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Abstract. The aim of this work is to establish the existence of mild solutions for some nondensely nonautonomous partial
functional differential equations with state-dependent infinite delay in Banach space. We assume that, the linear part is not
necessarily densely defined and generates an evolution family under the hyperbolique conditions. We use the classic Shauder
Fixed Point Theorem, the Nonlinear Alternative Leray-Schauder Fixed Point Theorem and the theory of evolution family, we
show the existence of mild solutions. Secondly, we obtain the existence of mild solution in a maximal interval using Banach’s
Fixed Point Theorem which may blow up at the finite time, we show that this solution depends continuously on the initial
data under the global Lipschitz condition on the second argument of F and we get the existence of global mild solution. We
propose some model arising in dynamic population for the application of our results.
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1. Introduction

Partial differential equations play a crucial role in providing mathematical answers to natural phenomena and
they continue to be an indispensable tool in scientific investigations of real-world problems. The future behaviors
of many phenomenas are therefore supposed to be described by the solutions of an ordinary or partial differential
equations. These have long played important roles in the history of mathematical modeling and will undoubtedly
continue to serve as indispensable tools in future investigations. They are encountered in a variety of problems in
physics, chemistry, biology, medicine, economics, engineering, climate and disease modeling and many others.

In this work, we study the existence of mild solutions for the following partial functional differential equation
with state-dependent infinite delay

ẋ(t) = A(t)x(t) + F (t, xρ(t,xt)); t ∈ J := [0, b],

x0 = φ ∈ B
(1.1)

in a Banach space (X, ∥·∥). Here (A(t))t≥0 is a given family of closed linear operators inX with non necessarily
dense domain and satisfying the hyperbolic conditions (A1) through (A3) introduce by Tanaka in [45, 46] which
will be specified later. The phase space B is a linear space of functions mapping (−∞, 0] into X satisfying some
Axioms which will be described in the sequel. F : J ×B is continuous and ρ : J ×B → (−∞, b] are appropriate
functions. The history xt (t ≥ 0), represents the mapping defined from (−∞, 0] into X by

xt(θ) = x(t+ θ) for θ ∈ (- ∞, 0].

For the nonautonomous dynamical systems, the basic law of evolution is not static in the sense that the
environment change with time. Parameters in real-world situations and particularly in the life sciences are rarely
constant over time. The theory of nonautonomous dynamical systems is a well-developed and successful
mathematical framework to describe time-varying phenomena. Its applications in the life sciences range from
simple predator-prey models to complicated signal traduction pathways in biological cells, in physics from the
motion of a pendulum to complex climate models, and beyond that to further fields as diverse as chemistry
(reaction kinetics), economics, engineering, sociology, demography, and biosciences. Nonautonomous
differential equations has received the great attention see for instance the works [22, 26, 28, 40, 42, 47, 51] and
some recent works [9, 37–39]. For some applications, we refer the reader to the handbook by Peter E. Kloeden
and Christian Pötzsche [44]. Note that when A(t) := A is independent of t, the theory of partial functional
differential equations was studied by several authors. Hernández et al. [34] studied the existence of mild
solutions of Equation (1.1) by using the classical C0-semigroup theory. Later on, Belmekki et al. [12] obtained
the existence results of the following partial functional differential equations with state-dependent delay:

ẋ(t) = Ax(t) + F (t, x(t− τ(x(t)))) for t ∈ [a, b];

x0 = φ ∈ C([−r, 0];X)

(1.2)

where the operator A satisfies the usual Hille-Yosida condition except the density of D(A) in X . They obtained
their results by using the variation of constants formula which is given in terms of integrated semigroups. In the
autonomous case where ρ(t, xt) = t, we refer the reader to Adimy et al [2], K. Ezzinbi et al [23, 24], Hale and
Lunel [30], G. F. Webb. [48, 49], Wu [50], and the papers [2, 3, 13, 14, 16–18, 18, 36].

The literature related to partial nonautonomous functional differential equations with delay for which
ρ(t, ψ) = t is very extensive and we refer the reader to the papers in [9, 13, 25, 37, 38, 40, 47] concerning this
case. Recently Kpoumié et al in [9], investigate several results on the existence of solutions of the following
nonautonomous equation :
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
ẋ(t) = A(t)x(t) + F (t, xt) for t ≥ 0,

x0 = φ ∈ B,
(1.3)

where (A(t))t≥0 is a given family of closed linear operators on a Banach space (X, ∥ · ∥) not necessarily densely
defined satisfying the hyperbolic conditions, B is a linear space of functions mapping (−∞, 0] to X satisfying
some Axioms and F a continuous function defined on [0,+∞) × B with values in X. In this context, they have
studied the local existence of the mild solutions which may blow up at the finite time, the global existence of mild
solutions are given and under sufficient conditions, the existence of the strict solutions have been obtained.

Functional differential equations with state-dependent delay appear frequently in applications as models of
equations and for this reason the study of this type of equation has attracted attention in recent years and more
than ten years ago we refer the reader to the handbook by Cañada et al. [5], the book [19], the papers [6, 8, 11,
12, 20, 26, 27, 31, 32] and the references therein. In [39], we investigated the existence of mild solutions of the
following nonautonomous equation:

ẋ(t) = A(t)x(t) + F (t, x(t− ρ(x(t)))) for t ∈ [0, a]

x0 = φ ∈ C([−r, 0], X),

(1.4)

where (A(t))t≥0 is a given family of closed linear operators on a Banach space (X, ∥ · ∥) not necessarily densely
defined and satisfying the hyperbolic conditions (A1) through (A3) introduced by Tanaka in [46] which will
be specified in Section 2. F is a given function defined on [0,+∞) × X with values in X , the initial data
ρ : [−r; 0] → X is a continuous function, ρ is a positive bounded continuous function on X and r is the maximal
delay defined by

r = sup
x∈X

ρ(x)

.
In this paper, we study the existence of at least one mild solutions where the family of closed linear operators

on a Banach space is not necessarily densely defined. Note that there are many examples where evolution
equations are not densely defined. One can refer to [1, 4, 21] for references and discussion on this subject.
Our work is motivated by [9, 34]. The results obtained is a continuation of work done by Hernãndez et al in [34],
Belmekki et al. [12] and Kpoumié et al in [39].

In the whole of this work we employ an axiomatic definition for the phase space B due to Hale and Kato [29].
We assume that B is a normed linear space of functions mapping (−∞, 0] to X endowed with a normed | · |B and
satisfying the following Axioms:

(B1) There exist a positive constant H and functions K(·);M(·) : [0,+∞) → [0; +∞), with K continuous and
M locally bounded, and the are independent of x, such that for any σ ∈ R and a > 0, if x is a function
mapping (−∞, σ+a[ into X , a > 0, such that xσ ∈ B, and x(·) is continuous on [σ, σ+a[, then for every
t in [σ, σ + a[ the following conditions hold :

(i) xt ∈ B,

(ii) ∥x(t)∥X ≤ H∥xt∥B which is equivalent to

(ii)
′ ∥φ(0)∥X ≤ H∥φ∥B for every φ ∈ B.

(iii) ∥xt∥B ≤M(t− σ)∥xσ∥B +K(t− σ) sup
σ≤s≤t

∥x(s)∥X

(B2) For the function x(·) in (B1), t 7→ xt is a B−valued continuous function for t ∈ [σ;σ + a[.

(B) The space B is complete.
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For examples and more details on phase space, see the book by Y. Hino, S. Murakami and T. Naito [35].
The organization of this work is as follows: in Section 2, we recall some results on nonautonomous evolution

family with nondensely domain theory that will be used to develop our main results. In Section 3, we use the
variant of Shauder’s Fixed Point Theorem and the nonlinear alternative of Leray-Schauder’s to prove the existence
of at least one mild solution. In Section 4, we propose an application to some models with state dependent delay.

2. Nonautonomous evolution family with nondense domain

In this section, we recall some notations, definitions and preliminary facts concerning our work. Throughout
this paper we used the results which are detailed in [43, 45, 46]. We assume that B(X) is the Banach space of all
bounded linear operators from X to itself. In this work, we assume the following hyperbolic assumptions:

(A1) D(A(t)) := D independent of t and not necessarily densely defined.

(A2) The family (A(t))t≥0 is stable that means there are constants M ≥ 1 and w ∈ R such that:

(w,+∞) ⊂ ρ(A(t)) and
∥∥∥ k∏

j=1

R(λ,A(tj))
∥∥∥ ≤M(λ− w)−k

for t ≥ 0, λ > w and for very finite sequence {tj}kj=1 with 0 ≤ t1 ≤ t2 ≤ . . . ≤ tk < +∞ and
k = 1, 2, . . ., where ρ(A(t)) is the resolvent set of A(t) and R(λ,A(t)) = (λI −A(t))−1.

(A3) The mapping t 7−→ A(t)x is continuously differentiable in X for all x ∈ D.

We recall here the classical result which gives us the existence and explicit formula of the evolution family
generated by (A(t))t≥0 due to Oka and Tanaka [43] and Tanaka [46].

Theorem 2.1. (Oka and Tanaka [43]; Tanaka [46]) Assume that (A(t))t≥0 satisfies conditions (A1) -(A3). Then
the limit

U(t, s)x = lim
λ→0+

[ t
λ ]∏

i=[ sλ ]+1

(I − λA(iλ))−1x

exists for x ∈ D and t ≥ s ≥ 0, where the convergence is uniform on Γ := {(t, s) : t ≥ s ≥ 0}. Moreover, the
family {U(t, s) : (t, s) ∈ Γ} satisfies the following properties:

i) U(t, s) : D → D for (t, s) ∈ Γ;

ii) U(t, t)x = x and U(t, s)x = U(t, r)U(r, s)x for x ∈ D and t ≥ r ≥ s ≥ 0;

iii) the mapping (t, s) 7→ U(t, s)x is continuous on Γ for any x ∈ D;

iv) ∥U(t, s)x∥ ≤Mew(t−s)∥x∥ for x ∈ D and (t, s) ∈ Γ;

v) U(t, s)D(s) ⊂ D(t) for all t ≥ s ≥ 0 where D(t) := {x ∈ D : A(t)x ∈ D};

vi) for all x ∈ D(s) and t ≥ s ≥ 0, the function t 7→ U(t, s)x is continuously differentiable with:
∂
∂tU(t, s)x = A(t)U(t, s)x and ∂+

∂s U(t, s)x = −U(t, s)A(s)x.

Let λ > 0, t ≥ s ≥ 0 and x ∈ X . We define Uλ(t, s) by:

Uλ(t, s)x =

[ t
λ ]∏

i=[ sλ ]+1

(I − λA(iλ))−1x
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Remark 2.1. For x ∈ X , λ > 0 and t ≥ r ≥ s ≥ 0 one can see that

Uλ(t, t)x = x and Uλ(t, s)x = Uλ(t, r)Uλ(r, s)x.

We consider the following nonautonomous linear evolution equation:
ẋ(t) = A(t)x(t) + f(t) for t ∈ [0, a],

x(0) = x0 ∈ X

(2.1)

where f : [0, a] → X is a function.

Theorem 2.2. (Tanaka [46]) Assume that (A1)-(A3) hold. Let x0 ∈ D and f ∈ L1([0, a], X). Then the limit

x(t) := U(t, 0)x0 + lim
λ→0+

∫ t

0

Uλ(t, r)f(r)dr (2.2)

exists uniformly for t ∈ [0, a] and x is a continuous function on [0, a].

Definition 2.1. (Tanaka [46]) For x0 ∈ D, a continuous function x : [0, a] → X is called a mild solution of the
initial value of Equation (2.1) if x satisfies the following equation:

x(t) = U(t, 0)x0 + lim
λ→0+

∫ t

0

Uλ(t, r)f(r)dr. (2.3)

Lemma 2.1. (Ezzinbi, Békollè and Kpoumiè [37]) Assume f ∈ L1([0, a], X). If x is the mild solution of Equation
(2.1), then

∥x(t)∥ ≤Mewt∥x0∥+
∫ t

0

Meω(t−s)∥f(s)∥ds.

Definition 2.2. (Kpoumiè, Ezzinbi and Békollè [38]) For φ(0) ∈ D, a continuous function x : (−∞, b] → X is
a mild solution of Equation (1.3) if x satisfies the following equation

x(t) =


U(t, 0)φ(0) + lim

λ→0+

∫ t

0

Uλ(t, s)F (s, xs)ds for 0 ≤ t ≤ b,

φ(t) for −∞ ≤ t ≤ 0.

(2.4)

In the whole of this work, we assume that (A1) - (A3) are true and w > 0.

3. Existence of mild solutions

In this section, we use some Fixed Point Theorems and the Kuratowski’s measure of noncompactness to
establish the existence of mild solutions of Equation (1.1). In this work, we always assume that ρ : J × B →
(−∞, b] is continuous.

Definition 3.1. Let φ(0) ∈ D. We say that a continuous function x : (−∞, b] → X is a mild solution of Equation
(1.1) if x satisfies the following equation

x(t) =


U(t, 0)φ(0) + lim

λ→0+

∫ t

0

Uλ(t, s)F (s, xρ(s,xs))ds for 0 ≤ t ≤ b,

φ(t) for −∞ ≤ t ≤ 0.

(3.1)
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We introduce the Kuratowski’s measure of noncompactness α(·) of bounded sets K on a Banach space Y
which is defined by:

α(K) = inf {ε > 0 : K has a finite cover of ball with diameter < ε} .

Some basic properties of α(·) are given in the following Lemma.

Lemma 3.1. ( Akhmerov et al. in [7])

(i) α(A1) ≤ diaA1, where dia(A1) = supx,y∈A1
|x− y|,

(ii) α(A1) = 0 if and only if A1 is relatively compact in X ,

(iii) α(A1 ∪A2) = max(α(A1), α(A2)),

(iv) if A1 ⊂ A2, then α(A1) ≤ α(A2),

(v) α(A1 +A2) ≤ α(A1) + α(A2),

(vi) α(B(0, ε)) = 2ε if dimX = +∞.

The terminology and notations employed in this work coincide with those generally used in functional
analysis. In particular, for Banach spaces (X, ∥ · ∥), (Y, ∥ · ∥), the notation L(X,Y ) stands for the Banach space
of bounded linear operators from X into Y, and we abbreviate this notation to L(X) when X = Y . Moreover
Br(z,X) denotes the open ball with center at z and radius r > 0 in X and for a bounded function x : J → X

and 0 ≤ t ≤ b we employ the notation ∥x∥X,t for ∥x∥X,t := sup
θ∈[0,t]

∥x(θ)∥. We will simply write ∥x∥t when no

confusion arises.
To prove our main result we will use the following variant of Schauder’s Theorem see Radu Precup [41] and

the Nonlinear Alternative of Leray-Schauder see A. Granas [27] or W. Arendt [10].

Theorem 3.1. (Schauder) Let X be a Banach space, D ⊂ X a nonempty convex bounded closed set and let
T : D → D be a completely continuous operator. Then T has at least one fixed point.

Theorem 3.2. (Leray-Schauder) Let W be a convex subset of a Banach space X and assume that 0 ∈ W . Let
F : W → W be a completely continuous map. Then either

(i) F has a fixed point in W , or

(ii) the set {x ∈ W : x = αF(x), 0 < α < 1} is unbounded.

Theorem 3.3 (Banach’s Fixed Point Theorem). Let (E, d) be a non empty complete metric space and a mapping
T : E → E such that T p is a strict contraction (p ∈ N⋆). Then T admits a unique fixed point x̄ in E (i.e.
T (x̄) = x̄) and the sequence (xn)n define by xn = T (xn−1) with x0 ∈ E, converges to x̄.

Lemma 3.2. (Lemma Bellman-Gronwall) Let f, g the continuous positives fonctions from [a, b] to R+.
If Ψ is constant, then from

g(t) ≤ Ψ+

∫ t

a

f(s)g(s)ds for all t ∈ [a, b],

it follows that

g(t) ≤ Ψexp
(∫ t

a

f(s)ds
)

for all t ∈ [a, b].

Let us consider the following assumptions:

(C1). U(t, s)t>s is compact on D for t > s.
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(C2). The function F : J × B → X satisfies the following properties.

(a) The function F (·, ψ) : J → X is strongly measurable for every ψ ∈ B.
(b) The function F (t, ·) : B → X is continuous for each t ∈ J.

(c) Let L1(J, [0,+∞)) be the space of integrable functions from J to [0,+∞). There exist
p ∈ L1(J, [0,+∞)) and a continuous non-decreasing function V : (0,+∞) → (0,+∞) such that

∥F (t, ψ)∥ ≤ p(t)V (∥ψ∥B) for all (t, ψ) ∈ J × B.

(C3). Let φ ∈ B such that x0 = φ and t 7−→ φt is a B-valued well defined continuous function on ρ− where
ρ− = {ρ(s, ψ) : (s, ψ) ∈ J × B, ρ(s, ψ) ≤ 0}, and there exists a continuous and bounded function η :

ρ− → (0,∞) such that ∥φt∥B ≤ η(t)∥φ∥B for every t ∈ ρ−.

Remark 3.1. For φ ∈ B such that φt ∈ B and φ = x0 we can see that for all t < 0, φt = xt. In fact
if for all t < 0, φt ̸= xt, then for all θ ∈ (−∞, 0], φt(θ) ̸= xt(θ) hence φ(t + θ) ̸= x(t + θ) thus for all
t ∈ (−∞, 0], φ(t) ̸= x(t) which is absurd because φ = x0 that means for all t ∈ (−∞; 0], φ(t) = x(t).
Therefore for all t < 0, φt = xt.

To continue with the next step we need the following Lemma due to E. Hernández.

Lemma 3.3. (Hernández et al. [33]) Let φ ∈ B such that φt ∈ B for every t ∈ ρ−. Assume that there
exists a locally bounded function η : ρ− → [0,∞) such that ∥φt∥B ≤ η(t)∥φ∥B for every t ∈ ρ− and ζ =

sup {η(s) : s ∈ ρ−}. If x : (−∞, b] → X is continuous on J and x0 = φ, then

∥xs∥B ≤ (Mb + ζ) ∥φ∥B +Kb sup
0≤θ≤s

∥x(θ)∥, s ∈ ρ− ∪ J

Where Kb = sup
t∈J

K(t) , Mb = sup
t∈J

M(t)

.

In the sequel, we prove the existence of mild solution of equation (1.1).

Theorem 3.4. Let Ω be a nonempty open subset of B and the function F : [0, b] × B → X is Carathéodory
mapping. Assume that (C1) − (C3) and (A1) − (A3) hold. Let φ ∈ Ω be such that φ(0) ∈ D. Then, Equation
(1.1) has at least one mild solution x(·, φ) define on ]−∞, a] → X , for some a ∈]0, b].

Proof. We use the classic Schauder’s Fixed Point Theorem.

Step 1. Let φ ∈ Ω be such that φ(0) ∈ D. Then, there exists a constants r > 0, r < b such that
BX(φ, r) = {ψ ∈ B such that ∥ψ − φ∥B ≤ r} ⊂ Ω and ∥F (s, ψ)∥ ≤ ∥p∥L1V (∥ψ∥) for all s ∈ [0, r] and
ψ ∈ BX(φ, r).
Define the function y : (−∞, b] −→ X defined by:

y(t) =


U(t, 0)φ(0) for t ∈ J,

φ(t) for −∞ ≤ t ≤ 0.

By virtue of Axioms (B1)− (i) and (B2), yt ∈ B and t 7→ yt is a continuous function. Then for γ ∈ (0, r) there
exists b1 ∈ (0, r] such that ∥yt − φ∥B ≤ γ for all t ∈ [0, b1].
Set Kb := sup

t∈[0,b]

K(t). Let a be a constant such that:

0 < a ≤ min
{
b1,

r − γ

MewaKb∥p∥L1V (l)

}
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where l = (Mb + ζ +Kb +KbH)∥φ∥B +KbHr. For u ∈ C([0, a];X) such that u(0) = φ(0), we define its
extension on (∞, a] by :

ũ(t) =


u(t) for t ∈ [0, a],

φ(t) for −∞ ≤ t ≤ 0.

Let us introduce the following space:

Fa :=
{
u : [0, a] → X continuous such that u0 = φ and sup

0≤t≤a
∥ũt − φ∥B ≤ r

}
endowed with the uniform norm topology. ∥.∥Fa defined by:

∥u∥Fa
:= ∥u0∥B + sup

0≤s≤a
∥u(s)∥

The restriction of y to (∞, a] is an element of Fa. In fact ∥yt − φ∥B ≤ γ for all t ∈ [0, b1] whereas γ < r then
∥ỹt − φ∥B ≤ r for all t ∈ [0, a] thus y ∈ Fa. Therefore Fa is nonempty.

For all u ∈ Fa, we have

∥u∥Fa = ∥u0∥B + sup
0≤s≤a

∥u(s)∥

≤ ∥u0 − φ∥B + ∥φ∥B + sup
0≤s≤a

H∥us∥ by (B1)− (iii)

≤ ∥φ∥B +H sup
0≤s≤a

{∥(us − φ) + φ∥B} since u0 = φ

≤ ∥φ∥B +H{ sup
0≤s≤a

∥(us − φ)∥B + ∥φ∥B}

≤ ∥φ∥B +H(r + ∥φ∥B). (3.2)

Then Fa is bounded.
By using the triangular inequality in B it is clear that λp+ (1− λ)q ∈ Fa for any p, q ∈ Fa, with λ ∈ [0, 1].

Indeed
∥λp̃t + (1− λ)q̃t − φ∥B = ∥λp̃t + (1− λ)q̃t − (1− λ)φ+ (1− λ)φ− φ∥B

= ∥λp̃t + (1− λ)(q̃t − φ) + φ− λφ− φ∥B

= ∥λ(p̃t − φ) + (1− λ)(q̃t − φ)∥B

≤ λ∥(p̃t − φ)∥+ (1− λ)∥(q̃t − φ)∥B

≤ λr + (1− λ)r

= r.

Then Fa is convex.
Now we prove that Fa is closed. To prove that, consider a convergent sequence (ũnt )n∈N of Fa which

converges to ũt. We want to show that ũt ∈ Fa.

∥ũt − φ∥B = ∥ũt − ũnt ∥B + ∥ũnt − φ∥B

≤ ∥ũt − ũnt ∥B + r, since ũnt ∈ Fa.
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whereas
∥ũt − ũnt ∥B ≤ Kb sup

0≤s≤t
∥ũ(s)− ũn(s)∥+Mb∥ũ0 − ũn0∥B

≤ Max(Kb,Mb) sup
0≤s≤t

∥ũ(s)− ũn(s)∥+Max(Kb,Mb)∥ũ0 − ũn0∥B

≤ Max(Kb,Mb)∥ũ− ũn∥Fa
.

Thus ∥ũt − ũnt ∥B ≤ Max(Kb,Mb)∥ũ − ũn∥Fa as ∥ũ − ũn∥Fa → 0 with n → +∞ hence
∥ũt − ũnt ∥B → 0 with n→ +∞ then ∥ũt − φ∥ ≤ r, hence ũt ∈ Fa thus Fa is closed.

To continue our proof, we need the following Lemma.

Lemma 3.4. Let φ ∈ B such that φt ∈ B for every t ∈ ρ−. Assume that there exists a locally bounded function
η : ρ− → [0,∞) such that ∥φt∥B ≤ η(t)∥φ∥B for every t ∈ ρ− and ζ = sup {η(s) : s ∈ ρ−}. If u ∈ Fa, then

∥ũρ(s,ũs)∥B ≤ l < +∞

Where l =Mb + ζ +Kb +KbH)∥φ∥B +KbHr.

Proof.

∥ũρ(s,ũs)∥B ≤ (Mb + ζ) ∥φ∥B +Kb sup
0≤θ≤ρ(s,ũs)

∥ũ(θ)∥, by the Lemma 3.3

≤ (Mb + ζ) ∥φ∥B +Kb(∥φ∥B + sup
0≤θ≤a

∥u(θ)∥)

≤ (Mb + ζ) ∥φ∥B +Kb∥u∥Fa since ∥u∥Fa = ∥φ∥B + sup
0≤θ≤a

∥u(θ)∥

≤ (Mb + ζ +Kb +KbH)∥φ∥B +KbHr. By relation (3.2)

■

Consider the mapping K defined on Fa by:
(Kx)(t) = U(t, 0)φ(0) + lim

λ→0+

∫ t

0

Uλ(t, s)F (s, x̃ρ(s,x̃s))ds for t ∈ [0, a],

φ(t) for −∞ < t ≤ 0.

(3.3)

From definition (3.1), theorem (2.1) and the assumptions on φ, we infer that (Kx)(·) is well defined. We claim
that K(Fa) ⊂ Fa. In fact, Axiom (C2) implies that for every x ∈ Fa, the mapping s 7→ F (s, x̃ρ(s,x̃)) is
continuous on [0, a]. Hence this mapping v := Kx is continuous on [0, a]. In the other hand, One has

∥ṽt − φ∥B ≤ ∥ṽt − yt∥B + ∥yt − φ∥B

≤ ∥ṽt − yt∥B + γ

On one hand, by Axiom (B1)− (iii), we have for any t ∈ [0, a],

∥ṽt − yt∥B ≤ Kb sup
0≤s≤t

∥v(s)− y(s)∥
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For any t ∈ [0, a]

∥v(t)− y(t)∥ =
∥∥∥U(t, 0)φ(0)− limλ→0+

∫ t

0

Uλ(t, s)F (s, ṽρ(s,ṽs))ds− U(t, 0)φ(0)
∥∥∥

=
∥∥∥ limλ→0+

∫ t

0

Uλ(t, s)F (s, ṽρ(s,ṽs))ds
∥∥∥

≤
∫ t

0

Mew(t−s)
∥∥∥F (s, ṽρ(s,ṽs))∥∥∥ds

≤ Mewa

∫ t

0

∥p∥L1V (∥ṽρ(s,ṽs)∥B)ds

≤ Mewaa∥p∥L1V (l), by Lemma 3.4

≤ r−γ
Kb

.

hence Kb sup
0≤s≤t

∥v(s) − y(s)∥ ≤ r − γ then ∥ṽt − yt∥B ≤ r − γ we have ∥ṽt − φ∥B ≤ r, for any t ∈ [0, a].

