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Abstract. In this paper, we will study about Fractional-order partial differential equations in Mathematical Science and
we will introduce and analyse fractional calculus with an integral operator that contains the Caputo- Fabrizio’s fractional-
order derivative. The advanced method is an appropriate union of the new integral transform named as ‘Mohand transform’
and the homotopy perturbation method. Some numerical examples are used to communicate the generality and clarity of
the proposed method. We will also find the analytical solution of the linear and non-linear Klein-Gordan equation which
originate in quantum field theory. The homotopy perturbation Mohand transform method (HPMTM) is a merged form of
Mohand transform, homotopy perturbation method, and He’s polynomials. Some numerical examples are used to indicate the
generality and clarity of the proposed method.
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1. Introduction, Background and Preliminaries

Fractional calculus is an eminent phrase in each science and technology. Differential and crucial equations
represent and outline various phenomena of technological knowledge and mold the difficulty in a new
appearance. Fractional calculus is the generalization of regular differentiation and integration from linear to
non-linear order. It extend with derivatives of actual or complex order.
In 1695 L’Hospital enquires Leibnitz that Dnf could be what, if n is fractional. Leibnitz answers that it can be
expand in the form of infinite series, such as d1/2xy and distant between infinite series also geometric series, we
use only positive and negative integers in the finite series Leibniz also responded that xd{

1
2} = x

√
dx : x this is

a clear paradox.

S.F. Larcroin developed a formula from a case of integer order which starts withy = xm;m is a positive integer

dny
dxn = m!xm−n

(m−n)! ;m � n

Like this many other mathematicians gave their definitions and formula.Fractional calculus attracted some
mathematical minds like Fourier, Euler, Marquis de Laplace, and plenty of others due primarily to its
incontestable applications in such different fields of science and engineering. The literature is full-fledged by
generating, growing, working, modifications, and generalization of the facts, formulae, and definitions relating
to fractional calculus. A whole historical development and progress of fragmental calculus operators seem in
books of Kilbas, Srivastava, and Trujillo [1], Miller and Ross [2], Nishimoto [3], Oldham and Spanier [4],
Podlubny [5] and, Ross [6], etc.
In mathematical analysis, there are several fields wherever fractional calculus operators are usefully employed in
numerous branches like integral and differential equations, special functions, integral transforms, operational
calculus (see [6],[7]), etc. because it start to be used fractional calculus in various areas as numerous varieties of
operators came to light-weight and by the time they were got changed.
Mohand Transform is derived from the classical Fourier integral. Based on the mathematical simplicity of the
Mohand transform and its fundamental properties. Mohand transform was introduced by Mohand Mahgoub to
facilitate the process of solving ordinary and partial differential equations in the time domain. Typically, Fourier,
Laplace, Elzaki, Aboodh, kamal and Sumudu transforms are the convenient mathematical tools for solving
differential equations.
Mohand transform and some of its fundamental properties are also used to solve differential equations.

2. Mohand Transform

2.1. Definition

A new transform called the Mohand transform defined for function of exponential order we consider functions
in the set A defined by: For a given function in the set A, the constant M must be finite number,k1, k2 may be
finite or infinite.

A = {f(t) : ∃M,k1, k2 > 0.|f(t)| < Me
|t|
kj , ift ∈ (−1)j × [0,∞)} (2.1)

The Mohand transform denoted by the operator M (.) defined by the integral equations

M [f(t)] = R(v) = v2
∫ ∞
0

f(t)e−vt dt, t ≥ 0, k1 ≤ v ≤ k2 (2.2)

2



A study of the homotopy perturbation Mohand transform method

The variable v in this transform is used to factor the variable t in the argument of the function f . this transform
has deeper Connection with the Laplace ,Elzaki, and Aboodh transform.
The purpose of this study is to show the applicability of this interesting new transform and its efficiency in
solving the linear differential equations.

2.2. Mohand Transform and Different Types of Results

Mohand Transform is derived from the classical Fourier integral based on the mathematical simplicity of the
Mohand transform with its fundamental properties.Mohand transform was introduced by MohandMahgoub to
facilitate the process of solving ordinary and partial differential equations in the time domain.Mohandtransform
defined for the function of exponential order we consider functions in the set A defined by:

A = f(t) :M,K1,K2 > 0.|f(t)| < Me
|t|
Kt if t ∈ (−1)j × [0,∞

)
where M must be finite number and K1,K2 may be finite or infinite, for a given function in set A.
The integral equation defines the operator M(.) which represents Mohand transform i.e

M [f(X)] = R(v) = v2
∫ ∞
0

evtf(t)dt, t ≥ 0,K1 ≤ v ≤ K2 (2.3)

The variable v in this transform is used to factor the variable t in the argument of the function f.
If R1(t) and R2(t) represents Mohand transform for functions F1(t) and F2(t) respectively,then Mohand
transform of their convolution F1(t) ∗ F2(t) is given by

M(F1(t) ∗ F2(t)) =
1
v2MF1(t)MF2(t)

M(F1(t) ∗ F2(t)) =
1

v2
R1(t)R2(t) (2.4)

where F1(t) ∗ F2(t) is defined by

F1(t) ∗ F2(t) =

∫ t

0

F1(t− x)F2(t)dt =

∫ t

0

F1(t)F2(t− x)dt (2.5)

Caputo fractional time derivative

Dβ
t (h(t)) =

M(β)

1− β

∫ t

α

h′(x)e[−β(
t−x
1−β )]dx (2.6)

M(α) is function of normalization such as M(0) =M(1) = 1.

M{Dβ
t (h(t))} =

M(β)

1− β
v2
∫ ∞
0

e−vt
∫ t

α

h′(x)e[−β(
t−x
1−β )]dxdt (2.7)

3



Ravi Shanker Dubey, Pranay Goswami and Gomti Ben Tailor, Vinod Gill

We use the convolution property of Mohand transform is defined as

M{Dβ
t (h(t))} =

M(β)
1−β [M(h′(x))] ∗M [e−

βt
1−β ]

M{Dβ
t (h(t))} =

M(β)
1−β [vR(v)− h(0)v2] v2

v−( −β1−β )

M{Dβ
t (h(t))} =M(β)[vR(v)− h(0)v2] v2

v+(β(1−v))

The solution of Caputo-Fabrizio fractional derivative is:

M{Dβ
t (h(t))} =

M(β)
{
v3M [h(t)]− v4h(0)

}
v + β(1− v)

(2.8)

3. HPMTM for the model

In this section, we will study Klein-Gordon equation and its application by using homotopy perturbation Mohand
transform method.

3.1. Solution of Klein-Gordon equation:

Klein-Gordon equation is

utt(x, t)− uxx(x, t) + au(x, t) = g(x, t) (3.1)

with initial condition

u(x, 0) = h(x), ut(x, 0) = f(x) (3.2)

Taking the Mohand transform on both sides ofequ. (2.1), we get

M [utt(x, t)] =M [uxx(x, t)− au(x, t)] +M [g(x, t)] (3.3)

Using the convolution property of Mohand transform, we get

v2R(x, v)− v3u(0)− v2u(0) =M [uxx(x, t)− au(x, t)] +M [g(x, t)] (3.4)

On simplifying and initial conditions, we get

R(x, v) = f(x) + vh(x) +
1

v2
M [uxx(x, t)− au(x, t)] +

1

v2
M [g(x, t)] (3.5)

Taking inverse Mohand transform on both sides ofequ. (2.5), we get

u(x, t) = G(x, t) +M−1[
1

v2
M [uxx(x, t)− au(x, t)]] (3.6)

where G(x,t) represents the term arising from the function and the specified initial conditions.
Using the HPM method, we get

u(x, t) =

∞∑
n=0

pnun(x, t) (3.7)

4
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Putting the equation (2.6) in equ. (2.7), we get

∞∑
n=0

pnun(x, t) = G(x, t) + p

(
M−1

[
1

v2
M

[
∂2

∂x2

∞∑
n=0

pnun(x, t)− a
∞∑
n=0

pnun(x, t)

]])
(3.8)

On collecting the coefficients of exponents of p

p0 : u0(x, t) = G(x, t)

p1 : u1(x, t) =

(
M−1

[
1

v2
M

[
∂2

∂x2
u0(x, t)− au0(x, t)

]])
(3.9)

p2 : u2(x, t) =
(
M−1

[
1
v2M

[
∂2

∂x2u1(x, t)− au1(x, t)
]])

p3 : u3(x, t) =
(
M−1

[
1
v2M

[
∂2

∂x2u2(x, t)− au2(x, t)
]])

.

.

.

and similarly,

pn : un(x, t) =

(
M−1

[
1

v2
M

[
∂2

∂x2
u(n−1)(x, t)− au(n−1)(x, t)

]])
(3.10)

Hence, the solution is:

u(x, t) = lim
N→∞

N∑
n=0

un(x, t) (3.11)

3.2. Study of Mohand Transform Homotopy Perturbation Method (MTHPM)

Let a general non-linear non-homogeneous partial differential equation

Du(x, t) + Ru(x, t) + Nu(x, t) = g(x, t) (3.12)

With the initial conditions

u(x, 0) = h(x), ut(x, 0) = f(x) (3.13)

where D is the linear differential operator of order 2, R is a linear differential operator of less than D; N is the
general nonlinear differential operator and is the source term.

Applying the Mohand transform on both sides ofequ. (2.12), we get

5
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M [Du(x, t)] =M [g(x, t)]−M [Ru(x, t) + Nu(x, t)] (3.14)

Using the property of Mohand transform, we have

[
v2R(x, v)− v3u(x, 0)− v2(x, 0)

]
=M [g(x, t)]−M [Ru(x, t) + Nu(x, t)] (3.15)

After the simplification and initial conditions, we get

R(x, v) = vh(x) + f(x) +
1

v2
M [g(x, t)]− 1

v2
M [Ru(x, t) + Nu(x, t)] (3.16)

Taking inverse Mohand transform on both sides of equ. (2.16), we get

u(x, t) = G(x, t)−M−1
[
1

v2
M [Ru(x, t) + Nu(x, t)]

]
(3.17)

where G(x,t) represents the term arising from the function and the specified initial conditions.

Now we use the HPM

u(x, t) =

∞∑
n=0

pnun(x, t) (3.18)

and the non-linear term can be written as

Nu(x, t) =
∞∑
n=0

pnHn(x, t) (3.19)

where is Hn(x, t) He’s polynomials and given by

Hn (u0, u1, u2, .....un) =
1

n!

∂2

∂p2

[
N

∞∑
n=0

piui

]
p=0 (3.20)

Substituting the equ. (2.19) and equ. (2.18) in equ. (2.17), we get

∞∑
n=0

pnun(x, t) = G(x, t)− p

(
M−1

[
1

v2
M

[
R

∞∑
n=0

pnun(x, t) +N

∞∑
n=0

pnHn(u)

]])
(3.21)

On collecting the coefficient of exponents of p

p0 : u0(x, t) = G(x, t)

p1 : u1(x, t) = −M−1
[
1

v2
M [Ru0(x, t) +H0(u)]

]
(3.22)

p2 : u2(x, t) = −M−1
[

1
v2M [Ru1(x, t) +H1(u)]

]
p3 : u3(x, t) = −M−1

[
1
v2M [Ru2(x, t) +H2(u)]

]

6
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.

.

.

and similarly,

pn : un(x, t) = −M−1
[
1

v2
M [Run−1(x, t) +Hn−1(u)]

]
(3.23)

Hence, the solution is

u(x, t) = lim
N→∞

N∑
n=0

un(x, t) (3.24)

u(x, t) = u0(x, t) + u1(x, t) + u2(x, t) + .......un(x, t) (3.25)

4. Applications of the MTHPM

In this part, we applythe Mohand transform homotopy perturbation method (MTHPM) to solve the linear and
nonlinear Klein-Gordon equation.

Example 1: Consider the linear Klein-Gordon equation

utt(x, t)− uxx(x, t) + u(x, t) = 0 (4.1)

With the initial conditions

u(x, 0) = 0, ut(x, 0) = x (4.2)

Taking Mohand transform on both sides of equ. (3.1), we get

M [utt(x, t)] =M [uxx(x, t)− u(x, t)] (4.3)

Using the convolution property of Mohand transform, we get

v2R(x, v)− v3u(0)− v2u′(0) =M [uxx(x, t)− u(x, t)] (4.4)

On simplifying and above initial conditions, we get

R(x, v) = x+
1

v2
M [uxx(x, t)− u(x, t)] (4.5)

Taking inverse Mohand transform on both sides of equ. (3.5), we get

u(x, t) = xt+M−1[
1

v2
M [uxx(x, t)− u(x, t)]] (4.6)

7
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Now we use the HPM and the non-linear term then we get

∞∑
n=0

pnun(x, t) = xt+M−1[
1

v2
M [

∂2

∂x2

∞∑
n=0

pnun(x, t)−
∞∑
n=0

pnHn(x, t)]] (4.7)

Collecting the coefficients of exponents of p

p0 : u0(x, t) = xt

p1 : u1(x, t) =M−1
[
1

v2
M

[
∂2

∂x2
u0(x, t)− u0(x, t)

]]
= −xt

3

3!
(4.8)

p2 : u2(x, t) =M−1
[
1

v2
M

[
∂2

∂x2
u1(x, t)− u1(x, t)

]]
= −xt

5

5!
(4.9)

p3 : u3(x, t) =M−1
[
1

v2
M

[
∂2

∂x2
u2(x, t)− u2(x, t)

]]
= −xt

7

7!
(4.10)

.

.

.

Similarly, we can obtain further values.

Hence the u(x,t) is

u(x, t) = u0(x, t) + u1(x, t) + u2(x, t) + ......

= x

[(
− t

7

7!
+
t5

5!
− t3

3!
+ t...

)
....
]

= xsint (4.11)

Example 2: Consider the linear Klein-Gordon equation

utt(x, t)− uxx(x, t) + u(x, t) = 2sinx (4.12)

With the initial conditions

u(x, 0) = sinx, ut(x, 0) = 1 (4.13)

Applyingthe Mohand transform on both sides of equ. (3.14), we get

M [utt(x, t)] =M [uxx(x, t)− u(x, t)] +M [2sinx] (4.14)

8
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Figure 1: The Graph of u(x, t) = xsint, t > 0. −∞ ≤ x ≤ ∞

Using the convolution property of Mohand transform, we get

v2R(x, v)− v3u(x, 0)− v2u′(x, 0) =M [uxx(x, t)− u(x, t)] + 2sinx(v) (4.15)

After the simplification and above initial conditions, we get

R(x, v) = vsinx+ 1 + 2sinx
1

v
+

1

v2
M [uxx(x, t)− u(x, t)] (4.16)

Taking inverse Mohand transform on both sides of equ. (3.18), we get

u(x, t) = sinx + t2sinx + t+M−1
[
1

v2
M [uxx(x, t)− u(x, t)]

]
(4.17)

Now we use the HPM and the non-linear term then we get

∞∑
n=0

pnun(x, t) = sinx + t+ t2sinx + p

(
M−1

[
1

v2
M [

[
∂2

∂x2

∞∑
n=0

pnun(x, t)]−
∞∑
n=0

pnun(u)

]])
(4.18)

Collecting the coefficients of exponents of p

p0 : u0(x, t) = sinx+ t+ t2sinx (4.19)

9
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p1 : u1(x, t) =M−1
[
1

v2
M

[
∂2

∂x2
u0(x, t)− u0(x, t)

]]
= −

[
t3

3!
+
t4

3!
sinx + t2sinx

]
(4.20)

p2 : u2(x, t) =M−1
[
1

v2
M

[
∂2

∂x2
u1(x, t)− u1(x, t)

]]
=

[
t5

5!
+ 8

t6

6!
sinx +

t4

3!
sinx

]
(4.21)

p3 : u3(x, t) =M−1
[
1

v2
M

[
∂2

∂x2
u2(x, t)− u2(x, t)

]]
= −

[
t7

7!
+ 8

t6

6!
sinx + 16

t8

8!
sinx

]
(4.22)

.

.

.

Similarly, we can obtain further values.

Hence the u(x,t) is

u(x, t) = u0(x, t) + u1(x, t) + u2(x, t) + ......

= sinx +

[
− t

7

7!
+
t5

5!
− t3

3!
+ t

]
= sinx+ sint (4.23)

Example 3: Consider the following nonlinear Klein-Gordon equation

utt(x, t)− uxx(x, t) + u2(x, t) = t2x2 (4.24)

With the initial conditions

u(x, 0) = 0, ut(x, 0) = x (4.25)

Applyingthe Mohand transform on both sides of equ. (3.29), we get

M [utt(x, t)] =M
[
uxx(x, t)− u2(x, t)

]
+M

[
t2x2

]
(4.26)

Using the convolution property of Mohand transform, we get

10
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Figure 2: The Graph of u(x, t) = sinx+ sint, t > 0. −∞ ≤ x ≤ ∞

v2R(x, v)− v3u(x, 0)− v2u′(x, 0) = 2x2
1

v
+M

[
uxx(x, t)− u2(x, t)

]
(4.27)

On simplifying and above initial conditions, we get

R(x, v) = x+ 2x2
1

v3
+

1

v2
M
[
uxx(x, t)− u2(x, t)

]
(4.28)

Taking inverse Mohand transform on both sides of equ. (3.33), we get

u(x, t) = xt +
x2

12
t4 +

1

v3
+M−1

[
1

v2
M
[
uxx(x, t)− u2(x, t)

]]
(4.29)

Now we use the HPM and the non-linear then we get

∞∑
n=0

pnun(x, t) = xt +
x2

12
t4 +

1

v3
+ p

(
M−1

[
1

v2
M

[
∂2

∂x2

∞∑
n=0

pnun(x, t)−
∞∑
n=0

pnHn(u)

]])
(4.30)

whereHn(u) is represents the He’s polynomial of nonlinear terms. The first few components of He’s polynomials
are given by

H0(u) = (u0)
2 (4.31)

H1(u) = 2u0u1 (4.32)

11



Ravi Shanker Dubey, Pranay Goswami and Gomti Ben Tailor, Vinod Gill

H2(u) = 2u0u2 + (u1)
2 (4.33)

.

.

.

Equating the multipliers of exponents of p

p0 : u0(x, t) = xt +
x2

12
t4 (4.34)

p1 : u1(x, t) =

(
M−1

[
1

v2
M

[
∂2

∂x2
u0(x, t)−H0(u)

]])
=

[
t10x4

12960
− t7x3

252
+

t6

180
− t4x2

12

]
(4.35)

p2 : u2(x, t) =

(
M−1

[
1

v2
M

[
∂2

∂x2
u1(x, t)−H1(u)

]])
=

[
t16x6

18662400
+

383t13x5

15921360
− t12x2

71280
+

11t10x4

45360
+
t7x3

252
− t6

180
− 11xt9

22680

]
(4.36)

.

.

.

similarly, we can obtain further values.

Hence, the u(x,t) is

u(x, t) = u0(x, t) + u1(x, t) + u2(x, t) + ......

u(x, t) = xt (4.37)

Example 4: Consider the following nonlinear Klein-Gordon equation

utt(x, t)− uxx(x, t) + u2(x, t) = 2x2 − 2t2 + t4x4 (4.38)

With the initial conditions

u(x, 0) = 0, ut(x, 0) = 0 (4.39)

Applying the Mohand transform on both sides of equ. (3.45), we get

M [utt(x, t)] =M
(
2x2 − 2t2 + t4x4

)
+M

[
uxx(x, t)− u2(x, t)

]
(4.40)

12
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Figure 3: The Graph of u(x, t) = xt, t > 0. −∞ ≤ x ≤ ∞

Using the convolution property of Mohand transform, we get

v2R(x, v)− v3u(x, 0)− v2u′(x, 0) = 2x2v − 4

v
+

24x4

v3
+M

[
uxx(x, t)− u2(x, t)

]
(4.41)

On simplification and above initial conditions, we get

R(x, v) =
2x2

v
− 4

v3
+

24x4

v5
+

1

v2
M [uxx(x, t)− u(x, t)] (4.42)

Taking inverse Mohand transform on both sides ofequ. (3.49), we get

u(x, t) = t2x2 − t4

6
+
x4

30
t6 +M−1

[
1

v2
M [uxx(x, t)− u(x, t)]

]
(4.43)

Now we use the HPM and the non-linear term we get

∞∑
n=0

pnun(x, t) = t2x2 − t4

6
+
x4

30
t6 + p

(
M−1

[
1

v2
M

[
∂2

∂x2

∞∑
n=0

pnun(x, t)−
∞∑
n=0

pnHn(u)

]])
(4.44)

whereHn(u) is represents the He’s polynomial of nonlinear terms. The first few components of He’s polynomials
are given by

H0(u) = (u0)
2 (4.45)

H1(u) = 2u0u1 (4.46)

H2(u) = 2u0u2 + (u1)
2 (4.47)

13
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.

.

.

Equating the multipliers of exponents of p

p0 : u0(x, t) = t2x2 − t4

6
+
x4

30
t6 (4.48)

p1 : u1(x, t) =

(
1

M

[
1

v2
M

[
∂2

∂x2
u0(x, t)−H0u

]])
=

[
−532224t14x8

14!
+

4032t11x4

39916800
− 2688t10x6

3628800
+

288t8x2

40320
− 20t8

40320
+

24t7x2

5040
− t6x4

30
+
t6

6

]
(4.49)

.

.

.

similarly, we can obtain further values.

Hence, the u(x,t) is

u(x, t) = u0(x, t) + u1(x, t) + u2(x, t) + ......

u(x, t) = x2t2 (4.50)

Example 5: Consider the following nonlinear Klein-Gordon equation

utt(x, t)− uxx(x, t) + u2(x, t) = 6xt
(
x2 − t2

)
+ t6x6 (4.51)

With the initial conditions

u(x, 0) = 0, ut(x, 0) = x (4.52)

Applyingthe Mohand transform on both sides of equ. (3.60), we get

M [utt(x, t)] =M
[
uxx(x, t)− u2(x, t)

]
+M

[
6xt
(
x2 − t2

)
+ t6x6

]
(4.53)

Using the convolution property of Mohand transform, we get

v2R(x, v)− v3u(x, 0)− v2u′(x, 0) = 6x3 − 36x

v2
+

720x6

v5
+M

[
uxx(x, t)− u2(x, t)

]
(4.54)

On simplification and above initial conditions, we get

R(x, v) =
6x3

v2
− 36x

v4
+

720x6

v7
+

1

v2
M
[
uxx(x, t)− u2(x, t)

]
(4.55)

14
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Figure 4: The Graph of u(x, t) = x2t2, t > 0. −∞ ≤ x ≤ ∞

Taking inverse Mohand transform on both sides ofequ. (3.64), we get

u(x, t) =
6x3

v2
− 36x

v4
+

720x6

v7
++M−1

[
1

v2
M [uxx(x, t)− u(x, t)]

]
(4.56)

Now we use the HPM and the non-linear term we get

∞∑
n=0

pnun(x, t) = t3x3 − 3xt5

10
+
t8x6

56
+ p

(
M−1

[
1

v2
M

[
∂2

∂x2

∞∑
n=0

pnun(x, t)−
∞∑
n=0

pnHn(u)

]])
(4.57)

whereHn(u) is represents the He’s polynomial of nonlinear terms. The first few components of He’s polynomials
are given by

H0(u) = (u0)
2 (4.58)

H1(u) = 2u0u1 (4.59)

H2(u) = 2u0u2 + (u1)
2 (4.60)

.

.

.
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Equating the multipliers of exponents of p

p0 : u0(x, t) = t3x3 − 3xt5

10
+
t8x6

56
(4.61)

p1 : u1(x, t) =

(
1

M

[
1

v2
M

[
∂2

∂x2
u0(x, t)−H0u

]])
=

[
t18x12

653616
− 3t15x7

19600
+
t13x9

4368
+

3t12x2

4400
− 53t10x4

4200
+
t8x6

56
+

3xt5

10

]
(4.62)

...

similarly, we can obtain further values.

Hence, the u(x,t) is

u(x, t) = u0(x, t) + u1(x, t) + u2(x, t) + ......

u(x, t) = x3t3 (4.63)

Figure 5: The Graph of u(x, t) = x3t3, t > 0. −∞ ≤ x ≤ ∞
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5. Concluding Remarks and Observations

we have discussed the history, some definitions of fractional calculus, Riemann-Liouville
differential and integral operator. We also knowing the Mittag-Leffler function and Caputo and
Fabrizio fractional-order derivative. In this paper, we discussed some of the integral transforms (like
Laplace Transform, Fourier Transform, and Mohand Transform). Homotopy perturbation Mohand
transform method has been successfully operated to evaluating the linear and nonlinear
Klein-Gordon equations with initial conditions. The method is good and simple to solve. In
conclusion, the MTHPM may be considered as a nice simplification in numerical techniques and
might find wide applications.
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1. Introduction

In this work, we consider a coupled system of a laminated beam with thermoelasticity of type III and delay term
in the fourth equation, which has the form

ρ1ϕtt +G (ψ − ϕx)x = 0,

ρ2 (3ω − ψ)tt −G (ψ − ϕx)−D (3ω − ψ)xx + αθx = 0,

ρ2ωtt +G (ψ − ϕx) + 4
3γω + 4

3βωt −Dωxx = 0,

ρ3θtt − δθxx + σ (3ω − ψ)ttx − µ1θtxx (x, t)− µ2θtxx (x, t− τ) = 0,

(x, t) ∈ (0, 1)× (0,+∞),

(x, t) ∈ (0, 1)× (0,+∞),

(x, t) ∈ (0, 1)× (0,+∞),

(x, t) ∈ (0, 1)× (0,+∞),

(1.1)

with the following initial and boundary conditions

ϕ(x, 0) = ϕ0(x), ϕt(x, 0) = ϕ1(x),

ψ(x, 0) = ψ0(x), ψt(x, 0) = ψ1(x),

ω(x, 0) = ω0(x), ωt(x, 0) = ω1(x),

θ(x, 0) = θ0(x), θt(x, 0) = θ1(x),

θtx (x, t− τ) = f0 (x, t− τ) ,

ϕx(0, t) = ϕx(1, t) = ψ(0, t) = ψ(1, t) = 0,

ω(0, t) = ω (1, t) = θx (0, t) = θx (1, t) = 0,

x ∈ [0, 1],

x ∈ [0, 1],

x ∈ [0, 1],

x ∈ [0, 1],

(x, t) ∈ (0, 1)× (0, τ) ,

t ∈ [0,+∞),

t ∈ [0,+∞),

(1.2)

∗Corresponding author. Email addresses: madanidouib@gmail.com (Madani Douib), zitsala@yahoo.fr (Salah Zitouni),
adjebabla@yahoo.com (Abdelhak Djebabla)
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A laminated beam in thermoelasticity of type III with delay

where ϕ(x, t) denotes the transverse displacement, ψ(x, t) represents the rotation angle. ω(x, t) is proportional
to the amount of slip along the interface at time t and longitudinal spatial variable x. θ(x, t) is the differential
temperature, and ρ1, ρ2, ρ3, G, D, α, β, γ, δ, σ, µ1 are positive constants, µ2 is a real number and τ > 0 represents
the time delay. Moreover,

√
G
ρ1

and
√

D
ρ2

are two wave speeds.
Laminated beam, which is a relevant research subject due to the high applicability of such materials in the

industry, was firstly introduced by Hansen and Spies, see, for instance [15, 16]. Hansen [15] proposed a model of
laminated beam based on the Timoshenko system which is one of particular interest. In [16], Hansen and Spies
derived three mathematical models for two-layered beams with structural damping due to the interfacial slip. The
system is given by the following equations

ρ1ϕtt +G (ψ − ϕx)x = 0,

ρ2 (3ω − ψ)tt −D (3ω − ψ)xx −G (ψ − ϕx) = 0,

3ρ2ωtt + 3G (ψ − ϕx) + 4γω + 4βωt − 3Dωxx = 0,

(x, t) ∈ (0, 1)× (0,+∞),

(x, t) ∈ (0, 1)× (0,+∞),

(x, t) ∈ (0, 1)× (0,+∞),

the coefficients ρ1, G, ρ2, D, γ and β are positive constants and represent density, shear stiffness, mass moment
of inertia, flexural rigidity, adhesive stiffness, and adhesive damping parameter, respectively. The third equation
describes the dynamics of the slip. For asymptotic behavior results to laminated beams, we refer the reader to
[1, 19, 21, 22, 31] and the references therein. In [26], Rivera and Racke established several exponential decay
results for linear Timoshenko systems in classical thermoelasticity where the heat flux is given by Fourier’s law.
Since this theory predicts an infinite speed of heat propagation, many theories have emerged, to overcome this
physical paradox. Green and Naghdi [11–13], suggest a replacing Fourier’s law by the so- called thermoelasticity
of type III. This is for heat conduction modeling thermal disturbances as wave-like pulses traveling at finite speed.
For more details, see [2]. A large number of interesting decay results depending on the stability number have
been established, (see [9, 24, 25, 27] and references therein). W. Liu et al. [23] considered a coupled system of a
laminated beam with thermoelasticity of type III, which has the form

ρ1ϕtt +G (ψ − ϕx)x = 0,

Iρ1 (3ω − ψ)tt −D (3ω − ψ)xx −G (ψ − ϕx) + αθx = 0,

Iρ1ωtt −Dωxx +G (ψ − ϕx) + 4
3β1ω + 4

3β2ωt = 0,

ρ2θtt − δθxx + γ (3ω − ψ)ttx − kθtxx = 0,

(x, t) ∈ (0, 1)× (0,+∞),

(x, t) ∈ (0, 1)× (0,+∞),

(x, t) ∈ (0, 1)× (0,+∞),

(x, t) ∈ (0, 1)× (0,+∞),

they used the energy method to prove an exponential decay result for the case of equal wave speeds.
Time delay appears in many physical, biological and economic problems, because, in most instances, the

present state system does not depend only on the current state but also on some past occurrences. In recent years,
the control of PDEs with time delay effects has become an active area of research.The presence of delay may
be a source of instability. It may turn a well-behaved system into a wild one. For example, it was shown in
[4, 5, 14, 28, 32] that an arbitrarily small delay may destabilize a system that is uniformly asymptotically stable
in the absence of delay unless additional control terms have been used. The stability issue of systems with delay
is, therefore, of theoretical and practical great importance. In [29], Nicaise, Pignotti and Valein replaced the
constant delay term in the boundary condition of [28] by a time-varying delay term and obtained an exponential
decay result under an appropriate assumption on the weights of the damping and delay. Moreover, Kafini et al.
[18] studied the following Timoshenko system of thermoelasticity of type III with delay of the form

ρ1φtt −K (φx + ψ)x + µ1φt (x, t) + µ2φt (x, t− τ) = 0,

ρ2ψtt − bψxx +K (φx + ψ) + βθtx = 0,

ρ3θtt − δθxx + γψtx − kθtxx = 0,

(x, t) ∈ (0, 1)× (0,+∞),

(x, t) ∈ (0, 1)× (0,+∞),

(x, t) ∈ (0, 1)× (0,+∞),

under the initial and boundary conditions
θ(., 0) = θ0, θt(., 0) = θ1, ψ(., 0) = ψ0, x ∈ [0, 1],

ψt(., 0) = ψ1, φ(., 0) = φ0, φt(., 0) = φ1, x ∈ [0, 1],

φt (x, t− τ) = f0 (x, t− τ) , t ∈ (0, τ) ,

φ(0, t) = φ(1, t) = ψ(0, t) = ψ(1, t) = θx (0, t) = θx (1, t) = 0, t ∈ [0,+∞),
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the energy of system decays exponentially in the case of equal wave speeds. For other related results, we refer
the reader to [3, 6–8, 17, 20]. Motivated by the above results, in the present work, we study the well-posedness
and asymptotic behaviour of solutions to the laminated beam (1.1)-(1.2) in thermoelasticity of type III with delay
term. The plan of the paper is as follows. In Section 2, we introduce some preliminaries. In Section 3, by
using semigroup method and Lumer-Philips theorem, we state and prove the well posedness of the system. In
Section 4, by using the perturbed energy method and construct some Lyapunov functionals, we then establish the
exponential result if and only if G

ρ1
= D

ρ2
.

