Recall that n > 200. This relation is impossible for n > 200. Hence Λ 6= 0.

• Calculation of h(γ3)

Let us now estimate h(γ3) where γ3 = 1 + αm−n

γ3 = 1 + αm−n < 2 and γ−1 =
1

1 + αm−n
< 1

so | log γ3| < 1. Notice that

h(γ3) ≤ |m− n|
(

logα

2

)
+ log 2 = log 2 + (n−m)

(
logα

2

)
.
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• The calculation of A1 and A2 gives :

A1 := 2.2

and

A2 := 0.5

and we can take

A3 := 2 + (n−m) logα since h(γ3) := log 2 + (n−m)

(
logα

2

)

• Calculation of B

Since a < (n+ 2)c1, it follows that, B = max{1, n, a}. Thus we can take B = n+ 1.

The Matveev’s theorem gives the lower bound on the left hand side of (3.7) by replacing the data. We get :

exp (−C(1 + log(n+ 1)) · 2.2 · 0.5 · (2 + (n−m) logα))

where

C := 1.4 · 306 · 34.5 · 22(1 + log 2) < 9.7× 1011.

Replacing in equation (3.7), we get:

exp (−C(1 + log(n+ 1)) · 2.2 · 0.5 · (2 + (n−m) logα)) < |Λ| < 2

αn

which leads to

n logα− log 2 < C((1 + log(n+ 1)) · 1.1 · (2 + (n−m) logα) < 2C log n · 1.1 · (2 + (n−m) logα)

then

n logα− log 2 < 1.26× 1012 log n · (2 + (n−m) logα) (3.10)

where we used inequality 1 + log(n+ 1) < 2 log n, which holds for n > 200.
Now, using (3.6) in the right term of the above inequality (3.10) and doing the related calculations, we get

n < 7.3× 1014 log n

(
max

{
log(2n),

21

2

})2

. (3.11)

If max{log(2n), 21/2} = 21/2, it follows from (3.11) that n < 8.04825 · 1016 log n =⇒ n < 3.5 · 1018. On
the other hand, if max{log(2n), 21/2} = log(2n), then from (3.11), we get n < 7.3 · 1014 log n log2(2n) and so
n < 7.2 · 1019. We can easily see that for the two possible values of max{log(2n), 21/2}, n < 7.2 · 1019.

All the calculations done so far can be summarized in the following lemma.

Lemma 3.2. If (n,m, a) is a solution in positive integers of (1.1) with conditions n > m and n > 200, then
inequalities

a ≤ n+ 2 < 1.2× 1020 hold.
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4. Reducing of the bound on n

Dividing across inequality (3.3) : 0 < a log 3− n logα <
3

αn−m
by logα, we get

0 < aγ − n < 7

αn−m
; where γ :=

log 3

logα
. (4.1)

The continued fraction of the irrational number γ is :

[a0, a1, a2, ......] = [1, 2, 3, 1, 1, 2, 3, 2, 4, 2, 1, 11, 2, 1, 11, ......]

and let denote pk/qk its convergent. An inspection using SageMath gives the following inequality

4977896525362041575 = q41 < 1.2× 1020 < q42 = 805929983250536127817.

Furthermore, aM := max {ai|i = 0, 1, ..., 42} = 161 Now applying Lemma 2.11 and properties of continued
fractions, we obtain

|aγ − n| > 1

(aM + 2)a
. (4.2)

Combining equation (4.1) and (4.2), we get

1

(aM + 2)a
< |aγ − n| < 7

αn−m
=⇒ 1

(aM + 2)a
<

7

αn−m
=⇒ αn−m < 7 · (161 + 2)a < 1.3692 · 1023.

Applying log above and divide by logα, we get :

(n−m) ≤ log (7 · 163 · a)

logα
< 111.

To improve the upper bound on n, let consider

z := a log 3− n logα− log ρ(u) where ρ = 1 + α−u. (4.3)

From (3.7), we have

|1− ez| < 2

αn
. (4.4)

Since Λ 6= 0, then z 6= 0. Two cases arise : z < 0 and z > 0. For each case, we will apply Lemma 2.10.

• Case 1 : z > 0

From (4.4), we obtain 0 < z ≤ ez − 1 <
2

αn
. Replacing (4.3) in the above inequality, we get:

0 < a log 3− n logα− log ρ(n−m) ≤ 3aα−nρ(n−m)−1 − 1 < 2α−n

hence
0 < a log 3− n logα− log ρ(n−m) < 2α−n

and by diving above inequality by logα

0 < a

(
log 3

logα

)
− n− log ρ(n−m)

logα
< 5 · α−n. (4.5)

Taking, γ :=
log 3

logα
, µ := − log ρ(n−m)

logα
, A := 5, B := α, inequality (4.5) becomes

0 < aγ − n+ µ < AB−n.
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Since γ is irrational, we are now ready to apply lemma 2.10 of Dujella and Pethö on (4.5) for n − m ∈
{1, ..., 111}.
Since a ≤ 1.2× 1020 from lemma 3.2, we can take M = 1.2× 1020, and we get

n <
log(Aq/ε)

logB
where q > 6M

and q is the denominator of the convergent of the irrational number γ such that ε := ||µq|| −M ||γq|| > 0.
With the help of SageMath, with conditions z > 0, and (n,m, a) a possible zero of (1.1), we get
n < 112 which contradicts our assumption n > 200. Then it is false.