Therefore v ∈ Fa. We have proved that Fa is a nonempty, bounded, convex and closed subset of Fa:
Now we want to prove that K is a completely continuous operator.

Step 2. The continuity of K. Let (un)n∈N∗ be a sequence in Fa such that lim
n→∞

un = u. For t ∈ [0, a], we have

by Axiom (B1 − iii) :

∥ũt − ũnt ∥B ≤ Kb sup
0≤s≤t

∥ũ(s)− ũn(s)∥+Mb∥ũ0 − ũn0∥B

≤ Max(Kb,Mb) sup
0≤s≤t

∥ũ(s)− ũn(s)∥+Max(Kb,Mb)∥ũ0 − ũn0∥B

≤ Max(Kb,Mb)∥ũ− ũn∥Fa
.

then lim
n→∞

ũns = ũs. we recall that ρ : [0, a]× B → (−∞, a] is continuous then lim
n→∞

ρ(s, ũn)s = ρ(s, ũs).

Let us study therefore the convergence of the sequence (ũnρ(s,ũn
s )
)n∈N for s ∈ [0, a]. At first, if s ∈ [0, a] such

that ρ(s, ũs) > 0, and there exists N ∈ N such that for all n ∈ N, n > N ρ(s, ũns ) > 0.
In this case one has

∥ũnρ(s,ũn
s )

− ũρ(s,ũs)∥B ≤ ∥ũnρ(s,ũn
s )

− ũρ(s,ũn
s )
∥B + ∥ũρ(s,ũn

s )
− ũρ(s,ũs)∥B

≤ Kb sup
0≤θ≤ρ(s,ũn

s )

∥un(θ)− u(θ)∥+Mb∥φ− φ∥+ ∥ũρ(s,ũn
s )

− ũρ(s,ũs)∥B

by (B1 − iii)

≤ Kb∥un − u∥a + ∥ũρ(s,ũn
s )

− ũρ(s,ũs)∥B

whereas
lim
n→∞

un = u then ∥un − u∥a → 0 for n→ +∞,
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∥ũρ(s,ũn
s )

− ũρ(s,ũs)∥B → 0 for n→ +∞ by (B1 − iii),

which proves that ũnρ(s,ũn
s )

→ ũρ(s,ũs) in B as n → +∞ for every s ∈ [0, a] such that ρ(s, ũs) > 0. Similar, if
s ∈ [0, a] such that ρ(s, ũs) < 0, and there exists N ∈ N such that for all n ∈ N, n > N ρ(s, ũns ) < 0.

In this case one has

∥ũnρ(s,ũn
s )

− ũρ(s,ũs)∥B = ∥φρ(s,ũn
s )

− φρ(s,ũs)∥B, by Remark 3.1

≤ η(t)∥φ− φ∥, by (C3) with t < 0.

Which proves that ũnρ(s,ũn
s )

→ ũρ(s,ũs) in B as n→ +∞ for every s ∈ [0, a] such that ρ(s, ũs) < 0. Then

lim
n→∞

ũnρ(s,ũn
s )

= ũρ(s,ũs).

For t ∈ [0, b], we have :

∥(Kun)(t)− (Ku)(t)∥ =
∥∥∥ lim

λ→0+

∫ t

0

Uλ(t, s)F (s, ũ
n
ρ(s,ũn

s )
)ds− lim

λ→0+

∫ t

0

Uλ(t, s)F (s, ũρ(s,ũs))ds
∥∥∥

=
∥∥∥ lim

λ→0+

∫ t

0

Uλ(t, s)(F (s, ũ
n
ρ(s,ũn

s )
)− F (s, ũρ(s,ũs)))ds

∥∥∥
≤Meωb

∫ t

0

∥∥∥F (s, ũnρ(s,ũn
s )
)− F (s, ũρ(s,ũs))

∥∥∥ds.
As lim

n→∞
ũnρ(s,ũn

s )
= ũρ(s,ũs), F (s, ·) is continuous from assumption (C2) − (b), then

(
F (s, ũnρ(s,ũn

s )
)
)
n∈N

converges to F (s, ũρ(s,ũs)), and from assumption (C2) − (c) we can conclude by the Lebesgue Dominated
Convergence Theorem that Kun → Ku.

Next, we will show now that the range of K ; Range(K) := {Ku, u ∈ Fa}, is relatively compact in Fa. By
the Arzela–Ascoli theorem, it suffices to prove that Range(K)(t) is relatively compact in X for each t ∈ [0, a] ,
and Range(K) is equicontinuous on [0, a].

Step 3. The set of fonctionsRange(K)(t) of is relatively compact on Fa. To prove this assertion, it is sufficient
to show that the set

{
(Ku)(t)− U(t, 0)φ(0) : u ∈ Fa

}
is relatively compact.

Let 0 < ϵ < t ≤ a. Then

Ku(t)− U(t, 0)φ(0) = lim
λ→0+

∫ t

0

Uλ(t, s)F (s, ũρ(s,ũs))ds

= lim
λ→0+

∫ t−ϵ

0

Uλ(t, s)F (s, ũρ(s,ũs))ds+ lim
λ→0+

∫ t

t−ϵ

Uλ(t, s)F (s, ũρ(s,ũs))ds

= U(t, t− ϵ) lim
λ→0+

∫ t−ϵ

0

Uλ(t− ϵ, s)F (s, ũρ(s,ũs))ds+ lim
λ→0+

∫ t

t−ϵ

Uλ(t, s)F (s, ũρ(s,ũs))ds.

We claim that {
lim

λ→0+

∫ t−ϵ

0

Uλ(t− ϵ, s)F (s, ũρ(s,ũs))ds : u ∈ Fa

}
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is a bounded. In fact, for u ∈ Fa :∥∥∥ lim
λ→0+

∫ t−ϵ

0

Uλ(t− ϵ, s)F (s, ũρ(s,ũs))ds
∥∥∥ ≤Meωa

∫ t−ϵ

0

p(s)V (∥ũρ(s,ũs)∥B)ds

≤MeωaV (l)

∫ t−ϵ

0

p(s)ds by Lemma 3.4.

Where l =Mb + ζ +Kb +KbH)∥φ∥B +KbHr. Since U(t, t− ϵ) is a compact operator for 0 < ϵ < t, the set

U(t, t− ϵ)
{

lim
λ→0+

∫ t−ϵ

0

Uλ(t− ϵ, s)F (s, ũρ(s,ũs))ds : u ∈ Fa

}
is relatively compact in X for every ϵ, 0 < ϵ < t. We know that,∥∥∥ lim

λ→0+

∫ t

t−ϵ

Uλ(t, s)F (s, ũρ(s,ũs))ds
∥∥∥ ≤Meωa

∫ t

t−ϵ

p(s)V (∥ũρ(s,ũs)∥B)ds

≤MeωaV (l)

∫ t

t−ϵ

p(s)ds by Lemma 3.4.

Where l =Mb + ζ +Kb +KbH)∥φ∥B +KbHr. Thus

lim
λ→0+

∫ t

t−ϵ

Uλ(t, s)F (s, ũρ(s,ũs))ds ∈ B
(
0,MeωaV (l)

∫ t

t−ϵ

p(s)ds
)
.

By Lemma 2.1 it follows that

α
(
B
(
0,MeωaV (l)

∫ t

t−ϵ

p(s)ds
))

= 2MeωaV (l)

∫ t

t−ϵ

p(s)ds. (3.4)

where α(·) is Kuratowski’s measure of noncompactness of sets in X. Letting ϵ tends to 0 , we obtain in relation
(3.4) that α

(
B
(
0,MeωaV (l)

∫ t

t−ϵ
p(s)ds

))
= 0. By Lemma 2.1,

{
lim

λ→0+

∫ t

t−ϵ

Uλ(t, s)F (s, ũρ(s,ũs))ds : u ∈ Fa

}
is relatively compact. Then {

(Ku)(t)− U(t, 0)φ(0) : u ∈ Fa

}
is relatively compact. Hence, Range(K)(t) is relatively compact in X for each t ∈ J .

Step 4. The set of fonctions Range(K) is equicontinuous on [0, a]. For every 0 ≤ t0 ≤ t ≤ a, one has:

(Ku)(t)− (Ku)(t0) =
(
U(t, 0)− U(t0, 0)

)
φ(0) + lim

λ→0+

∫ t

0

Uλ(t, s)F (s, ũρ(s,ũs))ds

− lim
λ→0+

∫ t0

0

Uλ(t0, s)F (s, ũρ(s,ũs))ds

=
(
U(t, 0)− U(t0, 0)

)
φ(0) + lim

λ→0+

∫ t

t0

Uλ(t, s)F (s, ũρ(s,ũs))ds

+
(
U(t, t0)− I

)
lim

λ→0+

∫ t0

0

Uλ(t0, s)F (s, ũρ(s,ũs))ds.
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This implies that

∥(Ku)(t)− (Ku)(t0)∥ ≤
∥∥∥(U(t, 0)− U(t0, 0)

)
φ(0)

∥∥∥+MeωbV (l)

∫ t

t0

p(s)ds

+
∥∥∥(U(t, t0)− I

)
lim

λ→0+

∫ t0

0

Uλ(t0, s)F (s, ũρ(s,ũs))ds
∥∥∥.

Since Range(K)(t0) is relatively compact and{
lim

λ→0+

∫ t0

0

Uλ(t0, s)F (s, ũρ(s,ũs))ds : u ∈ Fa

}
⊆ Range(K)(t0)

. There exists a compact set G such that:{
lim

λ→0+

∫ t0

0

Uλ(t0, s)F (s, ũρ(s,ũs))ds : u ∈ Fa

}
⊆ G.

Then
lim
t→t0
t>t0

sup
u∈G

∥∥∥(U(t, t0)− I
)
u
∥∥∥ = 0.

Thus, we get
lim
t→t0
t>t0

∥(Ku)(t)− (Ku)(t0)∥ = 0 for all u ∈ Fa.

Using similar argument for 0 ≤ t ≤ t0 ≤ b, we conclude that Range(K) is equicontinuous. Then by Arzelá-
Ascoli’s Theorem, Range(K) is retlatively compact. Since K is continuous by Step 2, we can conclude that K
is a completely continuous operator. The existence of at least one a mild solution for Equation (1.1) is now a
consequence of the variant of Schauder’s Fixed Point Theorem. □

Theorem 3.5. Let (C1)− (C3) be satisfied. If ρ(t, ψ) ≤ t for every (t, ψ) ∈ J ×B and

MKbe
ωb∥p∥L1 <

∫ ∞

N

ds

V (s)
(3.5)

where N = (Mb + ζ)∥φ∥B +Kb∥φ(0)∥X with Kb = sup
t∈J

k(t) , Mb = sup
t∈J

M(t), ζ := sup{η(s) : s ∈ ρ−}.

Then there exists a mild solution of Equation (1.1).

Proof. Let E = C(J,X) and K : E → E be the operator defined by (3.3). In order to use Leray Schauder
Alternative Theorem. We claim that the set

ξ :=
{
x ∈ C(J,X) : x = µK(x), 0 < µ < 1

}
is bounded. Indeed

∥x∥ ≤Meωt∥φ(0)∥+
∫ t

0

Meω(t−s)∥F (s, x̃ρ(s,x̃s))∥ds

≤MeωtH∥φ∥B +M

∫ t

0

eω(t−s)p(s)V (∥x̃ρ(s,x̃s)∥B)ds by (B1)− (ii)
′
and (C2)

≤MeωtH∥φ∥B +Meωb

∫ t

0

p(s)V
(
(Mb + ζ)∥φ∥B +Kb sup

0≤θ≤ρ(s,x̃s)

∥x̃(θ)∥
)
ds by Lemma 3.3

≤MeωtH∥φ∥B +Meωb

∫ t

0

p(s)V
(
(Mb + ζ)∥φ∥B +Kb∥x∥ρ(s,x̃s)

)
ds

≤MeωtH∥φ∥B +Meωb

∫ t

0

p(s)V
(
(Mb + ζ)∥φ∥B +Kb∥x∥s

)
ds
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since ρ(t, x̃t) ≤ t for every t ∈ J . If

ϑ(t) := (Mb + ζ)∥φ∥B +Kb∥x∥t,

we obtain that

ϑ(t) ≤ (Mb + ζ +KbMeωbH)∥φ∥B +MKbe
ωb

∫ t

0

p(s)V (ϑ(s))ds

since ∥x∥t ⩽ ∥x∥ for all t ∈ J. Setting

ν(t) := (Mb + ζ +KbMeωbH)∥φ∥B +MKbe
ωb

∫ t

0

p(s)V (ϑ(s))ds

and using the nondecreasing character of V , we have :

ν(t) ≤ (Mb + ζ +KbMeωbH)∥φ∥B +MKbe
ωb

∫ t

0

p(s)V (ν(s))ds

since ϑ(t) ⩽ ν(t) for every t ∈ J . Since ν is defferentiable, we have

ν′(t) ≤MKbe
ωbp(t)V (ν(t)) for every t ∈ J.

Thus ∫ ν(t)

ν(0)=N

ds

V (s)
≤MKbe

ωb

∫ t

0

p(s)ds.

Hence ∫ ν(t)

ν(0)=N

ds

V (s)
≤MKbe

ωb∥p∥L1 .

Using relation (3.5), we get ∫ ν(t)

ν(0)=N

ds

V (s)
<

∫ +∞

N

ds

V (s)
.

This implies that, the set of functions {ν(·) : 0 < µ < 1} is bounded in C(J : X). Thus the set
{x(·) : 0 < µ < 1} is also bounded in C(J : X) since

(Mb + ζ)∥φ∥B +Kb∥x∥t ≤ ν(t) for all t ∈ J .

We obtain the completely continuous property of K by proceeding as in the proof of Theorem 3.4. Since E
is convex and 0 ∈ E, then the Nonlinear Alternative Leray-Schauder’s Fixed Point Theorem guaranties the
existence of at least one mild solution for Equation (1.1).

Arguing as in the proof of Theorem 3.2 we can prove that K is completely continuous. Then by the Nonlinear
Alternative Leray-Schauder’s Fixed Point Theorem the exists at least one mild solution for Equation (1.1). □

4. Global existence of mild solutions and Blowing up phenomena

Let us give the following local Lipschitz condition on the nonlinear part F of Equation (1.1):
(C4) For each α > 0 there exists a positive constant r0(α) such that for φ,ψ ∈ B with |φ|B, |ψ|B ≤ α, we

have:
∥F (t, φ)− F (t, ψ)∥ ≤ r0(α)|φ− ψ|B for t ≥ 0.

Contrarily to the previous results, if we replace conditions ((C2) by condition (C4), the following local existence
results hold.
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Theorem 4.1. Assume that (C1), (C3) and (C4) hold. Then, for φ ∈ B such that φ(0) ∈ D, Equation (1.1) has a
mild solution x(., φ) in a maximal interval (−∞, amax) and either

amax = +∞ or lim sup
t→a−

max

∥x(t, φ)∥ = +∞.

Moreover, x(., φ) depends continuously on the initial data φ in the sense that, if φ ∈ B, φ(0) ∈ D and t ∈
[0, amax), then there exist positive constants k and ε > 0 such that, for ψ ∈ B and |φ− ψ|B ≤ ε, we have

∥x(s, φ)− x(s, ψ)∥ ≤ k|φ− ψ|B for s ∈]−∞, a].

Proof. Let x(., φ) be a mild solution of Equation (1.1) in (−∞, b]. We know that, x(t) ∈ D for all t ∈
[0, a]. Repeating the procedure used in the local existence result, this yields existence of a > a1 and a function
x(., xa(., φ)) : (−∞, a1] → X which satisfies for t ∈ [a, a1]:

x(., xa(., φ)) = U(t, 0)x(a, φ) + lim
λ→0+

∫ t

a

Uλ(t, s)F (s, x̃ρ(s,x̃s)(., xa(., φ)))ds.

Proceeding inductively, we obtain the maximal interval of existence (−∞, amax) of the solution x(., φ). Assume
that amax < +∞ and limt→a−

max
sup ∥x(t, φ)∥ < M . We claim that x(., φ) is uniformly continuous and

consequently limt→a−
max

x(., φ) exists in X , which contradicts the maximality of [0, amax[. In the following,
we show uniform continuity of x(., φ). Let t, t+ h ∈ [0, amax) with h > 0. Then,

∥x(t+ h, φ)− x(t, φ)∥
≤ ∥U(t+ h, 0)φ(0)− U(t, 0)φ(0)∥

+
∥∥∥ lim

λ→0+

∫ t+h

0

Uλ(t+ h, τ)F (τ, x̃ρ(τ,x̃τ ))dτ − lim
λ→0+

∫ t

0

Uλ(t, τ)F (τ, x̃ρ(τ,x̃τ ))dτ
∥∥∥

≤ ∥U(t+ h, 0)φ(0)− U(t, 0)φ(0)∥+
∥∥∥Uλ(t+ h, t) lim

λ→0+

∫ t

0

Uλ(t, τ)F (τ, x̃ρ(τ,x̃τ ))dτ

+ lim
λ→0+

∫ t+h

t

Uλ(t+ h, τ)F (τ, x̃ρ(τ,x̃τ ))dτ − lim
λ→0+

∫ t

0

Uλ(t, τ)F (τ, x̃ρ(τ,x̃τ ))dτ
∥∥∥

≤ ∥(U(t+ h, 0)− U(t, 0))φ(0)∥+
∥∥∥(U(t+ h, t)− I) lim

λ→0+

∫ t

0

Uλ(t, τ)F (τ, x̃ρ(τ,x̃τ ))dτ
∥∥∥

+ lim
λ→0+

∥∥∥∫ t+h

t

Uλ(t+ h, τ)F (τ, x̃ρ(τ,x̃τ ))dτ
∥∥∥.

Since W :=
{∫ t

0

Uλ(t, τ)F (τ, x̃ρ(τ,x̃τ ))dτ : x ∈ Fa

}
⊆ G with G compact. We obtain that

lim
h→0
t+h>t

∥ (U(t+ h, t)− I)x∥ = 0 for x ∈ W.

Since

lim
λ→0+

∥∥∥∫ t+h

t

Uλ(t+ h, τ)F (τ, x̃ρ(τ,x̃τ ))dτ
∥∥∥ ≤Mewh∥p∥L1V (l)h,

then
lim
h→0
t+h>t

∥x(t+ h, φ)− x(h, φ)∥ = 0.

Similarly, we show that
lim
h→0
t+h<t

∥x(t+ h, φ)− x(t, φ)∥ = 0.
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Then x(., φ) is uniformly continuous on [0, amax) and therefore, limt→amax x(., φ) exists. If we define
x(amax, φ) := limt→amax x(., φ), we can extend x(., φ) beyond amax which contradict the maximality of
]−∞, amax).

We prove now that K is strict contraction in Fa(φ) and for this end, we consider x, z ∈ Fa(φ). For t ∈ [0, a],
we have

∥(Kx)− (Kz)∥Fa = sup
0≤t≤b

∥(Kx)(t)− (Kz)(t)∥

and

∥(Kx)− (Kz)∥Fa =
∥∥∥ lim

λ→0+

∫ t

0

Uλ(t, s)F (s, x̃ρ(s,x̃s))ds− lim
λ→0+

∫ t

0

Uλ(t, s)F (s, z̃ρ(s,z̃s))ds
∥∥∥

≤
∫ t

0

Mew(t−s)∥F (s, x̃ρ(s,x̃s))− F (s, z̃ρ(s,z̃s))∥ds

≤Mewbr0(α)

∫ t

0

∥x̃ρ(s,x̃s) − z̃ρ(s,z̃s)∥Bds

≤ KbMewbr0(α)

∫ t

0

sup
0≤θ≤ρ(s,x̃s)

∥x(θ)− z(θ)∥Xds

≤ KbMewbr0(α)a∥x− z∥Fa
.

Following the same reasoning, we can see that

∥(K2x)(t)− (K2z)(t)∥Fa
≤ KbMewbr0(α)

∫ t

0

sup
0≤θ≤ρ(s,x̃s)

∥(Kx)(θ)− (Kz)(θ)∥Xds

≤ (KbMewbr0(α))
2

∫ t

0

sup
0≤θ≤s

∫ θ

0

sup
0≤ξ≤p

∥x(ξ)− z(ξ)∥Xdpds

≤ (KbMewbr0(α))
2

∫ t

0

∫ s

0

∥x− z∥Fadpds

≤ (KbMewbr0(α))
2a2

2
∥x− z∥Fa

.

We can repeat the previous argument, and we obtain

∥(Knx)(t)− (Knz)(t)∥Fa
≤ (KbMewbr0(α))

nan

n!
∥x− z∥Fa

.

Since (KbMewbr0(α))
nan

n! → 0 as n → +∞ then ∃n ∈ N such that (KbMewbr0(α))
nan

n! < 1. It follows that Kn

is strict contraction and by the Banach fixe point theorem, we deduce there ∃!x ∈ Fa such that Knx = x. Thus
Knx = x implies that Kn+1x = Kx on the other hand Kn(Kx) = K(x) it follows that K(x) is a fixed point
of Kn and since fixed point is unique then we get K(x) = x. Equation (1.1) has a unique mild solution x(., φ)
which is defined on the interval (−∞, a]. This is true for all a > 0, then x(., φ) is a global solution of Equation
(1.1) on R.

Next, we prove that the solution depends continuously on initial data. Let φ ∈ B and t ∈ [0, a[ be fixed. Show
that x(·, φ) is continuous in the sense of φ. ∀ε > 0, look for k(a) > 0 such that for ψ ∈ B and |φ − ψ|B ≤ ε

implies that

∥x(ι, φ)− x(ι, ψ)∥ ≤ k(a)|φ− ψ|B for ι ∈]−∞, a].
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We have by Lemme 3.3

|xs(·, φ)− xs(·, ψ)|B ≤ (Mb + ζ) |φ− ψ|B +Kb sup
0≤θ≤s

∥x(θ, φ)− xs(θ, ψ)∥X , s ∈ ρ− ∪ J

≤ (Mb + ζ) |φ− ψ|B +Kb sup
0≤θ≤s

∥U(θ, 0)(φ− ψ)∥X

+Kb sup
0≤θ≤s

lim
λ→0+

∫ θ

0

∥U(θ, τ)F (τ, x̃ρ(τ,x̃τ )(·, φ))− F (τ, x̃ρ(τ,x̃τ )(·, ψ))∥dτ

≤ (Mb + ζ) |φ− ψ|B +Kb sup
0≤θ≤s

∥U(θ, 0)(φ− ψ)∥X

+Kb sup
0≤θ≤s

lim
λ→0+

∫ θ

0

Mew(θ−τ)∥F (τ, x̃ρ(τ,x̃τ )(·, φ))− F (τ, x̃ρ(τ,x̃τ )(·, ψ))∥dτ

≤ (Mb + ζ +HKbMewa) |φ− ψ|B

+KbMewar0(α)

∫ θ

0

∥x̃ρ(τ,x̃τ )(·, φ)− x̃ρ(τ,x̃τ )(·, ψ)∥dτ

using the Bellman-Gronwall Lemma it follows that

≤ (Mb + ζ +HKbMewa) eKbMewar0(α)θ|φ− ψ|B.

Hence we can write

|xs(ϑ, φ)− xs(ϑ, ψ)|B ≤ (Mb + ζ +HKbMewa) eKbMewar0(α)θ|φ− ψ|B for ϑ ∈]−∞, 0]

thus

|x(s+ ϑ, φ)− x(s+ ϑ, ψ)|B ≤ (Mb + ζ +HKbMewa) eKbMewar0(α)θ∥φ− ψ∥B for ϑ ∈]−∞, 0]

therefore

∥x(ι, φ)− x(ι, ψ)∥B ≤ (Mb + ζ +HKbMewa) eKbMewar0(α)θ∥φ− ψ∥B for ι ∈]−∞, a]

It is clear that (Mb + ζ +HKbMewa) eKbMewar0(α)θ > 0 hence, we deduce the continuous dependence on the
initial data. □

Corollary 4.1. Assume that (C4) holds. Let q1 and q2 be continuous fonctions from R+ to R+ such that

∥F (t, ϕ)∥ ≤ q1(t)|ϕ|B + q2(t) for t ∈ R+ and ϕ ∈ B.

Then, for ϕ ∈ B such that ϕ(0) ∈ D, Equation (1.1) has a unique mild solution which is defined on R.

Proof. Let x(· , ϕ) the solution of Equation (1.1) defined on a maximal interval (−∞, amax). Then by the
Theorem 4.1

amax = +∞ or lim sup
t→a−

max

∥x(t, φ)∥ = +∞.

We assume that amax < +∞ and lim sup
t→a−

max

∥x(t, φ)∥ = +∞.