2. Preliminaries

In this section, we present some material that we shall use in order to present our results, to exhibit the dissipative
nature of the system (1.1), we introduce some new variables

Φ = ϕt ,Ψ = ψt ,W = ωt,

and we introduce as in [28] the new variable

z (x, ρ, t) = θtx (x, t− τρ) , (x, ρ, t) ∈ (0, 1)× (0, 1)× (0,∞).

Then we have
τzt (x, ρ, t) + zρ (x, ρ, t) = 0, (x, ρ, t) ∈ (0, 1)× (0, 1)× (0,∞).

Therefore, system (1.1) takes the form
ρ1Φtt +G (Ψ− Φx)x = 0,

ρ2 (3W −Ψ)tt −G (Ψ− Φx)−D (3W −Ψ)xx + αθtx = 0,

ρ2Wtt +G (Ψ− Φx) + 4
3γW + 4

3βWt −DWxx = 0,

ρ3θtt − δθxx − µ1θtxx − µ2zx (x, 1, t) + σ (3W −Ψ)tx = 0,

τzt (x, ρ, t) + zρ (x, ρ, t) = 0,

(2.1)

where (x, ρ, t) ∈ (0, 1)× (0, 1)× (0,∞), with the initial data and boundary conditions

Φ(x, 0) = Φ0(x),Φt(x, 0) = Φ1(x),

Ψ(x, 0) = Ψ0(x),Ψt(x, 0) = Ψ1(x),

W (x, 0) = W0(x),Wt(x, 0) = W1(x),

θ(x, 0) = θ0(x), θt(x, 0) = θ1(x),

z (x, ρ, 0) = f0 (x,−τρ) ,

z (x, 0, t) = θtx (x, t) ,

Φx(0, t) = Φx(1, t) = Ψ(0, t) = Ψ(1, t) = 0,

W (0, t) = W (1, t) = θx (0, t) = θx (1, t) = 0,

x ∈ [0, 1],

x ∈ [0, 1],

x ∈ [0, 1],

x ∈ [0, 1],

(x, ρ) ∈ (0, 1)× (0, 1) ,

(x, t) ∈ (0, 1)× (0,∞),

t ∈ [0,+∞),

t ∈ [0,+∞),

(2.2)

where

Φ0(x) = ϕ1, Φ1(x) = −G
ρ1

(ψ0 − ϕ0x)x , Ψ0 (x) = ψ1,

Ψ1(x) = −4G

ρ2
(ψ0 − ϕ0x)− D

ρ2
(3ω0 − ψ0)xx +

α

ρ2
θ1x −

4γ

ρ2
ω0 −

4β

ρ2
ω1 +

3D

ρ2
ω0xx,

W0(x) = ω1,W1(x) = −G
ρ2

(ψ0 − ϕ0x)− 4γ

3ρ2
ω0 −

4β

3ρ2
ω1 +

D

ρ2
ω0xx,

where x ∈ [0, 1]. From equations (2.1)4 and (2.2), we easily verify that

d2

dt2

∫ 1

0

θ (x, t) dx = 0.
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So, if we set

θ (x, t) := θ (x, t)−
∫ 1

0

θ0 (x) dx− t
∫ 1

0

θ1 (x) dx,

then simple substitution shows that
(
Φ,Ψ,W, θ, z

)
satisfies (2.1), the boundary conditions in (2.2) and more

importantly ∫ 1

0

θ (x, t) dx = 0, ∀t > 0.

In this case, Poincaré’s inequality is applicable for θ. In the sequel, we work with θ but for convenience, we write
θ instead. We will assume that

µ1 > |µ2| , (2.3)

and show the well-posedness of the problem and that this condition is sufficient to prove the uniform decay of the
solution energy.

3. Well-posedness of the problem

In this Section, we prove the existence and uniqueness of solutions for (2.1)-(2.2). Introducing the vector function

U = (Φ, 3W −Ψ,W, θ,Φt, 3Wt −Ψt,Wt, θt, z)
T
,

system (2.1)-(2.2) can be written as
dU (t)

dt
= AU (t) , t > 0,

U (0) = U0 = (Φ0, 3W0 −Ψ0,W0, θ0,Φ1, 3W1 −Ψ1,W1, θ1, f0)
T
,

(3.1)

where A is a linear operator defined by

A



Φ

3W −Ψ

W

θ

Φt
3Wt −Ψt

Wt

θt
z


=



Φt
3Wt −Ψt

Wt

θt

−G
ρ1

(ψ − Φx)x

G

ρ2
(ψ − Φx) +

D

ρ2
(3W −Ψ)xx −

α

ρ2
θtx

−G
ρ2

(ψ − Φx)− 4γ

3ρ2
W − 4β

3ρ2
Wt +

D

ρ2
Wxx

δ

ρ3
θxx −

σ

ρ3
(3W −Ψ)tx +

µ1

ρ3
θtxx +

µ2

ρ3
zx (x, 1, t)

−τ−1zρ



.

We consider the following spaces

L2
∗ (0, 1) =

{
w ∈ L2 (0, 1) :

∫ 1

0

w (s) ds = 0

}
, H1
∗ (0, 1) = H1 (0, 1) ∩ L2

∗ (0, 1) ,

H2
∗ (0, 1) =

{
w ∈ H2 (0, 1) : wx (0) = wx (1) = 0

}
.

Let

H = H1
∗ (0, 1)×H1

0 (0, 1)×H1
0 (0, 1)×H1

∗ (0, 1)× L2
∗ (0, 1)× L2 (0, 1)× L2 (0, 1)× L2

∗ (0, 1)

×L2
(
(0, 1) , L2 (0, 1)

)
,
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be the Hilbert space equipped with the inner product〈
U, Ũ

〉
H

= σρ1

∫ 1

0

ΦtΦtdx+ σG

∫ 1

0

(Ψ− Φx)
(
Ψ− Φx

)
dx+ 4σγ

∫ 1

0

WWdx+ 3σ

∫ 1

0

ρ2WtW tdx

+σρ2

∫ 1

0

(3W −Ψ)t
(
3W −Ψ

)
t
dx+ σ

∫ 1

0

D (3W −Ψ)x
(
3W −Ψ

)
x
dx

+3σD

∫ 1

0

WxW xdx+ αρ3

∫ 1

0

θtθtdx+ αδ

∫ 1

0

θxθxdx+ λ

∫ 1

0

∫ 1

0

zzdρdx,

where λ is the positive constant satisfying{
τα |µ2| < λ < τα (2µ1 − |µ2|) ,
λ = ταµ1,

if |µ2| < µ1,

if |µ2| = µ1.
(3.2)

Then, the domain of A is given by

D (A) =


U ∈ H | Φ, θ ∈ H2

∗ (0, 1) ∩H1
∗ (0, 1) ,Ψ,W ∈ H2 (0, 1) ∩H1

0 (0, 1) ,

Ψt,Wt ∈ H1
0 (0, 1) ,Φt, θt ∈ H1

∗ (0, 1) , (δ + e−τµ2) θ + µ1θt ∈ H2
∗ (0, 1) ,

z, zρ ∈ L2
(
(0, 1) , L2 (0, 1)

)
, z (x, 0) = θtx (x)

 . (3.3)

Clearly, D (A) is dense inH.
We have the following existence and uniqueness result.

Theorem 3.1. Assume that U0 ∈ H and (2.3) holds. Then there exists a unique solution U ∈ C (R+;H) of
problem (3.1). Moreover, if U0 ∈ D (A), then

U ∈ C
(
R+;D (A) ∩ C1

(
R+;H

))
.

Proof. The result follows from Lumer-Phillips theorem provided we prove that A is a maximal monotone
operator. For this purpose, we need the following two steps: A is dissipative and Id−A surjective.

Step 1. A is dissipative.
For any U ∈ D (A), and using the inner product, we obtain

〈AU,U〉H = −4σβ

∫ 1

0

W 2
t dx− αµ1

∫ 1

0

θ2tx + αµ2

∫ 1

0

zx (x, 1, t) θtdx−
λ

τ

∫ 1

0

∫ 1

0

zzρ (x, ρ, t) dρdx.

(3.4)

By using integration by parts and the fact that z (x, 0) = θtx (x), the last term in the right-hand side of (3.4) gives

−
∫ 1

0

∫ 1

0

zzρ (x, ρ, t) dρdx =
1

2

∫ 1

0

θ2txdx−
1

2

∫ 1

0

z2 (x, 1, t) dx. (3.5)

Substituting (3.5) in (3.4) yields

〈AU,U〉H = −4σβ

∫ 1

0

W 2
t dx− αµ1

∫ 1

0

θ2tx + αµ2

∫ 1

0

zx (x, 1, t) θtdx+
λ

2τ

∫ 1

0

θ2txdx

− λ

2τ

∫ 1

0

z2 (x, 1, t) dx. (3.6)

Also, using integration by parts and Young’s inequality we obtain, from (3.6)

〈AU,U〉H ≤ −
(
αµ1 −

α |µ2|
2
− λ

2τ

)∫ 1

0

θ2txdx−
(
λ

2τ
− α |µ2|

2

)∫ 1

0

z2 (x, 1, t) dx− 4σβ

∫ 1

0

W 2
t dx.
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Keeping in mind condition (3.2), we observe that

αµ1 −
α |µ2|

2
− λ

2τ
≥ 0,

λ

2τ
− α |µ2|

2
≥ 0.

Consequently, the operator A is dissipative.
Step 2. Id−A is surjective.
To prove that the operator Id − A is surjective, that is, for any F = (f1, ..., f9) ∈ H, there exists U =

(Φ, 3W −Ψ,W, θ,Φt, 3Wt −Ψt,Wt, θt, z) ∈ D (A) satisfying

(Id−A)U = F, (3.7)

which is equivalent to

Φ− Φt = f1,

(3W −Ψ)− (3W −Ψ)t = f2,

W −Wt = f3,

θ − θt = f4,

ρ1Φt −GΦxx −G (3W −Ψ)x + 3GWx = ρ1f5,

ρ2 (3W −Ψ)t +GΦx +G (3W −Ψ)− 3GW −D (3W −Ψ)xx + αθtx
= ρ2f6,

ρ2Wt −G (3W −Ψ) + 3GW −GΦx + 4γ
3 W + 4β

3 Wt −DWxx = ρ2f7,

ρ3θt − δθxx + σ (3W −Ψ)tx − µ1θtxx − µ2zx (x, 1, t) = ρ3f8,

τz + zρ = τf9.

(3.8)

From (3.8)1−(3.8)4, we have 
Φt = Φ− f1,
(3W −Ψ)t = (3W −Ψ)− f2,
Wt = W − f3,
θt = θ − f4.

(3.9)

By combining (3.9) and (3.8), it can be Φ, 3W −Ψ,W, θ shown that satisfy

ρ1Φ−GΦxx −G (3W −Ψ)x + 3GWx = ρ1 (f1 + f5) ,

ρ2 (3W −Ψ) +GΦx +G (3W −Ψ)− 3GW −D (3W −Ψ)xx + αθx
= ρ2 (f2 + f6) + α∂xf4,

ρ2W −G (3W −Ψ) + 3GW −GΦx + 4γ
3 W + 4β

3 W −DWxx

= ρ2 (f3 + f7) + 4β
3 f3,

ρ3θ − δθxx + σ (3W −Ψ)x − µ1θxx − µ2zx (x, 1, t)

= ρ3 (f4 + f8) + σ∂xf2 + µ1∂xxf4,

τz + zρ = τf9.

(3.10)

Using the last equation in (3.10) we can find z with

z (x, 0) = θtx (x) , x ∈ (0, 1) .

Following the same approach as in [28], we obtain, by using (3.10)5,

z (x, ρ, τ) = θtx (x) e−τρ + τe−τρ
∫ ρ

0

eτsf9 (x, s) ds.

From (3.9)4, we obtain

z (x, ρ, τ) = θxe
−τρ − ∂xf4 (x) e−τρ + τe−τρ

∫ ρ

0

eτsf9 (x, s) ds, (3.11)
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and in particular,
z (x, 1, τ) = θxe

−τ + z0 (x, τ) ,

where

z0 (x, τ) = −∂xf4 (x) e−τ + τe−τ
∫ 1

0

eτsf9 (x, s) ds.

In order to solve (3.8), we consider the following variational formulation

B

(
(Φ, 3W −Ψ,W, θ)

T
,
(

Φ̃, 3W̃ − Ψ̃, W̃ , θ̃
)T)

= G

((
Φ̃, 3W̃ − Ψ̃, W̃ , θ̃

)T)
, (3.12)

where B :
[
H1
∗ (0, 1)×H1

0 (0, 1)×H1
0 (0, 1)×H1

∗ (0, 1)
]2 −→ R is the bilinear form

B

(
(Φ, 3W −Ψ,W, θ)

T
,
(

Φ̃, 3W̃ − Ψ̃, W̃ , θ̃
)T)

= σ

∫ 1

0

G(Ψ− Φx)(Ψ̃− Φ̃x)dx+ σ

∫ 1

0

ρ1ΦΦ̃dx+ σ

∫ 1

0

ρ2 (3W −Ψ)
(

3W̃ − Ψ̃
)
dx+ α

∫ 1

0

ρ3θθ̃dx

+ (3σρ2 + 4σγ + 4σβ)

∫ 1

0

WW̃dx+ σ

∫ 1

0

D (3W −Ψ)x

(
3W̃ − Ψ̃

)
x
dx+ 3σ

∫ 1

0

DWxW̃xdx

+α
(
δ + µ1 + e−τµ2

) ∫ 1

0

θxθ̃xdx+ σα

∫ 1

0

(3W −Ψ)x θ̃dx+ σα

∫ 1

0

θx

(
3W̃ − Ψ̃

)
dx,

and G : H1
∗ (0, 1)×H1

0 (0, 1)×H1
0 (0, 1)×H1

∗ (0, 1) −→ R is the linear form

F

((
Φ̃, 3W̃ − Ψ̃, W̃ , θ̃

)T)
= σ

∫ 1

0

ρ1 (f1 + f5) Φ̃dx+ σ

∫ 1

0

ρ2 (f2 + f6)
(

3W̃ − Ψ̃
)
dx+ 3σ

∫ 1

0

ρ2 (f3 + f7) W̃dx

+4σ

∫ 1

0

βf3W̃dx+ α

∫ 1

0

ρ3 (f4 + f8) θ̃dx+ ασ

∫ 1

0

∂xf2θ̃dx+ αµ1

∫ 1

0

∂xf4∂xθ̃dx

+σα

∫ 1

0

∂xf4

(
3W̃ − Ψ̃

)
dx− αµ2

∫ 1

0

∂xz0θ̃dx.

Now, for
V = H1

∗ (0, 1)×H1
0 (0, 1)×H1

0 (0, 1)×H1
∗ (0, 1) ,

equipped with the norm

‖(Φ, 3W −Ψ,W, θ)‖2V = ‖Ψ− Φx‖22 + ‖Φ‖22 + ‖(3W −Ψ)x‖
2
2

+ ‖Wx‖22 + ‖θ‖22 + ‖θx‖22 ,

one can easily see that B(., .) and G(.) are bounded. Furthermore, using integration by parts, we obtain

B
(

(Φ, 3W −Ψ,W, θ)
T
, (Φ, 3W −Ψ,W, θ)

T
)
≥ c ‖(Φ, 3W −Ψ,W, θ)‖2V ,

for some c > 0. Thus, B(., .) is coercive.
Consequently, by Lax-Milgram lemma, we obtain that (3.12) has a unique solution

Φ ∈ H1
∗ (0, 1) , (3W −Ψ) ∈ H1

0 (0, 1) , W ∈ H1
0 (0, 1) , θ ∈ H1

∗ (0, 1) .

The substitution of Φ, 3W −Ψ,W and θ into (3.9) yields

Φt ∈ H1
∗ (0, 1) , (3W −Ψ)t ∈ H

1
0 (0, 1) , Wt ∈ H1

0 (0, 1) , θt ∈ H1
∗ (0, 1) .
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Next, it remains to show that

Φ ∈
(
H2
∗ (0, 1) ∩H1

∗ (0, 1)
)
, (3W −Ψ) ∈

(
H2 (0, 1) ∩H1

0 (0, 1)
)
,

W ∈
(
H2 (0, 1) ∩H1

0 (0, 1)
)
, θ ∈

(
H2
∗ (0, 1) ∩H1

∗ (0, 1)
)
.

Taking
(

3W̃ − Ψ̃, W̃ , θ̃
)

= (0, 0, 0)∈H1
0 (0, 1)×H1

0 (0, 1)×H1
∗ (0, 1) in (3.12), we get

B

(
(Φ, 3W −Ψ,W, θ)

T
,
(

Φ̃, 0, 0, 0
)T)

= σ

∫ 1

0

ρ1ΦΦ̃dx+ σ

∫ 1

0

G(−ΦxxΦ̃− (3W −Ψ)x Φ̃ + 3WxΦ̃)dx

= σ

∫ 1

0

ρ1 (f1 + f5) Φ̃dx, ∀Φ̃ ∈ H1
∗ (0, 1) , (3.13)

which implies
GΦxx = ρ1Φ−G (3W −Ψ)x + 3GWx − ρ1 (f1 + f5) ∈ L2

∗ (0, 1) . (3.14)

Consequently, by the regularity theory for the linear elliptic equations, it follows that

Φ ∈ H2 (0, 1) ∩H1
∗ (0, 1) .

Moreover, (3.13) is also true for any φ ∈ C1 [0, 1] ⊂ H1
∗ (0, 1) . Hence, we have∫ 1

0

GΦxφxdx+

∫ 1

0

(ρ1Φ−G (3W −Ψ)x + 3GWx − ρ1 (f1 + f5))φdx = 0

for all φ ∈ C1 [0, 1] . Thus, using integration by parts and bearing in mind (3.14), we obtain

Φx (1)φ (1)− Φx (0)φ (0) = 0,∀φ ∈ C1 [0, 1] .

Therefore, Φx (0) = Φx (1) = 0. Consequently, we obtain

Φ ∈ H2
∗ (0, 1) ∩H1

∗ (0, 1) .

In the same way, taking
(

Φ̃, W̃ , θ̃
)

= (0, 0, 0)∈H1
∗ (0, 1)×H1

0 (0, 1)×H1
∗ (0, 1) in (3.12), we get

B

(
(Φ, 3W −Ψ,W, θ)

T
,
(

0, 3W̃ − Ψ̃, 0, 0
)T)

= σ

∫ 1

0

G
(

Φx

(
3W̃ − Ψ̃

)
+ (3W −Ψ)

(
3W̃ − Ψ̃

)
− 3W

(
3W̃ − Ψ̃

))
dx

+σ

∫ 1

0

ρ2 (3W −Ψ)
(

3W̃ − Ψ̃
)
dx+ σ

∫ 1

0

D (3W −Ψ)x

(
3W̃ − Ψ̃

)
x
dx+ σα

∫ 1

0

θx

(
3W̃ − Ψ̃

)
dx

= σ

∫ 1

0

ρ2 (f2 + f6)
(

3W̃ − Ψ̃
)
dx+ σα

∫ 1

0

∂xf4

(
3W̃ − Ψ̃

)
dx.

Recalling (3.8)2 and (3.8)4, we arrive at∫ 1

0

D (3W −Ψ)x

(
3W̃ − Ψ̃

)
x
dx

=

∫ 1

0

[ρ2f6 −G (Φx + (3W −Ψ)− 3W )− αθtx − ρ2 (3W −Ψ)t]
(

3W̃ − Ψ̃
)
dx (3.15)
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for all
(

3W̃ − Ψ̃
)
∈ H1 (0, 1) , which implies

ρ2f6 −G (Φx + (3W −Ψ)− 3W )− αθtx − ρ2 (3W −Ψ)t ∈ L
2 (0, 1) .

Consequently, (3.15) takes the form∫ 1

0

[−D (3W −Ψ)xx +GΦx +G (3W −Ψ)− 3GW + αθtx + ρ2 (3W −Ψ)t − ρ2f6]
(

3W̃ − Ψ̃
)
dx = 0.

We obtain

−D (3W −Ψ)xx +G (Φx +G (3W −Ψ)− 3W ) + αθtx + ρ2 (3W −Ψ)t = ρ2f6,

and
(3W −Ψ) ∈ H2 (0, 1) ∩H1

0 (0, 1) ,

which gives (3.8)6. Similarly, we can show that

W ∈ H2 (0, 1) ∩H1
0 (0, 1) ,

and (3.8)7 are satisfied. Also, if we take
(

Φ̃, 3W̃ − Ψ̃, W̃
)

= (0, 0, 0)∈H1
∗ (0, 1) × H1

0 (0, 1) × H1
0 (0, 1) in

(3.12), then using (3.8)2 and (3.8)4, we get(
δ + e−τµ2

)
θxx + µ1θtxx = ρ3θt − ρ3f8 + σ (3W −Ψ)tx + µ2∂xz0,

and we conclude that (
δ + e−τµ2

)
θ + µ1θt ∈ H2 (0, 1) .

Furthermore, it is obvious from(
δ + e−τµ2

)
θx + µ1θtx = ρ3

∫ x

0

θtdx− ρ3
∫ x

0

f8dx+ σ (3W −Ψ)t + µ2z0,

that ((
δ + e−τµ2

)
θx + µ1θtx

)
(0) =

((
δ + e−τµ2

)
θx + µ1θtx

)
(1) = 0,

then, we get (
δ + e−τµ2

)
θ + µ1θt ∈ H2

∗ (0, 1) .

Finally, it follows, from (3.11), that

z (x, 0) = θtx (x) and z, zρ ∈ L2
(
(0, 1) , L2 (0, 1)

)
.

Hence, there exists a unique U ∈ D (A) such that (3.7) is satisfied, the operator Id−A is surjective. Moreover,
it is easy to see that D (A) is dense inH.

At last, by Lumer-Philips theorem (see [10, 30]) we have the well-posedness result stated in Theorem 3.1. �

4. Exponential stability

In this section, we state and prove our stability result for the solution of problem (2.1)-(2.2), by using the
multiplier technique. We first introduce the following energy functional

E (t) :=
1

2

∫ 1

0

[
σρ1Φ2

t + σG (Ψ− Φx)
2

+ σρ2 (3W −Ψ)
2
t + σD (3W −Ψ)

2
x

+3σρ2W
2
t + 4σγW 2 + 3σDW 2

x + αρ3θ
2
t + αδθ2x + λ

∫ 1

0
z2 (x, ρ, t) dρ

]
dx.

(4.1)

To achieve our goal, we need the following lemmas.
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Lemma 4.1. Let (Φ,Ψ,W, θ, z) be the solution of problem (2.1)-(2.2). Then the energy functional E(t) defined
by (4.1) satisfies

d

dt
E (t) = −4βσ

∫ 1

0

W 2
t dx− C1

∫ 1

0

θ2txdx− C2

∫ 1

0

z2 (x, 1, t) dx ≤ 0, (4.2)

where

C1 = µ1α−
|µ2|α

2
− λ

2τ
≥ 0 , C2 =

λ

2τ
− |µ2|α

2
≥ 0.

Proof. Multiplying the first four equations in (2.1) by σΦt, σ (3W −Ψ)t, 3σWt, αθt respectively, then,

integrating over (0, 1), and multiplying (2.1)5 by
λ

τ
z and integrating over (0, 1)× (0, 1) with respect to ρ and x,

summing them up, we obtain

d

dt

σ

2

∫ 1

0

[
ρ1Φ2

t +G (Ψ− Φx)
2

+ ρ2 (3Wt −Ψt)
2

+D (3Wx −Ψx)
2

+ 3ρ2W
2
t + 4γW 2 + 3DW 2

x

]
dx

+
d

dt

α

2

∫ 1

0

(
ρ3θ

2
t + δθ2x

)
dx+

d

dt

λ

2

∫ 1

0

∫ 1

0

z2 (x, ρ, t) dρdx

= −4βσ

∫ 1

0

W 2
t dx− µ1α

∫ 1

0

θ2txdx+ µ2α

∫ 1

0

θtzx (x, 1, t) dx− λ

τ

∫ 1

0

∫ 1

0

zzρ (x, ρ, t) dρdx. (4.3)

The last two terms of the right side of (4.3) can be estimated as follows.

−λ
τ

∫ 1

0

∫ 1

0

zzρ (x, ρ, t) dρdx =
λ

2τ

∫ 1

0

θ2txdx−
λ

2τ

∫ 1

0

z2 (x, 1, t) dx,

µ2α

∫ 1

0

θtzx (x, 1, t) dx ≤ |µ2|α
2

∫ 1

0

θ2txdx+
|µ2|α

2

∫ 1

0

z2 (x, 1, t) dx.

Hence,

d

dt
E (t) ≤ −4βσ

∫ 1

0

W 2
t dx−

(
µ1α−

|µ2|α
2
− λ

2τ

)∫ 1

0

θ2txdx−
(
λ

2τ
− |µ2|α

2

)∫ 1

0

z2 (x, 1, t) dx.

Using (3.2), we obtain the result. �

Lemma 4.2. Let (Φ,Ψ,W, θ, z) be the solution of problem (2.1)-(2.2). The functional

F1 (t) := −ρ1
∫ 1

0

ΦΦtdx+ ρ2

∫ 1

0

WWtdx (4.4)

satisfies the estimate

F ′1 (t) ≤ −ρ1
∫ 1

0

Φ2
tdx−

2γ

3

∫ 1

0

W 2dx− D

2

∫ 1

0

W 2
xdx+ C3

∫ 1

0

W 2
t dx+ C4

∫ 1

0

(Ψ− Φx)
2
dx

+
D

18

∫ 1

0

(3Wx −Ψx)
2
dx, (4.5)

where

C3 = ρ2 +
4β2

3γ
, C4 = G+

9G2

2D
+

3G2

4γ
.
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Proof. By differentiating F1 with respect to t, using (2.1)1, (2.1)3 and integrating by parts, we obtain

F ′1 (t) = −ρ1
∫ 1

0

Φ2
tdx−G

∫ 1

0

Φx (Ψ− Φx) dx+ ρ2

∫ 1

0

W 2
t dx−D

∫ 1

0

W 2
xdx−G

∫ 1

0

W (Ψ− Φx) dx

−4γ

3

∫ 1

0

W 2dx− 4β

3

∫ 1

0

WWtdx.

Note that

−G
∫ 1

0

Φx (Ψ− Φx) dx = G

∫ 1

0

(Ψ− Φx)
2
dx−G

∫ 1

0

Ψ (Ψ− Φx) dx.

Then, we deduce that

F ′1 (t) = −ρ1
∫ 1

0

Φ2
tdx+G

∫ 1

0

(Ψ− Φx)
2
dx−G

∫ 1

0

Ψ (Ψ− Φx) dx+ ρ2

∫ 1

0

W 2
t dx−D

∫ 1

0

W 2
xdx

−G
∫ 1

0

W (Ψ− Φx) dx− 4γ

3

∫ 1

0

W 2dx− 4β

3

∫ 1

0

WWtdx.

Making use of Young’s and Poincaré inequalities, we obtain

F ′1 (t) ≤ −ρ1
∫ 1

0

Φ2
tdx−

2γ

3

∫ 1

0

W 2dx−D
∫ 1

0

W 2
xdx+

D

36

∫ 1

0

Ψ2
xdx+

(
ρ2 +

4β2

3γ

)∫ 1

0

W 2
t dx

+

(
G+

9G2

2D
+

3G2

4γ

)∫ 1

0

(Ψ− Φx)
2
dx.