• Case 2 : z < 0

Since n > 200, then 2
αn < 1

2 . Hence (4.4) implies that |1− e|z|| < 2. Also, since z < 0, we have

0 < |z| ≤ e|z| − 1 = e|z||e|z| − 1| < 4

αn
.

Replacing (4.3) in the above inequality and dividing by log 3, we get:

0 < n

(
logα

log 3

)
− a+

ρ(n−m)

log 3
<

4

log 3
· α−n < 4 · α−n (4.6)

In order to apply lemma 3.2 on (4.6) for n − m ∈ {1, 2, ..., 111}, let’s take again M = 1.2 × 1020. With the
help of SageMath, with conditions z < 0, and (n,m, a) a possible zero of (1.1), we get n < 111 which
contradicts our assumption n > 200. Then it is false.

This completes the proof of our main result (Theorem 3.1). �

5. Acknowledgement

The author is thankful to the referee for his valuable suggestions which improved the presentation of the paper.
The authors also thank the professor Maurice Mignotte for his remarks and diponibility.

References
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[9] PAGDAME TIEBEKABE AND ISMAÏLA DIOUF, On solutions of the Diophantine equations Fn1 + Fn2 + Fn3 +

Fn4 = 2a, Journal of Algebra and Related Topics, Accepted to On-line Publish, 2021.
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1. Introduction

In differential geometry, there are many significant results and properties of curves. In the light of numerous
studies authors introduce new works by using frame fields. The directional q- frame field is known as one of
the frame field of the differential geometry. The q-frame has some useful advantages comparing to the other
well-known frames Frenet and Bishop. One can define and calculate this frame even along a line (κ = 0). Dede
et al. offered the directional q-frame along a space curve to built a tubular surface. They obtained a parametric
representation of a directional tubular surface using the q-frame [1] .

Involutes of a curve is another attractive research subject among geometers. The idea of a string involute
is due to C. Huygens (1658), who is also known as on optician. He discovered involutes trying to build a
more accurate clock [2]. There are many brillant works on involutes of a given curve in different aspects. For
instance, Frenet frame of involute-evolute couple in the space E3 were given in [3]. T. Soyfidan and M. A.
Güngör studied a quaternionic curve Euclidean 4-space E4 and gave the on the quaternionic involute-evolute
curves for quaternionic curve [4] . Another is As and Sarıoğlugil study’s. They obtained on the Bishop curvatures
of involute-evolute curve couple in E3 [5].

In this paper, the characterization of involutes of the 1 st. and 2 nd. order of a curve are given and proved in
.E3 by the help of directional q-frame.

∗Corresponding author. Email address: munyildirim@firat.edu.tr (” Münevver YILDIRIM YILMAZ”)

https://www.malayajournal.org/index.php/mjm/index c©2021 by the authors.
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2. Preliminaries

There are a number of different adapted frames along a space curve, like the parallel transport frame [6, 7] and
the Frenet frame [8] . The Frenet frame is the most well-known frame along a space curve. Let α (s) be a space
curve with a non-vanishing second derivative. The Frenet frame is described as follows:

t =
α

′

‖α′‖
, b =

α
′ ∧ α′′

‖α′ ∧ α′′‖
, n = b ∧ t

The curvature κ and the torsion τ are obtain by;

κ =

∥∥∥α′ ∧ α′′
∥∥∥

‖α′‖3
, τ =

det
(
α

′
, α

′′
, α

′′′
)

‖α′ ∧ α′′‖2

The well-known Frenet formulas are obtain by; t′n′

b
′

 = ϕ

 0 κ 0

−κ 0 τ

0 −τ 0


where ϕ =

∥∥∥α′
(s)
∥∥∥ .

As an alternative to the Frenet frame they define a new adapted frame along a space curve, the q-frame [1] .

Dede et al. defined the directional q-frame along a space curve [9] . The directional q-frame offers two key
advantages over the Frenet Frame [10, 11] : a) it is well defined even if the curve has vanishing second derivative
[12] , b) it avoid the redundant twist around the tangent.

The directional q-frame of a regular curve α (s) is obtained by;

t =
α

′

‖α′‖
, nq =

t ∧ k
‖t ∧ k‖

, bq = t ∧ nq (1)

where k is the projection vector.
The varitation equations of the directional q-frame is obtained by; t

′

n
′

q

b
′

q

 =
∥∥∥α′
∥∥∥
 0 k1 k2
−k1 0 k3
−k2 −k3 0

 (2)

where the q-curvatures are expressed as follows:

k1 =

〈
t
′
, nq

〉
‖α′‖

, k2 =

〈
t
′
, bq

〉
‖α′‖

, k3 = −

〈
nq, b

′

q

〉
‖α′‖

. (3)

[9] .