For all t ∈ [0, amax[ :
On has
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∥x(t, ϕ)∥ ≤ ∥U(t, 0)∥∥ϕ(0)∥+ lim
λ→0+

∫ t

0

∥Uλ(t, s)∥∥F (s, x̃ρ(s,x̃s))∥ds

≤Meωt∥ϕ(0)∥+
∫ t

0

Meωt
(
q1(t)|x̃ρ(s,x̃s)|B + q2(t)

)
ds

≤Meωamax

(
∥ϕ(0)∥+

∫ t

0

q2(θ)dθ
)
+Meωamax

∫ t

0

q1(t)|x̃ρ(s,x̃s)|Bds

By Lemma 3.3

|x̃ρ(s,x̃s)(· , ϕ)|B ≤ (Mb + ζ) ∥ϕ∥B +Kb sup
0≤θ≤ρ(s,x̃s)

∥x(θ, ϕ)∥

.
Thus

|x̃ρ(s,x̃s)(· , ϕ)|B ≤ (Mb + ζ) |ϕ|B +Kb sup
0≤θ≤ρ(s,x̃s)

[
Mbe

ωamax

(
∥ϕ(0)∥+

∫ t

0

q2(θ)dθ
)

+Mbe
ωamax

∫ t

0

q1(t)|x̃ρ(s,x̃s)|Bds
]

≤ (Mb + ζ) |ϕ|B +KbMbe
ωamax

(
∥ϕ(0)∥+

∫ ρ(s,x̃s)

0

q2(θ)dθ
)

+Mbe
ωamax

∫ ρ(s,x̃s)

0

q1(θ)|x̃ρ(s,x̃s)|Bds

= P1 + P1

∫ ρ(s,x̃s)

0

q1(θ)|x̃ρ(s,x̃s)|Bds.

With P1 = (Mb + ζ) |ϕ|B +KbMbe
ωamax

(
∥ϕ(0)∥+

∫ ρ(s,x̃s)

0
q2(θ)dθ

)
and P1 =Mbe

ωamax .
By Gronwall’s Lemma, we deduce that

|x̃ρ(s,x̃s)(· , ϕ)|B ≤ P1e
amaxP2

∫ ρ(s,x̃s)
0 q1(θ)dθ.

Hence lim sup
t→a−

max

∥x(t, φ)∥ < +∞. Therefore amax = +∞

■

5. Application

For illustration of our previous result, we propose to study the following model.



∂

∂t
v(t, x) = δ(t)

∂2

∂x2
v(t, x) + β(t)

∫ 0

−∞
g
(
θ, v

(
θ + t− ρ1(t)ρ2

(∫ π

0

w(s)|v(t, θ)|2ds
)
, x

))
dθ

for 0 ≤ t ≤ b and x ∈ [0, π],

v(t, 0) = v(t, π) = 0 for 0 ≤ t ≤ b,

v(θ, x) = v0(θ, x) for θ ≤ 0, 0 ≤ x ≤ π,

(5.1)

256



Nondensely nonautonomous partial functional differential equations with state-dependent infinite delay

where δ(·) is a positive function in C1(R+,R+) with δ0 := inf
t≥0

δ(t) > 0 and β : [0, b] → R+ with β ∈

L1(J ; [0,+∞)). g : R− × B → R and v0 : (−∞, 0] × [0, π] → R are functions. The functions ρi : [0,∞) →
[0,∞), i = 1, 2 are continuous and w : R → R is a positive continuous function. To rewrite Eq. (5.1) in the
abstract form, we introduce the space X := C([0, π],R) of continuous functions from [0, π] to R equipped with
the uniform norm topology and we consider the operator A : D ⊂ X → X defined by:

D = {z ∈ C2([0, π]) : z(0) = z(π) = 0}

Az(t, x) = ∆z(t, x) with ∆ :=
∂2

∂x2
; t ∈ [0, b] and x ∈ [0, π].

Then it is well know that 
D = {z ∈ C([0, π] : R) : z(0) = z(π) = 0} ≠ X,

(0,+∞) ⊂ ρ(A) and ∥R(λ,A)∥ ≤ 1
λ for λ > 0.

(5.2)

We choose the space of bounded uniformly continuous functions from R− to X denoted by BUC(R−, X)

as a phase space B := BUC(R−, X) endowed with the following norm:

∥ψ∥B := sup
θ≤0

∥ψ(θ)∥.

Then, B satisfies Axioms (B1)− (B).
By defining the operators F : I × B → X and τ : I × B → R by:

y(t)(x) := v(t, x).

φ(θ)(x) := v0(θ, x) for θ ≤ 0.

F (t, ϕ)(x) := β(t)

∫ 0

−∞
g
(
θ, ϕ(θ)(x)

)
dθ.

τ(t, ϕ) := t− ρ1(t)ρ2

(∫ π

0

w(s)|ϕ(0)(x)|2ds
)
.

Suppose that ϕB and let (A(t))t≥0 be the family of operators defined by A(t) := δ(t)
∂2

∂x2
. Then, Equation

(5.1) takes the following abstract form :
ẏ(t) = A(t)y(t) + F (t, yτ(t,yt)) for t ∈ [0, b],

y0 = φ ∈ B,
(5.3)

We have D(A(t)) = D independent of t and for λ > 0,

R(λ,A(t)) = (λI − δ(t)A)−1

=
1

δ(t)
R
( λ

δ(t)
, A

)
. (5.4)

Using (5.2) and (5.4), we have for every λ > 0, λ ∈ ρ(A(t)) and ∥R(λ,A(t))∥ ≤ 1
λ .

Then (0,+∞) ⊂ ρ(A(t)) and∥∥∥ k∏
i=1

R(λ,A(ti))
∥∥∥ ≤ 1

λk
, 0 ≤ t1 ≤ t2 ≤ · · · ≤ tk < +∞.
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Hence, the family of linear operators (A(t))t≥0 on X satisfies the assumptions (A1) - (A3).

It is known from [10] that, the part ∆0 of ∆ =
∂2

∂x2
in D(∆) given by

D(∆0) =
{
z ∈ D(∆) : ∆z ∈ D(∆)

}
∆0z = ∆z,

(5.5)

generates a compact semigroup (T0(t))t≥0 on D(∆) such that

∥T0(t)∥ ≤ e−t for t ≥ 0. (5.6)

Thus, the part A0(.) of A(.) in D generates an evolution family (U(t, s))t≥s≥0 on D given by

U(t, s) = T0

(∫ t

s

δ(τ)dτ

)
which is compact for t > s. By (5.6), one has

∥U(t, s)∥ ≤ e−δ0(t−s).

Hence (C1) is satisfies. We assume that:

1) g : R− × B → R+ is nondecreasing integrable function which satisfies : g(θ, 0) = 0 for θ ≤ 0.

2) v0 is uniformly continuous and bounded with respect to θ ∈ R− , uniformly with respect to x[0, π].

Under the above conditions, we claim that φ ∈ B. In fact,

∥φ∥B = sup
θ≤0

∥φ(θ)∥ = sup
θ≤0

x∈[0,π]

∥v0(θ, x)∥ < +∞.

and

∥φ(θ)− φ(θ′)∥ = sup
x∈[0,π]

∥φ(θ)(x)− φ(θ′)(x)∥

= sup
x∈[0,π]

∥v0(θ, x)− v0(θ
′, x)∥ → 0 as ∥θ − θ′∥ → 0.

Therefore, φ ∈ B with φ(0) ∈ D.

On the other hand, we have:

∥F (t, ϕ)∥ ≤ β(t)

∫ 0

−∞

∥∥∥g(θ, ϕ(θ))∥∥∥dθ
for ϕ ∈ B. F satisfies (C2) with p(t) = β(t) and V (∥ϕ∥B) =

∫ 0

−∞

∥∥∥g(θ, ϕ(θ))∥∥∥dθ.
3) Let φ ∈ B such that x0 = φ and t 7−→ φt is a B-valued. We assume that ∥φt∥B ≤ η(t)∥φ∥B for every t ∈ τ−

where η : τ− → (0,∞) is a continuous and bounded function with

τ− = {τ(s, ψ) : (s, ψ) ∈ J × B, τ(s, ψ) ≤ 0} .

Hence (C3) is satisfies.
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Then, the existence of mild solutions can be deduced from a direct application of Theorem 3.5 and we have the
following result.

Theorem 5.1. Assume φ(0) ∈ D and

Kbe
δ0b∥p∥L1 <

∫ ∞

N

ds

V (s)
(5.7)

where M = 1, ω = δ0, N = (Mb + ζ)∥φ∥B + Kb∥φ(0)∥. Then there exists at least one mild solution of
Equation (5.1).
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[9] M. ALIA, K. EZZINBI AND M. EL-K KPOUMIÈ, Mild solutions for some nonautonomous partial functional
differential equations with infinite delay, Afrika Matematika., 29(2018), 1115–1133.

[10] W. ARENDT, A. GRABOSCH, G. GREINER, U. GROH, H.P. LOTZ, U. MOUSTAKAS, R. NAGEL, B. NEUBRANDER

AND U. SCHLOTTERBECK, One-parameter Semigroup of Positive Operators, Springer Verlang, Berlin,
(1984).

[11] O. ARINO, K. BOUSHABA AND A. BOUSSOUAR, A mathematical model of the dynamics of the phytoplankton-
nutrient system. Spatial heterogeneity in ecological models (Alcalá de Henares, 1998), Nonlinear Analysis:
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[19] A. CAÑADA, P. DRABEK AND A. FONDA, Handbook of Ordinary Differential Equations, vol. 3, Elsevier,
2006.

[20] Y. CAO, J. FAN AND T.C. GARD, The effects of state-dependent time delay on a stage-structured population
growth model, Nonlinear Anal., 19(2)(1992), 95–105.

[21] G. DA PRATO AND E. SINESTRARI, Differential operators with nondense domains, Ann. Scuola Norm. Sup.
Pisa Cl. Sci., 14(1987), 285–344.

[22] G. DA PRATO AND E. SINESTRARI, Non autonomous evolution operators of hyperbolic type, Semigroup
Forum, 45(1992), 302–321.

[23] K. EZZINBI AND S. GHNIMI, Existence and regularity of solutions for neutral partial functional
integrodifferential equations with infinite delay, Nonlinear Analysis : Hybrid Systems, 4(2010), 54–64.

[24] K. EZZINBI, S. GHNIMI AND M. A. TAOUDI, Existence and regularity of solutions for neutral partial functional
integro-differential equations with infinite delay, Nonlinear Analysis : Hybrid Systems, 11(2010), 2335–
2344.

[25] K. EZZINBI , H. TOURE AND I. ZABSONRE, Local existence and regularity of solutions for some partial
functional integro-differential equations with infinite delay in Banach spaces, Nonlinear Analysis, 70(2009),
3378–3389.

[26] S.M. GHAVIDEL, Flow invariance for solutions to nonlinear nonautonomous partial differential delay
equations, Journal of Mathematical Analysis and Applications., 345(2)(2008), 854–870.

[27] A. GRANAS AND J. DUGUNDJI, Fixed Point Theory, Springer, New York, 2003.

[28] T. G. HALLAM AND C. E. CLARK, Non-autonomous logistic equations as models of populations in a
deteriorating environment, J. Theor. Biol., 93(1981), 303–311.

260



Nondensely nonautonomous partial functional differential equations with state-dependent infinite delay

[29] J.K. HALE, AND J. KATO, Phase space for retarded equations with infinite delay, Funkcialaj Ekvacioj.,
21(1978), 11–41.

[30] J.K. HALE AND S.M. VERDUYN LUNEL, Introduction to Functional Differential Equations, Spinger-Verlag,
NewYork, 1993 .

[31] F. HARTUNG, T.L. HERDMAN AND J. TURI, Parameter identification in classes of neutral differential equations
with state-dependent delays, Nonlinear Anal. TMA,, 39(3)(2000), 305–325.

[32] F. HARTUNG AND J. TURI, Identification of parameters in delay equations with state-dependent delays,
Nonlinear Anal. TMA., 29(11)(1997), 1303–1318.
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Abstract. In this paper, we deal with the first-order dynamic equations with nonmonotone arguments

y∆(ζ) +

m∑
i=1

ri(ζ)y (ψi(ζ)) = 0, ζ ∈ [ζ0,∞)T

where ri ∈ Crd

(
[ζ0,∞)T,R+

)
, ψi ∈ Crd ([ζ0,∞)T,T) and ψi(ζ) ≤ ζ, limζ→∞ ψi(ζ) = ∞ for 1 ≤ i ≤ m. Also, we

present a new sufficient condition for the oscillation of delay dynamic equations on time scales. Finally, we give an example
illustrating the result.
AMS Subject Classifications: 39A12, 39A21, 34C10, 34N05.

Keywords: Dynamic equation, nonmonotone delays, oscillatory solution, time scales.
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1. Introduction and Background

We consider the delay dynamic equation with several delays which are not necessarily monotone

y∆(ζ) +

m∑
i=1

ri(ζ)y (ψi(ζ)) = 0, ζ ∈ [ζ0,∞)T, (1.1)

where T is a time scale unbounded above with ζ0 ∈ T, ri ∈ Crd([ζ0,∞)T,R+
0 ), ψi ∈ Crd([ζ0,∞)T,T) do not

have to be monotone for 1 ≤ i ≤ m such that

ψi(ζ) ≤ ζ for all ζ ∈ T, lim
ζ→∞

ψi(ζ) = ∞. (1.2)

First of all, we would like to remind some basic concepts about time scales calculus. A function r : T → R is
said to be positively regressive (it means that r ∈ R+) if it is rd-continuous and satisfies 1 + µ(ζ)r(ζ) > 0 for
all ζ ∈ T, where µ : T → R+

0 is the graininess function defined by µ(ζ) := σ(ζ) − ζ with the forward jump
operator σ : T → T defined with the help of σ := inf{s ∈ T : s > ζ} for ζ ∈ T. If σ(ζ) = ζ or µ(ζ) = 0, a
point ζ ∈ T is said to be right-dense, otherwise it is right-scattered.

∗Corresponding author. Email address: nurten.kilic@dpu.edu.tr (Nurten KILIÇ)
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A function y : T → R is called a solution of (1.1), if y(ζ) is delta differentiable for ζ ∈ Tκ and satisfies (1.1)
for ζ ∈ Tκ. It is called that a solution y of (1.1) has a generalized zero at ζ if y(ζ) = 0 or if µ(ζ) > 0 and
y(ζ)y(σ(ζ)) < 0. Let supT = ∞ and then a nontrivial solution y of (1.1) is called oscillatory on [ζ,∞) if it
has arbitrarily large generalized zeros in [ζ,∞). Also, we refer to book of Bohner and Peterson [2,3] for more
detailed information.
For m = 1, we have the following equation which is the form of (1.1) with single delay.

y∆(ζ) + r(ζ)y (ψ(ζ)) = 0, ζ ∈ [ζ0,∞)T. (1.3)

Recently, there has been remarkable interest for the oscillatory solutions of this equation. See [1-21] and the
references cited therein. Concerning Eq. (1.3) which have monotone arguments, see also Zhang and Deng [20],
Bohner [4], Zhang et al. [21], Şahiner and Stavroulakis [19], Agarwal and Bohner [1], and Karpuz and Öcalan
[9]. As you seen, many articles have been dedicated to the equations which have monotone terms, but a few
is related with the more general case of nonmonotone delay terms. Now, we mention the results which contain
delay arguments which are not necessarily monotone.
Suppose that ψ(ζ) does not have to be monotone and

ϑ(ζ) = sup
s≤ζ

ψ(s), ζ ∈ T, ζ ≥ 0. (1.4)

Obviously, ϑ(ζ) is nondecreasing and ψ(ζ) ≤ ϑ(ζ) for all ζ ≥ 0.

In 2017, Öcalan et al. [16] found out the result given below. If

lim sup
ζ→∞

σ(ζ)∫
ϑ(ζ)

r(s)∆s > 1, (1.5)

where ϑ(ζ) is defined by (1.4), then all solutions of (1.3) oscillate. In 2020, Öcalan [17] obtained the following
criteria. If −r ∈ R+ and

lim sup
ζ→∞

σ(ζ)∫
ϑ(ζ)

r(s)

e−r (ϑ(ζ), ψ(s))
∆s > 1 (1.6)

or

lim inf
ζ→∞

ζ∫
ψ(ζ)

r(s)

e−r (ϑ(s), ψ(s))
∆s >

1

e
, (1.7)

where ϑ(ζ) is defined by (1.4),

e−λr (ζ, ψ(ζ)) = exp


ζ∫

ψ(ζ)

ξµ(s)(−λr(s))∆s


and

ξh(z) =

{ Log(1+hz)
h , if h ̸= 0

z , if h = 0
,

then all solutions of equation (1.3) oscillate. Also, (1.7) implies that the following condition. If

lim inf
ζ→∞

ζ∫
ψ(ζ)

r(s)∆s >
1

e
, (1.8)
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where ϑ(ζ) is given with (1.4), then all solutions of (1.3) oscillate.
Eventually, Öcalan [18] presented the following result.
Let

−
α := lim inf

ζ→∞

ζ∫
ψ(ζ)

r(s)∆s. (1.9)

If −r ∈ R+, 0 ≤ −
α ≤ 1

e and

lim sup
t→∞

σ(ζ)∫
ϑ(ζ)

r(s)

e−r (ϑ(ζ), ψ(s))
∆s > 1−

1− −
α−

√
1− 2

−
α−

(
−
α
)2

2
, (1.10)

where ϑ(ζ) and
−
α are defined by (1.4) and (1.9), resp., then every solution of (1.3) is oscillatory.

Kılıç and Öcalan [12] obtained the following criteria which are the first results for (1.1) with several nonmonotone
arguments.
Set ψi(ζ) are not necessarily monotone for 1 ≤ i ≤ m and

ϑi(ζ) = sup
s≤ζ

{ψi(s)} and ϑ(ζ) = max
1≤i≤m

{ϑi(ζ)} , ζ ∈ T, ζ ≥ 0. (1.11)

Obviously, ϑi(ζ) are nondecreasing and ψi(ζ) ≤ ϑi(ζ) ≤ ϑ(ζ) for all ζ ≥ 0 and 1 ≤ i ≤ m.

Teorem A: Suppose that −
m∑
i=1

ri ∈ R+ and (1.11) holds. If

lim sup
ζ→∞

σ(ζ)∫
ϑ(ζ)

m∑
i=1

ri(s)∆s > 1 (1.12)

or

lim inf
ζ→∞

ζ∫
ψ(ζ)

m∑
i=1

ri(s)∆s >
1

e
, (1.13)

where ψ(ζ) = max
1≤i≤m

{ψi(ζ)} , then every solution of (1.1) oscillates.

Further assume that

α := lim inf
ζ→∞

ζ∫
ψ(ζ)

m∑
i=1

ri(s)∆s. (1.14)

Teorem B: Suppose that −
m∑
i=1

ri ∈ R+ and 0 ≤ α ≤ 1
e . If

lim sup
ζ→∞

σ(ζ)∫
ϑ(ζ)

m∑
i=1

ri(s)∆s > 1− 1− α−
√
1− 2α− α2

2
, (1.15)

then every solution of (1.1) oscillate.
Lately, Öcalan and Kılıç [13] established the following results for (1.1).
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Teorem C: Suppose that −
m∑
i=1

ri ∈ R+, (1.2) and (1.11) hold. If

lim sup
ζ→∞

σ(ζ)∫
ϑ(ζ)

m∑
i=1

ri(s)

e
−
m∑
j=1

rj
(ϑ(ζ), ψi(s))

∆s > 1 (1.16)

or

lim inf
ζ→∞

ζ∫
ψ(ζ)

m∑
i=1

ri(s)

e
−
m∑
j=1

rj
(ϑ(s), ψi(s))

∆s >
1

e
, (1.17)

where ψ(ζ) = max
1≤i≤m

{ψi(ζ)} , then all solutions of (1.1) are oscillatory.

Although dynamic equations with several arguments are more comprehensive than dynamic equations with
one delay, there are not many studies on this subject. So, in this article, we are interested in studying the
oscillatory behavior of first order dynamic equations with several delays on time scale. We present one criterion
to check the oscillation of (1.1). Our result is an extension and complement to some results published in the
literature.

2. Main Results

In this section, we introduce a new sufficient condition for the oscillatory solutions of (1.1) when the
arguments ψi(ζ) do not have to be monotone for 1 ≤ i ≤ m and 0 < α ≤ 1

e . The following lemmas will be
useful to obtain our main result.

The lemma given below can be easily obtained from [4].

Lemma 2.1. Let −
m∑
i=1

ri ∈ R+. If

y∆(ζ) + y(ζ)

m∑
i=1

ri(ζ) ≤ 0,

then
y(ζ) ≤ e

−
m∑
j=1

rj
(ζ, s) y(s) for all ζ ≥ s, s, ζ ∈ T. (2.1)

The result given below can be easily produced by applying a nearly same procedure to [21, Lemma 2.4] when
the case ψi(ζ) do not have to be monotone for 1 ≤ i ≤ m. Therefore, the proof of this lemma is not presented
here.

Lemma 2.2. Suppose that ψi(ζ) are not necessarily monotone for 1 ≤ i ≤ m. Let 0 ≤ α ≤ 1
e and y(ζ) be an

eventually positive solution of (1.1). Then, we have

lim inf
ζ→∞

y (σ(ζ))

y (ϑ(ζ))
≥ 1− α−

√
1− 2α− α2

2
, (2.2)

where ψ(ζ) = max
1≤i≤m

{ψi(ζ)} , ϑ(ζ) and α are defined by (1.11) and (1.14) respectively.

Theorem 2.3. Assume that −
m∑
i=1

ri ∈ R+, (1.2) holds and

lim sup
ζ→∞

σ(ζ)∫
ϑ(ζ)

m∑
i=1

ri(s)

e
−
m∑
j=1

rj
(ϑ(ζ), ψi(s))

∆s > 1− 1− α−
√
1− 2α− α2

2
, (2.3)
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where ϑ(ζ) and α are defined by (1.11) and (1.14) resp., then all solutions of (1.1) oscillatory.

Proof. Assume, for the sake of contradiction, that there exists an eventually positive solution y(ζ) of (1.1). If
y(ζ) is an eventually negative solution of (1.1), the proof of the theorem can be done similarly. Then there exists
ζ1 > ζ0 such that y(ζ), y (ψi(ζ)) , y (ψ(ζ)) , y (ϑ(ζ)) > 0 for all ζ ≥ ζ1 and 1 ≤ i ≤ m. So, using (1.1) we
obtain

y∆(ζ) = −
m∑
i=1

ri(ζ)y(ψi(ζ)) ≤ 0 for all ζ ≥ ζ1,

which implies that y(ζ) is an eventually nonincreasing function. From this fact and taking into account that
ψi(ζ) ≤ ϑi(ζ) ≤ ζ for 1 ≤ i ≤ m, (1.1) gives

y∆(ζ) + y (ζ)

m∑
i=1

ri(ζ) ≤ 0, ζ ≥ ζ1 (2.4)

and then, we obtain the below expression from Lemma 2.1.

y(ϑ(ζ)) ≤ e
−
m∑
j=1

rj
(ϑ(ζ), ψi(s)) y(ψi(s)) for all ϑ(ζ) ≥ ψi(s). (2.5)

On the other hand, integrating (1.1) from ϑ(ζ) to σ(ζ) and with the help of (2.5), we have

y(σ(ζ))− y (ϑ(ζ)) +

σ(ζ)∫
ϑ(ζ)

m∑
i=1

ri(s)y(ψi(s))∆s = 0

y(σ(ζ))− y (ϑ(ζ)) +

σ(ζ)∫
ϑ(ζ)

m∑
i=1

ri(s)
y (ϑ(ζ))

e
−
m∑
j=1

rj
(ϑ(ζ), ψi(s))

∆s ≤ 0

y(σ(ζ))− y (ϑ(ζ)) + y (ϑ(ζ))

σ(ζ)∫
ϑ(ζ)

m∑
i=1

ri(s)

e
−
m∑
j=1

rj
(ϑ(ζ), ψi(s))

∆s ≤ 0

or
σ(ζ)∫
ϑ(ζ)

m∑
i=1

ri(s)

e
−
m∑
j=1

rj
(ϑ(ζ), ψi(s))

∆s ≤ 1− y(σ(ζ))

y (ϑ(ζ))
. (2.6)

Consequently, from (2.6) we obtain

lim sup
ζ→∞

σ(ζ)∫
ϑ(ζ)

m∑
i=1

ri(s)

e
−
m∑
j=1

rj
(ϑ(ζ), ψi(s))

∆s ≤ 1− lim inf
ζ→∞

y (σ(ζ))

y (ϑ(ζ))
(2.7)

and from (2.2) the last inequality turns into

lim sup
ζ→∞

σ(ζ)∫
ϑ(ζ)

m∑
i=1

ri(s)

e
−
m∑
j=1

rj
(ϑ(ζ), ψi(s))

∆s ≤ 1− 1− α−
√
1− 2α− α2

2
,

which contradicts to (2.3) and this completes the proof. ■
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Example 2.4. Let m = 2 and T = 3Z = {3k : k ∈ Z}. Then, we get for ζ ∈ T

σ(ζ) = ζ + 3, µ(ζ) = 3 and y∆(ζ) =
y(ζ + 3)− y(ζ)

3
.

So, (1.1) becomes

y(ζ + 3)− y(ζ)

3
+ r1(ζ)y (ψ1(ζ)) + r2(ζ)y (ψ2(ζ)) = 0, ζ ∈ {3k : k ∈ Z}.