Note that ∫ 1

0

Ψ2
xdx =

∫ 1

0

(Ψx − 3Wx + 3Wx)
2
dx ≤ 2

∫ 1

0

(3Wx −Ψx)
2

+ 18

∫ 1

0

W 2
xdx.

Then the estimate (4.5) is established. �

Lemma 4.3. Let (Φ,Ψ,W, θ, z) be the solution of problem (2.1)-(2.2). The functional

F2 (t) := ρ2

∫ 1

0

(3W −Ψ) (3W −Ψ)t dx (4.6)

satisfies the estimate

F ′2 (t) ≤ −D
2

∫ 1

0

(3Wx −Ψx)
2
dx+ ρ2

∫ 1

0

(3Wt −Ψt)
2
dx+

G2

2D

∫ 1

0

(Ψ− Φx)
2
dx+

α2

D

∫ 1

0

θ2t dx,

(4.7)

Proof. By differentiating F2 with respect to t, using (2.1)2 and integrating by parts, we get

F ′2 (t) = G

∫ 1

0

(3W −Ψ) (Ψ− Φx) dx−D
∫ 1

0

(3Wx −Ψx)
2
dx+ α

∫ 1

0

(3Wx −Ψx) θtdx

+ρ2

∫ 1

0

(3Wt −Ψt)
2
dx.

Using Young’s and Poincaré inequalities, we obtain the result. �

Lemma 4.4. Let (Φ,Ψ,W, θ, z) be the solution of problem (2.1)-(2.2). The functional

F3 (t) := ρ2ρ3

∫ 1

0

(3W −Ψ)t

∫ x

0

θt (y, t) dydx− δρ2
∫ 1

0

θx (3W −Ψ) dx (4.8)
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satisfies the estimate

F ′3 (t) ≤ −ρ2σ
2

∫ 1

0

(3W −Ψ)
2
t dx+ ε1

∫ 1

0

(Ψ− Φx)
2
dx+ C5 (ε1)

∫ 1

0

θ2xtdx+ ε1

∫ 1

0

(3Wx −Ψx)
2
dx

+
ρ2µ

2
2

σ

∫ 1

0

z2 (x, 1, t) dx, (4.9)

for any ε1 > 0, where

C5 (ε1) =
αρ3
2

+
ρ2µ

2
2

σ
+
D2ρ23
8ε1

+
δ2ρ22
4ε1

+
G2ρ23
16ε1

.

Proof. By differentiating F3 with respect to t, using (2.1)2, (2.1)4 and integrating by parts, we obtain

F ′3 (t) = ρ3

∫ 1

0

G (Ψ− Φx)

∫ x

0

θt (y, t) dydx− δρ2
∫ 1

0

θxt (3W −Ψ) dx

+

[
ρ3 (−GΦ +D (3W −Ψ)x − αθt)

∫ x

0

θt (y, t) dy

]x=1

x=0

+ αρ3

∫ 1

0

θ2t dx− ρ2σ
∫ 1

0

(3W −Ψ)
2
t dx

+ρ2µ1

∫ 1

0

(3W −Ψ)t θtxdx−Dρ3
∫ 1

0

θt (3W −Ψ)x dx+ ρ2µ2

∫ 1

0

(3W −Ψ)t z (x, 1, t) dx.

Note that ∫ 1

0

θt (y, t) dy =
d

dt

∫ 1

0

θ (y, t) dy = 0,

then, by Young’s and Poincaré inequalities, with ε1 > 0 to obtain (4.9). �

Lemma 4.5. Let (Φ,Ψ,W, θ, z) be the solution of problem (2.1)-(2.2). The functional

F4 (t) :=

∫ 1

0

[
ρ3θtθ +

µ1

2
θ2x + σ (3W −Ψ)x θ

]
dx (4.10)

satisfies the estimate

F ′4 (t) ≤ −δ
2

∫ 1

0

θ2xdx+

(
ρ3 +

σ2

4ε2

)∫ 1

0

θ2t dx+ ε2

∫ 1

0

(3W −Ψ)
2
x dx+

µ2
2

2δ

∫ 1

0

z2 (x, 1, t) dx, (4.11)

for any ε2 > 0.

Proof. By differentiating F4 with respect to t, using (2.1)4 and integrating by parts, we obtain

F ′4 (t) =

∫ 1

0

δθxxθdx+

∫ 1

0

ρ3θ
2
t dx+

∫ 1

0

µ2zx (x, 1, t) θdx+

∫ 1

0

σ (3W −Ψ)x θtdx.

Using Young’s inequality with ε2 > 0, we establish (4.11). �

Lemma 4.6. Let (Φ,Ψ,W, θ, z)be the solution of (2.1)-(2.2). Then the functional

F5 (t) := ρ2

∫ 1

0

(3W −Ψ)t (Φx −Ψ) dx+
Dρ1
G

∫ 1

0

(3W −Ψ)x Φtdx (4.12)

satisfies the estimate

F ′5 (t) ≤ −G
2

∫ 1

0

(Ψ− Φx)
2
dx+

α2

2G

∫ 1

0

θ2txdx+ (ρ2 + ε3)

∫ 1

0

(3W −Ψ)
2
t dx+

9ρ22
4ε3

∫ 1

0

W 2
t dx

+

(
Dρ1
G
− ρ2

)∫ 1

0

(3W −Ψ)xt Φtdx, (4.13)

for any ε3 > 0.
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Proof. By differentiating F5 with respect to t, using (2.1)1, (2.1)2 and integrating by parts, we obtain

F ′5 (t) = −
∫ 1

0

G (Ψ− Φx)
2
dx+

∫ 1

0

αθtx (Ψ− Φx) dx− ρ2
∫ 1

0

(3W −Ψ)t Ψtdx

+

(
Dρ1
G
− ρ2

)∫ 1

0

(3W −Ψ)xt Φtdx.

Using Young’s inequality with ε3 > 0, we establish (4.13). �

Lemma 4.7. Let (Φ,Ψ,W, θ, z)be the solution of (2.1)-(2.2). Then the functional

F6 (t) :=

∫ 1

0

∫ 1

0

e−2τρz2 (x, ρ, t) dρdx (4.14)

satisfies, for some m, c > 0, the following estimate

F ′6 (t) ≤ −m
∫ 1

0

∫ 1

0

z2 (x, ρ, t) dρdx− c

τ

∫ 1

0

z2 (x, 1, t) dx+
1

τ

∫ 1

0

θ2txdx, (4.15)

Proof. By differentiating F6 with respect to t, using (2.1)5 and integrating by parts, we obtain

F ′6 (t) = −2

τ

∫ 1

0

∫ 1

0

e−2τρz (x, ρ, t) zρ (x, ρ, t) dρdx

= −2

∫ 1

0

∫ 1

0

e−2τρz2 (x, ρ, t) dρdx− 1

τ

∫ 1

0

∫ 1

0

∂

∂ρ

(
e−2τρz2 (x, ρ, t)

)
dρdx

≤ −m
∫ 1

0

∫ 1

0

z2 (x, ρ, t) dρdx− c

τ

∫ 1

0

z2 (x, 1, t) dx+
1

τ

∫ 1

0

θ2txdx.

This gives (4.15). �

The stability result reads as follows.

Theorem 4.8. Assume that G
ρ1

= D
ρ2

and (2.3) holds. Let U0 ∈ H, then there exist two positive constants c0 and
c1, such that the energy E (t) associated with problem (2.1)-(2.2) satisfies

E (t) ≤ c0E (0) e−c1t, t ≥ 0.

Proof. To establish the decay result, we assume G
ρ1

= D
ρ2

and define a Lyapunov functional L as follows

L (t) := δ1E (t) + F1 (t) + δ2F2 (t) + δ3F3 (t) + F4 (t) + δ4F5 (t) + F6 (t) ,

where δ1, δ2, δ3, δ4 are positive constants to be chosen properly later.
Using Cauchy-Schwarz inequality and the Poincaré’s inequality, one can easily see that all Fi (t) , i = 1, ..., 6

are bounded by an expression with the existing terms in the energy E (t). This leads to the equivalence of L (t)

and E (t).
Gathering the estimates in the previous lemmas and using∫ 1

0

θ2t dx ≤
∫ 1

0

θ2txdx,
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we arrive at

L′ (t) ≤ −
[
4βσδ1 − C3 −

9ρ22
4ε3

δ4

] ∫ 1

0

W 2
t dx−

D

2

∫ 1

0

W 2
xdx−

δ

2

∫ 1

0

θ2xdx

−
[
δ1C1 −

α2

D
δ2 − C5 (ε1) δ3 −

(
ρ3 +

σ2

4ε2

)
− α2

2G
δ4 −

1

τ

] ∫ 1

0

θ2txdx

−
[
G

2
δ4 − C4 −

G2

2D
δ2 − ε1δ3

] ∫ 1

0

(Ψ− Φx)
2
dx− ρ1

∫ 1

0

Φ2
tdx−

2γ

3

∫ 1

0

W 2dx

−
[
D

2
δ2 −

D

18
− ε1δ3 − ε2

] ∫ 1

0

(3Wx −Ψx)
2
dx−

[ρ2σ
2
δ3 − ρ2δ2 − (ρ2 + ε3) δ4

] ∫ 1

0

(3Wt −Ψt)
2
dx

−
[
δ1C2 +

c

τ
− ρ2µ

2
2

σ
δ3 −

µ2
2

2δ

] ∫ 1

0

z2 (x, 1, t) dx−m
∫ 1

0

∫ 1

0

z2 (x, ρ, t) dρdx. (4.16)

At this point we will choose all the constants, carefully. First, we take δ2 large enough and ε2 small, such that

D

2
δ2 −

D

18
− ε2 > 0.

Then we can take δ4 sufficiently large such that

G

2
δ4 − C4 −

G2

2D
δ2 > 0.

Next, we pick ε3 small and choose δ3 large enough such that

ρ2σ

2
δ3 − ρ2δ2 − (ρ2 + ε3) δ4 > 0.

After that, we then select ε1 so small that

D

2
δ2 −

D

18
− ε2 − ε1δ3 > 0 ,

G

2
δ4 − C4 −

G2

2D
δ2 − ε1δ3 > 0.

Finally, we choose δ1 so large such that

4βσδ1 − C3 −
9ρ22
4ε3

δ4 > 0 , δ1C2 +
c

τ
− ρ2µ

2
2

σ
δ3 −

µ2
2

2δ
> 0,

δ1C1 −
α2

D
δ2 − C5 (ε1) δ3 −

(
ρ3 +

σ2

4ε2

)
− α2

2G
δ4 −

1

τ
> 0.

On the hand, from the above, we deduce that for some positive constants α1, α2 one has

α1E (t) ≤ L (t) ≤ α2E (t) .

Therefore, (4.16) becomes
L′ (t) ≤ −cE (t) .

For c1 =
c

α2
, we get

L′ (t) ≤ −c1L (t) ,∀t ≥ 0. (4.17)

Integrating (4.17) over (0, t), yields
L (t) ≤ L (0) e−c1t,∀t ≥ 0. (4.18)

At last, estimate (4.18) gives the desired result Theorem 4.8 when combined with the equivalence of L (t) and
E (t). �
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Abstract. This work offers an analogue of Householder’s Method for solving a root-finding problem f(x) = 0 in the p-adic
setting. We apply this method to calculate the square roots of a p-adic number a ∈ Qp where p is a prime number, and
through the calculation of the approached solution of the p-adic polynomial equation f(x) = x2 − a = 0. We establish the
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1. Introduction and Background

Given a prime number p, the field of p-adic numbers Qp were first introduced by Kurt Hensel at the end of
the 19th century in a short paper written in German [8], which can be thought of as the completion of the field of
rationals Q with respect to the p-adic norm, similar to how one constructs the field of real numbers R from Q (see
[1], [3], [5], [6]). The p-adic numbers are useful because they provide another toolset for solving problems, one
which is sometimes easier to work with than the real numbers. They have applications in number theory, analysis,
algebra, and more. For about a century after the discovery of p-adic numbers, they were mainly considered as
objects of pure mathematics. However, numerous applications of these numbers to theoretical physics have been
proposed, to quantum mechanics, to p-adic - valued physical observables and many others. The field of p-adic
numbers Qp endowed with a metric dp generated by p-adic valuation is also a fundamental example in the theory
of ultrametric spaces. Nevertheless, many metric properties of the space (Qp, dp) remain unexplored now.

Finding the approximate solution of the nonlinear equation f(x) = 0 is one of the basic problems and
frequently occurs in scientific work of various fields. Due to the higher order of the equation and the involvement
of the transcendental functions, analytical methods for obtaining the exact root cannot be employed and therefore,
it is only possible to obtain approximate solutions by relying on numerical methods based on iteration procedure
[4], [15]. If we come across a problem that the function f is not known explicitly or the derivatives of the function
are difficult to compute, then a method that uses only computed values of the function is more appropriate.

∗Corresponding author. Email address: m.kecies@centre-univ-mila.dz (Kecies Mohamed)

https://www.malayajournal.org/index.php/mjm/index c©2022 by the authors.
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In fact, there are some results of the existence of square and cubic roots of p-adic numbers. For instance, in
[13], the authors demonstrated how classical root-finding methods from numerical analysis can be employed to
compute the multiplicative inverses of integers modulo pn, n ∈ N. A similar problem was addressed by Zerzaihi,
Kecies, and Knapp [21] by using the fixed point iteration to compute the Hensel codes of square roots p-adic
numbers. In [19] and [20] Zerzaihi and Kecies then extended the root-finding problem to the cube roots in Qp of
p-adic numbers by approximating the zeroes of g(x) = x3 − a, a ∈ Qp, using the secant and Newton method.
A related study was also carried out in [14] where Kecies considered the problem of finding the square roots of
p-adic numbers in Qp through the secant method. A similar problem also appeared in [11] wherein Ignacio et al.
computed the square and cube roots of p-adic numbers via Newton-Raphson method.

Lately, a series of investigations explored the problem of finding square roots and the q-th roots of p-adic
numbers. For instance, in [2], the authors proposed an analogue of Steffensen’s method in finding roots of a
general p-adic polynomial equation f(x) = 0 in Zp. Meanwhile, in [17], the author described an analogue of
Halley’s method for approximating roots of p-adic polynomial equations f(x) = 0 in Zp. A related study which
examines a p-adic analogue of Olver’s method was also considered in [16]. On the other hand, In [10], the authors
gave the conditions for the existence of the q-th roots of p-adic numbers, and then applied the Newton-Raphson
method to compute the q-th roots.

Our contribution in the present paper is to show how we can use classical root-finding method (Householder’s
method [9], [18]) to calculate the zero of a p-adic polynomial equation given by

f(x) = x2 − a = 0, a ∈ Q∗p. (1.1)

Our goal is to calculate the first numbers of the p-adic development of the solution of the previous equation, and
this solution is approached by a sequence of the p-adic numbers (xn)n ⊂ Qp constructed by the Householder
method.

The rest of the paper is organized as follows. The next section recalls several concepts about Qp which will be
used through the paper. Our main contribution is formally stated and proved in Section 3, and a short concluding
remark is given in the last section.

2. Preliminaries

Definition 2.1. Fix a prime number p ∈ Z. The p-adic valuation on Z is the function vp : Z−{0} −→ R defined
as follows: for each integer n ∈ Z, n 6= 0, let vp(n) be the unique positive integer satisfying

n = pvp(n)n′ with p - n′.

In other words, the p-adic valuation of n is the highest power of p that divides n.
We extend vp to the field of rational numbers as follows: if x = a

b ∈ Q∗, then

vp(x) = vp(a)− vp(b).

Definition 2.2. For any x ∈ Q, we define the p-adic absolute value (or the p-adic norm) of x by

|x|p = p−vp(x),

if x 6= 0, and we set |0|p = 0.
This norm satisfies the so called strong triangle inequality

|x+ y|p ≤ max
{
|x|p , |y|p

}
for all x, y ∈ Q, (2.1)

and this is a non-Archimedean norm. The p-adic norm leads us to the p-adic metric on Q defined by

dp(x, y) = |x− y|p for all x, y ∈ Q. (2.2)
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We actually have something stronger than a metric. Thanks to the non-Archimedean property dp is an
ultrametric. Rather than the ordinary Triangle Inequality, dp satisfies the Strong Triangle Inequality

dp(x, y) ≤ max {dp(x, z), dp(z, y)} for all x, y, z ∈ Q. (2.3)

We note that the range of the map |·|p is the set {0} ∪ {pn : n ∈ Z} unlike the usual |·|p on R whose values
include all non-negative real numbers.

Definition 2.3. For each prime p, the field of p-adic numbers denoted Qp is the completion of the field of rational
numbers Q with respect to the p-adic norm |·|p which contains the rational numbers Q as a dense subset.
The elements of Qp are equivalent classes of Cauchy sequences in Q with respect to the extension of the p-adic
norm. For some x ∈ Qp let (xn)n be a Cauchy sequence of rational numbers representing x. Then by definition

|x|p = lim
n−→+∞

|xn|p . (2.4)

Each equivalence class of Cauchy sequences defining some element of Qp contains a unique canonical
representative Cauchy sequence. In order to describe its construction, we need the following theorem.

Theorem 2.4. [7] Any p-adic number α ∈ Qp can be written in the form

α =

∞∑
j=n

ajp
j ,

where each aj ∈ Z, and n is such that |α|p = p−n. Moreover, if we choose each aj ∈ {0, 1, 2, ..., p− 1}, then
the expansion is unique. (In this case, the expansion is the canonical representation of α.)

Remark 2.5. Notice that there is a one-to-one correspondence between the power series expansion

α = anp
n + an+1p

n+1 + an+2p
n+2... (2.5)

and the abbreviated representation
α = anan+1an+2...

where only the coefficients of the powers of p are exhibited. Because of this correspondence we can use the power
series expansion and the abbreviated representation interchangeably. In fact, we shall refer to each of them as
the p-adic expansion for α. The abbreviated representation is completely analogous to the representation of the
decimal expansion of a real number. In fact, we complete the analogy by introducing a p-adic point as a device
for displaying the sign of n. Thus, we write

α =


anan+1an+2...a−2a−1 · a0a1a2..., for n < 0,

·a0a1a2..., for n = 0,

·0...0anan+1..., for n > 0.

(2.6)

Definition 2.6.
(1) A p-adic number is said to be a p-adic integer if its canonical expansion contains only nonnegative powers of
p. The set of p-adic integers is denoted by Zp, so

Zp =

x ∈ Qp : x =

∞∑
j=0

ajp
j

 . (2.7)

It is easy to see that
Zp =

{
x ∈ Qp : |x|p ≤ 1

}
. (2.8)
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In other words, Zp appears as the closed unit ball in Qp.
(2) Any p-adic integer whose first digit is non-zero is called a p-adic unit. The set of p-adic units is denoted by
Z×p . Hence we have

Z×p =

x =

∞∑
j=0

ajp
j : a0 6= 0

 =
{
x ∈ Zp : |x|p = 1

}
, (2.9)

meaning that the group of units of Zp is then the unit sphere in Qp.

The following proposition follows at once from the definition of the p-adic norm and the p-adic unit.

Proposition 2.7. [12] Let x be a p-adic number of norm p−n. Then x can be written as the product x = pnu,
where u ∈ Z×p .

According to the above definition 2.3, Qp is a complete metric space, and, consequently, every Cauchy
sequence converges. Cauchy sequences are characterized as follows.

Theorem 2.8. [1] A sequence (an) in Qp is a Cauchy sequence, and therefore convergent, if and only if it satisfies

lim
n−→+∞

|an+1 − an|p = 0. (2.10)

Now let us consider a numerical series
∞∑
j=0

aj , aj ∈ Qp. We say that this series converges if the sequence of

its partial sums sn =
n∑

j=0

aj converges in Qp, and it converges absolutely if the series
∞∑
j=0

|aj |p converges in R.

The following result is an important tool for determining whether a series of p-adic numbers converge in Qp or
not.

Proposition 2.9. [1] A series
∞∑

n=0
an with an ∈ Qp converges in Qp if and only if lim

n−→+∞
an = 0, in which case∣∣∣∣∣

∞∑
n=0

an

∣∣∣∣∣
p

≤ max
n
|an|p . (2.11)

Proposition 2.10. [1] If
lim

n−→+∞
xn = x, xn, x ∈ Qp, |x|p 6= 0,

then the sequence of norms
{
|xn|p : n ∈ N

}
must stabilize for sufficiently large n, i.e., there exists N such that

|xn|p = |x|p ,∀n ≥ N. (2.12)

For fixed primes p the p-adic numbers have many applications to ordinary number theory especially to solving
congruences modulo p. Important in this regard is Hensel’s Lemma. The lemma says that if a polynomial equation
has a simple root modulo a prime number p, then this root corresponds to a unique root of the same equation
modulo any higher power of p. This root can be found by iteratively lifting the solution modulo successive
powers of p and is an analog of Newton’s method. First, we define congruence in Qp.

Definition 2.11. We say that a and b ∈ Qp are congruent mod pn and write a ≡ b mod pn if and only if
|a− b|p ≤ p−n.

Theorem 2.12. [5] (Hensel’s Lemma)
Let f(x) = c0 + c1x + ... + cnx

n be a polynomial in Zp [x] (coefficients are p-adic integers). Let f ′(x) be the
formal derivative of f(x). Suppose ā0 ∈ Zp with f(ā0) ≡ 0 mod p and f ′(ā0) 6≡ 0 mod p. Then, there exists
a unique p-adic integer a such that f(a) = 0 and a ≡ ā0 mod p.

As an application of the Hensel’s lemma, we investigate the squares in Qp.

Corollary 2.13. [6] Let p 6= 2 be a prime. An element x ∈ Qp is a square if and only if it can be written
x = p2ny2 with n ∈ Z and y ∈ Z×p a p-adic unit.
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3. Main Results

Finding iterative methods for solving nonlinear equations is an important area of research in numerical analysis
at it has interesting applications in several branches of pure and applied science can be studied in the general
framework of the nonlinear equations f(x) = 0. Due to their importance, several numerical methods have been
suggested and analyzed under certain condition. These numerical methods have been constructed using different
techniques. It arises in a wide variety of practical applications in Physics, Chemistry, Biosciences, Engineering,
etc.

Let us consider the nonlinear equation of the type

f(x) = 0. (3.1)

For simplicity, we assume that r is a simple root of the equation (3.1) and x0 is an initial guess sufficiently close
to r. Using the Taylor’s series expansion of the function f , we have

f(x0) + (x− x0)f ′(x0) +
(x− x0)2

2
f ′′(x0) = 0. (3.2)

First two terms of the equation (3.2) gives the first approximation, as

x = x0 −
f(x0)

f ′(x0)
. (3.3)

This allows us to suggest the following one-step iterative method for solving the nonlinear equation (3.1).
For a given x0, find the approximate solution xn+1 by the iterative scheme

xn+1 = xn −
f(xn)

f ′(xn)
, n = 0, 1, 2, ... (3.4)

Algorithm (3.4) is known as Newton method and has second-order convergence [4].
Again from (3.2) we have

x = x0 −
f(x0)

f ′(x0)
− f ′′(x0)(x− x0)2

2f ′(x0)
. (3.5)

Substitution again from (3.3) into the right hand side of (3.5) gives the second approximation

x = x0 −
f(x0)

f ′(x0)
− f ′′(x0) (f(x0))

2

2 (f ′(x0))
3 . (3.6)

This formula allows us to suggest the following iterative methods for solving the nonlinear equation (3.1).
For a given x0, compute approximates solution xn+1 by the iterative scheme

xn+1 = xn −
f(xn)

f ′(xn)
− (f(xn))

2
f ′′(xn)

2 (f ′(xn))
3 , n = 0, 1, 2, ... (3.7)

Algorithm (3.7) is known as Householder method for solving the nonlinear equations [9]. This method is one of
the famous methods in producing a sequence of approximation roots of (3.1) with initial point x0.

To calculate the square root of a p-adic number a ∈ Q∗p, one studies the following problem

f(x) = x2 − a = 0, a ∈ Q∗p. (3.8)

The solution of the previous equation is approached by a sequence of the p-adic numbers (xn)n ⊂ Qp constructed
by the Householder method.
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In this section we analyze the convergence of the method described previously. The important part of the
convergence is about the convergence rate. In practice, a numerical method may take a large number of iterations
to reach the optimum point. Therefore, it is important to employ methods having a faster rate of convergence.

The rate of convergence plays an important role in the theory of any iterative procedure that is producing
a convergent sequence to the exact solution. The method converges faster to the solution for high order of
convergence. Therefore, it requires a lesser number of iterations for a given accuracy. Rate of convergence of a
numerical method is usually measured by the numbers of iterations and function evaluations needed to obtain an
acceptable solution.

A practical method to calculate the rate of convergence is to calculate the sequence (en)n defined by

en = xn+n0+1 − xn+n0 . (3.9)

with n0 ∈ N. Roughly speaking, if the rate of convergence of a method is s, then after each iteration the number
of correct significant digits in the approximation increases by a factor of approximately s. Moreover, the number
of iterations necessary to obtain the desired precision M which represents the number of p-adic digits in the
development of

√
a is very important for our objectives. it’s all about finding n such that

|xn+n0+1 − xn+n0
|p ≤ p

−M , (3.10)

this is equivalent to
vp(en) ≥M. (3.11)

Let a ∈ Q∗p a p-adic number such that

|a|p = p−vp(a) = p−2m,m ∈ Z. (3.12)

If (xn)n is a sequence of p-adic numbers that converges to a p-adic number α 6= 0, then from a certain rank one
has

|xn|p = |α|p . (3.13)

We also know that if there exists a p-adic number α such that α2 = a, then vp(a) is even and

|xn|p = |α|p = p−m. (3.14)

We consider the following equation
f(x) = x2 − a. (3.15)

We know that the iterative formula of the Householder method is given by

∀n ∈ N : xn+1 = xn −
f(xn)

f ′(xn)
− (f(xn))

2
f ′′(xn)

2 (f ′(xn))
3 .

Therefore the iteration of the Householder method associated with the function f given in (3.15) is written in the
form

∀n ∈ N : xn+1 = xn −
1

2xn

(
x2n − a

)
− 1

8x3n

(
x2n − a

)2
. (3.16)

Theorem 3.1. If xn0
is the square root of a of order r, then

1) If p 6= 2, then xn+n0
is the square root of a of order wn, where the sequence (wn)n is defined by

∀n ∈ N : wn = 3nr + 2m(1− 3n). (3.17)

2) If p = 2, then xn+n0 is the square root of a of order w′n, where the sequence (w′n)n is defined by

∀n ∈ N : w′n = 3nr + (2m+ 3) (1− 3n). (3.18)
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Proof. Let (xn)n be the sequence defined by (3.16). We have

∀n ∈ N : x2n+1 − a =
1

64

1

x6n

(
a− x2n

)3 (
a− 9x2n

)
. (3.19)

We assume that xn0
is the square root of a of order r, i.e,

x2n0
≡ a mod pr, r ∈ N. (3.20)

Then
vp
(
x2n0
− a
)
≥ r,

hence we obtain ∣∣x2n0
− a
∣∣
p
≤ p−r.

On the other hand, we put

g(x) =
1

64

1

x6n

(
a− 9x2n

)
. (3.21)

Since

|64|p =


1, if p 6= 2,

1
64 = 1

26 , if p = 2,

(3.22)

we have

|g(xn0
)|p =

∣∣∣∣ 1

64

1

x6n0

(
a− 9x2n0

)∣∣∣∣
p

=

∣∣∣∣ 1

64

∣∣∣∣
p

∣∣∣∣ 1

x6n0

∣∣∣∣
p

∣∣a− 9x2n0

∣∣
p

This gives

|g(xn0
)|p ≤

∣∣∣∣ 1

64

∣∣∣∣
p

∣∣∣∣ 1

x6n0

∣∣∣∣
p

max
{
|a|p ,

∣∣9x2n0

∣∣
p

}
On the other hand, using the proposition 2.10, we get

|g(xn0
)|p ≤


p6mp−2m, if p 6= 2,

2626m2−2m, if p = 2,

≤


p4m, if p 6= 2,

24m+6, if p = 2.

We obtain ∣∣x2n0+1 − a
∣∣
p

= |g(xn0
)|p
∣∣a− x2n∣∣3p ,

and so we have 
∣∣x2n0+1 − a

∣∣
p
≤ p4mp−3r, if p 6= 2,∣∣x2n0+1 − a

∣∣
2
≤ 24m+62−3r, if p 6= 2.

Using the definition 2.11, we get
x2n0+1 − a ≡ 0 mod p3r−4m if p 6= 2,

x2n0+1 − a ≡ 0 mod 23r−4m−6 if p = 2.
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In this manner, we find that if p 6= 2, then

∀n ∈ N : x2n+n0
− a ≡ 0 mod pwn , (3.23)

where the sequence (wn)n is defined by

∀n ∈ N :


wn+1 = 3wn − 4m,

w0 = r.

(3.24)

It is clear that (wn)n is a linear recurrence sequence of order 1, whose general term is given by

∀n ∈ N : wn = 3nr + 2m(1− 3n). (3.25)

Furthermore
vp(x2n+n0

− a) ≥ wn. (3.26)

If p = 2, then
∀n ∈ N : x2n+n0

− a ≡ 0 mod 2w
′
n , (3.27)

where the sequence (w′n)n is defined by

∀n ∈ N :


w′n+1 = 3w′n − (4m+ 6),

w′0 = r.