3. Involutes of order 1 st. and order 2 nd. in E3 according to projection vector

As is well known q-frame is defined by the help of the projection vector k. For simplicity firstly we have choosen
the projection vector k = (0; 0; 1) . For the cases t and k are parallel, the projection vector can be chosen as
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k = (0; 1; 0) , k = (1; 0; 0) (see [9]) . This part we classified the q-frame into three types: z axis directional q-
frames identified with the projection vector k = (0; 0; 1) (see Theorem 3.1 and 3.2) , y axis directional q-frames
identified with the projection vector k = (0; 1; 0) (see Theorem 3.3 and 3.4) and x axis directional q-frames
identified with the projection vector k = (1; 0; 0) (see Theorem 3.5 and 3.6) .

Definition 3.1. Letα=α(s) be a regular generic curve in En given with the arclength parameter s (i.e.,
∥∥∥α′

(s)
∥∥∥ =

1). Then the curves which are orthogonal to the system of k-dimensional osculating hyperplanes of α, are called
the involutes of order k [13] of the curve α. For simplicity, we call the involutes of order 1, simply the involutes
of the given curve [14] .

The theorems below are given by taking k = (0; 0; 1) .

Theorem 3.1. Let α = α (s) be a regular curve in E3 and any curve α (s) be first order involute of α (s) .

Then q-curvatures k1, k2 and k3 of the involute α of the curve α are obtain by

k1 = −
√
k21 + k22, k2 =

[
k

′

1k2 − k
′

2k1

]
−
∥∥∥α′
∥∥∥ k3 [k21 + k22

]
‖α′‖ [k21 + k22]

,

k3 = 0

Proof:

s→ α (s)→
3∑

i=1

αi (s) ei (1 ≤ i ≤ 3)

by using statement we obtain that
α (s) = α (s) + λ (s) t (s)

we by using (2) , differentiate this equation respect to s, we obtain

α
′
(s) = α

′
(s) + λ

′
(s) t (s) + λ (s)

∥∥∥α′
∥∥∥ [k1nq + k2bq]

Since
〈α

′
(s) , t (s)〉 = 0

and
α

′
(s) =

∥∥∥α′
∥∥∥ t (s)

we write
λ (s) = c− ‖α‖

So, we get
α

′
(s) = α

′
(s)−

∥∥∥α′
∥∥∥ t (s) + (c− ‖α‖)

∥∥∥α′
∥∥∥ [k1nq + k2bq]

= (c− ‖α‖)
∥∥∥α′
∥∥∥ [k1nq + k2bq] (4)

Using norm of the equation (4), we get∥∥∥α′
(s)
∥∥∥ = (c− ‖α‖)

√
k21 + k22

∥∥∥α′
∥∥∥ (5)

and by using the equations (1), (4) and (5), we get

t (s) =
[k1nq + k2bq]√

k21 + k22
(6)
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if we have chosen the projection vector k = (0; 0; 1)

t ∧ k =
k1t√
k21 + k22

(7)

Hence, by taking norm of equation (7), we get

∥∥t ∧ k∥∥ =

√√√√ k21(√
k21 + k22

)2 (8)

Moreover, using the equations (1), (7) and (8), we have

nq (s) = t (9)

In addition, using the equations (6),and (9)

t ∧ nq =
k2nq − k1bq√

k21 + k22
(10)

Therefore, from (1) and (10) , we get

bq (s) =
k2nq − k1bq√

k21 + k22
(11)

Consequently, by using the equations (3) , we obtain

k1 = −
√
k21 + k22 (12)

k2 =

[
k

′

1k2 − k
′

2k1

]
−
∥∥∥α′
∥∥∥ k3 [k21 + k22

]
‖α′‖ [k21 + k22]

(13)

k3 = 0 (14)

This completes the proof.

Theorem 3.2. Let α = α (s) be a regular curve in E3 and any curve α (s) be second order involute of α (s) .

Then q-curvatures k1, k2 and k3 of the involute α of the curve α are vanishes.

k1 = 0, k2 = 0, k3 = 0

Proof:

s→ α (s)→
3∑

i=1

αi (s) ei (1 ≤ i ≤ 3)

by using statement we obtain that

α (s) = α (s) + λ1 (s) t (s) + λ2 (s)nq (s)

we by using (2) , differentiate this equation respect to s, we obtain

α
′
(s) = α

′
(s) + λ

′

1 (s) t (s) + λ1 (s)
∥∥∥α′
∥∥∥ [k1nq + k2bq]

+λ
′

2 (s)nq (s)− λ2 (s)
∥∥∥α′
∥∥∥ k1t+ λ2 (s)

∥∥∥α′
∥∥∥ k3bq

242



A characterization of involutes of a given curve in E3 via directional q-frame

Since
〈α

′
(s) , t (s)〉 = 0, 〈α

′
(s) , nq (s)〉 = 0

and
α

′
(s) =

∥∥∥α′
∥∥∥ t (s)

So, we get
α

′
(s) =

∥∥∥α′
∥∥∥ [λ1k2 + λ2k3] bq

if we take
λ1k2 = θ (s) , λ2k3 = ϕ (s)

we obtain
α

′
(s) =

∥∥∥α′
∥∥∥ [θ (s) + ϕ (s)] bq (15)