Let ψ1(ζ) = ζ − 3, ψ2(ζ) = ζ − 6, then ψ(ζ) = max
1≤i≤m

{ψi(ζ)} = ψ1(ζ) = ζ − 3. Since 1 ≤ i ≤ m,

ri(ζ) ∈ {3k : k ∈ Z}, we suppose that

r1(3ζ) = 0.09 , r1(3ζ + 3) = 0.07 and r2(ζ) = 0.03 ζ = 0, 3, 6, . . . .

If T = hZ, from Theorem 1.79 [2], we know the formula given below.

b∫
a

f(t)∆t =

b
h−1∑
k= a

h

f(kh)h for a < b. (2.8)

Then, by using (2.8) we obtain that for 1 ≤ i ≤ m, ri(ζ), ψ(ζ) ∈ {3k : k ∈ Z}

α : = lim inf
ζ→∞

ζ∫
ψ(ζ)

m∑
i=1

ri(s)∆s = lim inf
ζ→∞

ζ
3−1∑

j= ζ−3
3

2∑
i=1

3ri(3j)

= lim inf
ζ→∞

ζ
3−1∑

j= ζ−3
3

3(r1(3j) + r2(3j)) = lim inf
ζ→∞

3(r1(ζ − 3) + r2(ζ − 3))

= 0.36 <
1

e

and

M : = lim sup
ζ→∞

σ(ζ)∫
ϑ(ζ)

m∑
i=1

ri(s)

e
−
m∑
j=1

rj
(ϑ(ζ), ψi(s))

∆s = lim sup
ζ→∞

σ(ζ)
3 −1∑

k=
ϑ(ζ)
3

2∑
i=1

3ri(3k)

e
−
m∑
j=1

rj
(ϑ(ζ), ψi(3k))

= lim sup
ζ→∞

ζ+3
3 −1∑

k= ζ−3
3

 3r1(3k)

e
−
m∑
j=1

rj
(ϑ(ζ), ψ1(3k))

+
3r2(3k)

e
−
m∑
j=1

rj
(ϑ(ζ), ψ2(3k))

 .
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Now, we obtain that

e−r (ϑ(ζ), ψ1(3k)) = exp


ϑ(ζ)∫
ψ1(3k)

ξµ(u)

m∑
j=1

(−rj(u))∆u

 = exp


ϑ(ζ)∫
ψ1(3k)

ξµ(u)(−(r1(u) + r2(u))∆u


= exp


ϑ(ζ)
3 −1∑

i=
ψ1(3k)

3

3 log (1− µ(3i)(r1(3i) + r2(3i)))

µ(3i)


= exp


ϑ(ζ)
3 −1∑

i=
ψ1(3k)

3

log (1− 3(r1(3i) + r2(3i))


= exp

log

ϑ(ζ)
3 −1∏

i=
ψ1(3k)

3

(1− 3(r1(3i) + r2(3i))

 =

ϑ(ζ)
3 −1∏

i=
ψ1(3k)

3

(1− 3(r1(3i) + r2(3i))

and

e−r (ϑ(ζ), ψ2(3k)) = exp


ϑ(ζ)∫
ψ2(3k)

ξµ(u)

m∑
j=1

(−rj(u))∆u

 = exp


ϑ(ζ)∫
ψ2(3k)

ξµ(u)(−(r1(u) + r2(u))∆u


= exp


ϑ(ζ)
3 −1∑

i=
ψ2(3k)

3

3 log (1− µ(3i)(r1(3i) + r2(3i)))

µ(3i)


= exp


ϑ(ζ)
3 −1∑

i=
ψ2(3k)

3

log (1− 3(r1(3i) + r2(3i))


= exp

log

ϑ(ζ)
3 −1∏

i=
ψ2(3k)

3

(1− 3(r1(3i) + r2(3i))

 =

ϑ(ζ)
3 −1∏

i=
ψ2(3k)

3

(1− 3(r1(3i) + r2(3i)) .

Then,

σ(ζ)∫
ϑ(ζ)

r1(s)

e
−
m∑
j=1

rj
(ϑ(ζ), ψ1(s))

∆s =

σ(ζ)
3 −1∑

k=
ϑ(ζ)
3

3r1(3k)

e
−
m∑
j=1

rj
(ϑ(ζ), ψ1(3k))

=

σ(ζ)
3 −1∑

j=
ϑ(ζ)
3

3r1(3j)

ϑ(ζ)
3 −1∏

i=
ψ1(3j)

3

1

(1− 3(r1(3i) + r2(3i))

=

ζ+3
3 −1∑

j= ζ−3
3

3r1(3j)

ζ−3
3 −1∏
i=j−1

1

(1− 3(r1(3i) + r2(3i))

= 3r1(ζ − 3)
1

(1− 3(r1(ζ − 6) + r2(ζ − 6))
+ 3r1(ζ)

∼= 0.42187 + 0.21
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and

σ(ζ)∫
ϑ(ζ)

r2(s)

e
−
m∑
j=1

rj
(ϑ(ζ), ψ2(s))

∆s =

σ(ζ)
3 −1∑

k=
ϑ(ζ)
3

3r2(3k)

e
−
m∑
j=1

rj
(ϑ(ζ), ψ2(3k))

=

σ(ζ)
3 −1∑

j=
ϑ(ζ)
3

3r2(3j)

ϑ(ζ)
3 −1∏

i=
ψ2(3j)

3

1

(1− 3(r1(3i) + r2(3i))

=

ζ+3
3 −1∑

j= ζ−3
3

3r2(3j)

ζ−3
3 −1∏
i=j−2

1

(1− 3(r1(3i) + r2(3i))

= 3r2(ζ − 3)
1

(1− 3(r1(ζ − 9) + r2(ζ − 9))

1

(1− 3(r1(ζ − 6) + r2(ζ − 6))

+3r2(ζ)
1

(1− 3(r1(ζ − 6) + r2(ζ − 6))
∼= 0.219726 + 0.14062

Thus, we have

M : = lim sup
ζ→∞

σ(ζ)∫
ϑ(ζ)

m∑
i=1

ri(s)

e
−
m∑
j=1

rj
(ϑ(ζ), ψi(s))

∆s

= lim sup
t→∞


σ(ζ)∫
ϑ(ζ)

r1(s)

e
−
m∑
j=1

rj
(ϑ(ζ), ψ1(s))

+

σ(ζ)∫
ϑ(ζ)

r2(s)

e
−
m∑
j=1

rj
(ϑ(ζ), ψ2(s))

∆s

and
M ∼= 0, 992216 ≯ 1

implies that (1.16) fails. However, since

M ∼= 0.992216 > 1−
1− 0.36−

√
1− 2(0.36)− (0.36)2

2
∼= 0.87391,

which means that all solutions of this equation oscillate by Theorem 2.3. As you can see above, all results which
are obtained in literature before can’t hold. But, our new oscillation condition holds.
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[9] B. KARPUZ AND Ö. ÖCALAN, New oscillation tests and some refinements for first-order delay dynamic equations,
Turkish J. Math., 40(4)(2016), 850–863.

[10] B. KARPUZ, Sharp oscillation and nonoscillation tests for linear difference equations, J. Difference Equ Appl.,
23(12)(2017), 1929–1942.

[11] B. KARPUZ, Sharp oscillation and nonoscillation tests for delay dynamic equations, Math. Methods Appl. Sci.,
42(9)(2019), 2993–3001.
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1. Introduction

Integral transforms have many applications in various fields of mathematical sciences and engineering such
as physics, mechanics, chemestry, acoustic, etc. For example, integral transforms such as the Fourier transform
and the Laplace transform are highly efficient in signal processing and solving differential equations.
In [9] the authors introduced a Laplace-type integral which they called the Shehu transform. The Shehu transform
of a function f : R+ → C is defined by

S{f}(s, u) =
∫ ∞

0

e−
s
u tf(t)dt, s ≥ 0, u > 0. (1.1)

provided that this integral exists, the symbol R+ stands for the set of nonnegative real numbers. This integral
transform generalizes both the Laplace transform [5] and the Yang transform [10]. Many authors used the Shehu
transform to solve partial or ordinary differential equations related to real life problems [4], [1], [2], [3], [7].
Authors in [6] extended the Shehu transform to distributions and measures.
This paper is mainly devoted to search a Plancherel formula for the Shehu transform. The remainder of the paper
is structured as follows. In Section 2 we discuss some existence conditions after replacing the first variable of the
Shehu transform of a function with a complex variable and in Section 3, a Plancherel formula is given and Shehu
equicontinuity and exponential L2-equivanishing are related.

∗Corresponding author. Email address: davidlakmon@gmail.com (Anaté Kodjovi Lakmon) and mensahyaogan2@gmail.com (Yaogan
Mensah)
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2. Extension to complex variables and existence conditions

In order to obtain the Plancherel theorem in the next section for the Shehu transform, we want the first variable
of S{f}(s, u) to be a complex variable. This is why we consider the Shehu transform of the function f : R+ → C
in the form

S{f}(z, u) =
∫ ∞

0

e−
z
u tf(t)dt, z ∈ C, u > 0. (2.1)

In what follows, we discuss some existence conditions. The symbol Re(z) denotes the real part of the
complex number z. The complex vector spaces L1(R+) and L2(R+) are

L1(R+) =

{
f : R+ → C :

∫ ∞

0

|f(t)|dt < ∞
}

(2.2)

and

L2(R+) =

{
f : R+ → C :

∫ ∞

0

|f(t)|2dt < ∞
}
. (2.3)

Theorem 2.1. Consider the function f : R+ → C. If f ∈ L1(R+) and Re(z) ≥ 0 then S{f}(z, u) exists.

Proof. Assume f ∈ L1(R+). Set z = x+ iy with Re(z) = x ≥ 0. Then

|e− z
u tf(t)| =|e− x

u te−i y
u tf(t)|

=e−
x
u t|f(t)|

≤|f(t)| because e−
x
u t ≤ 1.

Finally
∫ ∞

0

|f(t)|dt < ∞ ⇒
∫ ∞

0

|e− z
u tf(t)|dt < ∞. Thus S{f}(z, u) exists. ■

Theorem 2.2. Consider the function f : R+ → C. If f ∈ L2(R+) and Re(z) > 0 then S{f}(z, u) exists.

Proof. Assume f ∈ L2(R+). Set z = x+ iy with Re(z) = x > 0. Then

|e− z
u tf(t)| =|e− x

u te−i y
u tf(t)|

=e−
x
u t|f(t)|.

Now,
∫ ∞

0

e−
2x
u tdt =

[
− u

2x
e−

2x
u t

]∞
0

=
u

2x
< ∞. Thus the function t 7→ e−

x
u t is in L2(R+). Since f is

assumed to be in L2(R+) we see that the product t 7→ e−
x
u tf(t) is integrable (use the Hölder inequality). We

have
∫ ∞

0

e−
x
u t|f(t)|dt < ∞. Therefore

∫ ∞

0

|e− z
u tf(t)|dt < ∞. Thus S{f}(z, u) exists. ■

Let α ≥ 0. Consider the function f : R+ → C and set

fα(t) = f(t)e−αt, t ∈ R+. (2.4)

Theorem 2.3. If fα
u
∈ L1(R+) and Re(z) ≥ α then S{f}(z, u) exists.

Proof. Assume fα
u
∈ L1(R+). Set z = x+ iy ∈ C with Re(z) = x ≥ α. We have

|e− z
u tf(t)| = |e− x

u te−
iy
u tf(t)| = e−

x
u t|f(t)|.

Now, x ≥ α ⇒ e−
x
u t|f(t)| ≤ e−

α
u t|f(t)|

⇒
∫ ∞

0

e−
x
u t|f(t)| ≤

∫ ∞

0

e−
α
u t|f(t)| < ∞.

Therefore
∫ ∞

0

|e− z
u tf(t)|dt < ∞. Thus S{f}(z, u) exists. ■
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3. Plancherel formula and applications

In harmonic analysis, the Plancherel theorem holds for the Fourier transform. it states that the L2-norms of a
function in the time domain and that of its Fourier transform in the Fourier domain are equal. In other words it
expresses conservation of energy for signals in the time domain and the Fourier domain. We would like to obtain
the analogue of this result for the Shehu transform. To achieve our gaol we apply the Plancherel formula for the
Laplace transform proved in [8]. We start with the following definition.

Definition 3.1. [8] The function f is called a Laplace-Pego function of order α if fα ∈ L1(R+) ∩ L2(R+).

Theorem 3.2. [8] If f is a Laplace-Pego function of order x ≥ 0, then

1

2π

∫ ∞

−∞
|L{f}(x+ iy)|2dy =

∫ ∞

0

e−2xt|f(t)|2dt. (3.1)

Hereafter is the analogue of the Plancherel formula for the Shehu transform.

Theorem 3.3. If f is a Laplace-Pego function of order
x

u
then

1

2πu

∫ ∞

−∞
|S{f}(x+ iy, u)|2dy =

∫ ∞

0

e−
2x
u t|f(t)|2dt. (3.2)

Proof. Assume that f is a Laplace-Pego function of order
x

u
. From Theorem 3.2, we have

1

2π

∫ ∞

−∞
|L{f}(x+ iy)|2dy =

∫ ∞

0

e−2xt|f(t)|2dt.

Replacing x and y by
x

u
and

y

u
respectively we obtain

1

2π

∫ ∞

−∞
|L{f}(x

u
+ i

y

u
)|2dy

u
=

∫ ∞

0

e−2 x
u t|f(t)|2dt;

⇒ 1

2πu

∫ ∞

−∞
|L(f)(x+ iy

u
)|2dy =

∫ ∞

0

e−2 x
u t|f(t)|2dt

⇒ 1

2πu

∫ ∞

−∞
|S(f)(x+ iy, u)|2dy =

∫ ∞

0

e−
2x
u t|f(t)|2dt.

■

Definition 3.4. [8] A family A of Laplace-Pego functions of common order x is said to be exponentially L2-
equivanishing at x if for any given strictly positive number ε, we can find a strictly positive number T that depends
only on ε and the order x, such that for any function f in A, we have∫ ∞

T

e−2xt|f(t)|2dt < ε. (3.3)

The author in [8] related the concept of exponential L2-equivanishing to the notion of Laplace equicontinuity.
We obtain the analogue result for Shehu equicontinuity as an application of the Plancherel formula.

Definition 3.5. A family A of functions is said to be Shehu equicontinuous at x if for any given strictly positive
number ε, we can find a strictly positive number η that depends only on ε, such that for any strictly positive
number u and any function f in A, we have

1

2πu

∫ ∞

−∞
|S{f}(x+ iy + η, u)− S{f}(x+ iy, u)|2dy < ε. (3.4)
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If A is a family of Lapalce-Pego functions of common order α, we set

Aα = {fα : f ∈ A}.

We recall that fα(t) = f(t)e−αt, t ≥ 0.

Theorem 3.6. Let A be a family of Laplace-Pego functions with common order
x

u
≥ 0. If A is Shehu

equicontinuous at x then it is exponentially L2-equivanishing at
x

u
. Moreover, if A x

u
is L2-bounded, then the

inverse is also true.

Proof. We follow the great lines of the proof of [8, Theorem 6]. Let ε > 0. Let η be such that (3.4) holds. There

exists T > 0 such that |e−
η
uT − 1| ≥ 1

2
. Then

1

2πu

∫ ∞

−∞
|S{f}(x+ iy + η, u)− S{f}(x+ iy, u)|2dy < ε

⇒ 1

2πu

∫ ∞

−∞

∣∣∣∣∫ ∞

0

[
e−

x+iy
u te−

η
u tf(t)− e−

x+iy
u tf(t)

]
dt

∣∣∣∣2 dy < ε

⇒ 1

2πu

∫ ∞

−∞

∣∣∣∣∫ ∞

0

e−
x+iy

u t(e−
η
u t − 1)f(t)dt

∣∣∣∣2 dy < ε

Now using Theorem 3.3, we obtain ∫ ∞

0

e
−2x
u t

∣∣∣f(t)(e− η
u t − 1)

∣∣∣2 dt < ε,

⇒
∫ ∞

T

e
−2x
u t

∣∣∣f(t)(e− η
u t − 1)

∣∣∣2 dt < ε,

⇒ 1

2

∫ ∞

T

e
−2x
u t |f(t)|2 dt < ε,

⇒
∫ ∞

T

e
−2x
u t |f(t)|2 dt < 2ε.

Thus A is exponentially L2-equivanishing at
x

u
.

Now assume that A x
u

is L2-bounded and that A is exponentially L2-equivanishing at
x

u
. Let ε > 0 and choose T

such that (3.3) holds for
x

u
instead of x. As A x

u
is L2-bounded, there exists a constant M > 0 such that for any

f ∈ A we have
∫ ∞

0

e
−2x
u t |f(t)|2 dt < M.

Let η > 0 be such that
∣∣e− η

uT − 1
∣∣2 M < ε. Set

B =
1

2πu

∫ ∞

−∞
|S{f}(x+ iy + η, u)− S{f}(x+ iy, u)|2dy.

We have

B =

∫ ∞

−∞
|S{g}(x+ iy, u)|2dy

where g(t) = (e−
η
u t − 1)f(t). Now, using Theorem 3.3 we have
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B =

∫ T

0

e−
2x
u t|f(t)|2

∣∣∣e− η
u t − 1

∣∣∣2 dt+ ∫ ∞

T

e−
2x
u t|f(t)|2

∣∣∣e− η
u t − 1

∣∣∣2 dt.
For t ≤ T , |e−

η
u t − 1|2 ≤ |e−

η
uT − 1|2. Therefore,∫ T

0

e−
2x
u t|f(t)|2

∣∣∣e− η
u t − 1

∣∣∣2 dt < ε

M

∫ T

0

e−
2x
u t|f(t)|2dt < ε

M

∫ ∞

0

e−
2x
u t|f(t)|2dt < ε.

On the other hand, note that
∣∣e− η

u t − 1
∣∣2 < 1. It follows that∫ ∞

T

e−
2x
u t|f(t)|2

∣∣∣e− η
u t − 1

∣∣∣2 dt <∫ ∞

T

e−
2x
u t|f(t)|2dt < ε.

Therefore, B < 2ε, and hence A is Shehu equicontinuous at x.
■

4. Conclusion

In this paper, some existence conditions of the Shehu integral transform of a function have been discussed, a
Plancherel formula provided and Shehu equicontinuity and exponential L2-equivanishing are related.
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Abstract. The integrity I(G) of a noncomplete connected graph G is a measure of network vulnerability and is defined by
I(G) = min

S⊂V (G)
{|S|+m(G− S)}, where S and m(G− S) denote the subset of V and the order of the largest component

of G− S, respectively. The vertex neigbor integrity denoted as V NI(G) is the concept of the integrity of a connected graph
G and is defined by V NI(G) = min

S⊂V (G)
{|S|+m(G− S)}, where S is any vertex subversion strategy of G and m(G− S)

is the number of vertices in the largest component of G − S. If a network is modelled as a graph, then the integrity number
shows not only the difficulty to break down the network but also the damage that has been caused. This article includes several
results on the integrity of the k − ary tree Hk

n , the diamond-necklace Nk, the diamond-chain Lk and the thorn graph of the
cycle graph and the vertex neighbor integrity of the H2

n, H3
n.
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1. Introduction

Let G = (V (G), E(G)) be a graph. The diameter of G, denoted by diam(G) is the largest distance between
two vertices in V (G). The number of the neighbor vertices of the vertex v is called degree of v and denoted by
degG(v). The minimum and maximum degrees of a vertex of G are denoted by δ(G) and ∆(G). A vertex v is
said to be pendant vertex if degG(v) = 1. A vertex u is called support if u is adjacent to a pendant vertex [6].
The complement G of a graph G is a graph whose vertex set is V (G) and two vertices of G are adjacent if and
only if they are nonadjacent in G [6].
Let G be a graph and S ⊆ V (G). We denote by < S > the subgraph of G induced by S. A set S is said to be an
independent set of G, if no pair of vertices of S are adjacent in G. The independence number of G, denoted by
β(G), is the cardinality of a maximum independent set of G. We denote by Ω(G) the set of all maximum
independent sets of G. A vertex and an edge are said to cover each other if they are incident. A set of vertices

∗Corresponding author. Email address: batay@agri.edu.tr Betül ATAY ATAKUL

https://www.malayajournal.org/index.php/mjm/index ©2023 by the authors.
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which cover all the edges of a graph G is called a vertex cover for G, while a set of edges which covers all the
vertices is an edge cover. The smallest number of vertices in any vertex cover for G is called its
vertex covering number and is denoted by α(G) [6]. For any graph G of order n, α(G) + β(G) = n. For a
graph G, we denote the minimum number of colors necessary to color G by χ(G), the chromatic number of the
graph G. The connectivity κ = κ(G) of a graph G is the minimum number of points whose removal results in a
disconnected or trivial graph.
The vulnerability of a communication network gives us an idea of the resilience and robustness of the network
after some centers in the network have failed. Vulnerability can be measured by certain parameters. In the
analysis of the vulnerability of a communication network to disruption, attention is paid to the number of
non-working elements and the size of the largest remaining group in it. Especially in a hostile relationship
where mutual communication still takes place, it is desirable that the adversary’s network be such that the two
quantities can be made small at the same time. [1]
One of the parameters used to measure the vulnerability of the graph is the integrity value. Formally, the vertex
integrity (frequintly called just the integrity) is

I(G) = min
S⊂V (G)

{|S|+m(G− S)}

where m(G− S) denotes the order of a largest component of G− S. This concept was introduced by Barefoot,
Entringer and Swart [2], who discovered many of the early results on the subject. If G is a graph of order n, then
1 ≤ I(G) ≤ n and if H is any subgraph of G, then I(H) ≤ I(G). The integrity of the binomial trees was given
in [8].
The concept of the vertex neighbor-integrity was introduced as a measure of graph vulnerability by
M.B.Cozzens and Shu-Shih Y.Wu [4]. Let u be a vertex of a graph G = (V,E). Then N(u) = {v ∈ V (G), v

and u are adjacent} is the open neighborhood of u, and N [u] = {u} ∪N(u) denotes the closed neighborhood
of u. A vertex u of a graph G is said to be subverted if the closed neighborhood N [u] is deleted from G. A set of
vertices S = {u1, u2, ..., um} is called a vertex subversion strategy of G if each of the vertices in S has been
subverted from G. Let G − S be the survival subgraph when S has been a vertex subversion strategy of G. The
vertex neighbor integrity of a graph G, V NI(G), is defined to be

V NI(G) = min
S⊂V (G)

{|S|+m(G− S)}

where S is any vertex subversion strategy of G and m(G−S) is the number of vertices in the largest component
of G − S. The set S is called the V NI − set of a graph G, which gives its neighbor integrity. The neighbor
integrity for total graphs was given in [9]
In this article, we give a recursive formula on the integrity of Hk

n and we calculate the integrity of the diamond-
necklace Nk, the diamond-chain Lk and the thorn graph G∗ of a cycle Cn. Then, we present a result on the vertex
neighbor-integrity of H2

n and H3
n .

2. Basic Results on Integrity and Vertex Neighbor Integrity

Theorem 2.1. [1] Define the comet Ct,r to be the graph obtained by identifying one end of the path Pt with the
center of the star K1,r. Then, I(Ct,r) ≤ I(Ct+1,r−1) ≤ I(Ct,r) + 1.

Theorem 2.2. [1] The integrity of
(a) the complete graph Kp is p;
(b) the null graph Kp is 1;
(c) the star K1,n is 2;
(d) the path Pn is I(Pn) = ⌈2

√
n+ 1⌉ − 2.;
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(e) the cycle Cn is I(Cn) = ⌈2
√
n⌉ − 1.;

(f) the comet Cp−r,r is I(Pp), if r ≤
√
p+ 1− 5

4 ; ⌈2
√
p− r⌉ − 1, otherwise;

(g) the complete bipartite graph Km,n is 1 +minm, n;
(h) any complete multipartite graph of order p and largest partite set of order r is p− r + 1.

Theorem 2.3. [1] Let G be a graph of order p.
(a) I(G) = 1 if and only if G is null.
(b) I(G) = 2 if and only if all nontrivial components of G are edges or the only nontrivial component is a star.
(c) I(G) = p− 1 if and only if G is not complete and G has girth at least 5.
(d) I(G) = p if and only if G is complete.

Theorem 2.4. [1] If in graph G, v is a vertex for which deg(v) ≥ I(G− v), then I(G) = 1 + I(G− v).

Parameters that will be discussed here include the following:

• δ, the minimum vertex degree;

• κ, the connectivity;

• α, the covering number;

• β, the independence number;

• χ, the chromatic number.

Theorem 2.5. For any graph G,
(a) I(G) ≤ α+ 1.
(b) I(G) ≥ δ + 1.
(c) I(G) ≥ χ.
(d) I(G) ≥ (p− κ(G))/β(G) + κ(G).
(e) I(G) = κ(G) + 1 if and only if κ(G) = α(G);
(f) I(G) = α(G) + 1 if and only if G does not contain 2K2 as an induced subgraph;
(g) I(G) = δ(G)+ 1 if and only if G ∼= rKn or G ∼= rKn +F for some graph F satisfying δ(F ) ≥ |G| − (2r−
1)n− 1.

Theorem 2.6. [4] Let Pn be the path on n vertices. Then we have

V NI(Pn) =

{
⌈2
√
n+ 3⌉ − 4, if n ≥ 2

1, if n = 1

Theorem 2.7. [4] Let Cn be the n− cycle, where n ≥ 3. Then

V NI(Cn) =


⌈2
√
n⌉ − 3, if n > 4,

2, if n = 4,

1, if n = 3.