(3.28)

Which give
∀n ∈ N : w′n = 3nr + (2m+ 3) (1− 3n). (3.29)

Furthermore
v2(x2n+n0

− a) ≥ w′n. (3.30)

and so
∀n ∈ N : w′n = wn + 3(1− 3n). (3.31)

This complete the proof. �

Corollary 3.2. If xn0 is the square root of a of order r, then
1) If p 6= 2, then

∀n ∈ N : xn+n0+1 − xn+n0
≡ 0 mod psn , (3.32)

where the sequence (sn)n is defined by

∀n ∈ N : sn = 3nr +m(1− 2 · 3n). (3.33)

2) If p = 2, then
∀n ∈ N : xn+n0+1 − xn+n0

≡ 0 mod 2s
′
n , (3.34)

such as
∀n ∈ N : s′n = 3nr +m (1− 2 · 3n)− 3n+1. (3.35)

Proof. Let (xn)n be the sequence defined by (3.16). We have

∀n ∈ N : xn+1 − xn = −1

8

1

x3n

(
a− x2n

) (
a− 5x2n

)
. (3.36)
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This gives

∀n ∈ N : xn+n0+1 − xn+n0 = −1

8

1

x3n+n0

(
a− x2n+n0

) (
a− 5x2n+n0

)
. (3.37)

We put

h(x) = −1

8

1

x3
(
a− 5x2

)
.

Since

|8|p =


1, if p 6= 2,

1
8 = 1

23 , if p = 2,

(3.38)

we have

|h(xn+n0
)|p =

∣∣∣∣−1

8

1

x3n+n0

(
a− 5x2n+n0

)∣∣∣∣
p

=

∣∣∣∣18
∣∣∣∣
p

∣∣∣∣ 1

x3n+n0

∣∣∣∣
p

∣∣a− 5x2n+n0

∣∣
p

≤
∣∣∣∣18
∣∣∣∣
p

∣∣∣∣ 1

x3n+n0

∣∣∣∣
p

max
{
|a|p ,

∣∣5x2n+n0

∣∣
p

}

≤


p3mp−2m, if p 6= 2

2323m2−2m, if p = 2

≤


pm, if p 6= 2

2m+3, if p = 2.

Hence we obtain

|xn+n0+1 − xn+n0
|p =

∣∣h(xn+n0
)
(
a− x2n+n0

)∣∣
p

= |h(xn+n0
)|p ·

∣∣a− x2n+n0

∣∣
p

On the other hand, using (3.23) and (3.27), we get

|xn+n0+1 − xn+n0 |p ≤


pmp−wn , if p 6= 2

2m+32−w
′
n , if p = 2,

and so 
xn+n0+1 − xn+n0

≡ 0 mod pwn−m, if p 6= 2

xn+n0+1 − xn+n0
≡ 0 mod 2w

′
n−(m+3), if p = 2.

Therefore, if p 6= 2, then
∀n ∈ N : xn+n0+1 − xn+n0 ≡ 0 mod psn , (3.39)

where
∀n ∈ N : sn = wn −m = 3nr +m(1− 2 · 3n). (3.40)

Furthermore
vp(xn+n0+1 − xn+n0

) ≥ sn. (3.41)

If p = 2, then
∀n ∈ N : xn+n0+1 − xn+n0

≡ 0 mod 2s
′
n , (3.42)

where
∀n ∈ N : s′n = w′n − (m+ 3) = 3nr +m (1− 2 · 3n)− 3n+1 = sn − 3n+1. (3.43)

Furthermore
v2(xn+n0+1 − xn+n0) ≥ s′n. (3.44)

This complete the proof. �
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4. Conclusion

Our main results can be summarized as follows.

1. If p 6= 2, then the following are true.

(a) The rate of convergence of the sequence (xn)n is the order sn.

(b) If r − 2m > 0, then the number of iterations n to obtain M correct digits is

n =

 ln
(

M−m
r−2m

)
ln 3

 . (4.1)

2. If p = 2, then the following are true.

(a) The rate of convergence of the sequence (xn)n is the order s′n.

(b) If r − (2m+ 3) > 0, then the necessary number n of iterations to obtain M correct digits is

n =

 ln
(

M−m
r−2m−3

)
ln 3

 . (4.2)

3. In the p-adic setting, the Householder’s method converges cubically insofar as the number of significant
digits eventually triples with each iteration.
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1. Introduction

Let A denote the class of functions f(z) of the form:

f(z) = z +
∞∑
n=2

anz
n (1.1)

which are analytic in the open unit open disk U = {z : z ∈ C, |z| < 1}. Also, we detote S be class of all
functions in A which are univalent and normalized by the conditions

f(0) = 0 = f
′
(0)− 1

in U . Let Σ′ denote the class of meromorphic univalent functions g of the form

g(z) = z +

∞∑
n=0

bn
zn

(1.2)

defined on the domain 4 = {z : z ∈ U, 1 < |z| < ∞}. Since the function g ∈ Σ′ is univalent, then it has an
inverse g−1 = h , defined by

g−1(g(z)) = z (z ∈ 4),

∗Corresponding author. Email address: adnan omoush@yahoo.com (Adnan Ghazy ALAMOUSH)

https://www.malayajournal.org/index.php/mjm/index c©2022 by the authors.
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and
g−1(g(w)) = w (M < |w| <∞, M > 0),

where

g−1(w) = h(w) = w +

∞∑
n=0

Bn
wn

= w − b0 −
b1
w
− b1b0 + b2

w2
− b21 + b1b

2
0 + 2b0b2 + b3
w3

+ · · · . (1.3)

By a simple calculations, we have:

w = g(h(w)) = (b0+B0)+w+
b1 +B1

w
+
B2 − b1B0 + b2

w2
+
B3 − b1B1 + b1B

2
0 − 2b2B0 + b3

w3
+· · · . (1.4)

Comparing the initial coefficients in (1.4), we find that

b0 +B0 = 0 ⇒ B0 = −b0

b1 +B1 = 0 ⇒ B1 = −b1
B2 − b1B0 + b2 = 0 ⇒ B2 = −(b2 + b1b0)

B3 − b1B1 + b1B
2
0 − 2b2B0 + b3 = 0 ⇒ B3 = −(b3 + 2b0b1 + b1b

2
0 + b21).

A function g ∈ Σ′ is said to be meromorphic bi-univalent if g−1 ∈ Σ′, and the family of all meromorphic
bi-univalent functions is denoted by Σ′∗. The coefficient problem was widely investigated for various interesting
subclasses of the meromorphic univalent functions; for example, Schiffer [19] obtained the estimate |b2| < 3

2 for
meromorphic univalent functions f ∈ S with b0 = 0. In 1983, Duren [20] obtained the inequality |b2| < 2

n+1

for f ∈ S with bk = 0, 1 ≤ k ≤ n
2 .

For the coefficients of inverses of meromorphic univalent functions, Springer [16] showed that

|B3| < 1 and |B3 +
1

2
B2

1 | <
1

2
,

and conjectured that

|B2n−1| ≤
(2n− 2)!

n!(n− 1)!
(n = 1, 2, · · · ).

In 1977, Kubota [22] has proved that the Springer conjecture is true for n = 3; 4; 5. Furthermore, for h ∈ Σ′,
Schober [15] obtained sharp bounds for |B2n−1| if 1 ≤ n ≤ 7.

Recently, Some several researcher such as ( for example [1], [2], [3], [4] [5], [6], [7], [8], [9], [10], [11],
[12],[13], [14], [17], [21]) introduced new subclasses of bi-univalent functions and meromorphically
bi-univalent functions and obtained estimates on the initial coefficients for functions in each of these subclasses.

In 2013, Babalola [18] introduced a new subclass λ-pseudo starlike function of order 0 ≤ β < 1 satisfying
the analytic condition

<
{
z(f(z)′)λ

f(z)

}
> β (λ ≥ 1, z ∈ U). (1.5)

In particular, Babalola [18] proved that all λ-pseudo-starlike functions are Bazilevic of type 1− 1
λ and order β

1
λ

and are univalent in open unit disk U .

In the present paper, we introduce two new subclasses of pseudo-type of meromorphically bi-univalent
functions and obtained the estimates for the initial coefficients |b0| and |b1| of functions in these subclasses.
Several some consequences of the new results are also pointed out.
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2. Coefficient Bounds for the Function Class Σ′∗(h, p, λ)

We begin by introducing the function class Σ′(h, p, λ) by means of the following definition.

Definition 2.1. Let the functions h; p : 4→ C be analytic functions and

h(z) = 1 +
h1
z

+
h2
z2

+
h3
z3

+ · · · , p(z) = 1 +
p1
z

+
p2
z2

+
p3
z3

+ · · · ,

such that
min{<(h(z)),<(p(z))} > 0, z ∈ 4.

A function g(z) ∈ Σ′ given by (1.2) is said to be in the class Σ′∗(h, p, λ) if the following conditions are satisfied:

g ∈ Σ′ and
z(g(z)′)λ

g(z)
∈ h(4), ( λ ≥ 1, z ∈ 4), (2.1)

and
w(h(w)′)λ

h(w)
∈ p(4), ( λ ≥ 1, w ∈ 4), (2.2)

where the function h is given by (1.3).

Theorem 2.2. Let g(z) be given by (1.2) be in the class Σ′∗(h, p, λ). Then

|b0| ≤ min

{√
|h1|2 + |p1|2

2
,

√
|h2|+ |p2|

2

}
(2.3)

and

|b1| ≤ min

{
|h2|+ |p2|
2|λ+ 1|

,
1

λ+ 1

(√
|h2|2 + |p2|2

2
+

(|h1|2 + |p1|2)2

4

)}
. (2.4)

Proof. Let g ∈ Σ′∗(h, p, λ). Then, by Definition 2.1 of meromorphically bi-univalent function class Σ′∗(h, p, λ),
the conditions (2.1) and (2.2) can be rewritten as follows:

z(g(z)′)λ

g(z)
= h(z) (2.5)

and
w(h(w)′)λ

h(w)
= p(w), (2.6)

respectively. Here, and in what follows,the functions h(z) ∈ P and p(w) ∈ P have the following forms:

p(z) = 1 +
p1
z

+
p2
z2

+
p3
z3

+ ... (z ∈ 4) (2.7)

and
q(w) = 1 +

q1
w

+
q2
w2

+
q3
w3

+ ... (w ∈ 4). (2.8)

Clearly, we have

z(g(z)′)λ

g(z)
= 1− b0

z
+
b20 − (1 + λ)b1

z2
+
b30 − (2λ)b0b1 + (1 + 2λ)b2

z3
+ · · ·

(2.9)
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and
w(h(w)′)λ

h(w)
= 1 +

b0
w

+
b20 + (1 + λ))b1

w2
+
b30 + (3(1 + λ)b0b1 + (1 + 2λ))b2

w3
+ · · · .

(2.10)

Now, equating the Coefficients in (2.5) and (2.6), we get

−b0 = h1 (2.11)

b20 − (1 + λ)b1 = h2 (2.12)

b0 = p1 (2.13)

b20 + (1 + λ)b1 = p2. (2.14)

From (2.11) and (2.13), we find that
p1 = −q1 (2.15)

and
2b20 = h21 + p21 (2.16)

that is,

|b0|2 ≤
|h1|2 + |p1|2

2
. (2.17)

Adding (2.12) and (2.14), we get
2b20 = h2 + p2 (2.18)

that is,

|b0|2 ≤
|h2|+ |p2|

2
. (2.19)

From (2.18) and (2.19) we get the desired estimate on the coefficient |b0| as asserted in (2.3).
Next, in order to find the bound on |b0|, by subtracting the equation (2.12) from the equation (2.14), we get

2(1 + λ)b1 = p2 − h2, (2.20)

that is,

|b1| ≤
|h2|+ |p2|
|2(1 + λ)|

. (2.21)

By squaring and adding (2.12) and (2.14), using (2.18) in the computation leads to

b21 =
1

(1 + λ)2

(
h22 + p22

2
− [h21 + p21]2

4

)
. (2.22)

that is,

|b1| ≤
1

1 + λ

(√
|h2|2 + |p2|2

2
+

(|h1|2 + |p1|2)2

4

)
. (2.23)

From (2.21) and (2.23) we get the desired estimate on the coefficient |b1| as asserted in (2.4). �

Remark 2.3. If we take

h(z) = p(z) =

(
1 + 1

z

1− 1
z

)α
= 1 +

2α

z
+

2α2

z2
+ · · · , (0 < α ≤ 1, z ∈ 4),

and

h(z) = p(z) =
1 + 1−2β

z

1− 1
z

= 1 +
2(1− µ)

z
+

2(1− µ)

z2
, (0 < µ ≤ 1, z ∈ 4),

respectively, in the Theorem 2.2, we obtain the following results which is an improvement of estimates obtained
by Srivastava el. at [17].
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Corollary 2.4. Let g(z) be given by (1.2) be in the class Σ′∗(λ, α). Then

|b0| ≤ 2α (2.24)

and

|b1| ≤
2
√

5α2

λ+ 1
. (2.25)

Corollary 2.5. Let g(z) be given by (1.2) be in the class Σ′∗(λ, µ, α). Then

|b0| ≤ 2(1− µ) (2.26)

and

|b1| ≤
2(1− µ)

√
4µ2 − 8µ+ 5α2

λ+ 1
. (2.27)

3. Coefficient Bounds for the Function Class Σ′∗(h, p, λ, β)

We first introduce the function class Σ′∗(h, p, λ, β) as follows.

Definition 3.1. Let the functions h; p : 4→ C be analytic functions and

h(z) = 1 +
h1
z

+
h2
z2

+
h3
z3

+ · · · , p(z) = 1 +
p1
z

+
p2
z2

+
p3
z3

+ · · · ,

such that
min{<(h(z)),<(p(z))} > 0, z ∈ 4.

A function g(z) ∈ Σ′ given by (1.2) is said to be in the class Σ′∗(h, p, λ, β) if the following conditions are
satisfied:

g ∈ Σ′ and (1− β)

(
g(z)

z

)λ
+ β

(
z(g(z)′)λ

g(z)

)
∈ h(4), (0 < β ≤ 1, λ ≥ 1, z ∈ U∗), (3.1)

and

(1− β)

(
h(w)

w

)λ
+ β

(
w(h(w)′)λ

h(w)

)
∈ p(4)(0 < β ≤ 1, λ ≥ 1, w ∈ U∗), (3.2)

where the function h is given by (1.3).

Next, we now derive the estimates on the Coefficients |b0| and |b1| for the meromorphically bi univalent
function class Σ′λ,β(µ).

Theorem 3.2. Let g(z) be given by (1.2) be in the class Σ′∗(h, p, λ, β). Then

|b0| ≤ min

{√
|h1|2 + |p1|2

2(λ− λβ − β)2
,

√
|h1|+ |p1|

|λ(λ− 1)(1− β) + 2β|

}
(3.3)

and
|b1| ≤ min{

|p2|+ |h2|
|2(β − λ+ 2λβ)|

,
1

|λ− β − 2λβ|

(√
|h2|2 + |p2|2

2
+

[(λ(λ− 1)(1− β) + 2β)]2(|h1|2 + |p1|2)2

16(λ− λβ − β)4

)}
.

(3.4)
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Proof. Let g ∈ Σ′∗(h, p, λ, β). Then, by Definition 3.1 of meromorphically bi-univalent function class
Σ′∗(h, p, λ, β), the conditions (3.1) and (3.2) can be rewritten as follows:

(1− β)

(
g(z)

z

)λ
+ β

(
z(g(z)′)λ

g(z)

)
= h(z) (3.5)

and

(1− β)

(
h(w)

w

)λ
+ β

(
w(h(w)′)λ

h(w)

)
= p(w), (3.6)

respectively. Here, just as in our proof of Theorem 2.1, with the functions p(z) ∈ P and q(w) ∈ P have the
forms in (2.7) and (2.7), and comparing the corresponding coefficients in (3.5) and (3.6), we have

(λ− λβ − β)b0 = h1 (3.7)

1

2
(λ(λ− 1)(1− β) + 2β)b20 + (λ− β − 2λβ)b1 = h2 (3.8)

−(λ− λβ − β)b0 = p1 (3.9)
1

2
(λ(λ− 1)(1− β) + 2β)b20 + (β − λ+ 2λβ)b1 = p2. (3.10)

From (3.7) and (3.9), we obtain
h1 = −p1 (3.11)

and
2(λ− λβ − β)2b20 = h21 + p21 (3.12)

that is,

|b0|2 ≤
|h1|2 + |p1|2

2(λ− λβ − β)2
. (3.13)

From (3.8) and (3.10), we get
(λ(λ− 1)(1− β) + 2β)b20 = h1 + p1, (3.14)

that is,

|b0|2 ≤
|h1|+ |p1|

|λ(λ− 1)(1− β) + 2β|
. (3.15)

From (3.13) and (3.15) we get the desired estimate on the coefficient |b0| as asserted in (3.3).
Next, in order to find the bound on |b1|, by subtracting the equation (3.8) from the equation (3.10), we get

2(β − λ+ 2λβ)b1 = p2 − h2, (3.16)

that is,

|b1| ≤
|p2|+ |h2|

|2(β − λ+ 2λβ)|
. (3.17)

By squaring and adding (3.8) and (3.10), using (3.14) in the computation leads to

b21 =
1

(λ− β − 2λβ)2

(
h22 + p22

2
− [(λ(λ− 1)(1− β) + 2β)]2[h21 + p21]2

16(λ− λβ − β)4

)
, (3.18)

that is,

|b1| ≤
1

|λ− β − 2λβ|

(√
|h2|2 + |p2|2

2
+

([(λ(λ− 1)(1− β) + 2β)]2(|h1|2 + |p1|2)2

16(λ− λβ − β)4

)
. (3.19)

From (3.17) and (3.19) we get the desired estimate on the coefficient |b1| as asserted in (3.4). �

Future Work: For function g ∈ Σ′∗(λ, β, φ) given by (1.2) by taking φ = h(z) = p(z) as in Remark 2.3 or
(φ = 1+Az

1+Bz − 1 ≤ B < A ≤ 1), we can obtain the initial coefficient estimates |b0| and |b1| by routine procedure
(as in Theorem 2.2) and so we omit the details.
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Abstract. In this paper we introduced the notion of an isolate domination in hypergraphs. A setD ⊆ V is called a dominating
set of H if for every v ∈ V \ D there exists u ∈ D such that u and v are adjacent. A dominating set I of a hypergraph H
is called an isolate dominating set of H if it contains at least one vertex v ∈ I such that v is not adjacent to any vertex of I .
The minimum cardinality of an isolate dominating set of H is called the isolate domination number γ0 of H. We determine
the isolate domination number for some hypergraphs while the study on this parameter has been initiated. Furthermore, the
effects of the removal of a vertex or an edge from the hypergraph upon the isolate domination number are examined.
AMS Subject Classifications: 05C65.
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1. Introduction and Background

The concept of domination in graphs was initiated by de Jaenisch [14] during 1862 when he attempted to
determine the minimum number of queens required to cover or dominate an n×n chess board. Similar problems
posed by Ball [3] were studied by Yaglom brothers [18]. Berge [4] in 1958 and Ore [16] in 1962 introduced
the idea of domination in graphs. Berge named domination as external stability and domination number as a
coefficient of external stability while Ore used the words domination and domination number for the same idea.
A survey of Cockayne and Hedetniemi [7] about domination motivates many researchers to work on it. Since
then many researchers have been working on this topic and extending their contributions through research articles
and books. An excellent treatment of fundamentals of domination in graph is given in Haynes et. al [11] while
several advanced topics for domination can studied in [10]. Several variants of domination have been introduced
and well-studied in the present literature such as edge domination, total domination, connected domination, global
domination, equitable domination etc. and many others are being studied. For a detailed bibliography of papers
on the concept of domination, the readers may to refer Hedetniemi and Laskar [12]. The notion of an isolate
domination in graphs was introduced by Hamid and Balamurugan [8]. The theory of domination in graphs is
well developed on the other hand, domination in hypergraph is a recent problem to study. However, as in case
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of graphs, the domination in hypergraphs also has many interesting applications. The concept of domination
in hypergraphs was initiated by Acharya [1], [2] and thereafter many researchers began to study domination
in hypergraph. Reader may refer to the second part of the book [9] by Haynes et. al for the domination in
hypergraph. Domination and related subset problems such as independence, irredundance, vertex covering and
matching has became an extensively researched branch of graph theory, due to its wide applications and potential
to solve many real life problems involving design and analysis of communication network as well as defense
surveillance.

In this paper we introduced a new variant of domination in hypergraph and studied two new parameters of
this domination. Later several important properties are studied and some results are found.

2. Preliminaries

We begin with recalling some basic definitions and results from [5], [6], [15], [13], [17] required for our purpose.

Definition 2.1. A hypergraph H is a pair H(V,E) where V is a finite nonempty set and E is a collection of
subsets of V . The elements of V are called vertices and the elements of E are called edges or hyperedges.
And ∪ei∈Eei = V and ei 6= φ are required for all ei ∈ E. The number of vertices in H is called the order of
the hypergraph and is denoted by |V |. The number of edges in H is called the size of H and is denoted by
|E|. A hypergraph of order n and size m is called a (n,m) hypergraph. The number |ei| is called the degree
(cardinality) of the edges ei. The rank of a hypergraphH is r(H) = maxei∈E |ei|.

Definition 2.2. For any vertex v in a hypergraphH(V,E), the set

N [v] = {u ∈ V : u is adjacent to v} ∪ {v}

is called the closed neighborhood of v inH and each vertex in the setN [v]−{v} is called neighbor of v. The open
neighborhood of the vertex v is the set N [v] \ {v}. If S ⊆ V then N(S) = ∪v∈SN(v) and N [S] = N(S) ∪ S.

Definition 2.3. A simple hypergraph (or sperner family) is a hypergraph H(V,E) where E = {e1, e2, · · · , em}
such that ei ⊂ ej implies i = j.

Definition 2.4. For any hypergraph H(V,E) two vertices v and u are said to be adjacent if there exists an edge
e ∈ E that contains both v and u and non-adjacent otherwise.

Definition 2.5. For any hypergraphH(V,E) two edges are said to be adjacent if their intersection is nonempty.
If a vertex vi ∈ V belongs to an edge ej ∈ E then we say that they are incident to each other.

Definition 2.6. The vertex degree of a vertex v is the number of vertices adjacent to the vertex v in H. It is
denoted by d(v). The maximum (minimum) vertex degree of a hypergraph is denoted by ∆(H) (δ(H)).

Definition 2.7. The edge degree of a vertex v is the number of edges containing the vertex v. It is denoted by
dE(v).

The maximum (minimum) edge degree of a hypergraph is denoted by ∆E(H)(δE(H)). A vertex of a
hypergraph which is incident to no edge is called an isolated vertex.

Definition 2.8. A star hypergraph is an intersecting family of edges having a common element v. It is denoted
byH(v) and the vertex v is called the center ofH(v).

Definition 2.9. The hypergraph H(V,E) is called connected if for any pair of its vertices, there is a path
connecting them. If H is not connected then it consists of two or more connected components, each of which
is a connected hypergraph.
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Definition 2.10. For 0 ≤ r ≤ n, we define the complete r-uniform hypergraph to be the simple hypergraph
Kr
n = H(V,E) such that |V | = n and E(Kr

n) coincides with all the r-subsets of V .

Definition 2.11. A complete r-partite hypergraph is an r-uniform hypergraphH(V,E) such that the set V can be
partitioned into r non-empty parts, each edge contains precisely one vertex from each part, and all such subsets
form E. It is denoted by Kr

n1,n2,...,nr
, where ni is the number of vertices in part Vi.

Definition 2.12. Let S be a set of vertices of a hypergraph H and let u ∈ S. Then the vertex v is said to be a
private neighbor of u (with respect to S) if N [v] ∩ S = {u}. The set of all private neighbors of u with respect to
S is called private neighbor set of u with respect to S and is denoted by pn[u, S] = {v : N [v] ∩ S = {u}}.

Definition 2.13. For a hypergraphH(V,E), a set D ⊆ V is called a dominating set ofH if for every v ∈ V \D
there exists u ∈ D such that u and v are adjacent inH, that is there exists e ∈ E such that u, v ∈ e.

Definition 2.14. A dominating set D of a hypergraph H is called a minimal dominating set, if no proper subset
of D is a dominating set ofH. The minimum(maximum) cardinality of a minimal dominating set in a hypergraph
H is called the domination(upper domination) number ofH and is denoted by γ(H)(Γ(H)).

3. Isolate Domination

In this section the notion of an isolate domination is given while the parameters like isolate domination number
and upper isolate domination number are defined and verified with examples. Later we determine the values of
these parameters for some hypergraphs and some bounds in terms of elements of H are obtained. Lastly, we
investigate the properties of the hypergraphs for which γ0(H) = n−∆(H).

Definition 3.1. A dominating set I of a hypergraph H is called an isolate dominating set of H if it contains at
least one vertex v ∈ I such that v is not adjacent to any vertex of I i.e. N(v) ∩ I = φ, for at least one vertex
v ∈ I .

Definition 3.2. An isolate dominating set I of a hypergraph H is called a minimal isolate dominating set if no
proper subset of I is an isolate dominating set ofH.

Definition 3.3. The minimum (maximum) cardinality of a minimal isolate dominating set in a hypergraph H is
called the isolate (upper isolate) domination number ofH and is denoted by γ0(H)(Γ0(H)).
An isolate dominating set of cardinality γ0(Γ0) is called a γ0-set (Γ0-set).

Example 3.4. Consider the hypergraph H(V,E) where V = {v1, v2, . . . , v14} and E = {e1, e2, e3, e4, e5}. In
which the edges ofH are defined as follows:

e1 = {v1, v2, v3, v4, v5, v6},
e2 = {v5, v6, v7, v8},
e3 = {v6, v9},
e4 = {v2, v3, v10, v11},
e5 = {v1, v2, v12, v13, v14}.

Then the sets I1 = {v2, v7, v9}, I2 = {v4, v6, v10, v12} and I3 = {v4, v7, v9, v10, v12} are the isolate dominating
sets ofH. But among these only I1 and I3 are minimal isolate dominating sets but not I2. In fact, I1 is a minimal
dominating set of H with minimum cardinality and I3 is that of maximum cardinality. Hence γ0(H) = 3 and
Γ0(H) = 5.

Theorem 3.5. LetH be a disconnected hypergraph havingH1,H2,H3, . . . ,Hk as its components then
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1. γ0(H)= min1≤i≤k{si}, where si = γ0(Hi) +
∑k
j=1,j 6=i γ(Hj).

2. Γ0(H)= max1≤i≤k{ri}, where ri = Γ0(Hi) +
∑k
j=1,j 6=i Γ(Hj).

Proof. 1) Suppose s1 = min{s1, s2, ..., sk}. Let I be a γ0-set of H1 and Di be a γ-sets of Hi for all i ≥ 2.
Then the set I ∪ (∪ki=2Di) is an isolate dominating set of H. Hence γ0(H) ≤ γ0(H1) +

∑k
j=2 γ(Hj) = s1 =

min1≤i≤k{si}.
Now let I be any minimal isolate dominating set of H. Then the intersection of I and the vertex of V (Hi)

of each component Hi is non-empty. In fact, the set I ∩ V (Hi) a minimal dominating set of Hi, for all i =

1, 2, . . . , k. Further, for at least one i, say j we have I ∩ V (Hj) is an isolate dominating set ofHj . Therefore |I|
≥ γ0(Hj) +

∑k
i=1,i6=j γ(Hi) = sj ≥ min{si}. Hence γ0(H)= min1≤i≤k{si}.

2) Every Γ0-set ofHi together with the set ∪kj=1,j 6=i Dj forms a minimal isolate dominating set ofH, where
Dj is a Γ-set ofHj and 1 ≤ i ≤ k. Hence Γ0(H) ≥ max1≤i≤k{ri}.

Now let I be any minimal isolate dominating set ofH. Then I ∩V (Hi) is a minimal dominating set ofH for
every i = 1, 2, . . . , k. Further for at least one i, say j we have I ∩ V (Hj) is an isolate dominating set ofHj .

Therefore |I| ≤ Γ0(Hj) +
∑k
i=1,i6=j Γ(Hi) = rj ≤ max1≤i≤k{ri}.

Hence Γ0(H)=max1≤i≤k{ri}. �

Observations 3.6. If a hypergraphH contains an isolated vertex then γ0(H) = γ(H) and Γ0(H) = Γ(H).

In light of the above observation, we restrict our attention to connected hypergraphs in the rest of this paper
unless otherwise stated.

Theorem 3.7. For complete r-uniform hypergraph H = Kr
n, for r ≥ 2, γ0(H) = Γ0(H) = 1 and for complete

r-partite hypergraphH = Kr
n1,n2,...,nr

, γ0(H)=min{n1, n2, . . . , nr}, Γ0(H)=max{n1, n2, . . . , nr}.

Proof. Any vertex in complete r-uniform hypergraph is adjacent to all vertices of H. Hence
γ0(Kr

n) = Γ0(Kr
n) = 1. Further from the definition of complete r-partite hypergraph H, each r parts are the

minimal isolate dominating sets ofH. Hence maximum and minimum values of the set {n1, n2, . . . , nr} will be
the γ0(H) and Γ0(H) respectively. �

Observations 3.8. If I is a minimal isolate dominating set ofH then V \ I is a dominating set ofH.

In view of the above observation, complement of a minimal isolate dominating set is dominating but need not
be an isolate dominating. But following theorem proves that like domination number ofH, the isolate domination
number γ0(H) does not exceed half of the order ofH.

Theorem 3.9. For a connected hypergraphH, γ0(H) ≤ n
2 , where n is the number of vertices ofH. Moreover, if

p and q are positive integers such that q ≥ 2p then there exists a hypergraphH of order q with γ0(H) = p.

Proof. Let H be a connected hypergraph. Let D be a minimum dominating set of H. If for any v ∈ D,
we have N(v) ∩ D = φ then D itself is a minimal isolate dominating set of H and the result follows. If
N(v) ∩ D 6= φ, for every v ∈ D then every vertex v ∈ D has at least one private neighbor in V \ D with
respect to D. Let w be a vertex in D with minimum number of private neighbors, say m with respect to D. Then
γ(H) + γ(H)m ≤ n. Further, the set D−{w} ∪ I , where I is γ0-set of pn [w,D] is an isolate dominating set of
H. Hence γ0(H) ≤ γ(H)−1+m. Now we prove that γ(H)−1+m ≤ γ(H)+γ(H)m

2 . The inequality is true when
γ(H) = 2. Now if 2(γ(H)−1+m) > γ(H)+γ(H)m and γ(H) 6= 2, then we have (γ(H)−2) > m(γ(H)−2),
getting a contradiction as m ≥ 1. Hence γ0(H) ≤ γ(H)− 1 +m ≤ γ(H)+γ(H)m

2 ≤ n
2 .