Using norm of the equation (15), we get∥∥∥α′
(s)
∥∥∥ =

√
‖α′‖ [θ (s) + ϕ (s)]

2 (16)

and by using the equations (1), (15) and (16), we attain

t (s) =

∥∥∥α′
∥∥∥ [θ (s) + ϕ (s)] bq√
‖α′‖ [θ (s) + ϕ (s)]

2
= bq (17)

if we have chosen the projection vector k = (0; 0; 1)

t ∧ k = 0 (18)

Hence, by taking norm of equation (18), we get ∥∥t ∧ k∥∥ = 0 (19)

Moreover, using the equations (1), (18) and (19), we have

nq (s) = 0 (20)

In addition, using the equations (17),and (20)

t ∧ nq = 0 (21)

Therefore, from (1) and (21) , we get
bq (s) = 0 (22)

Consequently, by using the equations (3) , we obtain

k1 = 0 (23)

k2 = 0 (24)

k3 = 0 (25)

This completes the proof.
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The theorems below are given by taking k = (0; 1; 0) .

Theorem 3.3. Let α = α (s) be a regular curve in E3 and any curve α (s) be first order involute of α (s) .

Then q-curvatures k1, k2 and k3 of the involute α of the curve α are obtain by

k1 =
√
k21 + k22, k2 =

[
k

′

2k1 − k2k
′

1

]
+
∥∥∥α′
∥∥∥ k3 [k21 + k22

]
‖α′‖ [k21 + k22]

,

k3 = 0

Proof:

s→ α (s)→
3∑

i=1

αi (s) ei (1 ≤ i ≤ 3)

by using statement we obtain that
α (s) = α (s) + λ (s) t (s)

we by using (2) , differentiate this equation respect to s, we obtain

α
′
(s) = α

′
(s) + λ

′
(s) t (s) + λ (s)

∥∥∥α′
∥∥∥ [k1nq + k2bq]

Since
〈α

′
(s) , t (s)〉 = 0

and
α

′
(s) =

∥∥∥α′
∥∥∥ t (s)

we write
λ (s) = c− ‖α‖

So, we get
α

′
(s) = α

′
(s)−

∥∥∥α′
∥∥∥ t (s) + (c− ‖α‖)

∥∥∥α′
∥∥∥ [k1nq + k2bq]

= (c− ‖α‖)
∥∥∥α′
∥∥∥ [k1nq + k2bq] (26)

Using norm of the equation (26), we get∥∥∥α′
(s)
∥∥∥ = (c− ‖α‖)

√
k21 + k22

∥∥∥α′
∥∥∥ (27)

and by using the equations (1), (26) and (27), we get

t (s) =
[k1nq + k2bq]√

k21 + k22
(28)

if we have chosen the projection vector k = (0; 1; 0)

t ∧ k =
−k2t√
k21 + k22

(29)

Hence, by taking norm of equation (29), we get

∥∥t ∧ k∥∥ =

√√√√ k22(√
k21 + k22

)2 (30)
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Moreover, using the equations (1), (29) and (30), we have

nq (s) = −t (31)

In addition, using the equations (28),and (31)

t ∧ nq =
−k2nq + k1bq√

k21 + k22
(32)

Therefore, from (1) and (32) , we get

bq (s) =
−k2nq + k1bq√

k21 + k22
(33)

Consequently, by using the equations (3) , we obtain

k1 =
√
k21 + k22 (34)

k2 =

[
k

′

2k1 − k2k
′

1

]
+
∥∥∥α′
∥∥∥ k3 [k21 + k22

]
‖α′‖ [k21 + k22]

(35)

k3 = 0 (36)

This completes the proof.

Theorem 3.4. Let α = α (s) be a regular curve in E3 and any curve α (s) be second order involute of α (s) .

Then q-curvatures k1, k2 and k3 of the involute α of the curve α are obtain by

k1 = k2, k2 = k3, k3 = k1

Proof:

s→ α (s)→
3∑

i=1

αi (s) ei (1 ≤ i ≤ 3)

by using statement we obtain that

α (s) = α (s) + λ1 (s) t (s) + λ2 (s)nq (s)

we by using (2) , differentiate this equation respect to s, we obtain

α
′
(s) = α

′
(s) + λ

′

1 (s) t (s) + λ1 (s)
∥∥∥α′
∥∥∥ [k1nq + k2bq]

+λ
′

2 (s)nq (s)− λ2 (s)
∥∥∥α′
∥∥∥ k1t+ λ2 (s)

∥∥∥α′
∥∥∥ k3bq

Since
〈α

′
(s) , t (s)〉 = 0, 〈α

′
(s) , nq (s)〉 = 0

and
α

′
(s) =

∥∥∥α′
∥∥∥ t (s)

So, we get
α

′
(s) =

∥∥∥α′
∥∥∥ [λ1k2 + λ2k3] bq

if we take
λ1k2 = θ (s) , λ2k3 = ϕ (s)
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we obtain
α

′
(s) =

∥∥∥α′
∥∥∥ [θ (s) + ϕ (s)] bq (37)

Using norm of the equation (37), we get∥∥∥α′
(s)
∥∥∥ =

√
‖α′‖ [θ (s) + ϕ (s)]