3. Integrity of Hk
n, Nk, Lk and the Thorn Graph

Integrity of G is defined to be I(G) = min
S⊂V (G)

{|S| +m(G − S)}, where m(G − S) denotes the order of a

largest component of G − S. In this section we calculated a recursive formula about the integrity of H3
n and we

give a common result for the integrity of Hk
n .
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Definition 3.1. [3] The complete k−ary tree Hk
n of depth n is the rooted tree in which all vertices at level n−1

or less have exactly k children, and all vertices at level n are leaves. A 2− ary tree , H2
4 is illustrated in Figure

1.

Figure 1: 2-ary tree H2
4

Theorem 3.2. The integrity of a complete 3− ary tree H3
n is given by

I(H3
n) =

{
3

n
2 + I(H3

n−2), if n ≡ 0(mod 2)

3⌊
n
2 ⌋ + I(H3

n−1), if n ≡ 1(mod 2)

Proof. Case 1. n ≡ 0(mod 2)

In this case S consists of the all vertices at the level n/2. Hence, m(H3
n − S) =

∑(n/2)−1
i=0 3i, |S| = 3n/2 and

I(H3
n) =

∑n/2
i=0 3

i = 3(n/2)+1−1
2 . To express this function as a recursive function we use induction. Certainly

I(H3
4 ) = 32 + I(H3

2 ) = 9 + 4 = 13. Assume I(H3
n−2) = 3

n−2
2

+1−1
2 , then we need to show that

I(H3
n) =

3(n/2)+1−1
2 .

I(H3
n) = 3n/2 + I(H3

n−2) (3.1)

= 3n/2 +
3

n−2
2 +1 − 1

2
(3.2)

= 3n/2 +
3

n
2 − 1

2
(3.3)

=
3

n
2 +1 − 1

2
(3.4)

Case 2. n ≡ 1(mod 2)

In this case S consists of the all vertices at the level ⌊n/2⌋. Hence, m(H3
n − S) =

∑⌊(n/2)⌋
i=0 3i, |S| = 3⌊n/2⌋

and I(H3
n) =

3⌊(n/2)⌋+1−1
2 + 3⌊n/2⌋. To express this function as a recursive function we use induction. Certainly

I(H3
3 ) = 3 + I(H3

2 ) = 3 + 4 = 7. Assume I(H3
n−1) = 3⌊

n
2

⌋−1+1−1
2 + 3⌊

n
2 ⌋, then we need to show that

I(H3
n) =

3⌊(n/2)⌋+1−1
2 + 3⌊

n
2 ⌋.
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I(H3
n) = 3⌊n/2⌋ + I(H3

n−1) (3.5)

= 3⌊n/2⌋ +
3⌊

n
2 ⌋ − 1

2
+ 3⌊n/2⌋ (3.6)

=
3.3⌊n/2⌋ − 1

2
+ 3⌊n/2⌋ (3.7)

=
3⌊(n/2)⌋+1 − 1

2
+ 3⌊

n
2 ⌋ (3.8)

The proof is completed. ■

Corollary 3.3. The integrity of a complete k − ary tree Hk
n , k ≥ 3 is given by

I(Hk
n) =

{
k

n
2 + I(Hk

n−2), if n ≡ 0(mod 2)

k⌊
n
2 ⌋ + I(Hk

n−1), if n ≡ 1(mod 2)

Definition 3.4. [7] For k ≥ 2 an integer, let D1, D2, ..., Dk be k disjoint copies of a diamond, where V (Di) =

{ai, bi, ci, di} and where aibi is the missing edge in Di. Nk is obtained from the disjoint union of these k

diamonds by adding the edges {aibi+1|i = 1, 2, ..., k − 1} and adding the edge akb1. We call Nk a diamond-
necklace with k diamonds.

Definition 3.5. [7] For k ≥ 1, we define a diamond-chain Lk with k diamonds as follows. Let Lk be obtained
from a diamond-necklace Nk+1 with k + 1 diamonds D1, D2, ..., Dk+1 by removing the diamond Dk+1 and
adding two disjoint triangles T1 and T2 and adding an edge joining b1 to a vertex of T1 and adding an edge
joining ak to a vertex of T2. A diamond-necklace, N6, with six diamonds and a diamond-chain, L2, with two
diamonds is illustrated in Figure 2.

Figure 2: A diamond-necklace N6 and a diamond-chain L2

Theorem 3.6. Let Nk be a diamond-necklace with k vertices.The integrity of Nk is I(Nk) = ⌈4
√
k − 1⌉.

Proof. For the set S, we choose the vertices among ai, bi , where i ∈ {1, k} to minimalized the value
|S| +m(Nk − S). So, if we remove r vertices from Nk, then we have r components. Number of vertices of a
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largest component m(Nk − S) ≥ 4k−r
r .

I(Nk) = min
S⊂V (Nk)

{|S|+m(Nk − S)} (3.9)

≥ min
r

{r + 4k − r

r
} (3.10)

The function f(r) = r + 4k−r
r takes its minimum value at r = 2

√
k. We substitute the minimum value in the

function f(r). As the integrity is integer valued, we round this up to get a lower bound and obtain I(Nk) =

⌈4
√
k − 1⌉. ■

Theorem 3.7. Let Lk be a diamond-chain with 4k + 6 vertices.The integrity of Lk is
I(Lk) = ⌈ (−1+

√
4k+7)2+4k+6√
4k+7

⌉.

Proof. For the set S, we choose the vertices among ai, bi and the vertex of order 3 in T2, where i ∈ {1, k} to
minimalized the value |S|+m(Lk − S). So, if we remove r vertices from Lk, then we have r + 1 components.
Number of vertices of a largest component m(Lk − S) ≥ 4k+6−r

r+1 .

I(Lk) = min
S⊂V (Lk)

{|S|+m(Lk − S)} (3.11)

≥ min
r

{r + 4k + 6− r

r + 1
} (3.12)

The function f(r) = r2+4k+6
r+1 takes its minimum value at r = −1 +

√
4k + 7. We substitute the minimum

value in the function f(r). As the integrity is integer valued, we round this up to get a lower bound and obtain
I(Lk) = ⌈ (−1+

√
4k+7)2+4k+6√
4k+7

⌉. ■

Definition 3.8. [5] Let p1, p2, ..., pn be non-negative integers and G be such a graph, V (G) = n. The thorn
graph of the graph G, with parameters p1, p2, ..., pn, is obtained by attaching pi new vertices of degree 1 to
the vertex ui of the graph G, i = 1, 2, ..., n. The thorn graph of the graph G will be denoted by G∗ or by
G∗(p1, p2, ..., pn), if the respective parameters need to be specified. The thorn graph G∗ of the cycle C6 is
illustrated in Figure 3.

Figure 3: The thorn graph G∗

Theorem 3.9. If G∗ is a thorn graph of Cn with p1 = p2 = ... = pn = p, then I(G∗) = 2⌈
√
n
√
p+ 1⌉ − p− 1.
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Proof. For the set S, we choose the vertices of order p + 2 in Cn to minimalized the value |S| + m(G∗ − S).
So, if we remove r vertices from Cn, then we have r components. Number of vertices of a largest component
m(Cn − S) ≥ (n−r)p+n−r

r .

I(Nk) = min
S⊂V (G∗)

{|S|+m(G∗ − S)} (3.13)

≥ min
r

{r + (n− r)p+ n− r

r
} (3.14)

The function f(r) = r + (n−r)p+n−r
r takes its minimum value at r =

√
np+ n. Hence if we substitute the

minimum value in the function f(r), we have I(Cn) = 2
√
n
√
p+ 1−p−1. Since the integrity is integer valued,

we round this up to get a lower bound and obtain I(Cn) = 2⌈
√
n
√
p+ 1⌉ − p− 1. ■

4. Vertex Neighbor Integrity of H2
n and H3

n

The vertex neighbor integrity of G is defined to be V NI(G) = min
S⊂V (G)

{|S|+m(G−S)}, where m(G−S)

is the largest connected component in the graph G− S. Here, we calculated the V NI(H2
n) and V NI(H3

n).

Theorem 4.1. The vertex neighbor integrity of a complete 2− ary tree H2
n is given by

V NI(H2
n) = ⌊

√
2n+3−3−1

2 ⌋

Proof. We have
∑n

i=0 2
i = 2n+1 − 1 vertices in H2

n. If we remove |S| = r vertices from H2
n, then we have

4r + 1 components in H2
n − S. Hence, m(H2

n − S) ≥ 2n+1−1−r
4r+1 .

V NI(H2
n) = min

S⊂V (H2
n)
{|S|+m(H2

n − S)} (4.1)

≥ min
r

{r + 2n+1 − 1− r

4r + 1
} (4.2)

The function f(r) = r + 2n+1−1−r
4r+1 = 2n+1+4r2−1

4r+1 takes its minimum value at r =
√
2n+3−3−1

4 . Hence if we

substitute the minumum value in the function f(r), we have V NI(H2
n) = ⌊

√
2n+3−3−1

2 ⌋.
The proof is completed. ■

Theorem 4.2. The vertex neighbor integrity of H3
n, is given by

V NI(H3
n) =

{
3

n
2 + V NI(H3

n−2), if n ≡ 1(mod 2)

3⌊
n
2 ⌋ + V NI(H3

n−3), if n ≡ 0(mod 2)

Proof. The proof is similar to the proof of Theorem 3.2. ■

The following table gives the vertex neighbor integrity values of H2
n and H3

n for n = 2, ..., 10.

Table 1: The vertex neighbor integrity of H2
n and H3

n

n 2 3 4 5 6 7 8 9 10
H2

n 2 3 5 7 11 15 23 31 47
H3

n 3 4 7 13 31 40 94 121 283
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Abstract. The new coronavirus called COVID-19 started spreading in China since the end of 2019, and shortly, it became
a serious matter over the entire world, infecting millions of people and killing many of them. That virus lead researchers to
looking for ways to eradicate it, the first thing being to prevent people from getting contaminated. One way someone can
protect himself and others is to wear a face mask as recommended by the World Health Organization. In this paper, we give a
simple mathematical model showing why everyone should wear a face mask during a COVID-19 like pandemic. In order to
illustrate the situation, we carry out a short simulation work, showing how various populations can be affected. We also show
the number of contamination rounds needed to contaminate the whole population if nothing is done to stop the contamination
process.
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1. Introduction

The new coronavirus disease called COVID-19 is caused by the virus severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) and started spreading in China since the end of 2019. This has become a serious
worldwide concern, especially in the most developed countries where the spread has taken most governments by
surprise. Very quickly, variants of this virus also started circulating in different countries. The dominant ones are:
Alpha (α) for B.1.1.7 (United Kingdom variant), Beta (β) for B.1.351 (South Africa), Gamma (γ) for P.1 (Brazil),
Delta (δ) for B.1.617.2 (India), etc. Since then, many methods have been used in order to flatten the curve of
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the expansion of the virus. Washing hands, respecting a certain social distance between people and wearing face
masks became famous on media and social networks.

As for the researchers, many models have been developed to appreciate and predict the spread of the virus. We
can mention, e.g., Li et al. [3], who studied the transmission process of the virus and realized forward prediction
and backward inference of the epidemic situation. On the other hand, Roy and Bhattacharya [7] discussed a
mathematical model regarding the spread of COVID-19 in India, aiming at finding the nature of time dependence
of the number of symptomatic patients, officially recorded in the country, during a certain period. They based their
study on a differential equation that has been formed to find how the number of asymptomatic patients increases
with time, and they discussed the impact of imposition of a countrywide lockdown and its withdrawal. In order
to investigate the spread and mitigation of the COVID-19 virus in the UK, Hritonenko et al. [2] consider an
integral model with finite memory using a realistic infection distribution. They construct and justify an efficient
regularization algorithm for finding the transmission rate.

The research on the international epidemics and the future development trend has become a hot topic of
current research, and many teams have studied the transmission law and preventive measures of the COVID-19,
many leading to interesting results (see, e.g., Mizumoto and Chowell [5]; Riou and Althaus [6]; Shao and Wu
[8]). However, many models that work for some areas do not work in others, and this has been the case for
epidemiological models for decades.

The aim of this paper is to give a simple mathematical model showing why everyone should wear a face
mask when pandemic such as COVID-19 rises. In fact, if the face masks proved to be effectively protecting from
getting the virus, then wearing them is worth it, although they are uncomfortable. See Dhaene et al. [1], on which
this work is based.

The layout of this work is as follows. In the next section we discuss the model when no policy is involved.
In Section 3, the model involving the ”wear-a-mask” (WAM) policy is discussed. In Section 4, we give results
of a simulation work showing the impact of contamination on populations of various sizes and the number of
rounds needed to fully contaminate those populations if nothing is done to stop the contamination process. Some
concluding remarks are given in Section 5.

2. The model without any policy

Let us denote by R0, the basic reproduction number, that is, the average number of persons infected by a person
carrying the virus in an homogeneous population where everyone is susceptible to be infected. An R0 value
greater than 1 means that the epidemic will grow, otherwise, it will reverse. Moreover, the higher the R0 value,
more contagious the disease is. Figure 1 shows the basic reproduction number, R0, of some of the SARS-CoV-2
variants in comparison to those of other diseases. From this figure, it appears that the basic reproduction number
of Delta variant of SARS-CoV-2 is within the range 5 and 8, meaning that each infected person can infect 5 to 8
other persons. However, another recent study by Liu and Rocklöv [4] shows that the basic reproductive number,
R0, of Delta variant varies from 3.2 to 8, with a mean of 5.08. In both cases, the Delta variant is more contagious
than the original SARS-CoV-2 virus. More details can be found on UNSW Newsroom (see link in the references)
[9].
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Figure 1: The basic reproduction number, R0, of some of the SARS-CoV-2 variants in comparison to those of other diseases.
Source: Imperial College London, Lancet, Australian Government.

With a reproduction number of R0, an infected person can infect on average R0 persons, making a total of
1 + R0 infected persons. Each one of the R0 infected persons will infect on average R0 other persons, yielding
1 + R0 + R2

0 infected persons. The new infected ones will further infect on average R0 others each, making in
total 1 +R0 +R2

0 +R3
0, and so on.

Suppose that the above process where infected people are infecting others happens n times. Then after n
infection rounds, the total number of infected people, which we denote by M(R0, n), will be equal to 1 +R0 +

R2
0 +R3

0 + ...+Rn
0 . By remarking that the terms of this expression follow a geometric progression of common

ratio R0 and first term 1, M(R0, n) becomes:

M(R0, n) =
1−Rn+1

0

1−R0
. (2.1)

Since M(R0, n) can be decimal, we will consider the integer part where necessary to account for the fact that we
deal with a discrete variable (number of persons).

We can derive the number of infection rounds needed to contaminate a popilation of size N as:

n =
ln

(
1−N+R0N

R0

)
ln(R0)

. (2.2)

As it can be seen from equation (2.1), the number of contaminations depends on two parameters: the
reproduction number, R0, and the number, n, of infection rounds. However, we can note that, for a fixed value of
the infection rounds, a small change in R0 values will produce a huge impact on the number of contaminations.
In order to illustrate this idea, let us compare the number of contaminations for a disease with R0 = 1.9 with that
of a disease with R0 = 2 after n = 20 rounds. We get M(1.9, 20) = 793564 and M(2, 20) = 2097151. We

288



A mathematical reason to wear a face mask during a COVID-19 like pandemic

can see that although epidemics with basic reproduction numbers 1.9 and 2 might look similar to each other, the
latter is vastly a much more severe disease.

3. The model with ”wear-a-mask” (WAM) policy

Let us now assume that there is a policy where everybody in the population wears a mask in public areas. Suppose
this policy reduces the basic reproduction number from R0 to R0 × p, where p ∈ (0, 1). Then after n rounds of
contaminations, the total number of contaminated persons is:

Mp(R0, n) =
1− (R0 × p)n+1

1− (R0 × p)
. (3.1)

The number of rounds needed to contaminate a population of size N is therefore:

n =
ln

(
1−N+R0×p×N

R0×p

)
ln(R0 × p)

. (3.2)

Obviously, since p < 1, we have Mp(R0, n) < M(R0, n), meaning that the policy will reduce the number of
contaminations.

Table 1 to Table 4 show the impact of the reproduction number, R0, on the number of contaminations
M(R0, n) and Mp(R0, n) and the comparison of these numbers for various values of R0 (ranging from 4 to
8), p (p = 0.5, 0.7, 0.8, 0.9) and fixed values of n (n = 5, 10, 15, 20). From these tables, we conclude that
a relatively small difference in the basic reproduction number, R0, will have a huge impact on the total number
of infections, M(R0, n) and Mp(R0, n), after a sufficient number of transmission of the virus. Particularly, from
n = 15 we observe an exponential increase on M(R0, n) and Mp(R0, n).

Table 1: Impact of R0 (R0 = 4 to 8) on M(R0, n) and Mp(R0, n) and comparison of these numbers of contaminations for p = 0.5 and
fixed n (n = 5, 10, 15, 20).

n = 5 n = 10 n = 15 n = 20

p = 0.5 R0 = 4 M(R0, n) 1365 1398101 1.431656e+09 1.466016e+12
Mp(R0, n) 63 2047 65535 2097151
Mp/M 4.62% 0.15% 0% 0%

R0 = 5 M(R0, n) 3906 12207031 3.814697e+10 1.192093e+14
Mp(R0, n) 162 15894 1552204 151582450
Mp/M 4.15% 0.13% 0% 0%

R0 = 6 M(R0, n) 9331 72559411 5.642220e+11 4.387390e+15
Mp(R0, n) 364 88573 21523360 5230176601
Mp/M 3.90% 0.12% 0% 0%

R0 = 7 M(R0, n) 19608 329554457 5.538822e+12 9.309098e+16
Mp(R0, n) 734 386196 202837711 106534169022
Mp/M 3.74% 0.12% 0% 0%

R0 = 8 M(R0, n) 37449 1227133513 4.021071e+13 1.317625e+18
Mp(R0, n) 1365 1398101 1431655765 1466015503701
Mp/M 3.64% 0.11% 0% 0%
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Table 2: Impact of R0 (R0 = 4 to 8) on M(R0, n) and Mp(R0, n) and comparison of these numbers of contaminations for p = 0.7 and
fixed n (n = 5, 10, 15, 20).

n = 5 n = 10 n = 15 n = 20

p = 0.7 R0 = 4 M(R0, n) 1365 1398101 1.431656e+09 1.466016e+12
Mp(R0, n) 267 46074 7929686 1364728160
Mp/M 19.56% 3.30% 0.55% 0.09%

R0 = 5 M(R0, n) 3906 12207031 3.814697e+10 1.192093e+14
Mp(R0, n) 735 386196 202837711 1,06534e+11
Mp/M 18.79% 3.16% 0.53% 0.09%

R0 = 6 M(R0, n) 9331 72559411 5.642220e+11 4.387390e+15
Mp(R0, n) 1715 2241776 2929804677 3,829e+12
Mp/M 18.38% 3.09% 0.52% 0.09%

R0 = 7 M(R0, n) 19608 329554457 5.538822e+12 9.309098e+16
Mp(R0, n) 3549 10025182 28318658314 7,99932e+13
Mp/M 18.09% 3.04% 0.51% 0.09%

R0 = 8 M(R0, n) 37449 1227133513 4.021071e+13 1.317625e+18
Mp(R0, n) 6704 36924146 203353e+11 1,11993e+15
Mp/M 17.90% 3.01% 0.51% 0.08%

Table 3: Impact of R0 (R0 = 4 to 8) on M(R0, n) and Mp(R0, n) and comparison of these numbers of contaminations for p = 0.8 and
fixed n (n = 5, 10, 15, 20).

n = 5 n = 10 n = 15 n = 20

p = 0.8 R0 = 4 M(R0, n) 1365 1398101 1.431656e+09 1.466016e+12
Mp(R0, n) 487 163766 5.495117e+07 1.843855e+10
Mp/M 35.68% 11.71% 3.84% 1.26%

R0 = 5 M(R0, n) 3906 12207031 3.814697e+10 1.192093e+14
Mp(R0, n) 1365 1398101 1.431656e+09 1.466016e+12
Mp/M 34.95% 11.45% 3.75% 1.23%

R0 = 6 M(R0, n) 9331 72559411 5.642220e+11 4.387390e+15
Mp(R0, n) 3218 8201060 2.089663e+10 5.324544e+13
Mp/M 34.49% 11.30% 3.70% 1.21%

R0 = 7 M(R0, n) 19608 329554457 5.538822e+12 9.309098e+16
Mp(R0, n) 6704 36924146 2.033530e+11 1.119930e+15
Mp/M 34.19% 11.20% 3.67% 1.20%

R0 = 8 M(R0, n) 37449 1227133513 4.021071e+13 1.317625e+18
Mp(R0, n) 12725 136642548 1.467188e+12 1.575381e+16
Mp/M 33.98% 11.14% 3.65% 1.20%
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Table 4: Impact of R0 (R0 = 4 to 8) on M(R0, n) and Mp(R0, n) and comparison of these numbers of contaminations for p = 0.9 and
fixed n (n = 5, 10, 15, 20).

n = 5 n = 10 n = 15 n = 20

p = 0.9 R0 = 4 M(R0, n) 1365 1398101 1.431656e+09 1.466016e+12
Mp(R0, n) 837 506237 306102350 1,85088e+11
Mp/M 61.25% 36.21% 21.38% 12.63%

R0 = 5 M(R0, n) 3906 12207031 3.814697e+10 1.192093e+14
Mp(R0, n) 2372 4377938 8078526911 1,49072e+13
Mp/M 60.73% 35.86% 21.18% 12.51%

R0 = 6 M(R0, n) 9331 72559411 5.642220e+11 4.387390e+15
Mp(R0, n) 5635 25874900 1,18808e+11 5,45527e+14
Mp/M 60.38% 35.66% 21.06% 12.43%

R0 = 7 M(R0, n) 19608 329554457 5.538822e+12 9.309098e+16
Mp(R0, n) 11797 117076619 1,16191e+12 1,15312e+16
Mp/M 60.16% 35.53% 20.98% 12.39%

R0 = 8 M(R0, n) 37449 1227133513 4.021071e+13 1.317625e+18
Mp(R0, n) 22470 434776209 8,41256e+12 1,62776e+17
Mp/M 60.00% 35.43% 20.92% 12.35%

Another aspect that is worth highlighting is that these tables clearly indicate the positive impact of the policy
on the contamination rate. As an example (see Dhaene et al. [1]), let us suppose that the factor p is equal to
90%. This means that wearing face masks reduces the basic reproduction number by 10%. At step 20 of a chain
of 20 rounds of infections, the number of infected people under the wear-a-mask policy is only about 12% of the
number of people that would have been infected without introducing that policy (Table 4).

Instead of 90%, let us now look at what happens if the factor p equals 80%, which means that wearing masks
reduces the reproduction number by 20%. In this case we find that after 20 steps, the number of infected people
is reduced to 1.2% of the original number of infected people (Table 3).

4. Simulations

In this section, we carry out a short simulation work to show how various populations can be affected by the virus.
We also show the number of infection rounds needed to contaminate the whole population if nothing is done to
stop the contamination process. In order to achieve this, we have considered populations of sizes N = 100, 1000,
5000, 10000, 100000, 1000000, 3000000, and 5000000. For the basic reproduction number, we take R0 = 4.
The results are given in Tables 5.
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Table 5: Number of rounds needed to contaminate the full population for different values of p (0.3, 0.5, 0.7, 0.9, 1) and R0 = 4.

Population size Rounds with No policy Rounds with WAM policy
p = 1 p = 0.9 p = 0.7 p = 0.5 p = 0.3

100 3.12 3.34 4.05 5.66 15.70
1000 4.78 5.14 6.28 8.97 28.09
5000 5.94 6.40 7.84 11.29 36.89

10000 6.44 6.94 8.52 12.29 40.69
100000 8.10 8.73 10.75 15.61 53.32
1000000 9.76 10.53 12.99 18.93 65.95
3000000 10.55 11.39 14.06 20.52 71.97
5000000 10.92 11.79 14.55 21.25 74.78

It is clear from this table that, for fixed value of p, the number of rounds needed to contaminate the full
population increases as the population size increases. Moreover, for fixed population size, the number of rounds
required to contaminate that population decreases as the value of p increases.

5. Concluding remarks

This work clearly illustrate the importance of wearing masks to fight the COVID-19 and similar diseases.
We have seen that the reproduction number can be considerably reduced if a ”wear-a-mask” policy is made and
especially if people respect it. Simulation results show that the infection process is slowed down with the WAM
policy, and this could allow more time to researchers to find cure or vaccines to completely eradicate the virus.

The models considered are, of course, too simple to explain and take into account all effects of wearing masks
or not. For example, mandating mask protection could make people become less cautious about social distancing,
and this could reduce the positive effects of wearing masks. Therefore, wearing a face mask with the intention
to decrease the infection rate will only be fully effective if it is surrounded by a sufficient educative support and
combined with other regulations. Further, the models should not be applied for any number of infection rounds
because when a high proportion of the population becomes immune, the reproduction number will automatically
go down.