Now let p and q be any two positive integers such that q > 2p. Construct a hypergraph H of order q with
γ0(H) = p. Firstly we consider an edge e′ of cardinality p. Then the hypergraphH is obtained from that edge e′

by attaching exactly one vertex at each p − 1 vertices and then adding one edge e containing the remaining one
vertex from e′ and q−2p+1 new vertices. It is clear to see thatH is a hypergraph of order q with γ0(H) = p. �
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Observations 3.10. For any vertex v in a hypergraphH, the set V \N(v) is always an isolate dominating set of
H and consequently γ0(H) ≤ n−∆(H).

Theorem 3.11. Let H be a hypergraph of order n with γ0(H) + ∆(H) = n and let w be a vertex of degree
∆(H). Then V \N [w] is independent and ∆(H) ≥ n

2 .

Proof. Let H be a given hypergraph. Suppose V \ N [w] is not independent then there exists two vertices
p, q ∈ V \N [w] such that p and q are adjacent. Consequently, the set I = (V \N [w]− {p}) ∪ {w} is an isolate
dominating set of H with cardinality n−∆(H)− 1, a contradiction. Hence V \N [w] is independent. Now we
prove that ∆(H) ≥ n

2 . Suppose ∆(H) < n
2 . Before proving this, first we claim that each vertex of N(w) is

adjacent to at most one vertex in V \N [w]. Suppose there exists a vertex u ∈ N(w) having at least two neighbors
say x and y in V \N [w]. Since ∆(H) < n

2 , it follows that V \N [w] contains at least ∆(H) vertices. Hence there
exists a vertex z in V \ N [w] which is not adjacent to u. Therefore the set I = (V \ N [w] − {x, y}) ∪ {u,w}
is an isolate dominating set of H with cardinality less than or equal to n −∆(H) − 1, which is a contradiction.
Hence each vertex in N(w) has at most one neighbor in V \N [w]. Further |V \N [w]| ≥ ∆(H), together with
the facts that V \N [w] is independent and each vertex of N(w) has at most one neighbor in V \N [w], it follows
that the sets V \ N [w] and N(w) have equal number of vertices . Hence a vertex in N(w) together with its
non-neighbors in V \N [w] form an isolate dominating set ofH with cardinality n−∆(H)− 1, a contradiction.
Hence ∆(H) ≥ n

2 . �

Theorem 3.12. Let H be a connected hypergraph and let w be a vertex of degree ∆(H). If V \ N [w] is an
independent set and every vertex in N(w) has at most one neighbor in V \N [w] then either γ0(H) + ∆(H) = n

or γ0(H) + ∆(H) = n− 1. Further if N(w) contains a vertex of degree 1 then γ0(H) + ∆(H) = n.

Proof. LetH be a given hypergraph. Let I be an isolate dominating set ofH with |I| = γ0(H). It is easy to see
that the set V \N(w) is an isolate dominating set ofH with cardinality n−∆(H). Hence γ0(H) ≤ n−∆(H).
Since V \N [w] is independent and every vertex in N(w) has at most one neighbor in V \N [w], it follows that
|I| ≥ |V \N [w]| = n−∆(H)−1. Therefore n−∆(H)−1 ≤ γ0(H) ≤ n−∆(H). Hence γ0(H) + ∆(H) = n

or γ0(H) + ∆(H) = n − 1. Further if N(w) contains a vertex of degree 1. Let u ∈ N(w) such that d(u) = 1.
Then I must contain either u or w. Also I contains at least |V \N [w]| vertices for dominating all the vertices of
V \N [w]. Therefore γ0(H) = |I| ≥ n−∆(H). Hence γ0(H) + ∆(H) = n. This completes the proof. �

4. Vertex Removal and Edge Removal

This section deals with the effects of vertex removal or edge removal on the isolate domination number and
study the characteristics of vertices whose removal decreases or increases the isolate domination number of a
hypergraphH.

Definition 4.1. [5] LetH be a hypergraph and v ∈ V . ThenH\{v} is a sub-hypergraph with vertex set V \{v}
and edge set {e \ {v} : e ∈ E, e \ {v} 6= φ}.

Definition 4.2. [5] LetH be a hypergraph and e ∈ E. ThenH \ {e} is a sub-hypergraph with edge set E \ {e},
whose vertex set contains all vertices ofH which are not pendant vertices in the deleted edge e.

Theorem 4.3. For a hypergraphH and v ∈ V , γ0(H \ v) ≥ γ0(H)− 1.

Proof. Let v be the vertex in H such that γ0(H \ v) < γ0(H). Let I be a γ0-set of H \ v. Then N(v) ∩ I = φ,
otherwise I would be an isolate dominating set of H with cardinality less than γ0(H), which is a contradiction.
Therefore the set I ∪ {v} forms an isolate dominating set of H with a vertex v such that N(v) ∩ I = φ. Thus
γ0(H) ≤ |I ∪ {v}| ≤ γ0(H \ v) + 1. Hence γ0(H \ v) ≥ γ0(H)− 1. �
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Proposition 4.4. LetH be a complete r-partite hypergraph with r-partitions V1, V2, ...Vr then

1. If |Vi| = 1, for exactly one i, then γ0(H \ v) ≥ γ0(H), for v ∈ V .

2. If |Vi| = 1, for more than one i, then isolate domination number remains unchanged on removal of any
vertex v from H .

3. If each Vi contains at least two vertices then γ0(H \ v) ≤ γ0(H), for v ∈ V .

Proof. 1. Let V1 = {w}. Then by definition, w dominates all the vertices of hypergraphH. Hence γ0(H) =

1. Now if we remove a vertex w from hypergraph H then H \ w is a complete (r − 1) partite hypergraph
with each part having at least two vertices. Thus γ0(H \ w) ≥ 2, by theorem 3.7. Further, the removal
of any vertex v 6= w will not affect the value of γ0(H), as w is still there, to dominate all the vertices of
hypergraphH \ v. Hence γ0(H \ v) ≥ γ0(H).

2. Let V1 = {w1} and V2 = {w2}. Clearly V1 and V2 are the isolate dominating sets ofH. Hence γ0(H) = 1.
Also the removal of any vertex v from H does not affect the value of γ0(H) as either w1 or w2 is present
inH \ v. Hence the result follows.

3. Let min{|Vi|} = p. Let the part Vk contains p vertices. Then by theorem 3.7, Vk is a γ0-set of H. Also
each vertex of Vk is the only private neighbor of itself. Hence γ0(H \ v) < γ0(H), for v ∈ Vk. Further on
removing any vertex v ∈ Vi and Vi 6= Vk, we have γ0(H \ v) = γ0(H).

�

Theorem 4.5. LetH be a hypergraph with γ0(H\v) = γ0(H)−1 iff there is a γ0-set I with at least two vertices
u ∈ I such that N(u) ∩ I = φ and pn[v, I] = {v}.

Proof. Let γ0(H\v) = γ0(H)−1 and let I be a γ0-set ofH\v. ThenN(v)∩I = φ. Thus the set I∪{v} is a γ0-set
ofH with at least two vertices u ∈ I such thatN(u)∩I = φ and also pn[v, I] = {v}. Conversely, suppose I be a
γ0-set ofH with given conditions. Since pn[v, I] = {v} and for at least two vertices of I , we haveN(v)∩I = φ,
it follows the set I − v is an isolate dominating set ofH \ v. Therefore γ0(H \ v) ≤ |I| − 1 = γ(H)− 1. Hence
by theorem 4.3, the result follows. �

Theorem 4.6. LetH be a hypergraph with at most one isolate vertex then γ0(H \ v) > γ0(H) if and only if

1. v is in every γ0-set ofH.

2. No subset of I ⊆ V \N [v] with cardinality less than or equal to γ0(H) can be an isolate dominating set
ofH \ v.

Proof. Let H be a given hypergraph and γ0(H \ v) > γ0(H). Suppose v does not belong to γ0-set I of H.
Then I will be an isolate dominating set of H \ v. Consequently, γ0(H \ v) ≤ |I|, which is a contradiction.
Hence v is in every γ0-set of H and 2 is obvious. Now conversely let 1) and 2) hold. Let I be a γ0-set of H \ v.
If I ⊆ V |N [v] then |I| > γ0(H), by condition 2. Hence γ0(H \ v) > γ0(H). If I ∩ N(v) 6= φ. Then I
would be an isolate dominating set of H. Hence γ0(H) ≤ |I|. But by condition 1, |I| > γ0(H). Consequently,
γ0(H \ v) > γ0(H). �

Theorem 4.7. Let H be a hypergraph with at most one isolated vertex. If u and v be the vertices in H such that
γ0(H \ u) < γ0(H) and γ0(H \ v) > γ0(H) then u and v are not adjacent.

Proof. LetH be a given hypergraph. Suppose u and v are adjacent. Let I be a γ0-set ofH\u. Then I∩N(u) = φ,
otherwise I would form an isolate dominating set of H with cardinality less than γ0(H). Since u and v are
adjacent, it follows v /∈ I . Therefore the set I ∪ {u} would form a γ0-set of H, which is contradiction to the
condition 1 of theorem 4.6,. Hence u and v are not adjacent. �
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Remark 4.8. The following example illustrates that the converse is not true.

Example 4.9. Let H(V,E) be a hypergraph, where V = {v1, v2, . . . , v11} and E = {e1, e2, . . . , e5}. In which
the edges ofH are defined as follows:

e1 = {v1, v2, v3, v4, v5},
e2 = {v1, v2, v6, v7},
e3 = {v1, v8},
e4 = {v4, v5, v9, v10},
e5 = {v4, v11}.

The vertices v8, v11 are not adjacent inH with γ0(H\ v8) < γ0(H) and γ0(H\ v11) < γ0(H). And the vertices
v6, v9 are not adjacent inH with γ0(H \ v6) = γ0(H), γ0(H \ v9) = γ0(H).

Observations 4.10. The isolate domination number γ0(H) of a hypergraphH may increase, decrease or remains
unaltered when we remove an edge e from hypergraph H. Moreover the differences γ0(H \ e) − γ0(H) and
γ0(H)− γ0(H \ e) can be made arbitrarily large.

The following examples give the illustration of the above observation.

Example 4.11. Consider two star hypergraphs H1(u) and H2(v) of size p whose centers are connected by an
edge e′ = {u, v}. Let H be that hypergraph. Then γ0(H) = 1 + p. Thus removing an edge e′ from hypergraph
H decrease the isolate domination number ofH by p− 1.

Example 4.12. Consider the hypergraph H(V,E) where V = {v1, v2, . . . , vp+2, u1, u2, . . . , up+2} where p be
any positive integer and E = {e1, e2, . . . , ep+4}. In which the edges ofH are defined as follows:

e1 = {v1, u1},
e2 = {v2, u2},

...

ep+2 = {vp+2, up+2},
ep+3 = {v1, v2, . . . vp+2},
ep+4 = {u1, u2, . . . up+2}.

Clearly, {v1, u2} is an isolate dominating set of H and γ0(H) = 2. However, γ0(H \ ep+3) = p + 2 and
γ0(H \ e1) = 2.
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Abstract. We are concerned with the following (p1, . . . , pn)-biharmonic system∆2
piui −m(x)|ui|αi−1ui

n∏
j=1,j 6=i

|uj |αj+1 = λmi(x)|ui|pi−2ui, in Ω

ui = ∆ui = 0, for 1 ≤ i ≤ n, on ∂Ω.

The authors study the existence of weak solutions for the problem above via mountain pass theorem and establish semitrivial
principal and strictly principal eigenvalues, positivity and simplicity results.
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1. Introduction

Let Ω ⊂ RN , N ≥ 1, be a non-empty bounded domain with smooth boundary ∂Ω, n ≥ 1 be an integer, αi and

pi (with i ∈ {1, 2, . . . , n}) be real constants such that αi ≥ 0, pi > 1 and
n∑
i=1

αi+1
pi

= 1.

The aim of this work is to study the following interesting problem
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(Q) :



∆2
p1u1 −m(x)|u1|α1−1u1

n∏
i=2

|ui|αi+1 = λm1(x)|u1|p1−2u1, in Ω

· · ·

∆2
piui −m(x)|ui|αi−1ui

n∏
j=1,j 6=i

|uj |αj+1 = λmi(x)|ui|pi−2ui, in Ω

· · ·

∆2
pnun −m(x)|un|αn−1un

n−1∏
i=1

|ui|αi+1 = λmn(x)|un|pn−2un, in Ω

ui = ∆ui = 0, for 1 ≤ i ≤ n, on ∂Ω

where ∆2
piui = ∆(|∆ui|pi−2∆ui) is the pi-biharmonic operator and λ is a real parameter. Here, the coefficients

mi, (with i = 1, 2, . . . , n), m ∈ L∞(Ω) are assumed to be nonnegatives in Ω. Throughout this paper, we let W
denote the Cartesian product of n Sobolev spaces

(
W 2,pi(Ω) ∩W 1,pi

0 (Ω)
)

for i = 1, . . . , n, i.e.,

W =
(
W 2,p1(Ω) ∩W 1,p1

0 (Ω)
)
×
(
W 2,p2(Ω) ∩W 1,p2

0 (Ω)
)
× · · · ×

(
W 2,pn(Ω) ∩W 1,pn

0 (Ω)
)

endowed with the norm

‖(u1, u2, . . . , un)‖ =

n∑
i=1

‖∆ui‖pi (1.1)

where ‖.‖p stands for the Lebesgue norm in Lp for all p ∈ (1,∞]. We say that ((u1, . . . , un), λ) ∈ W × R is a
(weak) solution to the problem (Q) if∫

Ω

|∆ui|pi−2∆ui∆ϕidx−
∫

Ω

m

n∏
j=1,j 6=i

|uj |αj+1|ui|αi−1uiϕidx = λ

∫
Ω

mi|u|pi−2uiϕidx, (1.2)

for 1 ≤ i ≤ n and for all (ϕ1, . . . , ϕn) ∈W .
The study of nonlinear eigenvalue problems involving fourth-order differential equations has aroused a great

interest in the scientific world and many applications have been made, including the study of deflections of elastic
beams on nonlinear elastic foundations (see [2, 6, 19]), deformations of a rigid body and especially the study of
traveling waves in suspension bridges (see, for instance, [14]) . A remarkable work of M. Talbi and N. Tsouli
[19] has focused on the scalar version of (Q) with m ≡ 0, which reads

(Pa,p,ρ) :

{
∆(ρ|∆u|p−2∆u) = λa(x)|u|p−2u in Ω

u = ∆u = 0 on ∂Ω
(1.3)

where p ∈ (1,∞), ρ ∈ C(Ω̄) such that ρ > 0 and a ∈ L∞(Ω). They proved that (Pa,p,ρ) possesses at least one
non-decreasing sequence of eigenvalues and studied (Pa,p,ρ) in the particular one dimensional case. The authors,
in the same reference gave the first eigenvalue λ1,p,ρ(a) and showed that if a ≥ 0 almost everywhere in Ω and
a ∈ C(Ω̄) then λ1,p,ρ(a) is simple, isolated and principal i.e. the associated eigenfunction, denoted by ϕp,ρ,a is
positive on Ω with

λ1,p,ρ(a) = inf
u∈A

∫
Ω

ρ|∆u|pdx (1.4)

where

A =

{
u ∈W 2,p(Ω) ∩W 1,p

0 (Ω) :

∫
Ω

a|u|pdx = 1

}
. (1.5)

64



Existence results for (p1, ..., pn)-biharmonic systems under Navier boundary conditions

By using a transformation of (Pa,p,ρ) to a known Poisson problem when ρ ≡ 1 and a ≡ 1, the authors in [9]
proved the existence of a principal positive simple eigenvalue which is isolated and a description of all eigenvalues
and associated eigenfunctions was given as well. The Dirichlet boundary conditions case was analyzed in [10]
where it is shown that the spectrum contains at least one non-decreasing sequence of positive eigenvalues. On
the other hand, J. Benedikt [4] gave the spectrum of the p-biharmonic operator with Dirichlet and Neumann
boundary conditions in the special case N = 1, ρ ≡ 1 and a ≡ 1. They system (Q) in the absence of weights
has drawn attention in [12] where the authors used the generalized three critical points of Ricceri, namely, three
critical points theorem of Averna and Bonanno to prove the existence of at least three weak solutions for (Q) in
case no weight is considered.

It is important to note that (u1, λ) is solution of problem (Pm1,p1,1) if and only if [(u1, 0, . . . , 0), λ] is
solution of (Q). This kind of solution is called ”semitrivial” solution for (Q). Consequently, there are n
”semitrivial” solutions of the problem (Q) that is [(u1, 0, . . . , 0), λ] with (u1, λ) solution of problem (Pm1,p1,1),
[(0, . . . , ui, . . . , 0), λ] with (ui, λ) solution of problem (Pmi,pi,1) for 2 ≤ i ≤ n− 1 and [(0, 0, . . . , un), λ] with
(un, λ) solution of problem (Pmn,pn,1). In particular, when λ = λ1,p1,1(m1) (resp. λ = λ1,pi,1(mi)) then
[(ϕp1,1,m1

, 0), λ] (resp. [(0, ϕpi,1,mi), λ] for 2 ≤ i ≤ n) is called ”semitrivial” solutions of the problem (Q) and
λ1,p1,1(m1) (resp. λ1,pi,1(mi)) is called ”semitrivial” principal eigenvalue of (Q).

Recently, in a very interesting paper, L. A. Leadi and R. L. Toyou [17] studied the simplicity and the existence
of the first strictly principal eigenvalue or semitrivial principal eigenvalue of problem (Q) in the particular case
of n = 2. Motivated by their results we consider in this work the problem (Q), which generalizes the one in
[17], and we intend to extend their findings in this general and challenging form of (Q). For this, we shall recall
a bit of notations and basic results. The Sobolev space W endowed with the norm defined in (1.1) is a Banach
and reflexive space [13, 18] and the weak convergence in W is denoted by ⇀. The positive and negative parts of
a function w are denoted by w+ = max{w, 0} and w− = max{−w, 0}. Equalities (and inequalities) between
two functions must be understood almost everywhere (a.e.). Notice that, for all f ∈ Lp(Ω), the Poisson equation
associated with the Dirichlet problem {

−∆u = f(x) in Ω

u = 0 on ∂Ω

is uniquely solvable in Xp = W 2,p(Ω) ∩W 1,p
0 (Ω) (see for example [11]). We denote by Λ the inverse operator

of −∆ : Xp 7−→ Lp(Ω). and the following lemma gives us some properties of the operator Λ:

Lemma 1.1. [9, 19].

1. (Continuity) There exists a constant cp > 0 such that

‖Λf‖W 2,p ≤ cp‖f‖p

holds for all p ∈ (1,∞) and f ∈ Lp(Ω).

2. (Continuity) Given k ∈ N∗, there exists a constant cp,k > 0 such that

‖Λf‖Wk+2,p ≤ cp,k‖f‖Wk,p

holds for all p ∈ (1,∞) and f ∈W k,p(Ω).

3. (Symmetry) The identity ∫
Ω

Λu.vdx =

∫
Ω

u.Λvdx

holds for u ∈ Lp(Ω) and v ∈ Lp
′

(Ω) with p
′

= p
p−1 and p ∈ (1,∞).
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4. (Regularity) Given f ∈ L∞(Ω), we have Λf ∈ C1,ν(Ω̄) for all ν ∈ (0, 1). Moreover, there exists cν > 0

such that
‖Λf‖C1,ν(Ω) ≤ cν‖f‖∞.

5. (Regularity and Hopf-type maximum principle) Let f ∈ C(Ω̄) and f ≥ 0 then w = Λf ∈ C1,ν(Ω̄), for all
ν ∈ (0, 1) and w satisfies: w > 0 in Ω, ∂w∂n < 0 on ∂Ω.

6. (Order preserving property) Given f , g ∈ Lp(Ω) if f ≤ g in Ω, then Λf < Λg in Ω.

The rest of the paper is organized as follows. The next section sets the functional framework, a review of
tools and established results that help in our concern and constructs an eigencurve associated to the system (Q)

as well as some well-known properties on obtained eigencurve. Section 3 is devoted to the study of semitrivial
solutions and strictly principal eigenvalues of (Q). We thereby find the lowest eigenvalue of problem (Q) which
is proved to be unique, positive, semitrivial principal or strictly principal and simple.

2. An eigenvalue curve associated to problem (Q)

We shall adopt the approach used in a number of papers (see for example [5], [7], [8], [16], [15]) by fixing λ and
embed the system (Q) into a new system (Qλ) in order to derive the existence of solutions for (Q) that is:

(Qλ) :



∆2
p1u1 −m(x)|u1|α1−1u1

n∏
i=2

|ui|αi+1 − λm1(x)|u1|p1−2u1 = µ|u1|p1−2u1, in Ω

· · ·

∆2
piui −m(x)|ui|αi−1ui

n∏
j=1,j 6=i

|uj |αj+1 − λmi(x)|ui|pi−2ui = µ|ui|pi−2ui, in Ω

· · ·

∆2
pnun −m(x)|un|αn−1un

n−1∏
i=1

|ui|αi+1 − λmn(x)|un|pn−2un = µ|un|pn−2un, in Ω

ui = ∆ui = 0, for 1 ≤ i ≤ n, on ∂Ω

(2.1)

where µ is a new real parameter. For convenience, we now give the following definitions:

Definition 2.1. .

1. We say that ((u1, . . . , un), µ) is a (weak) solution to problem (Qλ) if ((u1, . . . , un), µ) ∈W × R and∫
Ω

|∆ui|pi−2∆ui∆ϕidx −
∫

Ω

m

n∏
j=1,j 6=i

|uj |αj+1|ui|αi−1uiϕidx

− λ

∫
Ω

mi|ui|pi−2uiϕidx = µ

∫
Ω

|ui|pi−2uiϕidx, for 1 ≤ i ≤ n, (2.2)

for all (ϕ1, . . . , ϕn) ∈W .

2. We say that ((u1, . . . , un), λ) is a (weak) solution to problem (Q) if ((u1, . . . , un), λ) ∈W × R and∫
Ω

|∆ui|pi−2∆ui∆ϕidx−
∫

Ω

m

n∏
j=1,j 6=i

|uj |αj+1|ui|αi−1uiϕidx = λ

∫
Ω

mi|u|pi−2uiϕidx, (2.3)

for 1 ≤ i ≤ n and for all (ϕ1, . . . , ϕn) ∈W .

3. If ((ui, . . . , un), λ) ∈W×R (resp. ((u1, . . . , un), µ) ∈W×R) is a (weak) solution to problem (Q) (resp.
(Qλ)), then (u1, . . . , un) shall be called an eigenfunction of the problem (Q) (resp. (Qλ)) associated to
the eigenvalue λ (resp. µ(λ)).
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4. Let us agree to say that an eigenvalue of (Q) or (Qλ) is strictly principal (resp. semitrivial principal) if it
is associated to an eigenfunction (u1, . . . , un) such that ui > 0 or ui < 0, ∀i ∈ {1, . . . , n} (resp. there
exist ∅ 6= Jn ⊂ {1, . . . , n} such that uk ≡ 0, ∀k ∈ Jn and ui > 0 or ui < 0, ∀i ∈ {1, · · · , n} \ Jn).

Based on variational approach, for a fixed real λ, we define the energy functional

Jλ : W −→ R

(u1, . . . , un) 7−→ Jλ(u1, . . . , un) =

n∑
i=1

αi + 1

pi
‖∆ui‖pipi − V (u1, . . . , un)− λM(u1, . . . , un),

where

V (u1, . . . , un) =

∫
Ω

m

n∏
i=1

|ui|αi+1dx, and M(u1, . . . , un) =

n∑
i=1

αi + 1

pi
Mi(ui)

with

Mi(ui) =

∫
Ω

mi|ui|pidx, ∀(u1, . . . , un) ∈W.

Equalities (2.2) are equivalent to

∇Jλ(u1, . . . , un) = µ∇I(u1, . . . , un)

where

I(u1, . . . , un) =

n∑
i=1

αi + 1

pi
‖ui‖pipi ∀(u1, . . . , un) ∈W.

We now state the main result of this section which generalizes the result of Proposition 2.1 in [17] where
(p, q)-biharmonic system case is treated.

Theorem 2.2. The value
µ1(λ) := inf{Jλ(u1, . . . , un) : (u1, . . . , un) ∈M} (2.4)

where

M = {(u1, . . . , un) ∈W : I(u1, . . . , un) = 1},

is the smallest eigenvalue of (Qλ).

The proof of Theorem 2.2 relies on the following lemma:

Lemma 2.3. Let (ω1, . . . , ωn) ∈ [L∞(Ω)]n. If ω1,. . . , ωn > 0 on Ω then there exist n + 1 positive constants
c1,. . . , cn+1 such that

n∑
i=1

‖∆ui‖pipi ≤ cn+1Jλ(u1, . . . , un) +

n∑
i=1

ci

∫
Ω

ωi|ui|pidx (2.5)

for every (u1, . . . , un) ∈W .

Proof. We borrow ideas from [17]. Indeed, we know that Mi(ui) ≤ ‖mi‖∞‖ui‖pipi , for 1 ≤ i ≤ n. Since
n∑
i=1

αi+1
pi

= 1, it well known by Young inequality that:

V (u1, . . . , un) ≤ ‖m‖∞
∫

Ω

(
n∑
i=1

αi + 1

pi
|ui|pi

)
dx. (2.6)
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Setting k3 = max {k1, k2} with

k1 = ‖m‖∞max

{
αi + 1

pi
, for 1 ≤ i ≤ n

}
and k2 = |λ|max

{
αi + 1

pi
‖mi‖∞, for 1 ≤ i ≤ n

}
,

one deduces that

V (u1, . . . , un) ≤ k1

(
n∑
i=1

‖ui‖pipi

)
and |λM(u, v)| ≤ k2

(
n∑
i=1

‖ui‖pipi

)
.

On the other hand for ε > 0 there exist Mi,ε > 0 for 1 ≤ i ≤ n such that

‖ui‖pipi ≤ ε‖∆ui‖pipi +Mi,ε

∫
Ω

ωi|ui|pidx.

Now, we have

n∑
i=1

(
αi + 1

pi
‖∆ui‖pipi

)
= Jλ(u1, . . . , un)− V (u1, . . . , un) + λM(u1, . . . , un).

Then,

n∑
i=1

(
αi + 1

pi
‖∆ui‖pipi

)
≤ Jλ(u1, . . . , un) + 2k3

(
n∑
i=1

‖ui‖pipi

)

≤ Jλ(u1, . . . , un) + 2εk3

(
n∑
i=1

‖∆ui‖pipi

)
+ 2k3

(
n∑
i=1

Mi,ε

∫
Ω

ωi|ui|pidx

)
.

Let ε > 0 be such that k4 = min
{
αi+1
pi
− 2εk3, for 1 ≤ i ≤ n

}
> 0.

Thus, it reads

k4

n∑
i=1

(
‖∆ui‖pipi

)
≤ Jλ(u1, . . . , un) + 2k3

n∑
i=1

(
Mi,ε

∫
Ω

ωi|ui|pidx
)
.

We deduce
n∑
i=1

(
‖∆ui‖pipi

)
≤ 1

k4
Jλ(u1, . . . , un) +

n∑
i=1

(
2k3Mi,ε

k4

∫
Ω

ωi|ui|pidx
)

and one can consequently take cn+1 =
1

k4
, and ci =

2k3Mi,ε

k4
for 1 ≤ i ≤ n. This completes the proof. �

Proof of Theorem 2.2 . By Lemma 2.3, for ωi ≡ 1 and 1 ≤ i ≤ n, one can easily show that

0 ≤
n∑
i=1

(
‖∆ui‖pp

)
≤ cn+1Jλ(u1, . . . , un) +

n∑
i=1

(
ci

∫
Ω

|ui|pidx
)

≤ cn+1Jλ(u1, . . . , un) + c0

n∑
i=1

(
αi + 1

pi

∫
Ω

|ui|pidx
)

= cn+1Jλ(u1, . . . , un) + c0,∀(u1, . . . , un) ∈M

where c0 = max{ piciαi+1 , for 1 ≤ i ≤ n}, so that Jλ is bounded below on M. Furthermore any sequence
(u1,k, . . . , un,k) that minimizes Jλ onM is bounded in W .
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Thus there exists (u1,0, . . . , un,0) ∈W such that, up to a subsequence, (u1,k, . . . , un,k) converges weakly to

(u1,0, . . . , un,0) in W and strongly in
n∏
i=1

Lpi(Ω). Hence

Jλ(u1,0, . . . , vn,0) ≤ lim
k−→∞

Jλ(u1,k, . . . , vn,k) = µ1(λ), (u1,0, . . . , un,0) ∈M

and consequently Jλ(u1,0, . . . , un,0) = µ1(λ). By the Lagrange multipliers rule, µ1(λ) is an eigenvalue for (Qλ)

and (u1,0, . . . , un,0) is an associated eigenfunction.
Moreover for any eigenvalue µ(λ) associated to (uλ,1, . . . , uλ,n) ∈W \ {(0, ..., 0)}, one has

Jλ(uλ,1, . . . , uλ,n) = µ(λ)I(uλ,1, . . . , uλ,n)

with I(uλ,1, . . . , uλ,n) > 0. Consequently

µ1(λ) ≤ Jλ

(
uλ,1

I(uλ,1, . . . , uλ,n)
1
p1

, . . . ,
uλ,n

I(uλ,1, . . . , uλ,n)
1
pn

)
=
Jλ(uλ,1, . . . , uλ,n)

I(uλ,1, . . . , uλ,n)
= µ(λ).