2 (38)

and by using the equations (1), (37) and (38), we attain

t (s) =

∥∥∥α′
∥∥∥ [θ (s) + ϕ (s)] bq√
‖α′‖ [θ (s) + ϕ (s)]

2
= bq (39)

if we have chosen the projection vector k = (0; 1; 0)

t ∧ k = −t (40)

Hence, by taking norm of equation (40), we get ∥∥t ∧ k∥∥ = 1 (41)

Moreover, using the equations (1), (40) and (41), we have

nq (s) = −t (42)

In addition, using the equations (39),and (42)

t ∧ nq = −nq (43)

Therefore, from (1) and (43) , we get
bq (s) = −nq (44)

Consequently, by using the equations (3) , we obtain

k1 = k2 (45)

k2 = k3 (46)

k3 = k1 (47)

This completes the proof.

The theorems below are given by taking k = (1; 0; 0) .

Theorem 3.5. Let α = α (s) be a regular curve in E3 and any curve α (s) be first order involute of α (s) .

Then q-curvatures k1, k2 and k3 of the involute α of the curve α are obtain by

k1 =

[
k

′

1k2 − k1k
′

2

]
−
∥∥∥α′
∥∥∥ k3 [k21 + k22

]
‖α′‖ [k21 + k22]

, k2 =
√
k21 + k22,

k3 = 0

Proof:

s→ α (s)→
3∑

i=1

αi (s) ei (1 ≤ i ≤ 3)
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by using statement we obtain that
α (s) = α (s) + λ (s) t (s)

we by using (2) , differentiate this equation respect to s, we obtain

α
′
(s) = α

′
(s) + λ

′
(s) t (s) + λ (s)

∥∥∥α′
∥∥∥ [k1nq + k2bq]

Since
〈α

′
(s) , t (s)〉 = 0

and
α

′
(s) =

∥∥∥α′
∥∥∥ t (s)

we write
λ (s) = c− ‖α‖

So, we get
α

′
(s) = α

′
(s)−

∥∥∥α′
∥∥∥ t (s) + (c− ‖α‖)

∥∥∥α′
∥∥∥ [k1nq + k2bq]

= (c− ‖α‖)
∥∥∥α′
∥∥∥ [k1nq + k2bq] (48)

Using norm of the equation (48), we get∥∥∥α′
(s)
∥∥∥ = (c− ‖α‖)

√
k21 + k22

∥∥∥α′
∥∥∥ (49)

and by using the equations (1), (48) and (49), we get

t (s) =
[k1nq + k2bq]√

k21 + k22
(50)

if we have chosen the projection vector k = (1; 0; 0)

t ∧ k =
[k2nq − k1bq]√

k21 + k22
(51)

Hence, by taking norm of equation (51), we get

∥∥t ∧ k∥∥ =

√√√√ k21(√
k21 + k22

)2 (52)

Moreover, using the equations (1), (51) and (52), we have

nq (s) =
[k2nq − k1bq]√

k21 + k22
(53)

In addition, using the equations (50),and (53)

t ∧ nq = t (54)

Therefore, from (1) and (54) , we get
bq (s) = t (55)

Consequently, by using the equations (3) , we obtain

k1 =

[
k

′

1k2 − k1k
′

2

]
−
∥∥∥α′
∥∥∥ k3 [k21 + k22

]
‖α′‖ [k21 + k22]

(56)
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k2 =
√
k21 + k22 (57)

k3 = 0 (58)

This completes the proof

Theorem 3.6. Let α = α (s) be a regular curve in E3 and any curve α (s) be second order involute of α (s) .

Then q-curvatures k1, k2 and k3 of the involute α of the curve α are obtain by

k1 = −k3, k2 = k2, k3 = k1

Proof:

s→ α (s)→
3∑

i=1

αi (s) ei (1 ≤ i ≤ 3)

by using statement we obtain that

α (s) = α (s) + λ1 (s) t (s) + λ2 (s)nq (s)

we by using (2) , differentiate this equation respect to s, we obtain

α
′
(s) = α

′
(s) + λ

′

1 (s) t (s) + λ1 (s)
∥∥∥α′
∥∥∥ [k1nq + k2bq]

+λ
′

2 (s)nq (s)− λ2 (s)
∥∥∥α′
∥∥∥ k1t+ λ2 (s)

∥∥∥α′
∥∥∥ k3bq

Since
〈α

′
(s) , t (s)〉 = 0, 〈α

′
(s) , nq (s)〉 = 0

and
α

′
(s) =

∥∥∥α′
∥∥∥ t (s)

So, we get
α

′
(s) =

∥∥∥α′
∥∥∥ [λ1k2 + λ2k3] bq

if we take
λ1k2 = θ (s) , λ2k3 = ϕ (s)

we obtain
α

′
(s) =

∥∥∥α′
∥∥∥ [θ (s) + ϕ (s)] bq (59)

Using norm of the equation (59), we get∥∥∥α′
(s)
∥∥∥ =

√
‖α′‖ [θ (s) + ϕ (s)]