While we focused on the WAM policy, it is clear that similar observations as the ones we made also hold for
any other strategy that adapts the number of infected people. We suggest that people wear masks all the time,
even if they have been infected and recovered or if they have been vaccinated. In fact, although approaches of
solutions are being obtained, different variants of the virus are springing out, and the available solutions may not
be efficient against them.
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1. Introduction

The Fibonacci and Lucas numbers are always being studied by many researchers whether as solutions of
Diophantine equations or their existence in the nature. The Fibanacci (Fn) and Lucas (Ln) numbers are the most
common binary recurrence sequences definded by the relations:

Fn+2 = Fn+1 + Fn; Ln+2 = Ln+1 + Ln

with the initial values F0 = 0, L0 = 2, F1 = L1 = 1. Both the sequences have the characteristic equation
x2 − x − 1 = 0 with the characteristic roots α = 1+

√
5

2 and β = 1−
√
5

2 . The closed form or the binet form of
these numbers are given by:

Fn =
αn − βn

α− β
, Ln = αn + βn; n ≥ 0. (1.1)
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(Kossi Richmond Kakanou)
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Bugeaud et al. [5] investigated the Diophantine equations Fn = yp and Ln = yp and determined all perfect
powers in Fibonacci and Lucas sequences. Similar Diophantine equations have been tackled by many researcher
involving powers of 2, 3, 5 and the recurrence sequences such as Fibonacci, Lucas, Pell and k-Fibonacci numbers
(see [3, 4, 8, 11–13]) .

In this paper, we explore the solutions of the Diophantine equation:

Ln ± Lm = pa, (1.2)

where p is any odd prime and n,m, a are nonnegative integers satisfying n ≥ m.

2. Preliminaries

This section deals with the basic concepts of algebraic numbers, some results concerning the bounds of linear
forms in logarithms and reduction methods from the theory of continued fractions, which plays a vital role during
the proof of our main result.

Let γ be an algebraic number of degree d having the minimal polynomial

a0

d∏
i=1

(x− γi) ∈ Z[x],

where γi are conjugates of γ and a0 > 0. If γ ̸= 0, then its absolute logarithmic height is defined as

h(γ) =
1

d
(log |a0|+

d∑
i=1

logmax{1, |γi}).

The following properties of the logarithmic height holds, which will be used in the forthcoming sections as
and when necessary with or without any further references:

• h(γ ± η) ≤ h(γ) + h(η) + log 2

• h(γη±1) ≤ h(γ) + h(η)

• h(γs) = |s|h(γ); s ∈ Z.

2.1. Inequalities involving the Lucas numbers

Inequalities involving the Lucas numbers In this section, we state and prove important inequalities associated
with the Lucas numbers that will be used in solving the equation 1.2

Proposition 2.1 (P. Tiebekabe and I. Diouf [12]).
For n ≥ 2, we have

0.94αn < (1− α−6)αn ≤ Ln ≤ (1 + α−4)αn < 1.15αn (2.1)

Proof.
This follows directly from the formula Ln = αn + (−1)nα−n. ■

Proposition 2.2. [5]
The only prime powers in Fibonacci and Lucas sequences are

F1 = F2 = 1, F6 = 23, L1 = 1, L3 = 22.
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2.2. Linear forms in logarithms and continued fractions

In order to prove our main result, we have to use a Baker-type lower bound several times for a non-zero linear
forms of logarithms in algebraic numbers. There are many of these methods in the literature like that of Baker and
Wüstholz in [1]. We recall the result of Bugeaud, Mignotte, and Siksek which is a modified version of the result
of Matveev [10]. With the notation of section 2, Laurent, Mignotte, and Nesterenko [9] proved the following
theorem:

Theorem 2.3.
Let γ1, γ2 be two non-zero algebraic numbers, and let log γ1 and log γ2 be any determination of their logarithms.
Put D = [Q(γ1, γ2) : Q]/[R(γ1, γ2) : R], and

Γ := b2 log γ2 − b1 log γ1,

where b1 and b2 are positive integers. Further, let A1, A2 be real numbers > 1 such that

logAi ≥ max

{
h (γi) ,

| log γi|
D

,
1

D

}
, (i = 1, 2).

Then assuming that γ1 and γ2 are multiplicatively independent, we have

log |Γ| > −30.9 ·D4

(
max{log b′, 21

D
,
1

2
}
)2

logA1 · logA2,

where
b
′
=

b1
D logA2

+
b2

D logA1
.

We shall also need the following theorem due to Mantveev, Lemma due to Dujella and Pethő and Lemma due
to Legendre [7, 10].

Theorem 2.4 (Matveev [10]).
Let n ≥ 1 an integer. Let L a field of algebraic number of degree D. Let η1, η2, ..., ηl non-zero elements of L

and let b1, b2, ..., bl integers,
B := max {|b1|, |b2|, ..., |bl|} ,

and

Λ := ηb11 ...ηbll − 1 =

(
l∏

i=1

ηbii

)
− 1.

Let A1, A2, ..., Al reals numbers such that

Aj ≥ max {Dh(ηj), | log(ηj)|, 0.16} , 1 ≤ j ≤ l.

Assume that Λ ̸= 0, so we have

log |Λ| > −3× 30l+4 × (l + 1)5.5 × d2 ×A1...Al(1 + logD)(1 + log nB)

Further, if L is real, then

log |Λ| > −1.4× 30l+3 × (l)4.5 × d2 ×A1...Al(1 + logD)(1 + logB).

During our calculations, we get upper bounds on our variables which are too large, so we have to reduce them.
To do this, we use some results from the theory of continued fractions. In particular, for a non-homogeneous linear
form with two integer variables, we use a slight variation of a result due to Dujella and Pethő, (1998) which is in
itself a generalization of the result of Baker and Davemport [2].

For a real number X , we write ||X|| := min {|X − n| : n ∈ Z} for the distance of X to the nearest integer.
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Lemma 2.5 (Dujella and Pethő, [7]).
Let M a positive integer, let p/q the convergent of the continued fraction expansion of k such that q > 6M and

let A,B, µ real numbers such that A > 0 and B > 1. Let ϵ := ||µq||−M ||κq||. If ϵ > 0 then there is no solution
of the inequality

0 < mκ− n+ µ < AB−m

in integers m and n with
log (Aq/ϵ)

logB
≤ m ≤ M.

Lemma 2.6 (Legendre).
Let τ real number such that x, y are integers such that

|τ − x

y
| < 1

2y2
.

then x
y = pk

qk
is the convergence of τ .

Further
|τ − x

y
| < 1

(qk+1 + 2)y2
.

3. Main Results

This section deals with the main findings of the following Diophantine equation.

Theorem 3.1.
The only solutions (n,m, a) of the exponential Diophantine equation (1.2) in non negative integers n,m, a and

odd prime p are listed in Table 1 and Table 2.

p (n,m, a)

3 (3, 1, 1), (4, 3, 1)(5, 0, 2)

5 (4, 0, 1), (7, 3, 2), (8, 6, 2)

7 (5, 3, 1), (6, 5, 1)

11 (6, 4, 1), (7, 6, 1)

29 (8, 6, 1), (9, 8, 1)

47 (9, 7, 1), (10, 9, 1)

199 (12, 10, 1), (13, 12, 1)

521 (14, 12, 1), (15, 14, 1)

Table 1: Ln − Lm = pa.

p (n,m, a)

3 (1, 0, 1), (4, 0, 2)

5 (2, 0, 1), (3, 1, 1), (6, 4, 2)

7 (3, 2, 1)

11 (4, 3, 1)

29 (6, 5, 1)

47 (7, 6, 1)

199 (10, 9, 1)

521 (12, 11, 1)

Table 2: Ln + Lm = pa.
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Corollary 3.1.
The only solutions (p, a) of the double exponential Diophantine equations Lu − Lv = Ls + Lt in non negative
intergers u, v, s and t with u > v are liste in Table 3.

(p, a) Ln ± Lm

(3, 1) L1 + L0, L3 − L1, L4 − L3

(5, 1) L2 + L0, L3 + L1, L4 − L0

(7, 1) L3 + L2, L5 − L3, L6 − L5

(3, 2) L4 + L0, L5 − L0

(11, 1) L4 + L3, L6 − L4, L7 − L6

(5, 2) L6 + L4, L7 − L3

(29, 1) L6 + L5, L8 − L6, L9 − L8

(47, 1) L7 + L6, L9 − L7, L10 − L9

(199, 1) L10 + L9, L12 − L10, L13 − L12

(521, 1) L12 + L11, L14 − L12, L15 − L14

Table 3: Ln ± Lm = pa.

Solutions in Table 3 are intersections of those in Table 1 and Tabler 2.

Proof of theorem 3.1.
It is obvious that, the case n = m is not possible. Therefore, we assume that n > m. A computation using

SageMath in the range 0 ≤ m < n ≤ 200 reveals that there does not exist any solution of (1.2) other than the
solutions listed in Table 1. Furthermore, it is easy to observe that when 1 ≤ (n − m) ≤ 3, Ln ± Lm results
either in Lk, 2Lk or 5Fk for some values of k and hence, using Proposition 2.2 we obtain the solutions of (1.2).
So from now on, we assume that n > 200 and (n−m) ≥ 4.

Combining (1.1), (1.2) and (2.1) we get:

pa = Ln ± Lm ≤ Ln + Lm ≤ αn+1 + αm+1 < 2αn+1 < 2n+2.

Applying logarithms on both sides of the above inequality, we obtain

a log p ≤ (n+ 2) log 2 =⇒ a ≤ (n+ 2)
log 2

log p
.

It is easy to observe that for any prime p, 0 < log 2
log p < 4/5 and hence, a ≤ n+1. Indeed, for all n > 200 and any

prime p, a < n. Using (1.1) in (1.2) we can obtain the inequality:

Ln ± Lm = αn + βn ± Lm = pa =⇒ αn − pa = −βn ± Lm.

Taking absolute value both sides, we get

|αn − pa| = |βn ± Lm| ≤ |β|n + Lm <
1

2
+ 2αm

∵ |β|n < 1
2 , and Lm < 2αm. Dividing both sides by αn and considering that n > m, we get:

|1− α−n · pa| < α−n

2
+ 2αm−n <

1

αn−m
+

2

αn−m
∵

1

2αn
<

1

αn−m
;n > m.

Hence
|1− α−n · pa| < 3

αn−m
(3.1)
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To apply Theorem 2.4, we take Γ := α−n · pa − 1 with η1 = α, η2 = p, b1 = −n, b2 = a. The logarithm
heights of η1 and η2 are:
h(η1) =

1
2 logα = 0.2406 . . . , h(η2) = log p, thus we can choose

A1 := 0.5 and A2 := 2 log p,B := max{1, n, a} = n

Using Theorem 2.4, we have

log |Γ| > −1.4× 302+3 × 24.5 × 22 × 0.5 · 2 log p · (1 + log 2)(1 + log n),

which when combined with (3.1) gives

(n−m) logα < 6.23 · 109 log p · (1 + log n). (3.2)

We define a second linear form in logarithm by rewriting (1.2) as follows:

αn
(
1± αm−n

)
− pa = −βn ∓ βm.

Taking absolute values in the above relation with the fact that |β| < 1, we get

|αn
(
1± αm−n

)
− pa| < 2, ∀n > 200,m ≥ 0.

Dividing both sides of the above inequality by αn (1 + αm−n), we obtain

|1− paα−n
(
1± αm−n

)−1 | < 2

αn
. (3.3)

We define
Λ := paα−n

(
1± αm−n

)−1 − 1

and take
t := 3, γ1 := p, γ2 := α, γ3 := 1 + αm−n, b1 := a; b2 := −n, b3 = −1.

As before, K = Q(
√
5) contains γ1, γ2, γ3 and has D := [K : Q] = 2. If Λ = 0, then

pa = αn ± αm,

which is not possible for n > m. Therefore Λ ̸= 0.
Let us now estimate h(γ3) where γ3 = 1± αm−n

γ3 = 1± αm−n < 2 and γ−1
3 =

1

1 + αm−n
<

5

2

so | log γ3| < 1. Notice that

h(γ3) ≤ |m− n|
(
logα

2

)
+ log 2 = log 2 + (n−m)

(
logα

2

)
Proceeding as before, we take

A1 := 2 log p, A2 := 0.5

and we can take

A3 := 2 + (n−m) logα since h(γ3) := log 2 + (n−m)
(

logα
2

)

299



S. C. Patel, S. G. Rayaguru, P. Tiebekabe, G. K. Panda and K. R. Kakanou

Recalling, a < (n+2) log 2
log p < n, it follows that, B = max{1, n, a}. Thus we can take B = n. The Matveev’s

theorem gives the lower bound on the left hand side of (3.3) by replacing the data. We get:

exp (−C (1 + log n) · 2 log p · 0.5 · (2 + (n−m) logα)) < |Λ| < 2

αn

which leads to

n logα− log 2 < C((1 + log n) · log p · (2 + (n−m) logα) < 2C log n · log p · (2 + (n−m) logα),

where C := 1.4× 303+3 × 34.5 × 22(1 + log 2) < 9.7× 1011. Then

n logα− log 2 < 1.94× 1012 log n log p · (2 + (n−m) logα) (3.4)

where we used inequality 1+ log n < 2 log n, which holds for n > 200. Now, using (3.2) in the right term of the
above inequality (3.4) and doing the related calculations, we get

n < 5.05× 1022 log2 n log2 p. (3.5)

Hence,
n < 2.1× 1026 log2 p.

All the calculations done so far can be summarized in the following lemma.

Lemma 3.2.
If (n,m, p, a) is a solution in positive integers of (1.2) with conditions n > m and n > 200, then inequalities

a ≤ n+ 2 < 2.11× 1026 log2 p

hold.

4. Reducing of the bound on n

Rewriting (3.1) as

|1− ea log p−n logα| < 3

αn−m

and using the fact that |Λ| < 2|eΛ − 1| whenever |eΛ − 1| < 1
2 , we obtain the inequality

0 < |a log p− n logα| < 3

αn−m

for all (n−m) ≥ 4. Dividing the above inequality by logα, we get

0 < |aγp − n| < 7

αn−m
; where γp :=

log p

logα
(4.1)

We run a computer program to find the continued fraction [a0, a1, a2, ...] of the irrational number γp. Let
pk/qk denotes the kth convergent of γp. For each prime p, we compute the denominators qk(p) and qk+1(p) of
the convergents of γp such that qk(p) < 2.11 × 1026 log2 p < qk+1(p) and find
aM (p) := max {ai|i = 0, 1, ..., k + 1}. Therefore, taking aM to be the maximum of all aM (p), we get
aM = 130620.

Now applying Lemma 2.6 and properties of continued fractions, we obtain

|aγp − n| > 1

(aM + 2)a
. (4.2)
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Combining equation (4.1) and (4.2), we get

1

(aM + 2)a
< |aγp − n| < 7

αn−m
=⇒ 1

(aM + 2)a
<

7

αn−m

=⇒ αn−m < 7 · (aM + 2)a < 1.93× 1032 log2 p < 9.21× 1033.

Applying log above and divide by logα, we get:

(n−m) ≤ log (9.21× 1033)

logα
< 163.

To improve the upper bound on n, let consider

z := a log p− n logα− log ρ(u) where ρ = 1± α−u. (4.3)

From (3.3), we have

|1− ez| < 2

αn
. (4.4)

Since Λ ̸= 0, then z ̸= 0. Two cases arise: z < 0 and z > 0. for each case, we will apply Lemma 2.5.

• Case 1: z > 0 From (4.4) , we obtain 0 < z ≤ ez − 1 < 2
αn . Replacing (4.3) in the above inequality, we

get :
0 < a log p− n logα− log ρ(n−m) ≤ paα−nρ(n−m)−1 − 1 < 2α−n

hence
0 < a log 3− n logα− log ρ(n−m) < 2α−n

and by dividing above inequality by logα

0 < a

(
log p

logα

)
− n− log ρ(n−m)

logα
< 5 · α−n. (4.5)

Taking, γp := log p
logα , µ := − log ρ(n−m)

logα , A := 5, B := α, inequality (4.5) becomes

0 < aγp − n+ µ < AB−n.

Since γp is irrational, we are now ready to apply Lemma 2.5 of Dujella and Petho on (4.5) for n − m ∈
{4, 5, ..., 163}. Since a ≤ 2.11× 1026 log2 p from Lemma 3.2, we can take M = 2.55× 1027, and we get

n <
log (Aqp/ϵ)

logB

where qp > 6M and qp is the denominator of the convergent of the irrational number γp such that ϵp :=

||µqp|| −M ||γqp|| > 0.

With the help of SageMath, with conditions z > 0, and (n,m, a) a possible zero of (1.2) , we get n < 143

which contradicts our assumption n > 200. Then it is false.

• Case 2: z < 0 Since n > 200, then 2
αn < 1

2 . Hence (4.4) implies that |1− e|z|| < 2. Also, since z < 0, we
have

0 < |z| ≤ e|z| − 1 = e|z||e|z| − 1| < 4

αn
.

Replacing (4.3) in the above inequality and dividing by log p, we get:

0 < n

(
logα

log p

)
− a+

ρ(n−m)

log p
<

4

log p
· α−n < 4 · α−n (4.6)

In order to apply Lemma 3.2 on (4.6) for n−m ∈ {4, 5, ..., 111}, we take M = 2.55× 1027 . With the help of
SageMath, with conditions z < 0, and (n,m, a) a possible zero of (1.2), we get n < 143 which contradicts our
assumption n > 200. Then it is false.

This completes the proof of our main result. ■
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1. Introduction

Efremovič discovered the proximity spaces in 1951 [2]. He defined proximity space using with proximity
relation for proximity of arbitrary subsets of a set. In [10], one can find a list of publications on proximity spaces.
A proximity measure is a measure of the closeness or nearness between two nonempty sets.

A relator is a set of binary relations on a nonempty set X that is denoted by R. A relator space is defined as
the pair (X,R). In 2016, Peters introduced the concept of proximal relator space (X,Rδ) where Rδ is a family
of proximity relations on X [14].

Zadeh defined fuzzy sets in 1965, which he interpreted as a generalization of set. A fuzzy set A in a universe
X is a mapping A : X → [0, 1] [23]. For some applications of fuzzy sets please see [16, 17, 19]. Fuzzy similarity
measure between fuzzy sets are given in [22]. Fuzzy similarity measure between sets using with fuzzy proximity
relation µR and fuzzy proximal relator space (X,µR) are introduced in [11]. Studies in the field of algebraic
topology were also discussed with a different perspective on these issues, and semitopological δ-groups were
published in 2023 [7].

Fuzzy similarity measures and fuzzy proximity relations are useful tools for applications in the applied
sciences such as digital image processing and computer vision. A digital image endowed with fuzzy proximity

∗Corresponding author. Email addresses: einan@adiyaman.edu.tr (Ebubekir İNAN), muckun@adiyaman.edu.tr (Mustafa UÇKUN)

https://www.malayajournal.org/index.php/mjm/index ©2023 by the authors.
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relation µR is fuzzy proximal relator space. Therefore one can working on pixels in digital images to obtain
classifications or approximations.

Let A ⊆ X . A descriptively upper approximation of A is defined with

Φ∗A = {x ∈ X | xδΦA}.

It means, descriptively upper approximation of A consists of all elements in X that only have exactly the same
properties as elements in A. But sometimes more sensitive calculations may be needed.

For more sensitive approach to compute upper approximations of subsets, we can also consider elements with
somewhat similar properties, even if they do not have the same properties. To do this, the concept of fuzzy set
is one of the most effective mathematical tool. Therefore, θf -approximations of sets in fuzzy proximal relator
space are developed. Main advantages of this study is that it effectively uses the concepts of fuzzy sets, proximity
relations and upper approximation of sets together.

In section 2, definitions of Efremovic̆ proximity, set description, descriptively near sets, descriptively upper
approximation of sets, fuzzy proximity relation and fuzzy proximal relator space are given.

In section 3, θf -approximations of sets in fuzzy proximal relator space are introduced, where θ ∈ [0, 1).
θf -approximation provides a more sensitive approach for the upper approximations of subsets or subimages.
θf -approximation of a subimage are given with an example in digital images. Furthermore, θf -approximately
groupoid and semigroup in fuzzy proximal relator space are introduced.

2. Preliminaries

Definition 2.1. [2, 3] Let X be a nonempty set and δ be a relation on P (X). δ is called an Efremovic̆ proximity
that satisfy following axioms:

(A1) A δ B implies B δ A,
(A2) A δ B implies A ̸= ∅ and B ̸= ∅,
(A3) A ∩B ̸= ∅ implies A δ B,
(A4) A δ (B ∪ C) iff A δ B or A δ C,
(A5) {x} δ {y} iff x = y,
(A6) A δ B implies ∃E ⊆ X such that A δ E and Ec δ B

for all A,B,C ∈ P (X) and all x, y ∈ X . Efremovic̆ proximity relation is denoted by δE .

Definition 2.2. [9] Let X be a nonempty set and δ be a relation on P (X). δ is called a Lodato proximity that
satisfy the axioms (A1)− (A5) and

(A7) A δ B and {b} δ C (∀b ∈ B) implies A δ C for all A,B,C ∈ P (X). Lodato proximity relation is
denoted by δL.

Let X be a nonempty set and R be a set of relations on X . R and (X,R) is called a relator and a relator space,
respectively [20]. Let Rδ be a family of proximity relations on X . Then (X,Rδ) is a proximal relator space. As
in [14], Rδ contains proximity relations such as basic proximity δB [18], Efremovic̆ proximity δE [2, 3], Lodato
proximity δL [9], Wallman proximity δω [21], descriptive proximity δΦ [12, 15].

In a discrete space, a non-abstract point has a location and features. Features can be measured using probe
functions [8]. Let X be a nonempty set of non-abstract points in a proximal relator space (X,RδΦ).

In this space, a function Φ : X → Rn, Φ(x) = (φ1(x), · · · , φn(x)) is an object description represents a
feature vector of x ∈ X where each φi : X → R is a probe function (1 ≤ i ≤ n) that describes feature of a
non-abstract point such as pixel in a digital image.

Throughout this work, nonempty set of non-abstract points X was considered. Efremovic̆ proximity δE [3]
and descriptive proximity δΦ in defining a descriptive proximal relator space (X,RδΦ) were considered. Also,
instead of the notions proximal relator space and fuzzy proximal relator space, the terms PR-space and FPR-
space were used briefly, respectively.
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Definition 2.3. [10] Let Φ be an object description and A ⊆ X . Then the set description of A is defined as

Q(A) = {Φ(a) | a ∈ A}.

Definition 2.4. [10, 13] Let A,B ⊆ X . Then the descriptive (set) intersection of A and B is defined as

A ∩
Φ
B = {x ∈ A ∪B | Φ (x) ∈ Q (A) and Φ (x) ∈ Q (B)} .

Definition 2.5. [12] Let δΦ ∈ RδΦ and A,B ⊆ X . If Q(A) ∩ Q(B) ̸= ∅, then A is called a descriptively near
B and denoted by AδΦB. If Q(A) ∩Q(B) = ∅, then A δΦ B reads A is descriptively far from B.

Definition 2.6. [22] Let X be an universal set and F(X) be a class of all fuzzy sets of X . A function µ :

F(X)×F(X) −→ [0, 1] is called a fuzzy similarity measure if the following axioms satisfy:
(µ1) µ(A, ∅) = 0 and µ(A,A) = 1,
(µ2) µ (A,B) = µ (B,A),
(µ3) A ⊆ B ⊆ C implies µ (A,B) ≥ µ (A,C) and µ (B,C) ≥ µ (A,C)

for all A,B,C ∈ F(X).

Definition 2.7. [11] Let (X,R) be a PR-space,

µR : P(X)× P(X) −→ [0, 1]

(A,B) 7−→ µR (A,B)

be a fuzzy relation and A,B ⊆ X . Then µR is called a fuzzy proximity relation if it satisfies the following
axioms:

(µR)1 µR (A, ∅) = 0,
(µR)2 µR (A,B) = µR (B,A),
(µR)3 µR (A,B) ̸= 0 implies A is fuzzy proximal to B,
(µR)4 µR (A,B ∪ C) ̸= 0 implies µR (A,B) ̸= 0 or µR (A,C) ̸= 0

for all A,B,C ∈ P (X).
The set of all fuzzy proximity relations on P(X) is denoted by PµR (X). Therefore µR(A,B) is called a

fuzzy proximity measure of A with B.
If µR (A,B) > 0, then A is fuzzy proximal to B. Also, if µR (A,B) > θ, then A is θ-fuzzy proximal to B for

θ ∈ (0, 1).

Definition 2.8. [11] Let (X,R) be a PR-space and µR be a fuzzy proximity relation. Then (X,R, µR) is called
a FPR-space and shortly denoted by (X,µR).

3. θf -Approximations and θf -Approximately Semigroups

Definition 3.1. Let (X,µR) be a FPR-space and A ⊆ X . A θf -approximation of A is determined with

Aθ
µR

=
⋃

µR(A,B)>θ

B,

where B ∈ P(X) and θ ∈ [0, 1).

For clarify the mechanism of θf -approximation please see Example 3.3.

Example 3.2. Let X be a digital image and x, y be pixels of X . Probe functions φ(x) = (Rx, Gx, Bx) and
φy = (Ry, Gy, By) are represent the RGB codes of pixels x, y. Let

µR : X ×X −→ [0, 1]

(x, y) 7−→ µR (x, y) =
|765−Dx,y|

765
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be a fuzzy relation where
Dx,y =

√
2 ∆R2 + 4 ∆G2 + 3 ∆B2

is a weighted Euclidean distance of pixels with respect to RGB such that ∆R = Rx − Ry , ∆G = Gx −Gy

and ∆B = Bx −By . In the definition of µR, 765 is the maximum value of Dx,y .
Furthermore, fuzzy relationship between x and y ∪ z means that

µR (x, y ∪ z) =
|765−min {Dx,y, Dx,z}|

765

for all x, y, z ∈ X .
Now lets show that µR is a fuzzy proximity relation.
(µR)1 Since there is no similarity between x ∈ X and ∅, it is clear that µR (x, ∅) = 0.
(µR)2 µR (x, y) = µR (y, x) by Dx,y = Dy,x for all x, y ∈ X .
(µR)3 Obviously µR (x, y) ̸= 0 implies A is fuzzy proximal to B.
(µR)4 Let µR (x, y) = 0 and µR (x, z) = 0 for all x, y, z ∈ X . Then µR (x, y) =

|765−Dx,y|
765 = 0, that

is, Dx,y = 765. Similarly Dx,z = 765. Hence Dx,y = Dx,z = 765 and so min {Dx,y, Dx,z} = 765. Thus
µR (x, y ∪ z) =

|765−min{Dx,y,Dx,z}|
765 = 0. Therefore µR (x, y ∪ z) ̸= 0 implies µR (x, y) ̸= 0 or µR (x, z) ̸= 0

for all x, y, z ∈ X .
Consequently, µR is a fuzzy proximity relation from Definition 2.7.