All in all, we have proved that µ1(λ) is the smallest eigenvalue of (Qλ). �

Remark 2.4. We can denote by

µ0 := inf

{
n∑
i=1

αi + 1

pi
‖∆ui‖pipi : (u1..., un) ∈M

}
(2.7)

for m = mi ≡ 0, ∀i ∈ {1, · · · , n}. Since the space W 2,pi(Ω) ∩W 1,pi
0 (Ω), for i ∈ {1, · · · , n} does not contain

any constant non trivial function, one has µ0 > 0.

It is straightforward proving the following:

Proposition 2.5. .

1. µ1 is concave and differentiable with µ
′

1(λ) = −M(u1,0, ..., un,0) where (u1,0, ..., un,0) is some
eigenfunction of (Qλ) associated to µ1(λ) for all λ ∈ R.

2. lim
λ→∞

µ1(λ) = −∞.

3. µ1 is strictly decreasing.

Proof. The proof is partly adapted from analogous technics in literature.

1. The concavity of µ1 follows from the concavity of the mapping λ 7−→ Jλ(u1, . . . , un), for a fixed
(u1, . . . , un) ∈ W . In particular µ1 is continuous. Now let λk −→ λ and (u1,k, . . . , un,k),
(uλ,1, . . . , uλ,n) be the I-normalized eigenfunctions related to µ1(λk) and µ1(λ) respectively. We apply
Lemma 2.3 with ωi ≡ 1, for 1 ≤ i ≤ n, to get

n∑
i=1

(‖∆ui,k‖pipi) ≤ cn+1Jλ(u1,k, . . . , un,k) +

n∑
i=1

(ci

∫
Ω

|ui,k|pidx),

≤ cn+1µ1(λk) + max

{
pici
αi + 1

, for 1 ≤ i ≤ n
}
.

In addition,

lim
k→∞

cn+1µ1(λk) + max

{
pici
αi + 1

, for 1 ≤ i ≤ n
}

= cn+1µ1(λ) + max

{
pici
αi + 1

, for 1 ≤ i ≤ n
}
.
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So we conclude that (u1,k, . . . , un,k)k is a bounded sequence in W . Hence there exists (u1,0, . . . , un,0)

such that, up to a subsequence, (u1,k, . . . , un,k) ⇀ (u1,0, . . . , un,0) in W , strongly in
n∏
i=1

Lpi(Ω). Then

(u1,0, . . . , un,0) ∈M and from

Jλ(u1,0, . . . , un,0) ≤ lim
k−→∞

Jλ(u1,k, . . . , un,k) = µ1(λ)

we infer that µ1(λ) = Jλ(u1,0, . . . , un,0) = Jλ(uλ,1, . . . , uλ,n) and (u1,0, . . . , un,0) is an eigenfunction
of (Qλ) associated to µ1(λ). Furthermore{

µ1(λk)− µ1(λ) ≥ −(λn − λ)M(u1,k, . . . , un,k)

µ1(λk)− µ1(λ) ≤ −(λn − λ)M(u1,0, . . . , un,0).

Hence 
−M(u1,k, . . . , un,k) ≤ µ1(λn)− µ1(λ)

λk − λ
≤ −M(u1,0, . . . , un,0), if λk > λ

−M(u1,0, . . . , un,0) ≤ µ1(λk)− µ1(λ)

λk − λ
≤ −M(u1,k, . . . , un,k), if λk < λ.

Passing to the limit we get µ
′

1(λ) = −M(u1,0, . . . , un,0).

2. We know that m1 is nonnegative, then there exists a function u1 ∈ Xp1 such that M1(u1) > 0 and
I(u1, 0, . . . , 0) = 1.

Then, for all λ ∈ R∗+, µ1(λ) ≤ Jλ(u1, 0, . . . , 0). We deduce that

lim
λ−→∞

Jλ(u1, 0, . . . , 0) = lim
λ−→∞

Em(u1, 0, . . . , 0)− λM(u1, 0, . . . , 0) = −∞

where

Em(u1, . . . , un) =

n∑
i=1

(
αi + 1

pi
‖∆ui‖pipi

)
−
∫

Ω

(
m

n∏
i=1

|ui|αi+1

)
dx.

Thus lim
λ−→∞

µ1(λ) = −∞.

3. The result is clear from the fact that M(uλ,1, . . . , uλ,n) > 0 for any λ ∈ R. Indeed, if λ1 < λ2 then

µ1(λ1) = Em(uλ1,1, . . . , uλ1,n)− λ1M(uλ1,1, . . . , uλ1,n)

≥ Em(uλ1,1, . . . , uλ1,n)− λ2M(uλ1,1, . . . , uλ1,n)

≥ µ1(λ2).

�

3. Existence of solutions for the system (Q)

We address, in this section, the problem (Q) by looking for the zeros of the function µ1(λ) which by construction
solve the problem. Let us make this assumption

(Hm) : ‖m‖∞ < µ0.

We start by proving the following:
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Lemma 3.1. If (Hm) is satisfied, then µ1(0) > 0 and µ1(λ) = 0 if and only if λ > 0 is an eigenvalue of (Q).

Proof. Assume that (Hm) is satisfied. By (2.6), we have V (u1, . . . , un) ≤ ‖m‖∞I(u1, . . . , un),
∀(u1, . . . , un) ∈W . Then, one has

n∑
i=1

(
αi + 1

pi
‖∆ui‖pipi

)
− ‖m‖∞I(u1, . . . , un) ≤ Em(u1, . . . , un),∀(u1, . . . , un) ∈W.

This implies

µ0 ≤ Em(u1, . . . , un) + ‖m‖∞, ∀(u1, . . . , un) ∈M,

µ0 − ‖m‖∞ ≤ inf{Em(u1, . . . , un), (u1, . . . , un) ∈M} ≤ µ1(0).

We then conclude that µ1(0) > 0 and µ1(λ) = 0 if and only if λ > 0 is an eigenvalue of (Q). �

From now on, we denote

L(Ω) :=

([
n∏
i=1

Lpi(Ω)

]
\ {(0, . . . , 0)}

)
× R, (3.1)

L0(Ω) :=

([
n∏
i=1

Lpi(Ω)

]
\ {(0, . . . , 0)}

)
× {0}. (3.2)

We adapt and apply some results proved in [9] and some ideas used in [19] to establish the following.

Remark 3.2. .

1. ∀u ∈ Xp, ∀v ∈ Lp(Ω) (with p ∈ (1,∞)): v = −∆u⇐⇒ u = Λv.

2. Let Np (with p ∈ (1,∞)) be the Nemytskii operator defined by

Np(u)(x) =

{
|u(x)|p−2u(x) if u(x) 6= 0

0 if u(x) = 0.

We have
∀v ∈ Lp(Ω), ∀w ∈ Lp

′

(Ω) : Np(v) = w ⇐⇒ v = Np′ (w) (3.3)

with p
′

= p
p−1 .

3. If (u1, . . . , un) is an eigenfunction of (Qλ) associated with µ then ϕi = −∆ui, for 1 ≤ i ≤ n satisfy:

Npj (ϕj) = Λ

[µ(λ) + λmj ]Npj (Λϕj) +m

n∏
i=1,i6=j

|Λϕi|αi+1|Λϕj |αj−1Λϕj

 , for 1 ≤ j ≤ n.

Hence:

(a) ((u1,0, . . . , un,0), µ(λ)) is a solution of (Qλ) if and only if ((ϕ1,0, . . . , ϕn,0), µ(λ)) is a solution of
problem

(Q
′

λ) :


Find ((ϕ1, . . . , ϕn), µ(λ)) ∈ L(Ω) such that

Npj (ϕj) = Λ

(
[µ(λ) + λmj ]Npj (Λϕj) +m

n∏
i=1,i6=j

|Λ(ϕi)|αi+1|Λ(ϕj)|αj−1Λ(ϕj)

)
,

for 1 ≤ j ≤ n,

with ϕj,0 = −∆(uj,0).
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(b) ((ϕ1,0, . . . , un,0), µ1(λ)) ∈ L0(Ω) is a solution of (Q
′

λ) if and only if ((ϕ1,0, . . . , ϕn,0), λ) ∈ L(Ω)

is a solution of problem

(Q
′
) :


Find ((ϕ1, . . . , ϕn), λ) ∈ L(Ω) such that

Npj (ϕj) = Λ

(
λmjNpj (Λϕj) +m

n∏
i=1,i6=j

|Λ(ϕi)|αi+1|Λ(ϕj)|αj−1Λ(ϕj)

)
,

for 1 ≤ j ≤ n,

with ϕj,0 = −∆(uj,0).

(c)

µ1(λ) := inf

Fλ(ϕ1, . . . , ϕn) : (ϕ1, . . . , ϕn) ∈
n∏

i=1,i6=j

Lpi(Ω), R(ϕ1, . . . , ϕn) = 1

 (3.4)

where

Fλ(ϕ1, . . . , ϕn) =

n∑
i=1

(
αi + 1

pi

[∫
Ω

|ϕi|pidx− λ
∫

Ω

mi|Λϕi|pidx
])
−
∫

Ω

m

n∏
i=1

|Λϕi|αi+1dx,

R(ϕ1, . . . , ϕn) =

n∑
i=1

αi + 1

pi
‖Λϕi‖pipi .

Lemma 3.3. If ((u1, . . . , un), µ(λ)) is a solution of (Qλ) then −∆ui ∈ C(Ω̄) and ui ∈ C1,ν(Ω̄), for 1 ≤ i ≤ n
and for all ν ∈ (0, 1).

Proof. An easy adaptation of Lemma 3.2 in [17]. �

Lemma 3.4. ((ϕ1,1, . . . , ϕ1,n), µ1(λ)) ∈ L(Ω) is a solution of problem (Q
′

λ), if and only if

Gλ(ϕ1,1, . . . , ϕ1,n) = 0 = min
(ϕ1,...,ϕn)∈L∗(Ω)

Gλ(ϕ1, . . . , ϕn) (3.5)

where

Gλ(ϕ1, . . . , ϕn) = Fλ(ϕ1, . . . , ϕn)− µ1(λ)R(ϕ1, . . . , ϕn) and L∗(Ω) =

[
n∏
i=1

Lpi(Ω)

]
\ {(0, . . . , 0)} .

Proof. Assume that ((ϕ1,1, . . . , ϕ1,n), µ1(λ)) ∈ L(Ω) is a solution of problem (Q
′

λ).
Then Fλ(ϕ1,1, . . . , ϕ1,n) = µ1(λ)R(ϕ1,1, . . . , ϕ1,n).
Hence Gλ(ϕ1,1, . . . , ϕ1,n) = Fλ(ϕ1,1, . . . , ϕ1,n)− µ1(λ)R(ϕ1,1, . . . , ϕ1,n) = 0.

Put ϕ̄i =
ϕi

[R(ϕ1, . . . , ϕn)]
1
pi

for every (ϕ1, . . . , ϕn) ∈ L∗(Ω) and 1 ≤ i ≤ n. Then R(ϕ̄1, . . . , ϕ̄n) = 1.

We deduce that

µ1(λ) ≤ Fλ(ϕ̄1, . . . , ϕ̄n) =
Fλ(ϕ1, . . . , ϕn)

R(ϕ1, . . . , ϕn)
. (3.6)

and

Gλ(ϕ1, . . . , ϕn) = Fλ(ϕ1, . . . , ϕn)− µ1(λ)R(ϕ1, . . . , ϕn) ≥ 0 (3.7)

for all (ϕ1, . . . , ϕn) ∈ L∗(Ω). We claim that (3.5) holds.
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Now suppose that (3.5) holds. We deduce that∇Gλ(ϕ1,1, . . . , ϕ1,n) = (0, . . . , 0). Then

〈∂Gλ
∂ϕi

(ϕ1,1, . . . , ϕ1,n),Ψi〉 = 0, for 1 ≤ i ≤ n, (3.8)

for all (Ψ1, . . . ,Ψn) ∈
n∏
i=1

Lpi(Ω). Hence, ((ϕ1,1, . . . , ϕ1,n), µ1(λ)) ∈ L(Ω) is a solution of (Q
′

λ). �

Lemma 3.5. If (Hm) holds and ((ϕ1,1, . . . , ϕ1,n), µ1(λ)) ∈ L0(Ω) is a solution of problem (Q
′

λ) then
((|ϕ1,1|, . . . , |ϕ1,n|), µ1(λ)) ∈ L0(Ω) is a solution of problem (Q

′

λ).

Proof. Assume that (Hm) holds and ((ϕ1,1, . . . , ϕ1,n), µ1(λ)) ∈ L0(Ω) is a solution of problem (Q
′

λ). Then

Gλ(ϕ1,1, . . . , ϕ1,n) = 0, µ1(λ) = 0 and (|ϕ1,1|, . . . , |ϕ1,n|) ∈
[
n∏
i=1

Lpi(Ω)

]
\ {(0, . . . , 0)}. Hence

Gλ(|ϕ1,1|, . . . , |ϕ1,n|) ≥ 0.
Additionally, one has |Λ(|ϕi|)|r ≥ |Λϕi|r for 1 ≤ i ≤ n and for all r ∈ (1;∞). We deduce that

Fλ(|ϕ1,1|, . . . , |ϕ1,n|) ≤ Fλ(|ϕ1,1|, . . . , |ϕ1,n|) and Gλ(|ϕ1,1|, . . . , |ϕ1,n|) ≤ Gλ(|ϕ1,1|, . . . , |ϕ1,n|) = 0.
Thus Gλ(|ϕ1,1|, . . . , |ϕ1,n|) = 0 and ((|ϕ1,1|, . . . , |ϕ1,n|), µ1(λ)) is solution of (Q

′

λ). �

Lemma 3.6. [17].
Let A, B, C and r be real numbers satisfying A ≥ 0, B ≥ 0, C ≥ max{B −A, 0} and r ∈ [1,+∞). Then

|A+ C|r + |B − C|r ≥ Ar +Br.

Lemma 3.7. Let ai and bi be real numbers and In = {1, 2, . . . , n}, then

n∏
i=1

(ai + bi) =
∑
J⊂In

(∏
i∈J

ai

) ∏
i∈In\J

bi

 .

Proof. Straightforward by recurrence on n. �

Lemma 3.8. Suppose that (Hm) holds.
If (ϕ1,1, . . . , ϕ1,n) and (ϕ2,1, . . . , ϕ2,n) are positive eigenfunctions of problem (Q

′

λ) associated with µ1(λ) =

0, then (wk,1, . . . , wl,s, . . . , wj,n) with:{
w1,i(x) := max{ϕ1,i(x), ϕ2,i(x)} = ϕ1,i(x) + (ϕ2,i − ϕ1,i)

+(x),

w2,i(x) := min{ϕ1,i(x), ϕ2,i(x)} = ϕ2,i(x)− (ϕ2,i − ϕ1,i)
+(x),

for all x ∈ Ω, k, l, j ∈ {1, 2}, s ∈ {2, . . . , n − 1} and i ∈ {1, . . . , n}, are eigenfunctions of (Q
′

λ) associated
with µ1(λ) = 0.

Proof. Assume that (Hm) holds and (ϕ1,1, . . . , ϕ1,n) and (ϕ2,1, . . . , ϕ2,n) are positive eigenfunctions of
problem (Q

′

λ) associated with µ1(λ) = 0. By Lemma 3.6 we get{
|Λw1,i|pi + |Λw2,i|pi ≥ |Λϕ1,i|pi + |Λϕ2,i|pi

|Λw1,i|αi+1 + |Λw2,i|αi+1 ≥ |Λϕ1,i|αi+1 + |Λϕ2,i|αi+1.
.

Then, one has:

−λ
∫

Ω

mi|Λw1,i|pidx− λ
∫

Ω

mi|Λw2,i|pidx ≤ −λ
∫

Ω

mi|Λϕ1,i|pidx− λ
∫

Ω

mi|Λϕ2,i|pidx. (3.9)
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Likewise, we have

Z1(w1, . . . , wi, . . . , wn) ≤ Z1(ϕ1, . . . , ϕi, . . . , ϕn)

≤ −
∫

Ω

m

n∏
i=1

|Λϕ1,i|αi+1dx−
∫

Ω

m

n∏
i=1

|Λϕ2,i|αi+1dx (3.10)

with

Z1(w1, . . . , wi, . . . , wn) = −
∑
J⊂In

∫
Ω

m

(∏
i∈J
|Λw1,i|αi+1

) ∏
i∈In\J

|Λw2,i|αi+1

 dx

and

Z1(ϕ1, . . . , ϕi, . . . , ϕn) = −
∑
J⊂In

∫
Ω

m

(∏
i∈J
|Λϕ1,i|αi+1

) ∏
i∈In\J

|Λϕ2,i|αi+1

 dx.

Additionally, we have: ∫
Ω

|w1,i|pidx+

∫
Ω

|w2,i|pidx =

∫
Ω

|ϕ1,i|pidx+

∫
Ω

|ϕ2,i|pidx. (3.11)

By (3.9), (3.10) and (3.11) we deduce that:∑
i∈J⊂In\{1,n}, k, l, j∈{1,2}

Fλ(wk,1, . . . , wl,i, . . . , wj,n) ≤ Fλ(ϕ1,1, . . . , ϕ1,n) + Fλ(ϕ2,1, . . . , ϕ2,n)

and ∑
i∈J⊂In\{1,n}, k, l, j∈{1,2}

Gλ(wk,1, . . . , wl,i, . . . , wj,n) ≤ Gλ(ϕ1,1, . . . , ϕ1,n) +Gλ(ϕ2,1, . . . , ϕ2,n) = 0.

It follows that

Gλ(wk,1, . . . , wl,i, . . . , wj,n) = 0, with i ∈ J ⊂ In \ {1, n} and k, l, j ∈ {1, 2}.

Hence (wk,1, . . . , wl,s, wj,n) with s ∈ {2, . . . , n− 1} and k, l, j ∈ {1, 2}, are eigenfunctions of (Q
′

λ) associated
with µ1(λ) = 0. �

We are now in position to summarize the main existence result of this section in the following, which
generalizes and extends result of Theorem 3.1 in [17].

Theorem 3.9. Assume that (Hm) is satisfied. We have the following results:

1. If µ1(λ) = 0 then λ is a semitrivial principal eigenvalue or strictly principal eigenvalue of problem (Q)

and simple.

2. The lowest eigenvalue of problem (Q) is the value

λ1 := min
(u1,...,un)∈S

Em(u1, . . . , un). (3.12)

where

S = {(u1, . . . , un) ∈W : M(u1, . . . , un) = 1}.

Moreover, λ1 is unique, positive, strictly principal eigenvalue or strictly principal eigenvalue and simple.
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Proof. Assume that (Hm) is satisfied.

1. If µ1(λ) = 0 then λ is an eigenvalue of the problem (Q) associated with (u1, . . . , un) ∈W \ {(0, . . . , 0)}.
• If ui 6≡ 0, for 1 ≤ i ≤ n, we deduce that

((ϕ1, . . . , ϕn), µ1(λ)) ∈ L0(Ω) and ((|ϕ1|, . . . , |ϕn|), µ1(λ)) ∈ L0(Ω)

are solution of problem (Q
′

λ) with ϕi = −∆ui 6≡ 0, for 1 ≤ i ≤ n. Since |ϕi| ≥ 0, then Λ(|ϕi|) > 0, for
1 ≤ i ≤ n. Therefore Npi(Λ|ϕi|) > 0 for 1 ≤ i ≤ n,

n∏
j=1,i6=j

(
Λ(|ϕj |)|αi+1|Λ(|ϕi|)|αi

)
> 0

and |ϕi| = Np′i

(
Λ

[
λmiNpi(Λ|ϕi|) +m

n∏
j=1,i6=j

(
Λ(|ϕj |)|αi+1|Λ(|ϕi|)|αi

)])
> 0

for 1 ≤ i ≤ n.

We then conclude that ((ϕ1, . . . , ϕn), µ1(λ)) is solution of problem (Q
′

λ) with ϕi > 0 or ϕi < 0 , for
1 ≤ i ≤ n. Since by Lemma 3.3, ϕi ∈ C(Ω̄), we have ui = Λϕi > 0 or ui = Λϕi < 0, for 1 ≤ i ≤ n,
from Lemma 1.1. Then λ is a strictly principal eigenvalue of (Q).

• If ∃i, j ∈ {1, . . . , n} such that [ui ≡ 0 and uj 6≡ 0], then we also prove that [ui ≡ 0 and uj > 0 in Ω or
uj < 0 in Ω]. Then λ is a semitrivial principal eigenvalue of (Q).

It is now left with the simplicity and we argue by cases:

Case (1) λ is a strictly principal eigenvalue of (Q).

Let (u1,1, . . . , u1,n) and (u2,1, . . . , u2,n) be two eigenfunctions of (Q) associated with λ.

Then, ((ϕ1,1, . . . , ϕ1,n), 0), ((ϕ2,1, . . . , ϕ2,n), 0), ((|ϕ1,1|, . . . , |ϕ1,n|), 0),
((|ϕ2,1|, . . . , |ϕ2,n|), 0) ∈ L0(Ω), are solutions of (Q

′

λ) where ϕj,i = −∆uj,i with ϕj,i > 0 or ϕj,i < 0,
for j ∈ {1, 2} and i ∈ {1, . . . , n}.

For x0 ∈ Ω, we set ki =
ϕ2,i(x0)

ϕ1,i(x0)
, w1,i(x) = max {ϕ2,i(x), kiϕ1,i(x)} for all x ∈ Ω. From Lemma 3.8,

((w1,1, . . . , w1,n), 0) is a solution of problem (Q
′

λ) . We deduce that Npi(ϕ1,i), Npi(ϕ2,i), Npi(w1,i) ∈

C1,ν(Ω̄) and
Npi(ϕ2,i)

Npi(ϕ1,i)
∈ C1(Ω).

For any unit vector e = (0, . . . , ej , . . . , 0) with j ∈ {1, . . . , N} and t ∈ R, we have{
Npi(ϕ2,i)(x0 + te)−Npi(ϕ2,i)(x0) ≤ Npi(w1,i)(x0 + te)−Npi(w1,i)(x0)

Npi(kϕ1,i)(x0 + te)−Npi(kϕ1,i)(x0) ≤ Npi(w1,i)(x0 + te)−Npi(w1,i)(x0)

Dividing these inequalities by t > 0 and t < 0 and letting t tend to 0±, we get
∂

∂xj
[Npi(ϕ2,i)](x0) ≤ ∂

∂xj
[Npi(w1,i)](x0)

∂

∂xj
[Npi(kϕ1,i)](x0) ≤ ∂

∂xj
[Npi(w1,i)](x0)

75
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and 
∂

∂xj
[Npi(ϕ2,i)](x0) ≥ ∂

∂xj
[Npi(w1,i)](x0)

∂

∂xj
[Npi(kϕ1,i)](x0) ≥ ∂

∂xj
[Npi(w1,i)](x0)

for all j ∈ {1, . . . , N}. Thus,
∂

∂xj
[Npi(ϕ2,i)](x0) =

∂

∂xj
[Npi(w1,i)](x0)

∂

∂xj
[Npi(kϕ1,i)](x0) =

∂

∂xj
[Npi(w1,i)](x0)

for all j ∈ {1, . . . , N}. Hence,

∇Npi(ϕ2,i)(x0) = ∇Npi(w1,i)(x0) = ∇Npi(kϕ1,i)(x0) = kpi−1∇Npi(ϕ1,i)(x0).

Furthermore

∇
(
Npi(ϕ2,i)

Npi(ϕ1,i)

)
(x0) =

∇(Npi(ϕ2,i))(x0)Npi(ϕ1,2)(x0)−Npi(ϕ2,i)(x0)∇(Npi(ϕ2,i))(x0)

[Npi(ϕ1,i)(x0)]
2

=
[Npi(ϕ1,2)(x0)− k1−pi

i Npi(ϕ2,i)(x0)]∇(Npi(ϕ2,1))(x0)

[Npi(ϕ1,i)(x0)]
2 = 0.

Then,

Npi(ϕ2,i)

Npi(ϕ1,i)
(x) = const =

Npi(ϕ2,i)

Npi(ϕ1,i)
(x0) =

(
ϕ2,i(x0)

ϕ1,i(x0)

)pi−1

= kpi−1
i ,

for all x ∈ Ω. Consequently ϕ2,i = kiϕ1,i.

Accordingly, (ϕ2,1, . . . , ϕ2,n) = (k1ϕ1,1, . . . , knϕ1,n).

We deduce that (u2,1, . . . , u2,n) = (k1u1,1, . . . , knu1,n) and the result follows.

Case (2) λ is a semitrivial principal eigenvalue of (Q).

Let (· · · , u1i, · · · ) and (· · · , u2i, · · · ) be two eigenfunctions of (Q) associated with λ (with u1i 6≡ 0,
u2i 6≡ 0 and i ∈ {1, · · · , n}). It is easy to see that there exist ki 6= 0 real numbers such that u1i = kiu2i.

2. By Lemma 3.1, µ1(0) > 0 and µ1(λ) = 0 if and only if λ > 0 is an eigenvalue of (Q).

From Proposition 2.5, there exists a unique real λ1 ∈ (0,∞) satisfying µ1(λ1) = 0 and µ
′

1(λ1) =

−M(u1,0, . . . , un,0) < 0. On the other hand, 0 = µ1(λ1) = Em(u1,0, . . . , un,0) − λ1M(u1,0, . . . , un,0)

with (u1,0, . . . , un,0) ∈M. Then,

Em(u1,0, . . . , un,0) = λ1M(u1,0, . . . , un,0) > 0

and we can set

ui,0 =
ui,0

[M(u1,0, . . . , un,0)]
1
pi

.

Thus, (u1,0, . . . , un,0) ∈ S and Em(u1,0, . . . , un,0) = λ1. Additionally, for every (u1, . . . , un) ∈ S, one
has

Em

(
u1

[I(u1, . . . , un)]
1
p1

, . . . ,
un

[I(u1, . . . , un)]
1
pn

)
≥ λ1M

(
u1

[I(u1, . . . , un)]
1
p1

, . . . ,
un

[I(u1, . . . , un)]
1
pn

)
i.e. Em(u1, . . . , un) ≥ λ1. Consequently (3.12) holds. Moreover, from what has been previously
proved, λ1 is a strictly principal eigenvalue or strictly principal eigenvalue and simple.

�
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[9] P. DRÁBEK AND M. ÔTANI, Global bifurcation result for the p-biharmonic operator, Electron. J. Differential
Equations, 48 (2001), 1-19.

[10] A. EL KHALIL, S. KELLATI AND A. TOUZANI, On the spectrum of the p-biharmonic operator In: 2002-Fez
Conference on Partial Differential Equations, Electron. J. Differential Equations, 09 (2002), 161-170.

[11] D. GILBARG AND N. S. TRUDINGER, Elliptic Partial Differential Equations of Second Order, 2nd ed.,
Springer, New York, (1983).

[12] J. R. GRAEF AND S. HEIDARKHANI, Multiple solutions for a class of (p1, . . . , pn)-biharmonic systems,
Communications on Pure and Applied Analysis, 12(3)(2013), doi:10.3934/cpaa.2013.12.1393.

[13] EL MILOUD HSSINI, MOHAMMED MASSAR AND NAJIB TSOULI, Infinitely many solutions for the Navier
boundary (p,q)-biharmonic systems, Electron. J. Differential Equations, 2012(163) (2012), 1-9.

[14] A. C. LAZER AND P. J. MCKENNA, Large amplitude periodic oscillations in suspension bridges: Some new
connections with nonlinear analysis, SIAM Rev., 32 (1990), 537–578.

[15] LIAMIDI LEADI AND HUMBERTO RAMOS QUOIRIN, Principal eigenvalue for quasilinear cooperative elliptic
systems, Differential and integral equations, 24(11-12)(2011), 1107–1124.

[16] L. LEADI AND A. MARCOS, A weighted eigencurve for Steklov problems with a potential, NoDEA Nonlinear
Differential Equations Appl., 16 (2013), 687-713.

[17] L. LEADI AND R. L. TOYOU, Principal Eigenvalue for Cooperative (p, q)-biharmonic Systems, J. Partial Diff.
Eq., 32 (2019), 33-51.

[18] LIN LI AND YU FU, Existence of Three Solutions for (p1, . . . , pn)-biharmonic Systems, International
Journal of Nonlinear Sciences, 10(4)(2010), 495-506.

77
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1. Introduction and Background

A number of generalizations of the Banach contraction theorem were obtained in various directions by
different authors. Generalization of contraction conditions and proving the existence of fixed points is an
interesting aspect. In 1977, Jaggi [4] introduced a new concept namely ‘rational type contraction mappings’ and
proved the existence of fixed points of such mappings.

Theorem 1.1. [4] Let f be a continuous selfmap defined on a complete metric space (X, d). Suppose that f
satisfies the following condition: there exist α, γ ∈ [0, 1) with α+ γ < 1 such that

d(fx, fy) ≤ αd(x, fx)d(y, fy)

d(x, y)
+ γd(x, y) for all x, y ∈ X, x 6= y. (1.1)

Then f has a fixed point in X .

Here we note that a mapping f : X → X,X a metric space that satisfies (1.1) is called a Jaggi contraction
map on X .

Harjani, Lopez and Sadarangani [3] extended Theorem 1.1 to the context of partially ordered complete
metric spaces.

∗Corresponding author. Email addresses: gvr babu@hotmail.com (G. V. R. Babu), sarmakmkandala@yahoo.in(K. K. M. Sarma),
chinnoduv@rediffmail.com (V. A. Kumari)

https://www.malayajournal.org/index.php/mjm/index c©2022 by the authors.