2 (60)

and by using the equations (1), (59) and (60), we attain

t (s) =

∥∥∥α′
∥∥∥ [θ (s) + ϕ (s)] bq√
‖α′‖ [θ (s) + ϕ (s)]

2
= bq (61)

if we have chosen the projection vector k = (1; 0; 0)

t ∧ k = nq (62)
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Hence, by taking norm of equation (62), we get ∥∥t ∧ k∥∥ = 1 (63)

Moreover, using the equations (1), (62) and (63), we have

nq (s) = nq (64)

In addition, using the equations (61),and (64)

t ∧ nq = −t (65)

Therefore, from (1) and (65) , we get
bq (s) = −t (66)

Consequently, by using the equations (3) , we obtain

k1 = −k3 (67)

k2 = k2 (68)

k3 = k1 (69)

This completes the proof.
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[3] H. H. HACISALIHOĞLU, Hareket Geometrisi ve Kuaterniyonlar Teorisi, Gazi Universitesi, Fen-Edebiyat
Fakultesi Yayinlari 2, 1983.
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Abstract. We investigate the asymptotic behavior of the Nadaraya-Watson (NW) estimator of the regression function of a
τ−mixing process. We prove the strong consistency and the asymptotic normality of this estimator and we illustrate these
two properties using simulated data.
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1. Introduction

From the seminal works by Rosenblatt [20], nonparametric function estimation has been widely investigated.
Parzen [19] proposed a family of kernels for nonparametric density function estimation. He obtained the same
result as Rosenblatt [20]. These different works allowed Nadaraya [17] and Watson [22] to independently propose
a nonparametric estimator of the regression function. This is the Nadaraya-Watson (NW) estimator. Theoretical
and practical aspects of this estimator have been studied. Interesting properties have been obtained. For an
overview on the question, we refer to Bercu et al. [2], Li et al. [15] and the references therein. The NW estimation
method was initially restricted to independent and identically distributed data (see, for example, [16, 18, 21] and
the references therein). Then, it has been adapted by several studies to the α−, β− and φ−mixing processes (see,
for example, [5, 7, 12] and the references therein). There are very few studies suitable for τ−mixing processes.
This paper presents itself as one of the few contributions on the estimation of the regression function of τ−mixing
process. We refer the reader to Dedecker and Prieur [6] for the definition of a τ−mixing process.
More recently, Hong and Linton [13] proposed an infinite dimensional NW type estimator for the regression

∗Corresponding author. Email addresses: kouassiben5@gmail.com (Kouassi), o hili@yahoo.fr (Hili), edohkatchekpele@gmail.com
(Katchekpele)
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function of an α−dependent process. In our paper, we use a NW estimator, as Hong and Linton [13] , to
estimate the regression function of a p−Markov process. These processes are generally β−dependant. However,
there are some that are neither α−dependent nor β−dependent (but τ−dependent) (see [1]). Among these, we
can mention some nonparametric autoregressive (NAR) processes. According to Fan and Yao [10] (p. 19), a
sequence (Xt)t∈Z is a NAR process if it is a solution of (2.1). In our study, we show the strong consistency and
the asymptotic normality of the NW estimator of the regression function of NAR process under the assumption
of a τ−mixing condition on the sample. Our results go further than those of Hong and Linton ([13] , Theorem 1)
since we get the strong consistency.
The remainder of this paper is organized as follows. Section 2 discusses the model and the assumptions. Section
3 contains the main results and their proof. Section 4 is devoted to a small simulation.

2. Notations and Assumptions

In this paper, we shall use the following notations : ‖z‖ := sup
16i6p

|zi|, for any z = (z1, z2, . . . , zp)
′ ∈ Rp where

Z
′

denotes the transpose of Z. For any v ∈ R, [v] denotes the largest integer close to v;
Let (Xt)t∈Z be a stochastic process satisfying :

Xt = f(Yt) + ξt, t ∈ Z; (2.1)

where Xt ∈ R, Yt = (Xt−1, Xt−2, ..., Xt−p)
′
∈ Rp, (ξt)t∈Z is a sequence of independent identically distributed

random variables with E(ξt) = 0 and σ2(ξt) > 0, t ∈ Z. The random variable ξt is independent of Xi, for i < t

and f(.) : Rp → R, z 7−→ E(Xt|Yt = z), t ∈ Z, is an unknown measurable function.
Let x ∈ Rp, we observe (X1, Y1), ..., (XT , YT ) and estimate f(x) by :

f̂T (x) =



T∑
t=1

Kt(x)Xt

T∑
t=1

Kt(x)

; if
T∑

t=1

Kt(x) 6= 0

0, otherwise;

(2.2)

where Kt(x) = K

(∥∥∥∥h−1
T (x− Yt)

∥∥∥∥), t = 1, ..., T ; K(.) denotes the kernel function and hT > 0.

Our goal is to establish the consistency and the asymptotic normality of f̂T (x). Zhu and Politis [23] have done
this for nonparametric functional autoregression models. Hong and Linton [13] also proved it for α−dependent
processes.
The assumptions needed for the theoretical results are stated below.