Example 3.3. Let X be a digital image consists of 16 pixels as in Fig. 1. Also, digital image X endowed with
fuzzy proximity relation µR from Example 3.2 is a FPR-space by Definition 2.8.

Figure 1: Digital image X

In digital image X , a pixel xij is an element at position (i, j) (row and column). Table 1 lists the RGB codes
for each pixel.

Table 1. RGB codes for each pixel in X.

x11 x12 x13 x14 x21 x22 x23 x24

Red 117 91 91 180 180 110 132 117

Green 213 165 149 227 227 161 188 213

Blue 215 227 227 228 228 230 234 215

x31 x32 x33 x34 x41 x42 x43 x44

Red 183 91 226 180 117 226 117 226

Green 253 165 226 227 213 226 213 226

Blue 233 227 226 228 215 226 215 226

From Example 3.2, values of fuzzy proximity relation µR are given in Table 2.
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Table 2. Values of fuzzy proximity relation µR.

µR x11 x12 x13 x14 x21 x22 x23 x24 x31 x32 x33 x34 x41 x42 x43 x44

x11 1 0.863 0.823 0.874 0.874 0.859 0.916 1 0.834 0.863 0.794 0.874 1 0.794 1 0.794

x12 0.863 1 0.958 0.769 0.769 0.963 0.902 0.862 0.714 1 0.704 0.769 0.863 0.704 0.863 0.704

x13 0.823 0.958 1 0.738 0.738 0.952 0.872 0.824 0.679 0.958 0.679 0.738 0.874 0.915 0.874 0.915

x14 0.874 0.769 0.738 1 1 0.784 0.864 0.874 0.931 0.769 0.915 1 0.874 0.915 0.874 0.915

x21 0.874 0.769 0.738 1 1 0.784 0.864 0.874 0.931 0.769 0.915 1 0.874 0.915 0.874 0.915

x22 0.859 0.963 0.952 0.784 0.784 1 0.918 0.859 0.724 0.963 0.726 0.784 0.859 0.726 0.859 0.726

x23 0.916 0.902 0.872 0.864 0.864 0.918 1 0.917 0.806 0.902 0.799 0.864 0.917 0.799 0.917 0.799

x24 1 0.862 0.824 0.874 0.874 0.859 0.917 1 0.834 0.863 0.794 0.874 1 0.794 1 0.794

x31 0.834 0.714 0.679 0.931 0.931 0.724 0.806 0.834 1 0.714 0.893 0.931 0.834 0.893 0.834 0.893

x32 0.863 1 0.958 0.769 0.769 0.963 0.902 0.863 0.714 1 0.704 0.769 0.863 0.703 0.863 0.704

x33 0.794 0.704 0.679 0.915 0.915 0.726 0.799 0.794 0.893 0.704 1 0.915 0.778 1 0.794 1

x34 0.874 0.769 0.738 1 1 0.784 0.864 0.874 0.931 0.769 0.915 1 0.874 0.915 0.874 0.915

x41 1 0.863 0.824 0.874 0.874 0.859 0.917 1 0.834 0.863 0.778 0.874 1 0.905 0.884 0.794

x42 0.794 0.704 0.679 0.915 0.915 0.726 0.799 0.794 0.893 0.703 1 0.915 0.905 1 0.794 1

x43 1 0.863 0.824 0.874 0.874 0.859 0.917 1 0.834 0.863 0.794 0.874 0.884 0.794 1 0.794

x44 0.794 0.704 0.679 0.915 0.915 0.726 0.799 0.794 0.893 0.704 1 0.915 0.794 1 0.794 1

Figure 2: Subimage S

Let S = {x13, x23, x32} be a subimage of X as in Fig. 2 and θ = 0.92. From Definition 3.1, θf -
approximation of S is

Sθ
µR

=
⋃

µR(S,x)>θ

x = {x13, x23, x32, x12, x22}

where x ∈ X . Hence θf -approximation of subimage S consists of θ-fuzzy proximal pixels with S as in Fig. 3.

Figure 3: θf -approximation of subimage S

Lemma 3.4. Let (X,µR) be a FPR-space, A ⊆ X and θ ∈ [0, 1). Then the following statements hold:
(i) ∅θµR

= ∅,
(ii) A ⊆ Aθ

µR
,

(iii) Xθ
µR

= X .
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Ebubekİr İNAN, Mustafa UÇKUN

Proof. It is straightforward. ■

Theorem 3.5. Let (X,µR) be a FPR-space, A,B ⊆ X and θ ∈ [0, 1). Then the following statements hold:
(i) If A ⊆ B, then Bθ

µR
⊆ Aθ

µR
,

(ii)
(
Aθ

µR

)θ
µR

= Aθ
µR

,

(iii) Aθ
µR

∩Bθ
µR

⊆ (A ∩B)
θ
µR

,

(iv) (A ∪B)
θ
µR

⊆ Aθ
µR

∪Bθ
µR

.

Proof. (i) Let A ⊆ B and x ∈ Bθ
µR

where θ ∈ [0, 1). Then µR(B, x) > θ and hence µR(A, x) > θ since
A ⊆ B. Thus x ∈ Aθ

µR
. Therefore Bθ

µR
⊆ Aθ

µR
.

(ii) It is clear that
(
Aθ

µR

)θ
µR

⊆ Aθ
µR

from (i). Also, Aθ
µR

⊆
(
Aθ

µR

)θ
µR

by Lemma 3.4 (ii) and so
(
Aθ

µR

)θ
µR

=

Aθ
µR

.
(iii) Since A ∩ B ⊆ A and A ∩ B ⊆ B, from (i) Aθ

µR
⊆ (A ∩B)

θ
µR

and Bθ
µR

⊆ (A ∩B)
θ
µR

. Thus

Aθ
µR

∩Bθ
µR

⊆ (A ∩B)
θ
µR

.

(iv) Because of A ⊆ A∪B and B ⊆ A∪B, (A ∪B)
θ
µR

⊆ Aθ
µR

and (A ∪B)
θ
µR

⊆ Bθ
µR

from (i). Therefore

(A ∪B)
θ
µR

⊆ Aθ
µR

∪Bθ
µR

. ■

Theorem 3.6. Let (X,µR) be a FPR-space, Ai ⊆ X (i = 1, 2, · · · , n), n ∈ N and θ ∈ [0, 1). Then the
following statements hold:

(i)
⋂
i

(Ai)
θ
µR

⊆
(⋂

i

Ai

)θ

µR

,

(ii)
(⋃

i

Ai

)θ

µR

⊆
⋃
i

(Ai)
θ
µR

.

Theorem 3.7. Let (X,µR) be a FPR-space, A ⊆ X and θi ∈ [0, 1) (i = 1, 2, · · · , n), n ∈ N. Then
(i) If θ1 > θ2, then Aθ1

µR
⊆ Aθ2

µR
,

(ii) If θ1 > θ2 > · · · > θn, then Aθ1
µR

⊆ Aθ2
µR

⊆ · · · ⊆ Aθn
µR

.

Proof. (i) Let θ1 > θ2 and x ∈ Aθ1
µR

. Then µR(A, x) > θ1 and so µR(A, x) > θ2 since θ1 > θ2. Hence
x ∈ Aθ2

µR
. Consequently, Aθ1

µR
⊆ Aθ2

µR
.

(ii) It is easily obtained from (i). ■

Theorem 3.8. Let (X,µR) be a FPR-space, A ⊆ X , θi ∈ [0, 1), n ∈ N and
∧
i

θi = α,
∨
i

θi = β. Then

(i)
⋃
i

Aθi
µR

= Aα
µR

,

(ii)
⋂
i

Aθi
µR

= Aβ
µR

.

Proof. (i) Let x ∈
⋃
i

Aθi
µR

. Then x ∈ Aθi
µR

and so µR(A, x) > θi for at least i. Hence µR(A, x) > α from∧
i

θi = α. Thus x ∈ Aα
µR

. Therefore
⋃
i

Aθi
µR

⊆ Aα
µR

. Similarly, we can show that Aα
µR

⊆
⋃
i

Aθi
µR

. As a results,⋃
i

Aθi
µR

= Aα
µR

for all i.

(ii) Let x ∈
⋂
i

Aθi
µR

. Then x ∈ Aθi
µR

and so µR(A, x) > θi for all i. Hence µR(A, x) > β from
∨
i

θi = β.

Thus x ∈ Aβ
µR

. Therefore
⋂
i

Aθi
µR

⊆ Aβ
µR

. Similarly, we can show that Aβ
µR

⊆
⋂
i

Aθi
µR

. Consequently,⋂
i

Aθi
µR

= Aβ
µR

for all i. ■

Definition 3.9. Let (X,µR) be a FPR-space and let “·” be a binary operation defined on X . G ⊆ X is called
a θf -approximately groupoid in FPR-space if x · y ∈ Gθ

µR
for all x, y ∈ G.
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Let we consider G is a θf -approximately groupoid with the operation “·” in (X,µR), g ∈ G and A,B ⊆ G.
The subsets g ·A,A · g,A ·B ⊆ Gθ

µR
⊆ X are described as follows:

g ·A = gA = {ga|a ∈ A},

A · g = Ag = {ag|a ∈ A},

A ·B = AB = {ab|a ∈ A, b ∈ B}.

Definition 3.10. Let (X,µR) be a FPR-space, “·” be a binary operation on X and S ⊆ X . S is named a
θf -approximately semigroup in FPR-space if the conditions mentioned below are obtained:

(1) x · y ∈ Sθ
µR

,
(2) (x · y) · z = x · (y · z) property satisfy on Sθ

µR

for all x, y, z ∈ S.

If θf -approximately semigroup has approximately identity element eθ ∈ Sθ
µR

such that x ·eθ = eθ ·x = x for
all x ∈ S, then S is called a θf -approximately monoid in FPR-space. If x · y = y · x property holds in Sθ

µR
for

all x, y ∈ S, then S is commutative θf -approximately semigroup in FPR-space.

Example 3.11. Assume X is a 16 pixel digital image, as shown in Fig. 1 and S = {x13, x23, x32} be a subimage
of X . From Example 3.3, θf -approximation of S is

Sθ
µR

= {x13, x23, x32, x12, x22}

where θ = 0.92.
Let

· : X ×X −→ X

(xij , xkl) 7−→ xij · xkl = xpr

be a binary operation on X such that p = min {i, k} and r = min {j, l}.
By Definition 3.10, since
(1) xij · xkl ∈ Sθ

µR
,

(2) (xij · xkl) · xmn = xij · (xkl · xmn) property satisfy on Sθ
µR

for all xij , xkl, xmn ∈ S

are satisfied, S is indeed a θf -approximately semigroup in FPR-space (X,µR) with “ · ”.
Also, since xij · xkl = xkl · xij for all xij , xkl ∈ S property satisfies in Sθ

µR
, S is a commutative θf -

approximately semigroup.

Definition 3.12. Let (X,µR) be a FPR-space, S ⊆ X be a θf -approximately semigroup and T ⊆ S (T ̸= ∅).
T is called a θf -approximately subsemigroup if T is a θf -approximately semigroup with the operation in S.

Theorem 3.13. Let S be a θf -approximately semigroup and T ⊆ S (T ̸= ∅). If T θ
µR

is a θf -approximately
groupoid and T θ

µR
⊆ Sθ

µR
, then T is a θf -approximately subsemigroup of S .

Proof. Since T θ
µR

is a θf -approximately groupoid, thus x · y ∈ T θ
µR

for all x, y ∈ T . Furthermore, (x · y) · z =

x · (y · z) property satisfies on T θ
µR

for all x, y, z ∈ T , since S is a θf -approximately semigroup and T θ
µR

⊆ Sθ
µR

.
Consequently, T is a θf -approximately subsemigroup of S. ■

Definition 3.14. Let (X,µR) be a FPR-space, S ⊆ X be a θf -approximately semigroup and I ⊆ S.
(1) I is called a θf -approximately left ideal of S if IθµR

is a left ideal of S, i.e., S(IθµR
) ⊆ IθµR

.
(2) I is called a θf -approximately right ideal of S if IθµR

is a right ideal of S, i.e., (IθµR
)S ⊆ IθµR

.
(3) I is called a θf -approximately bi-ideal of S if IθµR

is a bi-ideal of S, i.e., (IθµR
)S(IθµR

) ⊆ IθµR
.

Example 3.15. In Example 3.11, let we use θf -approximately semigroup S = {x13, x23, x32}. From Definition
3.14, obviously S ⊆ S is a θf -approximately left ideal, θf -approximately right ideal and also θf -approximately
bi-ideal of S.
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Theorem 3.16. Let (X,µR) be a FPR-space and S ⊆ X . If S is a semigroup in X , then S is a θf -approximately
semigroup in FPR-space.

Proof. Assume that S ⊆ X be a semigroup. Using Lemma 3.4 (ii), S ⊆ Sθ
µR

is obtained. Hence x · y ∈ Sθ
µR

and (x · y) ·z = x · (y · z) condition is also accurate in Sθ
µR

for all x, y, z ∈ S. After that S is a θf -approximately
semigroup in FPR-space. ■

The Theorem 3.16 shows that θf -approximately semigroup is a generalization of a semigroup.

Theorem 3.17. Let (X,µR) be a FPR-space and S ⊆ X . If I is a left (right) ideal of θf -approximately
semigroup S and

(
Sθ
µR

) (
IθµR

)
⊆ IθµR

(
(
IθµR

) (
Sθ
µR

)
⊆ IθµR

), then I is a θf -approximately left (right) ideal of
S.

Proof. Let we consider I be a left ideal of θf -approximately semigroup S, that is, SI ⊆ I . We know that
S ⊆ Sθ

µR
. Hence, from the hypothesis

(
Sθ
µR

) (
IθµR

)
⊆ IθµR

,

S
(
IθµR

)
⊆

(
Sθ
µR

) (
IθµR

)
⊆ IθµR

.

As a results, IθµR
is a left ideal of S and so I is a θf -approximately left ideal of S. Also, It is obviously if I

is a right ideal of θf -approximately semigroup S and
(
IθµR

) (
Sθ
µR

)
⊆ IθµR

, I is a θf -approximately right ideal of
S. ■

4. Conclusions

This work proposed θf -approximations of sets in fuzzy proximal relator space to provide more sensitive approach
for approximations or clustering. From the examples and results, it was verified that θf -approximation is able to
classify the pixels in digital images more precisely according to the selected θ ∈ [0, 1). Other results about
θf -approximately algebraic structures provides a theoretical basis for further studies. Future studies should
investigate the performance of this theory with experimental studies in any applied fields.
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Abstract. We study a Pantograph-type equation with Katugampola fractional derivatives. Under nonlocal conditions, we
establish some existence and uniqueness results for the problem. Then, some other main results are proved by introducing
new definitions related to ULAM stability.
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1. Introduction

It’s seen now that technology is a very important matter basis for peoples life, governments systems, specially
with the COVID-19 global pandemic happening. As the technology grow faster the need of mathematical
modeling grow bigger.

Nowadays, the fractional calculus theory has proven it important use as a tool in modeling many real life
problems as energy-saving, national economics growth, Image processing, engineering, biology, physics and
fluid dynamics and many other researches area see [9, 12, 20, 26]. The fractional calculus theory is based on
the study of partial and ordinary differential equations, where the derivation or the integration operator is of non-
integer order α or complex with Re(α) > 0. The most three known approaches of operators of fractional calculus
theory were given by Grünwald-Letnikov in 1867; 1868, Riemann-Liouville in 1832; 1847 and Caputo 1967 [15].
The treatment of a fractional differential equation mostly involve the study of the exitance and uniqueness of the
solution or only the existence of the solutions also the stability of this solutions is implicated, many scholars has
given a widely amount of interesting results in such researches see [2, 4, 6, 8, 11, 16, 22, 28].
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The pantograph equation with nonlocal conditions via Katugampola fractional derivative

In 1971 Ockendon and Taylor [21] did the research on the way in which the electric current is collected by
the pantograph of an electric locomotive using a delay equation{

w′(t) = aw(t) + bw(ϵt) 0 ≤ t ≤ T, 0 < ϵ < 1,

w(0) = w0,

which is now called the Pantograph equation. Since that time many researchers studied and used it in different
mathematical and scientific areas as number theory, probability, electrodynamics, medicine, see [21, 25, 27] and
the bibliography therein.

A lot of researches have been done on the fractional pantograph equations due to their importance to many
areas of research, such as [24] in which K. Balachandran and S. Kiruthika treated the existence of solutions for
the following nonlinear fractional pantograph equation:

Dαu(t) = f(t, u(t), u(λt)), t ∈ [0, T ]

u(0) = u0.

Also in [23] Y. Jalilian and M. Ghasemi considered the following fractional integro-differential equation of
Pantograph type connected with appropriate initial condition

cD
αu(t) = f(t, u(t), u(pt)) +

∫ qt

0

g1(t, s, u(s))ds

+

∫ t

0

g2(t, s, u(s))ds, t ∈ [0, T ]

u(0) = u0.

where cD
α is the derivative in the sense of Caputo of order α ∈ (0, 1].

In this paper, we shall study the following nonlinear fractional pantograph problem
cD

α,ρy(t) = f(t, y(t), y(pt)) + g(t, y(t), y((1− p)t))

y(0)− Iβy(ξ) = 0, 0 < ξ < T, α ∈ (0, 1] t ∈ [0, T ]
(1.1)

where cD
α,ρ is the Katugampola-type fractional derivative in Caputo sense of order α, 0 < p < 1, ρ > 0, and

Iβ is the integral of order β > 0, and f, g : [0, T ]× R2 −→ R are two given functions.
To the best of our knowledge, this is the first time where such problem is studied.

2. Preliminaries

We recall some definitions and lemmas that will be used later. For more details we refer to [17 −−19].

Definition 2.1. Let α > 0, and f : [a, b] 7−→ R be a continuous function. The Riemann-Liouville integral of
order α of f is defined by:

Iαa f(t) =
1

Γ(α)

∫ t

a

(t− τ)α−1f(τ)dτ,

where Γ(α) :=

∫ ∞

0

e−uuα−1du.

In particular when a = 0 we denote simply

Iαf(t) = Iα0 f(t)
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Definition 2.2. For a function f ∈ Cn([a, b],R) and n − 1 < α ≤ n, the Caputo fractional derivative of f is
defined by:

cD
αf(t) = In−α

a f (n)(t)

=
1

Γ(n− α)

∫ t

a

(t− s)n−α−1f (n)(s)ds.

Definition 2.3. Let f : [a, b] 7−→ R be an integrable function, α ∈ (0, 1] and γ > 0. The Katugampola integral
of order α of f is given by

γIαa f(t) =
γ1−α

Γ(α)

∫ t

a

(tγ − sγ)−(1−α)sγ−1f(s)ds. (2.1)

When a = 0 we denote simply
γIαf(t) = γIα0 f(t)

Lemma 2.4. Let α > 0, β > 0 such that α+ β ≤ 1. Then,

γIαa
γIβa = γIα+β

a (2.2)

Proof. Let f : [a, b] → R be a continues function then for all α > 0, β > 0 we have

Iαa
[
Iβa [f(t)]

]
=

1

Γ(α)

∫ t

a

(t− s)α−1Iβa [f(s)]ds

=
1

Γ(α)Γ(β)

∫ t

a

[
(t− s)α−1

∫ s

a

(s− x)β−1f(x)dx
]
ds

=
1

Γ(α)Γ(β)

∫ t

a

(t− s)α−1ds

∫ s

a

(s− x)β−1f(x)dx

=
1

Γ(α)Γ(β)

∫ t

a

f(x)dx

∫ t

x

(t− s)α−1(s− x)β−1ds.

(2.3)

By changing the variables = x+ (t− x)ϱ and using Beta function we get

Iαa
[
Iβa [f(t)]

]
=

1

Γ(α)Γ(β)

∫ t

a

f(x)dx

∫ 1

0

(t− x− (t− x)ϱ)α−1

∗ (x+ (t− x)ϱ− x)β−1(t− x)dϱ.

=
1

Γ(α)Γ(β)

∫ t

a

f(x)(t− x)α+β−1dx

∫ 1

0

(1− ϱα−1)ϱβ−1dϱ

=
B(α, β)

Γ(α)Γ(β)

∫ t

a

f(x)(t− x)α+β−1dx

=
1

Γ(α) + β)

∫ t

a

f(x)(t− x)α+β−1dx.

= Iα+β
a [f(t)].

(2.4)

■

Definition 2.5. Let f : [a, b] 7−→ R be an integrable function, α ∈ (0, 1) and γ > 0. The Katugampola fractional
derivatives of order α of f(t) is defined by

Dα,γ
a f(t) = t1−γ d

dt

(
γI1−α

a f
)
(t)

=
γα

Γ(1− α)
t1−γ d

dt

∫ t

a

(tγ − sγ)−αsγ−1f(s)ds.

(2.5)
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In particular when a = 0 we denote simply

Dα,γf(t) = Dα,γ
0 f(t)

Definition 2.6. The Caputo-Katugampola fractional derivatives of order α is defined by

cD
α,γ
a f(t) = Dα,γ

a

[
f(t)− f(a)

]
=

γα

Γ(1− α)
t1−γ d

dt

∫ t

a

(tγ − sγ)−αsγ−1
[
f(s)− f(a)

]
ds.

(2.6)

In particular when a = 0 we denote simply

cD
α,γf(t) = cD

α,γ
0 f(t)

To study (1.1) we need the following lemma

Lemma 2.7. Let f ∈ C1([a, b]). Then,

cD
α,γ
a f(t) =

γα

Γ(1− α)

∫ t

a

(tγ − sγ)−αf ′(s)ds. (2.7)

Proof. If we set for a fixed t,
ut(s) = − 1

γ(1−α) (t
γ − sγ)1−α and v(s) = f(s) − f(a), then we have u′

t(s) = sγ−1(tγ − sγ)−α and v′(s) =

f ′(s).
Thus, we can write:

cD
α,γ
a f(t) =

γα

Γ(1− α)
t1−γ d

dt

∫ t

a

u′
t(s)v(s)ds,

and, by an integration by parts, we have

cD
α,γ
a f(t) = − γα

Γ(1− α)
t1−γ d

dt

∫ t

a

ut(s)f
′(s)ds,

and since ut(t) = 0, we get

cD
α,γ
a f(t) = − γα

Γ(1− α)
t1−γ

∫ t

a

∂

∂t
(ut(s))f

′(s)ds,

that corresponds exactly to (2.7). ■

Remark 2.8. Note that we can rewrite (2.7) in the form

cD
α,γ
a f(t) = γI1−α

a

(
t1−γf ′(t)

)
. (2.8)

Now we have

Lemma 2.9. Given f ∈ C1([a, b]), then

γIαa cD
α,γ
a f(t) = f(t)− f(a).

Proof. Indeed, using the formula (2.8), we can write

γIαa cD
α,γ
a f(t) = γIαa

γI1−α
a

(
t1−γf ′(t)

)
. (2.9)
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But, thanks to Lemma 2.4, γIαa
γI1−α

a = γI1a . Thus,

γIαa cD
α,γ
a f(t) = γI1a

(
t1−γf ′(t)

)
=

∫ t

a

sγ−1s1−γf ′(s)ds

= f(t)− f(a).

(2.10)

■

Let us introduce now the following Lemma:

Lemma 2.10. Let F ∈ C([0, 1]). Then, the problem
cD

α,ρy(t) = F (t) α ∈ (0, 1] t ∈ [0, T ]

y(0)− Iβy(ξ) = 0, 0 < ξ < T,
(2.11)

admits as a solution the function:

y(t) =
ρ1−α

Γ(α)

∫ t

0

(tρ − sρ)α−1sρ−1F (s)ds+
Γ(β + 1)ρ1−α

Γ(α)Γ(β)(Γ(β + 1)− ξβ)

×
∫ ξ

0

(ξ − u)β−1

(∫ u

0

(uρ − sρ)α−1sρ−1F (s)ds

)
du,

(2.12)

provided that T β < Γ(β + 1).

Proof. Using Lemma 9, we obtain
y(t) = ρIαF (t) + y(0). (2.13)

Using the boundary condition we get

y(0) = Iβ(ρIαF (ξ) + y(0))

= Iβy(0) + Iβ ρIαF (ξ)

= y(0)
ξβ

βΓ(β)
+ Iβ ρIαF (ξ)

= y(0)
ξβ

Γ(β + 1)
+ Iβ ρIαF (ξ).

(2.14)

Thus,

y(0) =
Γ(β + 1)

(Γ(β + 1)− ξβ)
Iβ ρIαF (ξ)

=
Γ(β + 1)ρ1−α

Γ(α)Γ(β)(Γ(β + 1)− ξβ)

∫ ξ

0

(ξ − u)β−1

∗
(∫ u

0

(uρ − sρ)α−1sρ−1F (s)ds

)
du.