G. V. R. Babu, K. K. M. Sarma and V. A. Kumari

Theorem 1.2. [3] Let (X,�) be a partially ordered set and suppose that there is a metric d on X such that
(X, d) is a complete metric space. Let f : X → X be a non-decreasing mapping such that

d(fx, fy) ≤ αd(x, fx)d(y, fy)

d(x, y)
+ γd(x, y) (1.2)

for all x, y ∈ X with x � y, x 6= y where 0 ≤ α, γ < 1 with α+ γ < 1.
Also, assume either

(i) f is continuous; (or)

(ii) if a non-decreasing sequence {xn} in X is such that xn → x as n→∞ then x = sup{xn}.

If there exists x0 ∈ X such that x0 � fx0, then f has a fixed point.

In 2013, Samet, Vetro and Vetro[7] introduced a new type of contraction condition and proved fixed point
theorems in complete metric spaces that generalize Banach contraction principle and Kannan fixed point results.
For more works on the existence of fixed points in complete metric spaces, we refer [7].

Recently, Babu, Sailaja and Kidane[2] proved some new fixed point theorems in orbitally complete partially
ordered metric spaces that generalize the fixed point theorems of Samet, Vetro and Vetro [7] and Ran and
Reurings[6]. We denote
Ψ1 = {ψ : [0,∞)→ [0,∞)/ψ is non-decreasing, continuous and ψ(t) = 0⇔ t = 0}.

An element ψ in Ψ1 is called an ‘altering distance function’, [5].

Theorem 1.3. (Babu, Sailaja and Kidane [2]) Let (X,�) be a partially ordered set and d a metric onX . Suppose
that f : X → X is a non-decreasing map and x0 ∈ X such that x0 � fx0. Suppose that there exist a lower
semi continuous function ϕ : X → [0,∞) and ψ ∈ Ψ such that the following condition holds.
“For each 0 ≤ a < b <∞, there exists γ(a, b) ∈ [0, 1) such that
a ≤ ψ(d(x, y)) + ϕ(x) + ϕ(y) ≤ b implies
ψ(d(fx, fy)) + ϕ(fx) + ϕ(fy) ≤ γ(a, b)M(x, y), where
M(x, y) = max{ψ(d(x, y)) + ϕ(x) + ϕ(y), ψ(d(x, fx)) + ϕ(x) + ϕ(fx),

ψ(d(y, fy)) + ϕ(y) + ϕ(fy)}
for each x, y ∈ O(x0) with x � y.”

Assume that X is f -orbitally complete. Then, the sequence {xn} defined by xn+1 = fxn, n = 0, 1, 2, ..., is
Cauchy in X . Let lim

n→∞
xn = z, z ∈ X .

Suppose that either

(i) f is orbitally continuous at z; (or)

(ii) if {xn} is a non-decreasing sequence converging to x ∈ X , then xn � x,
for all n.

Then, z is a fixed point of f and ϕ(z) = 0.

Definition 1.4. Let (X,�) be a partially ordered set. A map f : X → X is said to be non-decreasing if, for any
x, y ∈ X with x � y then fx � fy.

Definition 1.5. Let X be a nonempty set and f be a selfmap of X . Let x ∈ X , we define the orbit of x w. r. t. f
by O(x) = {fnx/n = 0, 1, 2, ...}. Here f0 = I , I is the identity map of X .

Definition 1.6. Let (X, d) be a metric space. Let f : X → X be a selfmap of X . A metric space X is said to be
f -orbitally complete if every Cauchy sequence which is contained in O(x) for all x ∈ X converges to a point
of X.
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Note: Every complete metric space is f -orbitally complete for any f ; but every f -orbitally complete metric space
need not be a complete metric space [9].

Definition 1.7. A selfmap f of X is said to be orbitally continuous at a point z ∈ X with respect to x inX , if
for any sequence {xn} ⊂ O(x) with xn → z as n→∞ implies fxn → fz as n→∞.

Clearly, any continuous mapping of a metric space is orbitally continuous, but its converse need not be true
[9].

We use the following lemma in our main result.

Lemma 1.8. [1] Suppose that (X, d) is a metric space. Let {xn} be a sequence in X such that d(xn, xn+1) →
0 as n → ∞. If {xn} is not a Cauchy sequence then there exist an ε > 0 and sequences of positive integers
{m(k)} and {n(k)} with m(k) > n(k) > k such that d(xm(k), xn(k)) ≥ ε, d(xm(k)−1, xn(k)) < ε and
(i) lim

k→∞
d(xn(k)−1, xm(k)+1) = ε, (ii) lim

k→∞
d(xn(k), xm(k)) = ε,

(iii) lim
k→∞

d(xn(k)−1, xm(k)) = ε, (iv) lim
k→∞

d(xn(k), xm(k)+1) = ε,

(v) lim
k→∞

d(xm(k), xn(k)+1) = ε, and (vi) lim
k→∞

d(xn(k)+1, xm(k)+1) = ε.

Motivated by Theorem 1.3, we define generalized (ϕ,ψ)-Jaggi contraction maps which contain rational
expressions, in orbitally partially ordered metric spaces and prove the existence of fixed points.

In the following, Ψ2 denotes the family of non-decreasing functions ψ : [0,+∞) → [0,+∞) such that ψ is
continuous on [0,∞) and Σ∞n=1ψ

n(t) < +∞ for each t > 0, where ψn is the nth iterate of ψ.

Remark 1.9. Any function ψ ∈ Ψ2 satisfies lim
n→∞

ψn(t) = 0 and ψ(t) < t for any t > 0.

In the following, we observe that the classes of maps Ψ1 and Ψ2 are different.

Example 1.10. We define ψ : R+ → R+ by ψ(t) = λt, where λ ≥ 1.
Then ψ ∈ Ψ1 but ψ /∈ Ψ2.

Example 1.11. We define ψ : R+ → R+ by ψ(t) =

{
0 if t ≤ 1
t−1
2 if t > 1.

Then ψ ∈ Ψ2 but ψ /∈ Ψ1.

We now introduce generalized (ϕ,ψ)-Jaggi contraction in partially ordered metric spaces.

Definition 1.12. Let (X,�) be a partially ordered metric space and suppose that f : X → X be a mapping. If
there exist two functions ϕ : X → [0,∞) lower semi continuous, ψ ∈ Ψ2 and a point x0 ∈ X such that

d(fx, fy) + ϕ(fx) + ϕ(fy) ≤ ψ(M(x, y)), (1.3)

where M(x, y) = max{d(x, y) + ϕ(x) + ϕ(y), (d(x,fx)+ϕ(x)+ϕ(fx))(d(y,fy)+ϕ(y)+ϕ(fy))
d(x,y)+ϕ(x)+ϕ(y) }

for all x, y ∈ O(x0) with x � y and x 6= y,
then we say that f is a generalized (ϕ,ψ)− Jaggi contraction.

Remark 1.13. If ϕ = 0 in the inequality (1.3), then we say that f is a generalized ψ-Jaggi contraction.

Note: In the context of partially ordered metric spaces, if f satisfies (1.2) with α + γ < 1 then f is a
generalized (ϕ,ψ)-Jaggi contraction with ϕ = 0 and ψ(t) = (α+ γ)t, t ≥ 0 so that every Jaggi contraction is a
generalized (ϕ,ψ)-Jaggi contraction. But, the following example suggests that its converse need not be true.

81



G. V. R. Babu, K. K. M. Sarma and V. A. Kumari

Example 1.14. Let X = [0, 1) with the usual metric. We define partial order � on X as follows:
�:= {(x, y) ∈ X ×X : x = y} ∪ {(x, y) ∈ X ×X/x � y ⇔ x ≤ y, where ≤ is the usual order}.

We define f : X → X by fx =


0 if x = 0
x+1
2 if x ∈ (0, 25 )

3
4 if x ∈ [ 25 , 1).

We define ϕ : X → [0,∞) by ϕ(x) =

{
x
2 if x ∈ [0, 34 )

x− 3
4 if x ∈ [ 34 , 1)

and

ψ : [0,∞)→ [0,∞) by ψ(t) = 4
5 t for all t ≥ 0.

Let x0 = 1
8 , fx0 = 9

16 then x0 � fx0. Here O(x0) = { 18 ,
9
16 ,

3
4 ,

3
4 , ...} and

O(x0) = { 18 ,
9
16 ,

3
4} = O(x0). Let x, y ∈ O(x0).

The following three cases arise to verify the inequality (1.3).
Case (i): x = 1

8 and y = 9
16 .

In this case, d(fx, fy) + ϕ(fx) + ϕ(fy) = 15
32 and M(x, y) = 25

32 .
d(fx, fy) + ϕ(fx) + ϕ(fy) = 15

32 ≤ ψ( 25
32 ) = ψ(M(x, y)).

Case (ii): x = 9
16 and y = 3

4 .
In this case, the inequality (1.3) holds trivially.
Case (iii): x = 1

8 and y = 3
4 .

In this case, d(fx, fy) + ϕ(fx) + ϕ(fy) = 15
32 and M(x, y) = 11

16 .
d(fx, fy) + ϕ(fx) + ϕ(fy) = 15

32 ≤ ψ( 11
16 ) = ψ(M(x, y)).

Hence f is a generalized (ϕ,ψ)-Jaggi contraction.
Also we observe that the inequality (1.2) fails to hold.

For, by choosing x = 0 and y = 3
4 we have

d(f0, f( 3
4 )) = 3

4 
 α(0) + γ( 3
4 ) < 3

4 = α
d(0,f0)d( 3

4 ,f
3
4 )

d(0, 34 )
+ γd(0, 34 ).

i.e., f is not a Jaggi contraction map.

Thus we conclude that the class of generalized (ϕ,ψ)-Jaggi contractions is more general than the class of
Jaggi contraction maps.

In Section 2, we prove the existence of fixed points of generalized (ϕ,ψ)-Jaggi contraction mappings in
orbitally complete partially ordered metric spaces. In Section 3, we deduce some corollaries to the main results
and provide examples in support of our results.

2. Main Results

Theorem 2.1. Let (X, d,�) be a partially ordered metric space. Suppose that f : X → X is a non-decreasing
map and x0 ∈ X such that x0 � fx0. Suppose that f is a generalized (ϕ,ψ)-Jaggi contraction and X is
f -orbitally complete. Then, the sequence {xn} defined by xn+1 = fxn, n = 0, 1, 2, ..., is Cauchy in X . Let
lim

n→∞
xn = z, z ∈ X . Assume that f is orbitally continuous at z. Then z is a fixed point of f and ϕ(z) = 0.

Proof. Let x0 ∈ X be such that x0 � fx0. We write x1 ∈ X so that x1 = fx0 then x0 � x1. Since f is
non-decreasing x1 = fx0 � fx1. Now, we write x2 ∈ X so that x2 = fx1 then x1 � x2. On continuing this
process, we get a sequence {xn} ⊆ O(x0) such that

xn+1 = fxn for n = 0, 1, 2, ... (2.1)

satisfying x0 � x1 � x2 � ... � xn � xn+1 � ... .
If xn = xn+1 for some n, then the conclusion of the theorem trivially holds. Hence, without loss of generality,
we assume that xn 6= xn+1 for all n. We denote

rn = d(xn−1, xn) + ϕ(xn−1) + ϕ(xn) forn = 1, 2, ... . (2.2)
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We consider rn+1 = d(xn, xn+1) + ϕ(xn) + ϕ(xn+1) = d(fxn−1, fxn) + ϕ(fxn−1) + ϕ(fxn)

≤ ψ(M(x, y)), (2.3)

where
M(x, y) = max{d(xn−1, xn)+ϕ(xn−1)+ϕ(xn), (d(xn−1,fxn−1)+ϕ(xn−1)+ϕ(fxn−1))(d(xn,fxn)+ϕ(xn)+ϕ(fxn))

d(xn−1,xn)+ϕ(xn−1)+ϕ(xn)
}

= max{rn, rn.rn+1

rn
} = max{rn, rn+1}.

If max{rn, rn+1} = rn+1 then from (2.3) we have
rn+1 ≤ ψ(rn+1) < rn+1,
a contradiction.
Hence max{rn, rn+1} = rn then from (2.3) we have

rn+1 ≤ ψ(rn) < rn. (2.4)

Thus it follows that {rn} is strictly decreasing sequence of non-negative real numbers and hence lim
n→∞

rn exists
and it is r(say). i.e., lim

n→∞
rn = r ≥ 0.

We now show that r = 0.
Suppose that r > 0. Then from (2.4), we have
rn+1 ≤ ψ(rn).
On letting n→∞, we have
r ≤ lim

n→∞
ψ(rn) = ψ( lim

n→∞
rn) = ψ(r) < r,

a contradiction.
Hence lim

n→∞
d(xn+1, xn) + ϕ(xn+1) + ϕ(xn) = 0, which implies

lim
n→∞

d(xn+1, xn) = 0 and lim
n→∞

ϕ(xn) = 0.

We now show that {xn} is a Cauchy sequence in X .
Suppose that {xn} is not a Cauchy sequence. Then, there exist ε > 0 and sequences of positive integers {m(k)}
and {n(k)} with m(k) > n(k) > k such that

d(xm(k), xn(k)) ≥ ε (2.5)

We choose m(k), the least positive integer satisfying (2.5). Then, we have
m(k) > n(k) > k with

d(xm(k), xn(k)) ≥ ε, d(xm(k)−1, xn(k)) < ε.
Now by Lemma 1.8, it follows that lim

k→∞
d(xm(k)+1, xn(k)+1) = ε.

Now from (1.3), we have
d(xm(k)+1, xn(k)+1) + ϕ(xm(k)+1) + ϕ(xn(k)+1) = d(fxm(k), fxn(k)) + ϕ(fxm(k)) + ϕ(fxn(k))

≤ ψ(M(x, y)), (2.6)

where M(x, y) = max{d(xm(k), xn(k)) + ϕ(xm(k)) + ϕ(xn(k)),
(d(xm(k),xm(k)+1)+ϕ(xm(k))+ϕ(xm(k)+1))(d(xn(k),xn(k)+1)+ϕ(xn(k))+ϕ(xn(k)+1))

d(xm(k),xn(k))+ϕ(xm(k))+ϕ(xn(k))
}.

Now, on letting k →∞ in (2.6) we have
ε ≤ ψ(ε) < ε,
a contradiction.
Therefore {xn} ⊂ O(x0) is a Cauchy sequence in (X, d). Since X is f -orbitally complete, there exists z ∈ X
such that

lim
n→∞

xn = z. (2.7)

Since ϕ is lower semi continuous, we have
ϕ(z) ≤ lim infn→∞ ϕ(xn) = 0.

Hence ϕ(z) = 0.
Since f is orbitally continuous at z w.r.t. x0, from (2.1), we have
z = lim

n→∞
xn+1 = lim

n→∞
fxn = fz.

This completes the proof of the theorem. �
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Theorem 2.2. Let (X, d,�) be a partially ordered metric space. Suppose that f : X → X is a non-decreasing
map and x0 ∈ X such that x0 � fx0, ϕ : X → R+ lower semi continuous and ψ ∈ Ψ2 such that

d(fx, fy) + ϕ(fx) + ϕ(fy) ≤ ψ(M(x, y)) (2.8)

M(x, y) = max{d(x, y) + ϕ(x) + ϕ(y), (d(x,fx)+ϕ(x)+ϕ(fx))(d(y,fy)+ϕ(y)+ϕ(fy))
d(x,y)+ϕ(x)+ϕ(y) }

for all x, y ∈ ∪x0�fx0, x0∈XO(x0) with x � y and x 6= y.
Assume the following:

(i) if {xn} is a non-decreasing sequence converging to z ∈ X , then xn � z, for all n; and

(ii) if {xn} and {yn} are sequences in X with xn � yn, for all n and
lim
n→∞

xn = x, lim
n→∞

yn = y, x, y ∈ X then x � y.

Assume that X is f -orbitally complete. Then, the sequence {xn} defined by xn+1 = fxn, n = 0, 1, 2, ..., is
Cauchy in X . Let lim

n→∞
xn = z, z ∈ X . Then z is a fixed point of f and ϕ(z) = 0. Further, f is orbitally

continuous at z.

Proof. Let x0 ∈ X be such that x0 � fx0. On proceeding as in the proof of Theorem 2.1, we have
{xn} ⊂ O(x0) defined by (2.1)is a Cauchy sequence in (X, d). Since X is f -orbitally complete, there exists
z ∈ X such that

lim
n→∞

xn = z (2.9)

Since ϕ is lower semi continuous, we have
ϕ(z) ≤ lim infn→∞ ϕ(xn) = 0.

Hence ϕ(z) = 0.
Since {xn} is a non-decreasing sequence and xn → z, by (i) we have xn � z for all n. Since f is non-decreasing,
we have fxn � fz for all n. i.e., xn+1 � fz for all n. Moreover, as xn � xn+1 � fz for all n and by using
(ii), we get z � fz.

We now define a sequence {yn} as y0 = z, yn+1 = fyn, n = 0, 1, 2, ... . Then y0 � fy0. Since f is
non-decreasing, we obtain that {yn} is a non-decreasing sequence and {yn} is Cauchy (similar to the argument
to show {xn} is Cauchy) yn → y (say), y ∈ X . Again, by the condition (i), we have yn � y. Since xn � z =
y0 � fz = fy0 � yn � y for all n, we have xn � yn for all n, and hence z � y.
If xn = yn for some n, then xn � z = y0 � fz = fy0 � yn = xn so that fz = z.
Hence we assume that xn 6= yn for all n.
Suppose that z 6= y. Now from (2.8), we have
d(xn+1, yn+1) + ϕ(xn+1) + ϕ(yn+1) = d(fxn, fyn) + ϕ(fxn) + ϕ(fyn)

≤ ψ(M(x, y)), where (2.10)

M(x, y) = max{d(xn, yn) + ϕ(xn) + ϕ(yn), (d(xn,fxn)+ϕ(xn)+ϕ(fxn))(d(yn,fyn)+ϕ(yn)+ϕ(fyn))
d(xn,yn)+ϕ(xn)+ϕ(yn)

}.
On letting n→∞ in (2.10), we have
d(z, y) ≤ ψ(d(z, y)) < d(z, y),
a contradiction.
Hence z = y, and we have z � fz = fy0 � yn � y = z.
Therefore z is a fixed point of f . �

Remark: Condition (ii) of Theorem 2.2 holds trivially in R with the usual order. But in partially ordered metric
spaces it need not hold always. For more details, we refer [8].

Now we prove the uniqueness of fixed point of f by using ‘condition (H)’ and it is the following:
Condition (H): For all x, y ∈ X there exists z ∈ X such that x � z and y � z.

Theorem 2.3. In addition to the hypotheses of Theorem 2.1 (Theorem 2.2) if condition (H) holds, then f has a
unique fixed point.
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Proof. By Theorem 2.1, we have f has a fixed point. Suppose that x, y ∈ X are two fixed points of f . By
condition (H), there exists z ∈ X such that x � z and y � z.
Put z = z0, z1 = fz0. and define a sequence {zn} in X by zn+1 = fzn for all n ≥ 0. Then x � z0 and y � z0.
By using the non-decreasing property of f , we have
fx � fz0 and fy � fz0. Hence x � z1 and y � z1.
On continuing this process, we have

x � zn and y � zn for n ≥ 0. (2.11)

In (2.11), if x = zn for some n, then fx = fzn so that x = zn+1. In fact, we have x = zm for m ≥ n so that
limn→∞ zn = x.
If x 6= zn for all n = 0, 1, 2, ... then by using (1.3), we have
d(x, zn+1) + ϕ(x) + ϕ(zn+1) = d(fx, fzn) + ϕ(fx) + ϕ(fzn)

≤ ψ(max{d(x, zn) + ϕ(x) + ϕ(zn), (d(x,fx)+ϕ(x)+ϕ(fx))(d(zn,fzn)+ϕ(zn)+ϕ(fzn))
d(x,zn)+ϕ(x)+ϕ(zn)

}
= ψ(max{d(x, zn) + ϕ(zn), 0}) = ψ(d(x, zn) + ϕ(zn))

d(x, zn+1) + ϕ(zn+1) ≤ ψ(d(x, zn) + ϕ(zn)) = ψ(ψ(d(x, zn−1) + ϕ(zn−1))
≤ ψ2(d(x, zn−1) + ϕ(zn−1))
≤ ψ3(d(x, zn−2) + ϕ(zn−2)) ≤ ... ≤ ψn(d(x, z1) + ϕ(z1))→ 0 as n→∞.

Therefore lim
n→∞

zn = x. (2.12)

Again, by applying the similar argument to y 6= zn for all n = 0, 1, 2, ...., it follows that

lim
n→∞

zn = y. (2.13)

From (2.12) and (2.13) we have x = y.
This completes the proof of the theorem. �

3. Corollaries and examples

In the following, we deduce some corollaries to the main results of Section 2.

Corollary 3.1. Let (X, d,�) be a partially ordered metric space. Suppose that f : X → X is a non-decreasing

map and x0 ∈ X such that x0 � fx0. Suppose that there exists ψ ∈ Ψ2 such that

d(fx, fy) ≤ ψ[max{d(x, y),
d(x, fx)d(y, fy)

d(x, y)
}] (3.1)

for all x, y ∈ O(x0) with x � y and x 6= y.

Assume that X is f -orbitally complete. Then, the sequence {xn} defined by

xn+1 = fxn, n = 0, 1, 2, ..., is Cauchy in X . Let lim
n→∞

xn = z, z ∈ X . Suppose that f is orbitally continuous

at z. Then z is a fixed point of f .

Proof. The inequality (3.1) implies the inequality (1.3) with ϕ ≡ 0 on X , and hence the conclusion of the

corollary follows from Theorem 2.1. �

Corollary 3.2. Let (X, d,�) be a partially ordered metric space. Suppose that f : X → X is a non-decreasing

map and x0 ∈ X such that x0 � fx0. Suppose that there exist a constant k ∈ (0, 1) such that

d(fx, fy) ≤ kmax{d(x, y),
d(x, fx)d(y, fy)

d(x, y)
} (3.2)
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for all x, y ∈ O(x0) with x � y and x 6= y.

Assume that X is f -orbitally complete. Then, the sequence {xn} defined by xn+1 = fxn, n = 0, 1, 2, ..., is

Cauchy in X . Let lim
n→∞

xn = z, z ∈ X . Suppose that f is orbitally continuous at z. Then z is a fixed point of f .

Proof. By choosing ψ(t) = kt, t ≥ 0 in the inequality (3.1), the conclusion of this corollary follows from

Corollary 3.1. �

Remark 3.3. Theorem 1.2 follows as a corollary to Corollary 3.2, since the inequality (1.2) implies the

inequality (3.2) with k = α+ γ < 1.

Corollary 3.4. Let (X, d,�) be a partially ordered metric space. Suppose that f : X → X is a non-decreasing

map and x0 ∈ X such that x0 � fx0 and ψ ∈ Ψ2 such that

d(fx, fy) ≤ ψ(max{d(x, y),
d(x, fx)d(y, fy)

d(x, y)
}) (3.3)

for all x, y ∈ ∪x0�fx0, x0∈XO(x0) with x � y and x 6= y.

Assume the following:

(i) if {xn} is a non-decreasing sequence converging to z ∈ X , then xn � z, for all n; and

(ii) if {xn} and {yn} are sequences in X with xn � yn, for all n and

lim
n→∞

xn = x, lim
n→∞

yn = y, x, y ∈ X then x � y.

Assume that X is f -orbitally complete. Then, the sequence {xn} defined by xn+1 = fxn, n = 0, 1, 2, ..., is

Cauchy in X . Let lim
n→∞

xn = z, z ∈ X .

Then z is a fixed point of f .

Proof. The inequality (3.3) implies the inequality (2.8) with ϕ ≡ 0 on X , and hence the conclusion of the

corollary follows from Theorem 2.2. �

Corollary 3.5. Let (X, d,�) be a partially ordered metric space. Suppose that f : X → X is a non-decreasing

map and x0 ∈ X such that x0 � fx0 and there exist a constant k ∈ (0, 1) such that

d(fx, fy) ≤ kmax{d(x, y),
d(x, fx)d(y, fy)

d(x, y)
} (3.4)

for all x, y ∈ ∪x0�fx0, x0∈XO(x0) with x � y and x 6= y.

Assume the following:

(i) if {xn} is a non-decreasing sequence converging to z ∈ X , then xn � z,

for all n; and
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(ii) if {xn} and {yn} are sequences in X with xn � yn, for all n and

lim
n→∞

xn = x, lim
n→∞

yn = y, x, y ∈ X then x � y.

Assume that X is f -orbitally complete. Then, the sequence {xn} defined by xn+1 = fxn, n = 0, 1, 2, ..., is

Cauchy in X . Let lim
n→∞

xn = z, z ∈ X . Then z is a fixed point of f .

Proof. By choosing ψ(t) = kt, t ≥ 0 in the inequality (3.3), the conclusion of this corollary follows from

Corollary 3.4. �

Remark 3.6. Theorem 1.2 follows as a corollary to Corollary 3.5, since the inequality (1.2) implies the

inequality (3.4) with k = α+ γ < 1.

In the following, we provide examples in support of the results that are proved in Section 2.

Example 3.7. Let X = [0, 2) with the usual metric. We define partial order � on X by

�:= {(x, y) ∈ X ×X : x = y} ∪ {(x, y)/x, y ∈ X, x � y ⇔ x ≥ y, where ≥ is the usual order}.

We define f : X → X by fx =



0 if x = 0

1
8 if x ∈ [ 12 , 1)

x2

16 if x ∈ [ 14 ,
1
2 )

1
2n+2 if x ∈ [ 1

2n+1 ,
1
2n ), n ≥ 2

2− x if x ∈ [1, 2).

We define ψ : [0,∞)→ [0,∞) by ψ(t) = 2
3 t for all t ≥ 0 and

ϕ : X → [0,∞) by ϕ(x) =

 x
3 if x ∈ [0, 5

16 )

x− 5
16 if x ∈ [ 5

16 , 1).

Let x0 = 3
8 then x0 � fx0. Here O(x0) = { 38 ,

9
210 ,

1
28 ,

1
29 ...,

1
22n+8 , ....} = { 38 ,

9
210 } ∪ {

1
2n /n ≥ 8}

and O(x0) = O(x0) ∪ {0}.

We show that f is a generalized (ϕ,ψ)-Jaggi contraction. The following are the possible four cases.

Case (i): x = 3
8 and y = 9

210 .

In this case, d(fx, fy) + ϕ(fx) + ϕ(fy) = 7
3.28 and M(x, y) = 442

210 .

d(fx, fy) + ϕ(fx) + ϕ(fy) = 7
3.28 ≤ ψ( 442

210 ) = ψ(M(x, y)).

Case (ii): x = 9
210 and y = 1

2i+3 , i ≥ 2.

In this case, d(fx, fy) + ϕ(fx) + ϕ(fy) = 2i−23
3.2i+6 and M(x, y) = 7

23(9.2i−26) .

d(fx, fy) + ϕ(fx) + ϕ(fy) = 2i−23
3.2i+6 ≤ ψ( 7

23(9.2i−26) ) = ψ(M(x, y)).

Case (iii): x = 3
8 and y = 1

2i+1 , i ≥ 2. In this case,

d(fx, fy) + ϕ(fx) + ϕ(fy) =

 9.2i−27
3.2i+8 if i ≥ 2

29−9.2i
3.2i+9 if i ≤ 2

and M(x, y) = 663
24(21.2i−16) .

Sub case (a):

d(fx, fy) + ϕ(fx) + ϕ(fy) = 9.2i−27
3.2i+8 ≤ ψ( 663

24(21.2i−16) ) = ψ(M(x, y)).
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Sub case (b): d(fx, fy) + ϕ(fx) + ϕ(fy) = 29−9.2i
3.2i+9 ≤ ψ( 663

24(21.2i−16) ) = ψ(M(x, y)).

Case (iv): x = 1
2i and y = 1

2j , i ≥ 2 and j ≥ i.

In this case, d(fx, fy) + ϕ(fx) + ϕ(fy) = 2.2j−2i
3.2i+j and M(x, y) = 4.2j−2.2i

3.2i+j .

d(fx, fy) + ϕ(fx) + ϕ(fy) = 2.2j−2i
3.2i+j ≤ ψ( 4.2j−2.2i

3.2i+j ) = ψ(M(x, y)).

Hence, all the hypotheses of Theorem 2.1 hold and 0, 1 are two fixed points of f in O(x0). Also ϕ(0) = 0.

Since, the inequality (1.3) fails to hold at x = 0, y = 1 when ϕ ≡ 0, f is not a generalized ψ-Jaggi

contraction. Further, we observe that at x = 0 and y = 1, we have

d(f0, f1) = 1 
 α.0 + γ.1 = αd(0,f0)d(1,f1)
d(0,1) + γd(0, 1)

so that the inequality (1.2) does not hold for any α and γ in [0, 1) with α + γ < 1. i.e., f is not a

Jaggi contraction map. Therefore Theorem 1.2 is not applicable.

Thus, it suggests that Theorem 2.1 is a generalization of Theorem 1.2.

Remark 3.8. For x = 0 and y = 1, and for any z ∈ X we have either 0 � z or 1 � z. Hence condition (H)

fails to hold and f has more than one fixed point namely 0 and 1.

Example 3.9. Let X = [0, 1) with the usual metric. We define partial order � on X by

�:= {(x, y) ∈ X ×X : x = y} ∪ {(x, y)/x, y ∈ X, x � y ⇔ x ≥ y, where ≥ is the usual order}.

We define f : X → X by fx =

 x
2 if x ∈ [0, 12 ]

x2

2 if x ∈ ( 1
2 , 1).

We define ψ : [0,∞)→ [0,∞) by ψ(t) = 5t
6 for all t ≥ 0 and

ϕ : X → [0,∞) by ϕ(x) =

 x
3 if x ∈ [0, 5

16 )

x− 5
16 if x ∈ [ 5

16 , 1).