(A1) : There exists an Orlicz function Φ(.) such that :

Φ(uv) 6 Φ(u)Φ(v), for all u, v ∈ R+;

and for all y, z ∈ Rp,

|f(y)− f(z)| 6
p∑

j=1

$j |yj − zj |,

where ($j)16j6p is a sequence of nonnegative real numbers such that $ =

p∑
j=1

$j < 1,

|f(0, 0, ..., 0)| + ‖ξ1‖Φ < ∞ and ‖.‖Φ denotes the Orlicz norm associated with Φ(.) (see [9] for the
definition of the Orlicz norm).
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(A2) : The kernel K : [0,+∞[−→ [0,+∞[ is bounded and has compact support, that is, there exists λ > 0

such that K(υ) = 0 for all υ > λ. There exists two real constants 0 < C1 < C2 < ∞ such that
C1 6 K(υ) 6 C2, υ ∈ [0, λ] and

∫
RK(ν)dν = 1.

(A3) : For t = 1, ..., T , ϕx(λhT ) := P(‖h−1
T (Yt − x)‖ 6 λ) > 0 (λ is defined in Assumption (A2)) and

hT −→ 0 as T −→∞.

From Assumption (A1), Doukhan and Wintenberger [9] show the existence of a strongly stationary and
τ−dependent solution of (2.1) such that τ(i) = O(ai), 0 < a < 1 (see Corollary 3.1 of [9]). According to
Remark 3.1 of Doukhan and Wintenberger [9], this solution is an ergodic process. So (Yt)t∈Z and (Xt, Yt)t∈Z
are strongly stationary and ergodic processes (see Theorem 36.4 of [3]). Assumption (A1) also reflects the
continuity of the application f (.). Assumption (A2) was borrowed from Hong and Linton [13] (Assumption
B3). Assumption (A3) expresses the possibility of observing the sample in a neighbourhood of x. This is a
classic assumption in the nonparametric framework. It naturally extends the hypothesis of the strictly positive
density of the explanatory variable.

3. Main Results

Theorem 3.1. Under Assumptions (A1), (A2) and (A3), for T big enough,

f̂T (x) = f(x) + o(1) almost surely (a.s.) (3.1)

Proof. According to Assumption (A3); we have, for t = 1, ..., T , P
(
‖x−Yt‖

hT
6 λ

)
> 0, so E

(
Kt(x)

)
> 0.

Let :

f̂1,T (x) =

1

T

T∑
t=1

Kt(x)Xt

E(K1(x))
and f̂2,T (x) =

1

T

T∑
t=1

Kt(x)

E(K1(x))
. (3.2)

According to Equation (20) of Hong and Linton [13], we can write :

f̂T (x)− f(x) =
E
(
f̂1,T (x)

)
− f(x)

f̂2,T (x)
+
f̂1,T (x)− E

(
f̂1,T (x)

)
f̂2,T (x)

−
f(x)

(
f̂2,T (x)− 1

)
f̂2,T (x)

.

(3.3)

Let us study the asymptotic behavior of f̂T (x) − f(x). To do it, we shall study the asymptotic behaviors of
f̂2,T (x), E

(
f̂1,T (x)

)
− f(x) and f̂1,T (x)− E

(
f̂1,T (x)

)
.

We start with the asymptotic behavior of f̂2,T (x).
According to Assumption (A1), (Xt)t∈Z is strongly stationary and ergodic. Since Kt(x) is a measurable
transformation of (Xt−1, ..., Xt−p)′ and E(K1(x)) < +∞ (see Assumption (A2)), we have by Krengel [14],
for T big enough,

1

T

T∑
t=1

Kt(x) −→ E(K1(x)) a.s.

So, we have for T big enough :

f̂2,T (x) −→ 1 a.s. (3.4)
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According to Assumptions (A1) and (A2), |E(K1(x)X1)| < ∞. And Kt(x)Xt is a measurable transformation
of (Xt, Xt−1, ..., Xt−p)′. Therefore, we show as in (3.4), for T big enough :

1

T

T∑
t=1

Kt(x)Xt −→ E(K1(x)X1) a.s.

Therefore, for T big enough :

f̂1,T (x)− E
(
f̂1,T (x)

)
−→ 0 a.s. (3.5)

Using the same reasoning as the proof of Equation (53) in Hong and Liton [13] (see also the proof of Lemma 6.2
of [11]), we show, for T big enough :

E
(
f̂1,T (x)

)
− f(x) −→ 0. (3.6)

Gathering (3.3), (3.4), (3.5) and (3.6), we get (3.1). �

Theorem 3.2. Under Assumptions (A1), (A2) and (A3), for T big enough,

ς2 := lim
T→∞

1

T
V ar

(
T∑

t=1

Xt

)
< +∞. (3.7)

And

√
TE(K1(x))

(
f̂T (x)− f(x) + o(1)

)
+ o

(√
ln ln(T )

)
d−→ N(0, ς2), (3.8)

where d−→ denotes convergence in distribution.

Proof. According to (3.3), (3.4) and (3.6), we have a.s., for T big enough :

f̂T (x)− f(x) = f̂1,T (x)− E
(
f̂1,T (x)

)
+ o(1)

=
1

TE(K1(x))

T∑
t=1

(
Kt(x)Xt − E(K1(x)X1)

)
+ o(1)

=
1

TE(K1(x))

T∑
t=1

{
(Kt(x)− 1)Xt − E

(
(K1(x)− 1)X1

)}

+
1

TE(K1(x))

T∑
t=1

(
Xt − E(X1)

)
+ o(1).