(2.15)

Finally, inducting (2.15) in (2.13) we obtain (2.12). ■

In the following section we will study of the existence as well as the existence and uniqueness of the solution
([1, 5, 13, 14]), and examine the Ulam-Hyers stability ([3, 7, 10]) for the introduced problem (1)
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3. Main Results

We consider the following hypotheses:

(P1) : f, g : [0, T ]× R2 −→ R , are continuous.

(P2) : There are nonnegative constants Lf and Lg , such that for all t ∈ J , xi, x
∗
i ∈ R, i = 1, 2

|f(t, x1, x2)− f(t, x1
∗, x2

∗)| ≤ Lf

2∑
i=1

|xi − xi
∗|,

|g(t, x1, x2)− g(t, x1
∗, x2

∗)| ≤ Lg

2∑
i=1

|xi − xi
∗|.

(P3) : There exist positive constants λ, δ, that satisfy for all t ∈ [0, T ], and for all x, x∗ ∈ R

|f(t, x, x∗)| ≤ λ, and |g(t, x, x∗)| ≤ δ.

Also, we consider the quantities:

A1 =
2Γ(β + 1)

(
Lf + Lg

)
T ρα

ραΓ(α+ 1)|Γ(β + 1)− T β |

A2 =
2
(
Lf + Lg

)
T ρα+β

ραΓ(α+ 1)|Γ(β + 1)− T β |
.

3.1. Existence of a unique solution

The first main result deals with the existence of a unique solution for (1.1). We have:

Theorem 3.1. Assume that (P2) is satisfied. Then, the problem (1.1) has a unique solution, provided that
A1 < 1 and Γ(β + 1) > T β .

Proof. Let us introduce the Banach space

E := C([0, T ],R),with the norm: ∥x∥E = sup
t∈[0,T ]

|x(t)|.

Then, we define the nonlinear operator H : E → E as follows:
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Hy(t) =
ρ1−α

Γ(α)

∫ t

0

(tρ − sρ)α−1sρ−1

(
f(s, y(s), y(ps))

+ g(s, y(s), y((1− p)s))

)
ds+

β ρ1−α

Γ(α)(Γ(β + 1)− ξβ)

×
∫ ξ

0

(ξ − u)β−1

(∫ u

0

(uρ − sρ)α−1sρ−1

×
(
f(s, y(s), y(ps)) + g(s, y(s), y((1− p)s))

)
ds

)
du.

(3.1)

We shall prove that H is a contraction mapping in E.
For y, x ∈ E and for each t ∈ [0, T ], we have

∣∣Hy(t)−Hx(t)
∣∣ = ∣∣∣∣ρ1−α

Γ(α)

∫ t

0

(tρ − sρ)α−1sρ−1

(
f(s, y(s), y(ps))

f(s, x(s), x(ps)

)
ds+

ρ1−α

Γ(α)

∫ t

0

(tρ − sρ)α−1sρ−1

(
g(s, x(s), x((1− p)s))

− g(s, y(s), y((1− p)s))

)
ds+

β ρ1−α

Γ(α)|Γ(β + 1)− ξβ |

∫ ξ

0

(ξ − u)β−1

×
[ ∫ u

0

(uρ − sρ)α−1sρ−1

(
f(s, y(s), y(ps))− f(s, x(s), x(ps)

+ g(s, y(s), y((1− p)s))− g(s, x(s), x((1− p)s))

)
ds

]
du.

(3.2)

Then,

∣∣Hy(t)−Hx(t)
∣∣ ≤ (Lf + Lg)

ρ1−α

Γ(α)

∫ t

0

(tρ − sρ)α−1sρ−1

(
|y(s)− x(s)|

+ |y(ps)− x(ps)|
)
ds+

(Lf + Lg)β ρ1−α

Γ(α)|Γ(β + 1)− T β |

∫ ξ

0

(ξ − u)β−1[ ∫ u

0

(uρ − sρ)α−1sρ−1

(
|y(s)− x(s)|+ |y(ps)− x(ps)|

)
ds

]
du.

(3.3)

Hence, a straightforward computation gives

∥∥Hy −Hx
∥∥
E
≤

[
2
(
Lf + Lg

)
T ρα

ραΓ(α+ 1)
+

2
(
Lf + Lg

)
T ρα+β

ραΓ(α+ 1)|Γ(β + 1)− T β |

]∥∥y − x
∥∥

≤
2
(
Lf + Lg

)
T ρα

ραΓ(α+ 1)

(
1 +

T β

|Γ(β + 1)− T β |

)∥∥y − x
∥∥

≤
2
(
Lf + Lg

)
Γ(β + 1)T ρα

ραΓ(α+ 1)|Γ(β + 1)− T β |
∥∥y − x

∥∥
(3.4)

Consequently, ∥∥Hy −Hx
∥∥
E
≤ A1

∥∥y − x
∥∥
E
.

■
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3.2. Existence of at least one solution

The second main result deals with the existence of at least one solution.

Theorem 3.2. Assume that hypotheses (P1), (P2) and (P3) are satisfied with A2 < 1.

Then, the problem (1.1) has at least one solution provided that Γ(β + 1) > T β .

Proof. We put

r ≥ (λ+ δ)Γ(β + 1)T ρα

ραΓ(α+ 1)(Γ(β + 1)− T β)

and consider the ball Br := {x ∈ E, ∥x∥E ≤ r}.
Then, we define the operators M and N on Br as:

(My)(t) =
ρ1−α

Γ(α)

∫ t

0

(tρ − sρ)α−1sρ−1

(
f(s, y(s), y(ps))

+ g(s, y(s), y((1− p)s))

)
ds

(3.5)

and

(Ny)(t) =
β ρ1−α

Γ(α)(Γ(β + 1)− ξβ)

∫ ξ

0

(ξ − u)β−1[ ∫ u

0

(uρ − sρ)α−1sρ−1

(
f(s, y(s), y(ps))

+ g(s, y(s), y((1− p)s))

)
ds

]
du.

(3.6)

For y, x ∈ Br, we find that

∥Mx+Ny∥E ≤ (λ+ δ)T ρα

ραΓ(α+ 1)
+

(λ+ δ)T ρα+β

ραΓ(α+ 1)(Γ(β + 1)− T β)

≤ (λ+ δ)Γ(β + 1)T ρα

ραΓ(α+ 1)(Γ(β + 1)− T β)

(3.7)

Then, we can write ∥Mx+Ny∥E ≤ r. Thus, Mx+Ny ∈ Br.

Furthermore, for x, y ∈ Br, we obtain ∥∥Nx−Ny
∥∥
E

≤ A2∥x− y∥. (3.8)

That is to say that N is contractive on Br.
Now we prove that M is a compact operator on Br.
We have ∥∥(Myn)− (My)

∥∥
E
≤ T ρα

ραΓ(α+ 1)
∥f(s, yn(s), yn(ps))

− f(s, y(s), y(ps))∥+ T ρα

ραΓ(α+ 1)

× ∥g(s, yn(s), yn(1− p)(s))− g(s, y(s), y(1− p)(s))∥.

Thanks to (P1), and since s 7→ y(s) is bounded on [0, T ], and ∥yn − y∥E → 0, we reduce the continuity of
f and g to a compact set of [0, T ]× R2, so that we obtain ∥Myn −My∥E → 0.
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Also, for y ∈ Br, we get ∥∥My
∥∥
E
≤

(
λ+ δ

)
T ρα

ραΓ(α+ 1)
< ∞. (3.9)

Consequently, M is uniformly bounded on Br.

Now, we prove that M is equicontinuous. Let t1, t2 ∈ [0, T ],

t1 < t2. Then for y ∈ Br, we have∣∣My(t1)−My(t2)
∣∣ ≤ ∣∣∣∣ρ1−α

Γ(α)

∫ t1

0

(t1
ρ − sρ)α−1sρ−1

(
f(s, y(s), y(ps))

+ g(s, y(s), y((1− p)s))

)
ds− ρ1−α

Γ(α)

∫ t2

0

(t2
ρ − sρ)α−1sρ−1

×
(
f(s, y(s), y(ps)) + g(s, y(s), y((1− p)s))

)
ds

∣∣∣∣.
(3.10)

Hence, ∣∣My(t1)−My(t2)
∣∣ ≤ ∣∣∣∣ρ1−α

Γ(α)

∫ t1

0

(t1
ρ − sρ)α−1sρ−1

(
f(s, y(s), y(ps))

+ g(s, y(s), y((1− p)s))

)
ds− ρ1−α

Γ(α)

∫ t1

0

(t2
ρ − sρ)α−1sρ−1

×
(
f(s, y(s), y(ps)) + g(s, y(s), y((1− p)s))

)
ds

∣∣∣∣ ∗ ρ1−α

Γ(α)

×
∫ t2

t1

(t2
ρ − sρ)α−1sρ−1

∣∣∣∣f(s, y(s), y(ps)) + g(s, y(s), y((1− p)s))

∣∣∣∣ds.
≤ ρ1−α(λ+ δ)

Γ(α)

∫ t1

0

(
(t2

ρ − sρ)α−1 − (t1
ρ − sρ)α−1

)
sρ−1 ds

+
ρ1−α(λ+ δ)

Γ(α)

∫ t2

t1

(t2
ρ − sρ)α−1 sρ−1ds

(3.11)

Then, we get ∣∣My(t2)−My(t1)
∣∣ ≤ (

λ+ δ
)(
t2

ρα − t1
ρα
)

ραΓ(α+ 1)
. (3.12)

The right hand side of (3.12) tends to zero independently of y as t1 → t2.
This implies that M is relatively compact, and by the Arzela-Ascoli theorem, we conclude that M is compact on
Br.
Hence, the existence of the solution of the (1.1) holds by Krasnoselskii fixed point theorem. ■

3.3. UH-Stability

Definition 3.3. The equation (1.1) has the UH stability if there exists a real number k > 0, such that for each
ε > 0, for any t ∈ [0, T ], and for each x ∈ E that verify∣∣∣∣cDα,ρx(t)− f(t, x(t), x(pt))− g(t, x(t), x((1− p)t))

∣∣∣∣ ≤ ε (3.13)

there exists a solution y ∈ E of (1.1); that is

cD
α,ρy(t) = f(t, y(t), y(pt)) + g(t, y(t), y((1− p)t)) (3.14)

such that,
∥x− y∥E ≤ k ε.
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Definition 3.4. The problem (1.1) has the UH stability in the generalized sense if there exists ϕ ∈ C(R+,R+),
such that ϕ(0) = 0 : for each ε > 0, and for any x ∈ E satisfying (3.13), there exists a solution y ∈ E of
equation (1.1), such that

∥x− y∥E < ϕ( ε).

Theorem 3.5. Let the assumptions of Theorem (3.1) hold and L′
f + L′

g < 1. If the inequality

∥∥
CD

ρ,αx(t)
∥∥
E
≥

[
2
(
L′
f + L′

g

)
r + λ+ δ

]
T ρα

ραΓ(α+ 1)

+

(
2Γ(β + 1)

(
L′
f + L′

g

)
r + λ+ δ

ραΓ(α+ 1)(Γ(β + 1) + T )

)
× Γ(ρα+ 1)T ρα+β

Γ(ρα+ β + 1)
(3.15)

is valid, then problem (1.1) has the UH stability.

Proof. Let ε > 0 and let x ∈ E be a function which satisfies (3.13) and let y ∈ E be the unique solution of the
equation (1.1). We have:

∥x∥E ≤
[
2
(
L′
f + L′

g

)
r + γ + δ

]
T ρα

ραΓ(α+ 1)

+

(
2Γ(β + 1)

(
L′
f + L′

g

)
r + γ + δ

ραΓ(α+ 1)(Γ(β + 1) + T )

)
× Γ(ρα+ 1)T ρα+β

Γ(ρα+ β + 1)
(3.16)

Combining (3.15) and (3.16), we obtain

∥x∥E ≤ ∥cDρ,αx(t)∥E (3.17)

Therefore, we get

∥x−y∥ ≤ ∥cDρ,α
(
x− y

)
∥

≤ sup
t∈J

∣∣
cD

ρ,αx(t)− cD
ρ,αy(t)− f(t, x(t), x(pt))

+ g(t, x(t), x((1− p)t))− f(t, y(t), y(pt))

+ g(t, y(t), y((1− p)t)) + f(t, x(t), x(pt))

− g(t, x(t), x((1− p)t)) + f(t, y(t), y(pt))

− g(t, y(t), y((1− p)t))
∣∣.

(3.18)

Thanks to (3.13) and (3.14), we get

∥x− y∥ ≤ ε+
(
L′
f + L′

g

)
∥x− y∥ (3.19)

But since,

L′
f + L′

g < 1

then, we can write
∥x− y∥E ≤ ε

1− (L′
f + L′

g)
= εk. (3.20)

Consequently, (1.1) has the UH stability.
Taking ϕ(ε) = εk, we can state that the equation (1.1) has the generalized UH stability. ■
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Abstract. This work introduces the hyperbolic k-Padovan quaternion sequence, performing the process of complexification
of linear and recurrent sequences, more specifically of the generalized Padovan sequence. In this sense, there is the study of
some properties around this sequence, deepening the investigative mathematical study of these numbers.
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1. Introduction and Background

Studies of recursive linear sequences have been noticed in the mathematical literature. Based on this, there is
the concern to carry out an investigative study on the process of complexification of certain sequences. So soon,
in this work, the hyperbolic quaternion k-Padovan sequence is introduced, presenting algebraic properties around
these numbers.

The Padovan sequence is a linear and recurrent third-order sequence, named after the Italian architect Richard
Padovan. Thus, its recurrence is given by: Pn = Pn−2 + Pn−3, n ≥ 3 and being P0 = P1 = P2 = 1 your initial
conditions [13–16].

The quaternions were developed by Willian Rowan Hamilton (1805-1865), arose from the attempt to
generalize complex numbers in the form z = a + bi in three dimensions [10]. Thus are presented as formal
sums of scalars with usual vectors of three-dimensional space, existing four dimensions. Second Halici (2012)
[8], a quaternion is a hyper-complex number and is described by:

q = a+ bi+ cj + dk

∗Corresponding author. Email address: re.passosm@gmail.com (Renata Vieira)
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where a, b, c are real numbers or scalar and i, j, k the orthogonal part at the base R3. The quaternionic product
being i2 = j2 = k2 = ijk = −1, ij = k = −ji, jk = i = −kj and ki = j = −ik.

Being q1 = a1 + b1i + c1j + d1k and q2 = a2 + b2i + c2j + d2k two distinct quaternions. The addition,
equality and multiplication scalar operations between them are:

q1 + q2 = (a1 + a2) + (b1 + b2)i+ (c1 + c2)j + (d1 + d2)k.

q1 = q2 only if a1 = a2, b1 = b2, c1 = c2, d1 = d2. And for α ∈ R, we have αq1 = αa1 + αb1i + αc1j +

αd1k. The conjugate of the quaternion is denoted by q = a− bi− cj − dk.
There are also other works, such as [3, 6, 7, 9] that address the quaternions in the scope of numerical

sequences, which are also used as a basis for this research.
As for hyperbolic numbers, the set of these numbers H can be described as:

H =
{
z = x+ hy|h /∈ R, h2 = 1, x, y ∈ R

}
.

The addition and multiplication of two of these hyperbolic numbers n1 e n2,are given by [12]:

n1 ± n2 = (x1 + hy1)± (x2 + hy2) = (x1 ± x2) + h(y1 ± y2)

n1n2 = (x1 + hy1)(x2 + hy2) = (x1x2) + h(y1y2) + h(x1y2 + x2y1)

In this sense, there are works on hyperbolic numbers and the quaternion sequence, used as a basis for this
investigative process [1, 2, 4, 5, 11].

2. The hyperbolic k-Padovan quaternions

The sequence of k-Padovan is defined by Pk,n = Pk,n−2 + kPk,n−3, n ≥ 3, k ⩾ 1 with initial values Pk,0 =

Pk,1 = Pk,2 = 1. In turn, we have the characteristic polynomial of this sequence as being x3 − x− k = 0.

Definition 2.1. The hyperbolic k-Padovan quaternions are given by:

HPk,n = Pk,n + iPk,n+1 + jPk,n+2 + kPk,n+3,

where i2 = j2 = k2 = −1,ij = k = −ji,jk = i = −kj,ki = j = −ik.

According to the definitions presented, a study is carried out on the operations of addition, subtraction, and
multiplication of hyperbolic k-Padovan quaternions.

HPk,n ±HPk,m = (Pk,n ± Pk,m) + i(Pk,n+1 ± Pk,m+1) + j(Pk,n+2 ± Pk,m+2)

+ k(Pk,n+3 ± Pk,m+3),

HPk,nHPk,m = (Pk,nPk,m + Pk,n+1Pk,m+1 + Pk,n+2Pk,m+2 + Pk,n+3Pk,m+3)

+ i(Pk,nPk,m+1 + Pk,n+1Pk,m + Pk,n+2Pk,m+3 − Pk,n+3Pk,m+2)

+ j(Pk,nPk,m+2 + Pk,n+2Pk,m − Pk,n+1Pk,m+3 + Pk,n+3Pk,m+1)

+ k(Pk,nPk,m+3 + Pk,n+3Pk,m + Pk,n+1Pk,m+2 − Pk,n+2Pk,m+1)

̸= HPk,mHPk,n

The conjugate of the hyperbolic k-Padovan quaternary numbers is represented by:

HP k,n = Pk,n − iPk,n+1 − jPk,n+2 − kPk,n+3.
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Theorem 2.2. Let Pk,n be the nth term of the k-Padovan sequence and HPk,n the nth term of the quaternionic
k-Padovan sequence hyperbolic, for n ⩾ 1 the following relations are given:

(i)HPk,n+3 = HPk,n+1 + kHPk,n;

(ii)HPk,n − iHPk,n+1 + jHPk,n+2 − kHPk,n+3 = Pk,n + Pk,n+2 + Pk,n+4 + Pk,n+6.

Proof. (i) Based on Definition 2.1, we have:

HPk,n+1 + kHPk,n = Pk,n+1 + iPk,n+2 + jPk,n+3 + kPk,n+4

+ k(Pk,n + iPk,n+1 + jPk,n+2 + kPk,n+3)

= (Pk,n+1 + kPk,n) + i(Pk,n+2 + kPk,n+1) + j(Pk,n+3 + kPk,n+2)

+ k(Pk,n+4 + kPk,n+3)

= Pk,n+3 + iPk,n+4 + jPk,n+5 + kPk,n+6

= HPk,n+3

For (ii), we have:

HPk,n − iHPk,n+1 + jHPk,n+2 − kHPk,n+3 = Pk,n + iPk,n+1 + jPk,n+2 + kPk,n+3

− i(Pk,n+1 + iPk,n+2 + jPk,n+3 + kPk,n+4)

− j(Pk,n+2 + iPk,n+3 + jPk,n+4 + kPk,n+5)

− k(Pk,n+3 + iPk,n+4 + jPk,n+5 + kPk,n+6)

= Pk,n + Pk,n+2 − kPk,n+3 + jPk,n+4 + kPk,n+3

+ Pk,n+4 − iPk,n+5 − jPk,n+4 + iPk,n+5 + Pk,n+6

= Pk,n + Pk,n+2 + Pk,n+4 + Pk,n+6

■

Theorem 2.3. Let HP k,n be the quaternionic conjugate of hyperbolic k-Padovan, then:

HPk,n +HP k,n = 2Pk,n

Proof. According to Definition 2.1, we have:

HPk,n +HP k,n = Pk,n + iPk,n+1 + jPk,n+2 + kPk,n+3

+ Pk,n − iPk,n+1 − jPk,n+2 − kPk,n+3

= 2Pk,n

■

3. Some properties

Hereinafter, some properties of the hyperbolic quaternion k-Padovan sequence are studied, based on the
definitions discussed in the previous section.

Theorem 3.1. The generating function of the hyperbolic k-Padovan quaternions is given by:

g(HPk,n, x) =
HPk,0 +HPk,1x+ (HPk,2 −HPk,0)x

2

1− x2 − kx3
.
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Proof. Performing the multiplication of the function by x2, kx3 in the equations below, we have:

g(HPk,n, x) =

∞∑
n=0

HPk,nx
n = HPk,0 +HPk,1x+HPk,2x

2 + . . .+HPk,nx
n + . . . (3.1)

x2g(HPk,n, x) = HPk,0x
2 +HPk,1x

3 +HPk,2x
4 + . . .+HPk,n−2x

n + . . . (3.2)

kx3g(HPk,n, x) = HPk,0kx
3 +HPk,1kx

4 +HPk,2kx
5 + . . .+HPk,n−3kx

n + . . . (3.3)

Based on the Equation (3.1-3.2+3.3), we have:
(1− x2 − kx3)g(HPk,n, x) = HPk,0 + HPk,1x+ (HPk,2 − HPk,0)x

2 + (HPk,3 − HPk,1 − HPk,0)x
3

+ . . .+ (HPk,n − HPk,n−2 − HPk,n−3)x
n + . . .

Thus:

(1− x2 − kx3)g(HPk,n, x) = HPk,0 +HPk,1x+ (HPk,2 −HPk,0)x
2

g(HPk,n, x) =
HPk,0 +HPk,1x+ (HPk,2 −HPk,0)x

2

1− x2 − kx3
.

■

Theorem 3.2. For n ∈ N, the Binet formula of the hyperbolic k-Padovan quaternions is expressed by:

Q
(n)
k,n = C1r

n
1 + C2r

n
2 + C3r

n
3 ,

where C1, C2, C3 are the coefficients of the Binet formula of the sequence and r1, r2, r3 the roots of the
characteristic polynomial (x3 − x− k = 0).

Proof. Based on the k-Padovan sequence recurrence formula, its respective defined initial values and its
characteristic polynomial whose roots are r1, r2, r3, it is possible to obtain, by solving the linear system of
equations, the values of coefficients C1, C2, C3.

The discriminant ∆ = (−k)2

4 − 1
27 , referring to the 3rd degree polynomial, determines how the roots of the

polynomial will be. Thus, when ∆ ̸= 0 all roots will be distinct, concluding that k2 ̸= 64
27 . Note also that

r1r2r3 = k, r1 + r2 + r3 = 0 and that when k ̸= 0, there will be at least one root equal to zero, there being no
Binet formula for this case. ■

Theorem 3.3. For n geqslant2 and n in mathbbN , the matrix form of the hyperbolic k-Padovan quaternions is
given by: 0 1 k

1 0 0

0 1 0

n Qk,2 Qk,1 Qk,0

Qk,1 Qk,0 Qk,−1

Qk,0 Qk,−1 Qk,−2

 =

Hk,n+2 Hk,n+1 Hk,n

Hk,n+1 Hk,n Hk,n−1

Hk,n Hk,n−1 Hk,n−2

 .

Proof. Through the finite induction principle, for n = 2, we have:0 1 k

1 0 0

0 1 0

2 Hk,2 Hk,1 Hk,0

Hk,1 Hk,0 Hk,−1

Hk,0 Hk,−1 Hk,−2

 =

1 k 0

0 1 k

1 0 0

Hk,2 Hk,1 Hk,0

Hk,1 Hk,0 Hk,−1

Hk,0 Hk,−1 Hk,−2


=

Hk,2 + kHk,1 Hk,1 + kHk,0 Hk,0 + kHk,−1

Hk,1 + kHk,0 Hk,0 + kHk,−1 Hk,−1 + kHk,−2

Hk,2 Hk,1 Hk,0


=

Hk,4 Hk,3 Hk,2

Hk,3 Hk,2 Hk,1

Hk,2 Hk,1 Hk,0

 .

327
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Checking the validity for any n = z, z ∈ N, one has:0 1 k

1 0 0

0 1 0

z Hk,2 Hk,1 Hk,0

Hk,1 Hk,0 Hk,−1

Hk,0 Hk,−1 Hk,−2

 =

Hk,z+2 Hk,z+1 Hk,z

Hk,z+1 Hk,z Hk,z−1

Hk,z Hk,z−1 Hk,z−2

 .

Therefore, it turns out to be valid for n = z + 1 = 1 + z:0 1 k

1 0 0

0 1 0

1+z Hk,2 Hk,1 Hk,0

Hk,1 Hk,0 Hk,−1

Hk,0 Hk,−1 Hk,−2

 =

0 1 k

1 0 0

0 1 0

0 1 k

1 0 0

0 1 0

z Hk,2 Hk,1 Hk,0

Hk,1 Hk,0 Hk,−1

Hk,0 Hk,−1 Hk,−2


=

0 1 k

1 0 0

0 1 0

Hk,z+2 Hk,z+1 Hk,z

Hk,z+1 Hk,z Hk,z−1

Hk,z Hk,z−1 Hk,z−2


=

Hk,z+1 + kHk,z Hk,z + kHk,z−1 Hk,z−1 + kHk,z−2

Hk,z+2 Hk,z+1 Hk,z

Hk,z+1 Hk,z Hk,z−1


=

Hk,z+3 Hk,z+2 Hk,z+1

Hk,z+2 Hk,z Hk,z

Hk,z+1 Hk,z Hk,z−1

 .

■

4. Conclusion

The study allowed for a mathematical analysis of the k-Padovan sequence and its complex form. Thus,
the hyperbolic k-Padovan quaternion sequence was introduced, addressing some mathematical properties and
theorems. It is noteworthy that for the particular case of k = 1, it is possible to notice that we have the hyperbolic
quaternionic Padovan sequence.
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[41] E. SAVAŞ, Some sequence spaces involving invariant means, Indian J. Math., 31(1989), 1–8.
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