(3.9)

Since (Kt(x)− 1)Xt is a measurable transformation of (Xt, Xt−1, ..., Xt−p)′, so we have, for T big enough :

1

T

T∑
t=1

{
(Kt(x)− 1)Xt − E

(
(K1(x)− 1)X1

)}
−→ 0 a.s.

we have a.s., for T big enough :

f̂T (x)− f(x) =
1

TE(K1(x))

T∑
t=1

(
Xt − E(X1)

)
+ o(1). (3.10)
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The function s 7−→ |s|2 ln(1 + |s|) is measurable. So (|Xt − E(X1)|2 ln(1 + |Xt − E(X1)|))t is stationary
because (Xt)t is strongly stationary and ergodic. Therefore E(|Xt − E(X1)|2 ln(1 + |Xt − E(X1)|)) <∞.
According to the Hypothesis (A1), the mixing coefficient τ(.) of the process (Xt)t∈Z is such that τ(i) = O(ai),
0 < a < 1.
From item 3 of Corollary 2 of Dedecker and Prieur [6], we have (3.7) and there exists a sequence (Zt)16t6T of
independent N(0; ς2)−distributed random variables such that :

T∑
t=1

(
Xt − E(X1)

)
=

T∑
t=1

Zt + o

(√
T ln ln(T )

)
a.s.; (3.11)

where ς2 is defined in (3.7).
According to (3.10) and (3.11), we have, for T big enough :

√
TE(K1(x))

(
f̂T (x)− f(x) + o(1)

)
+ o

(√
ln ln(T )

)
=

1√
T

T∑
t=1

Zt a.s. (3.12)

From the Central Limit Theorem, we have for T big enough :

1√
T

T∑
t=1

Zt
d−→ N(0, ς2).

Back to (3.12), we get (3.8). �

4. Simulation study

In this section we present some results of our simulation study. We first (Section 4.1) focus on the strong
consistency of estimator of regression function defined in (2.2). And we verify numerically the asymptotic
normality of this estimator in Section 4.2. The simulation study was performed using R software and the results
presented in these simulations correspond to 200 replications. Here, the Orlicz space is L1(R) and we use the
absolute value function as Orlicz function.
Let f be the function from R to R defined by :

f : x 7−→ 0.2x. (4.1)

We consider :

Xt = f(Xt−1) + ξt, t = 1, ..., T ; (4.2)

where X0 = 0 and (ξt)t is a sequence of independent identically uniformly distributed on [−0.3, 0.3].

We choose the uniform kernel on [0, 1]; for the bandwidth, we choose hT = T−1/6. We numerically verify (3.1)
and (3.8) at point 0.

4.1. Simulation of strong consistency of f̂T (0)

The samples are taken with size which varies between 100 and 500 observations. Table 4.1 reports the root mean
square error (RMSE). The RMSE is calculated from the following formula :

RMSE =

√√√√1

r

r∑
i=1

(f̂T,r(0)− f(0))2,
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where r denotes the number of replications (here r = 200) and f̂T,r(0), the value of f̂T (0) at the rth replication
(see (2.2) for the definition of f̂T (0)).
As it can be seen in Table 4.1, the RMSE decreases when the sample size increases. This corroborates the
convergence of estimator.

T RMSE
100 0.018896
200 0.011016
500 0.007764

Table 4.1 : RMSE values

4.2. Simulation of asymptotic normality of f̂T (0)

The purpose of this subsection is to illustrate the asymptotic normality of estimator f̂T (0) (see (3.8)). To this
purpose, we randomly generate samples of size T ∈ {100, 300, 500} of f̂T (0). Figure 4.1 shows the histogram
and the Q − Q plot of the estimator f̂500(0). In addition to these graphical representations, we performed a
Shapiro-Wilk normality test. The results of the test are presented in Table 4.2 where W refers to the test statistic.

Figure 4.1 : Graphical illustration of the normality of f̂500(0).

Figure 4.1 is composed of two sub-figures: an histogram (on the left) and a Q−Q plot (on the right). On the left
side of Figure 4.1, we have plotted the histogram of f̂500(0) (orange colour). The shape of the histogram reminds
us of the graphical representation of the density of normal distribution. This presumption is accentuated with the
quantile cloud of dots. On the right side of Figure 4.1, we have plottedQ−Q plot in red and Henry’s line in blue.
Most of the points seem to line up with Henry’s line. And the extremities of the cloud seem to move away from
it. Figure 4.1 therefore shows a presumption of normality of the sample. To confirm the normality of sample, we
have performed the Shapiro-Wilk test. The test results show high values of p− value. This value increases when
the sample size increases. In view of results, we can confirm the normality of these samples .
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T W p-value
100 0.98869 0.5604
300 0.98961 0.6334
500 0.99248 0.8547

Table 4.2 : Shapiro-Wilk normality test on f̂T (0), T ∈ {100, 300, 500}.
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