We choose x0 = 1
2 then x0 � fx0, O(x0) = { 12 ,

1
22 ,

1
23 ...,

1
2n , ....} = { 1

2n /n ≥ 1} and O(x0) = O(x0) ∪ {0}.

The following two cases arise to verify the inequality (2.8).

Case (i): x = 1
2i and y = 1

2j , i ≥ 2 and j ≥ i.

In this case, d(fx, fy) + ϕ(fx) + ϕ(fy) = 2.2j−2i
3.2i+j and M(x, y) = 4.2j−2.2i

3.2i+j .

d(fx, fy) + ϕ(fx) + ϕ(fy) = 2.2j−2i
3.2i+j

≤ ψ( 4.2j−2.2i
3.2i+j ) = ψ(M(x, y)).

Case (ii): x = 1
2i and y = 0, i ≥ 1.

In this case, d(fx, fy) + ϕ(fx) + ϕ(fy) = 2
3.2i and M(x, y) = 4

3.2i .

d(fx, fy) + ϕ(fx) + ϕ(fy) = 2
3.2i

≤ ψ( 4
3.2i ) = ψ(M(x, y)).

Hence, all the hypotheses of Theorem 2.2 hold and 0 is a fixed point of f in O(x0). Also ϕ(0) = 0.
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1. Introduction and Background

Firstly, note that throughout this study the symbols R and M will denote an associative ring with identity and
a unitary left R-module, respectively. The notations A ≤ M and A ≤⊕ M will indicate that A is a submodule
of M and A is a direct summand of M . A submodule A of M is called essential (denoted by A E M) if
A ∩ K 6= {0} for any proper submodule K of M except for {0}. The intersection of all essential submodules
of a module M is denoted by Soc(M) which is the largest semisimple submodule of M. A submodule B

′ ≤M

is called a complement of A in M if it is maximal in the set of submodules B ≤ M with A ∩ B = {0}. A
submodule A of M is called small (denoted by A � M) if A + K 6= M for any proper submodule K of M .
The sum of all small submodules of a module M is denoted by Rad(M). A (weak) supplement submodule T of
A in M is a submodule such that A+ T = M and A ∩ T � T (A ∩ T �M). A module M is called (weakly)
supplemented if every submodule of M has a (weak) supplement in M [14].

In [15] and [6], the authors updated the small and supplemented modules via singularity as follows. A
submodule A ≤M is δ-small if and only if for all submodules X ≤M : if A+X =M , then M = Y ⊕X for a
projective semisimple submodule Y of A. Also the submodule A is called δ-small in M if A+K 6=M for every
proper submodule K of M with M

K is singular (denoted by A�δ M ) and the sum of all δ-small submodules of
M denoted by δ(M). Clearly Rad(M) ≤ δ(M).

A δ-supplement submodule T of A in M is a submodule such that A + T = M and A ∩ T �δ T. A
(generalized) weak δ-supplement submodule T of A in M is a submodule such that A+ T = M and (A ∩ T ≤

∗Corresponding author. Email address: esozen@sinop.edu.tr (Esra ÖZTÜRK SÖZEN)

https://www.malayajournal.org/index.php/mjm/index c©2022 by the authors.
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δ(M)) A ∩ T �δ M [11]. The module M is called (weakly) δ-supplemented, if every submodule of M has a
(weak) δ-supplement in M . Clearly every (weakly) supplemented module is (weakly) δ-supplemented. In [5],
the authors introduced ss-supplemented modules which are stronger than supplemented modules. A module M
is called ss-supplemented if for every submoduleA ofM there exists a submodule T ofM such thatA+T =M

and A ∩ T ≤ Socs(T ) where Socs(T ) = Soc(T ) ∩ Rad(T ). In [9], the authors generalized ss-supplemented
modules to weakly ss-supplemented modules by taking Socs(M) instead of Socs(T ) and gave a characterization
for these modules named with ss-semilocal. In [13] the authors generalized (amply) ss-supplemented modules
in view of singularity and introduced (amply) δss-supplemented modules and δss-supplemented rings.

In this article, in the light of the given studies we define weakly δss-supplemented modules and obtain a new
characterization for them named with δss-semilocal modules. A module M is called δss-semilocal whenever

M
Socδ(M) is semisimple where Socδ(M) = Soc(M) ∩ δ(M). A module M is called δ-semilocal if M

δ(M) is
semisimple. As Socδ(M) ≤ δ(M) ≤ M , every δss-semilocal module is δ-semilocal and every ss-semilocal
module is δss-semilocal. We give examples on the converse implications might not be true. Also, we investigate
suitable conditions when δsssemilocal modules are δ-semilocal and ss-semilocal. In particular, we obtain new
characterizations for δss-semilocal rings.

For undefined algebraic structures used here, such as δ-(semi)perfect and δss-perfect rings, we refer to [15]
and [13], respectively.

2. Weakly δss-supplemented modules

A module M is called weakly δ-supplemented if for any submodule A of M there exists a submodule T of
M such that A + T = M and A ∩ T �δ M [11]. By means of this concept and the usuful lemma given in
the following we will define weakly δss-supplemented modules as a strongly version of weakly δ-supplemented
modules.

Lemma 2.1. Let f : A −→ B be a module homomorphism. Then f(Socδ(A)) ≤ Socδ(B). In particular, we
have Socδ(A) ≤ Socδ(B) whenever A ≤ B.

Proof. As f is a homomorphism we have f(Soc(A)) ≤ Soc(B) and f(δ(A)) ≤ δ(B). Therefore we get
f(Socδ(A)) = f(Soc(A) ∩ δ(A)) ≤ f(Soc(A)) ∩ f(δ(A)) ≤ Soc(B) ∩ δ(B) = Socδ(B). In particular, if the
inclusion map from A to B is taken instead of f , then Socδ(A) ≤ Socδ(B) is obtained clearly. �

Definition 2.2. A module M is called weakly δss-supplemented if for any submodule A of M there exists a
submodule T of M such that A+ T =M and A ∩ T ≤ Socδ(M).

It is a clear fact that every weakly δss-supplemented module is weakly δ-supplemented but not vice versa. To
verify this with an example we need the following lemma.

Lemma 2.3. Let M be a weakly δ-supplemented module with Soc(M) = 0. Then M = 0.

Proof. Let A ≤ M . By hypothesis there exists a submodule T of M such that A + T = M and A ∩ T ≤
Socδ(M). Since Socδ(M) = Soc(M) ∩ δ(M) = 0 ∩ δ(M) = 0 then we have A ∩ T = {0}. Therefore, M is a
semisimple module as each submodule is a direct summand. Hence M = Soc(M) = 0. �

Example 2.4. It is a known fact that Z-module Q is weakly δ-supplemented as it is weakly supplemented [3,
17.15 Example, 213p.]. On the orher hand, it is not weakly δss-supplemented by Lemma 2.3.

Now we give a characterization lemma for weak δss-supplement submodules of a module.

Lemma 2.5. Let M be a module and A, T ≤M . Then the following implications are equivalent:

1. M = A+ T and A ∩ T ≤ Socδ(M).
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2. T is a weak δ-supplement of A in M and A ∩ T is semisimple.

3. T is a generalized weak δ-supplement of A in M and A ∩ T is semisimple.

Proof. (1) ⇒ (2) : By hypothesis we have M = A + T, A ∩ T ≤ δ(M) and A ∩ T ≤ Soc(M) as Socδ(M)

is a submodule of both δ(M) and Soc(M). Therefore, A ∩ T is semisimple and it is also δ-small in M by [13,
Lemma 2.2].

(2)⇒ (3) : It is clear.
(3) ⇒ (1) : By hypothesis we have M = A + T, A ∩ T ≤ δ(M) and A ∩ T is semisimple. Thus,

A ∩ T ≤ Soc(M). Hence, A ∩ T ≤ Soc(M) ∩ δ(M) = Socδ(M). �

We say that a module M is called δ-semilocal if M
δ(M) is semisimple. And it is proven in [10, Theorem 3.7]

that a module M with δ(M)�δ M and M
δ(M) is singular is δ-semilocal if and only if M is a generalized weakly

δ-supplemented module. Motivated by this we give a similar characterization for our modules in the following
theorem.

Theorem 2.6. The following implications are equivalent for a module M :

1. M
Socδ(M) is semisimple.

2. M is weakly δss-supplemented.

3. M is a direct sum of two submodules M1 and M2 such that M1 and M2

Socδ(M) are semisimple, also
Socδ(M) EM2.

Proof. (3)⇒ (1) : Let M =M1⊕M2. Then M
Socδ(M) =

M1+Socδ(M)
Socδ(M) ⊕ M2

Socδ(M) is semisimple as a direct sum
of two semisimple modules.

(1) ⇒ (2) : For any A ≤ M, A+Socδ(M)
Socδ(M) ⊕ T

Socδ(M) = M
Socδ(M) can be written by hypothesis. Then,

M = A + T and by modularity (A + Socδ(M)) ∩ T = (A ∩ T ) + Socδ(M) = Socδ(M) are obtained. Thus,
A ∩ T ≤ Socδ(M) is got.

(1) ⇒ (3) : Let M1 be a complement of Socδ(M). Then, M1
∼= M1+Socδ(M)

Socδ(M) ≤⊕ M
Socδ(M) and so M1 is

semisimple as it is isomorphic to a submodule of a semisimple module. Additionally, there exists a semisimple
direct summand M2

Socδ(M) satisfying M1+Socδ(M)
Socδ(M) ⊕ M2

Socδ(M) =
M

Socδ(M) . Clearly, M =M1 +M2. Furthermore,
since Socδ(M) = (M1 + Socδ(M)) ∩M2 = Socδ(M)⊕ (M1 ∩M2) by modularity. Then we get M1 ∩M2 ≤
Socδ(M) and M1 ∩M2 ≤M1 which means M1 ∩M2 ≤M1 ∩Socδ(M) = 0 by the property of a complement.
Thus M = M1 ⊕ M2. For the remaining part of the proof let us show that Socδ(M) E M2. As M1 is the
complement of Socδ(M) we have M1⊕Socδ(M) EM =M1⊕M2 [3, 1.11(1)]. For the second injection map
i2 :M2 −→M1 ⊕M2, i−12 (M1 ⊕ Socδ(M)) EM2 by [1, Theorem 9.1(3)].

2⇒ 1 : For any A
Socδ(M) ≤

M
Socδ(M) we have A+ T =M and A ∩ T ≤ Socδ(M) for a submodule T ≤M

by hypothesis. Thus A
Socδ(M) ⊕

T+M
Socδ(M) =

M
Socδ(M) , that is, M

Socδ(M) is semisimple. �

From now on, we will call a moduleM is δss-semilocal wheneverM satisfies one of the equvalent conditions
of the theorem given above.

3. δss-Semilocal modules

In this part we will present the fundamental properties of our modules firstly. Before of all we need a useful
lemma.

Lemma 3.1. For a given family of R-modules {Mi}i∈I , Socδ(⊕i∈IMi) = ⊕i∈ISocδ(Mi).

Proof. It is clear by Lemma 2.1 and [3, 6.2(3)]. �
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Theorem 3.2. Let {Mi}i∈I be a family of δss-semilocal modules. Then M = ⊕
i∈IMi is δss-semilocal.

Proof. As each Mi

Socδ(Mi)
is semisimple, M

Socδ(M) = ⊕i∈IMi

Socδ(⊕i∈IMi)
= ⊕i∈IMi

⊕i∈ISocδ(Mi)
∼= ⊕i∈I Mi

Socδ(Mi)
is also

semisimple by [4, Cor. 8.1.5] and Lemma 3.1. Hence, M is is δss-semilocal. �

Corollary 3.3. The sum of δss-semilocal modules is also δss-semilocal.

Theorem 3.4. If M is a δss-semilocal module, then so is any homomorphic image.

Proof. Let us consider the module epimorphism h : M −→ K where M is δss-semilocal. Then the
homomorphism h : M

Socδ(M) −→
K

Socδ(K) defined by h(x + Socδ(M)) = h(x) + Socδ(K) for every
x + Socδ(M) ∈ M

Socδ(M) is epic. As M
Socδ(M) is semisimple, then the homomorphic image K

Socδ(K) is also
semisimple by [4, Cor. 8.1.5], that is h(M) = K is δss-semilocal. �

Proposition 3.5. Let M be a δss-semilocal module and A be a submodule of M satisfying δ(A) = A ∩ δ(M).
Then A is δss-semilocal.

Proof. Let B ≤ A. Then there exists a submodule T of M such that B + T = M and B ∩ T ≤ Socδ(M).
Following this A = (B + T ) ∩ A = B + (T ∩ A) is obtained by using modularity. Now we will verify that
T ∩ A is a weak δss-supplement of B in A. As B ∩ (T ∩ A) = B ∩ T ≤ Socδ(M) ≤ δ(M) we have
B ∩ (T ∩ A) ≤ δ(M) ∩ A = δ(A). Thus, B ∩ T = B ∩ (T ∩ A) ≤ Soc(A) ∩ δ(A) = Socδ(A). Hence, A is
δss-semilocal. �

Corollary 3.6. Every δss-supplement (and so δ-supplement) submodule of a δss-semilocal module is
δss-semilocal.

Recall that a module K is said to be M -generated, if there exists an epimorphism from M (I) to K where I is
an index set.

Lemma 3.7. Let M be a module. M is δss-semilocal if and only if every M -generated module is δss-semilocal.

Proof. (=⇒) : It is clear by Corollary 3.3 and Theorem 3.4.
(⇐=) : It is clear. �

In general, every amply δss-supplemented module is δss-supplemented [13]. now it is possible to think
whether the analogous idea is valid for our modules. In the following proposition we show that δss-semilocal
modules already contain this property by themselves.

Proposition 3.8. Let M be a δss-semilocal module and A, T ≤ M with A + T = M . Then A has a weak
δss-supplement in M contained by T .

Proof. As A∩T ≤M , there is a submodule B ≤M such that (A∩T )+B =M and (A∩T )∩B ≤ Socδ(M)

by hypothesis. By modularity, we have T = T ∩M = T ∩ [(A ∩ T ) + B] = (A ∩ T ) + (B ∩ T ). Thus,
M = A+ T = A+ (A∩ T ) + (B ∩ T ) = A+ (B ∩ T ) and A∩ (B ∩ T ) = (A∩B)∩ T ≤ Socδ(M). Hence,
B ∩ T is a weak δss-supplement of A in M contained by T . �

As we pointed before every δ-semilocal module is δss-semilocal. Under suitable conditions the converse
might be provided as follows.

Proposition 3.9. Let M be a δ-semilocal module with δ(M) ≤ Soc(M). Then M is δss-semilocal.

Proof. Clearly, Socδ(M) = δ(M) as δ(M) ≤ Soc(M). Therefore, M
δ(M) = M

Socδ(M) is semisimple. Hence, M
is δss-semilocal by Theorem 2.6. �

Due to the consequences of the proposition given in the following we will obtain the ring characterization of
δss-semilocal modules in the next.
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Proposition 3.10. Let M be a δss-semilocal module and A�δ M . Then A ≤ Socδ(M).

Proof. By hypothesis there exists a submodule T of M such that A + T = M and A ∩ T ≤ Socδ(M).
As A �δ M we have Y ⊕ T = M for a projective semisimple submodule Y of A. From modularity we
get Y ⊕ (T ∩ A) = A and so A is semisimple as a direct sum of two semisimple modules. Hence A ≤
Soc(M) ∩ δ(M) = Socδ(M). �

Corollary 3.11. Let M be a δss-semilocal module and δ(M)�δ M . Then δ(M) ≤ Soc(M).

As finitely generated modules have δ-small δ-radical we have the following corollary.

Corollary 3.12. Let M be a finitely generated module. Then M is δss-semilocal if and only if M is δ-semilocal
and δ(M) is semisimple.

Proof. (=⇒) : By hypothesis M is weakly δss-supplemented and so it is weakly δ-supplemented. hence it can
be shown that M is δ-semilocal by the similar way from [7, Prop. 2.1]. Also δ(M) ≤ Soc(M) by Corollary 3.11
as δ(M)�δ M .

(⇐=) : Let M be δ-semilocal with a semisimple δ-radical. Then δ(M) ≤ Soc(M). Hence M is δss-
semilocal from Proposition 3.9. �

Definition 3.13. A module M is called weakly δ-radical δ-supplemented if every submodule of M containing
δ(M) has a weak δ-supplement in M .

Theorem 3.14. LetM be a module with δ(M)�δ M . Then the statements given in the following are equivalent:

1. M is δss-semilocal

2. M is δ-semilocal and δ(M) has a weak δss-supplement in M .

3. M is δ-semilocal and δ(M) ≤ Soc(M).

4. M is weakly δ-supplemented and δ(M) ≤ Soc(M).

5. M is weakly δ-radical supplemented and δ(M) ≤ Soc(M).

Proof. (1)⇒ (2) : It is clear.
(2) ⇒ (3) : Let T be a weak δ-supplement of δ(M) in M . Then δ(M) + T = M and δ(M) ∩ T ≤

Socδ(M) ≤ Soc(M) and so δ(M) ∩ T is semisimple. As δ(M) �δ (M) and δ(M) + T = M we have
M = Y ⊕T for a projective semisimple submodule Y of δ(M). By modularity we get δ(M) = Y ⊕ (δ(M)∩T )
and so δ(M) is semisimple by [4, Cor. 8.1.5]. Thus, δ(M) ≤ Soc(M).

(3) ⇒ (4) : By hypothesis, for any A ≤ M there is a submodule T ≤ M such that A + T = M , A ∩ T ≤
δ(M) and A ∩ T is semisimple. Hence M is weakly δ-radical supplemented as δ(M)�δ M .

(4)⇒ (5) : It is clear.
(5)⇒ (1) : For any A ≤ M , A ≤ A+ δ(M) and so, there exists T ≤ M such that [A+ δ(M)] + T = M ,

[A + δ(M)] ∩ T �δ M . Following that [A + δ(M)] ∩ T ≤ δ(M) ≤ Soc(M). As δ(M) �δ M , we have
P ⊕ [A+T ] =M for a projective semisimple submodule P of δ(M). Therefore, we get A+(P ⊕T ) =M and
A ∩ (P ⊕ T ) ≤ [P ∩ (A + T )] + [T ∩ (A + P )] where P ∩ (A + T ) is δ-small and semisimple in M as P is
projective semisimple and, T ∩ (A+P ) is δ-small and semisimple in M as a submodule of T ∩ (A+ δ(P )). �

It is a clear fact that every δss-semilocal module is weakly δ-supplemented but not vice versa. In the following
example this is verified via Theorem 3.14.

Example 3.15. Let us consider the Z-module Z8. As it is local, it is supplemented and so δ-supplemented.
Therefore, Z-module Z8 is weakly δ-supplemented. On the other hand, since δ(Z8) = Rad(Z8) = 2Z8 �δ Z8

and Soc(Z8) = 4Z8, Z8 is not a δss-semilocal Z-module by Theorem 3.14.

94



Ss-Semilocal modules via singularity

Now we give a ring characterization theorem for δss-perfect rings to be δss-semilocal.

Corollary 3.16. The following statements are equivalent for a ring R.

1. RR is δss-semilocal.

2. RR is δ-semilocal and δ(R) ≤ Soc(R).

3. RR is δss-perfect (δss-supplemented).

Proof. (1)⇐⇒ (2) : It is clear by Corollary 3.12
(2) =⇒ (3) : As a ring R with unit is locally projective [8], Soc(R) �δ R is got from [13, Prop. 5.2].

Thus, δ(R) = Soc(R) is obtained. Since R
δ(R) =

R
Soc(R) and Soc(R) is semisimple Artinian by hypothesis, then

R is also Artinian and so it is δ-supplemented. Therefore R is δ-semiperfect by [6, Theorem 3.3]. Hence, R is
δss-perfect by [13, Theorem 5.3].

(3) =⇒ (1) : Let R be a δss-perfect ring. Then by [13, Theorem 5.3 (2)] R is δ-semiperfect and δ(R) =

Soc(R). Therefore Socδ(R) = δ(R) and so R
Socδ(R) = R

Soc(R) is semisimple by [15, Theorem 3.6]. Hence RR
is δss-semilocal. �

Owing to the following we will construct rings whose modules are δss-semilocal. In addition to this a proper
class of δ-perfect rings is obtained. It will be verified via Example 3.18.

Theorem 3.17. The following statements are equivalent for a ring R:

1. RR is δss-semilocal.

2. Every R-module is δss-semilocal.

3. R is δ-semilocal and δ(R) ≤ Soc(R).

Proof. (1) =⇒ (2) : Let M be an R-module. Since each R-module is R-generated, then there exists an
epimorphism h : R(I) −→M . By hypothesis M is δss-semilocal by Lemma 3.7.

(2) =⇒ (3) : By hypothesis RR is δss-semilocal. Then the proof is clear from Corollary 3.16.
(3) =⇒ (1) :It is clear by Corollary 3.16. �

Example 3.18. Let F be a field, I =

(
F F
0 F

)
and R = {(x1, x2, ..., xn, x, x...) : n ∈ N, xi ∈M2(F), x ∈ I}

be a ring with component-wise operations. Then, Soc(R) = {(x1, x2, ..., xn, 0, 0...) : n ∈ N, xi ∈M2(F)} and

δ(R) = {(x1, x2, ..., xn, x, x...) : n ∈ N, xi ∈ M2(F), x ∈ J =

(
0 F
0 0

)
. From [15, Example 4.3] it can be

seen that R is a δ-perfect ring. But as δ(R) 6= Soc(R), R is not a δss-semilocal ring by [13, Proposition 5.2].

Every ss-semilocal module is δss-semilocal. Now we investigate the suitable conditions satisfying the vice
versa inspired by [2, Prop. 4.2].

Proposition 3.19. Let M be a projective, semilocal and δss-semilocal module with Rad(M) � M . Then M is
ss-semilocal.

Proof. As Soc(M) is semisimple, the submodule Socδ(M) is a direct summand of Soc(M). Then for a
submodule X of M it can be written that Soc(M) = Socs(M)⊕X . Besides there exists a submodule Y of M
such thatM = X+Y andX∩Y �M sinceM is semilocal. Clearly,X∩Y ≤ Rad(M). Following this we have
X∩Y ≤ X∩Rad(M) = [X∩Soc(M)]∩Rad(M) = X∩[Soc(M)∩Rad(M)] = X∩Socs(M) = 0.Also we
getRad(M) = Rad(X)⊕Rad(Y ) = Rad(Y ) asX is semisimple. Here Y is projective as a direct summand of
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the projective module M . Now let us show that δ(Y ) = Rad(Y ). For thiswe have to verify that Y has no simple
projective direct summand [12, Prop. 2.4]. Assume that S is a simple projective direct summand of Y . Then
Y = S ⊕K for K ≤ Y . Therefore, S �δ S ≤ Y and so S ≤ Socδ(Y ) ≤ Soc(Y ) because S is semisimple
projective. By modularity, Soc(Y ) = Soc(M)∩Y = [Socs(M)⊕X]∩Y = [(Soc(M)∩Rad(M))⊕X]∩Y =

[(Soc(M) ∩Rad(Y ))⊕X] ∩ Y =

[Soc(M) ∩ Rad(Y )) ⊕ (X ∩ Y ) = Soc(M) ∩ Rad(Y ) ≤ Rad(Y ) is got and using this S ≤ Soc(Y ) ≤
Rad(Y ) = Rad(M) � M is obtained. As Y ≤⊕ M, S is also small in Y and so this creates the contradiction
K = Y . According to this it must be true that δ(Y ) = Rad(Y ). However, Y is also δss-semilocal by Theorem
3.4 as M is δss-semilocal. Then for any U ≤ Y there is a submodule V of Y such that U + V = Y and
U ∩ V ≤ Socδ(Y ). From this fact U ∩ V ≤ δ(Y ) = Rad(Y ) and so U ∩ V � Y. Thus, U ∩ V ≤ Socs(Y ).

Hence, Y is an ss-semilocal module. By taking into account thatX is an ss-semilocal by [9, Corollary 2.13]. �

Corollary 3.20. The following statements are equivalent for a ring R:

1. RR is δss-semilocal.

2. R is left δss-perfect and semilocal.

3. R is left δss-perfect and Soc(RR)
Socs(RR) is finitely generated.

Proof. (1)⇔ (2) : It is clear by Proposition 3.19 and Corollary 3.16.
(2)⇔ (3) : It is clear by [13, Corollary 5.10] �

Example 3.21. Let Fi = Z2 and Q =
∞∏
i=1

Fi. Then Q is a regular (Rad(R) = 0) commutative ring with unity

via component-wise operations. Let R be the subring of Q generated by
∞⊕
i=1

Fi and 1Q. Then it can be seen that

δ(R) = Soc(R) =
∞⊕
i=1

Fi. Since R
Socδ(R)

∼= Fi is simple then RR is δss-semilocal. On the other hand, R is not

a semilocal ring as R
Rad(R)

∼= R is not semisimple. Hence, R is not an ss-semilocal ring.
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Abstract. Let G(V,E) be a graph with vertex set V and edge set E. A radio geometric mean labeling of a connected graph
G is a one to one map from the vertex set V (G) to the set of natural numbers N such that for two distinct vertices u and v

of G, d(u, v) + d
√

f(u)f(v)e ≥ 1 + diam(G), where d(u, v) represents the shortest distance between the vertices u and
v and diam(G) represents the diameter of G . Based on the concept of radio geometric mean labeling, a new graph labeling
called radio antipodal geometric mean labeling is being introduced in this paper. A radio antipodal geometric mean labeling
of a graph G is a mapping from the vertex set V (G) to the set of natural numbers N such that for two distinct vertices u and
v of G, d(u, v) + d

√
f(u)f(v)e ≥ diam(G). If d(u, v) = diam(G), then the vertices u and v can be given the same label

and if d(u, v) 6= diam(G) then the vertices u and v should be assigned different labels. The radio antipodal geometric mean
number of f , ragmn(f) is the maximum number assigned to any vertex of G. The radio antipodal geometric mean number
of G, ragmn(G) is the minimum value taken over all radio antipodal geometric mean labeling f of G. In this paper, the radio
antipodal geometric mean number of certain ladder related graphs have been investigated.
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1. Introduction

In this paper, the graphs considered are simple, finite and undirected graphs. For definitions not given here,
one can refer to [6]. In communication engineering, one of the major problem is channel or frequency assignment
problem where we have to assign frequencies(channels) to different radio transmitters in such a way that the
interference between any two radio transmitter is avoided. That is if the radio transmitters are close to each other,
then the difference between the channel assigned should be large enough [1]. This problem was converted into
a graph coloring problem by William Hale in 1980 [20]. Later graph labeling techniques were also developed to
solve this problem. The process of assigning integers to the vertices, edges or to both based on certain condition
is known as graph labeling [14]. The first paper on graph labeling was presented by A Rosa in 1966 [18] and up
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to till date, there are lot of researches going on graph labeling. The main reason is that it has many applications.
To list a few among them, graph labeling techniques are useful in coding theory, astronomy, circuit design,
communication network addressing, secret sharing [7, 12].

In order to solve the channel assignment problem, the first graph labeling technique was introduced by Jerrold
R. Griggs and Roger K. Yeh [11] in the year 1992, known as L(2, 1) labeling or distance two labeling. The
L(2, 1) labeling was defined as follows. Given a real number d > 0, an Ld(2, 1) - labeling of G is a non-negative
real-valued function f : V (G) → [0,∞) such that, whenever x and y are two adjacent vertices in V , then
| f(x)− f(y) |≥ 2d, and whenever the distance between x and y is 2, then | f(x)− f(y) |≥ d. In the year 2001,
Gary Chartrand et al. [4] modified the definition of L(2, 1) labeling and introduced a new graph labeling technique
called Radio Labeling which was just an extension of the existing L(2, 1) labeling. A radio labeling of a graph
G is a function f : V (G)→ N (set of natural numbers) such that, d(u, v)+ |f(u)−f(v)| ≥ diam(G)+1. It has
been proved that finding the radio number of an arbitrary graph is an NP-complete problem [13]. Gary Chartrand
et al. [5] have also introduced the concept of radio antipodal labeling in the year 2002. A radio antipodal labeling
of a graph G is a function f : V (G)→ N (set of natural numbers) such that, d(u, v)+ |f(u)−f(v)| ≥ diam(G).
The difference between radio labeling and radio antipodal labeling is that the former one is an one to one function
whereas the latter one is not since the vertices which are at diametric distance can receive the same label in the
latter. From this there are few new graph labeling techniques which were defined by modifying the definition of
existing radio and radio antipodal labeling. One can refer to [2, 3, 8, 15, 17, 19] for different types of labeling
techniques which were originated from radio labeling and radio antipodal labeling.

The concept of radio geometric mean labeling of graphs was first introduced by Hemalatha V et al. [8] in the
year 2017. The radio geometric mean labeling of a graph G is a mapping from the vertex set V (G) to the set of
natural numbers N such that for two distinct vertices u and v of G, d(u, v) + d

√
f(u)f(v)e ≥ 1 + diam(G).

The radio geometric mean number of f , rgmn(f) is the maximum number assigned to any vertex of G. The radio
geometric mean number of G, rgmn(G) is the minimum value taken over all radio geometric mean labeling f of
G. In that work, the authors have studied the radio geometric mean number of some star like graphs [8]. They
have also investigated the radio geometric mean number of splitting of star and bistar [9]. The radio geometric
mean number of some subdivision graphs have been obtained by Hemalatha V and Mohanaselvi V [10]. Based
on the concept of radio geometric mean labeling, a new graph labeling called radio antipodal geometric mean
labeling have been introduced in this paper by modifying the existing radio geometric mean labeling condition.
A radio antipodal geometric mean labeling of a graph G is a mapping from the vertex set V (G) to the set of
natural numbers N such that for two distinct vertices u and v of G, d(u, v) + d

√
f(u)f(v)e ≥ diam(G). If

d(u, v) = diam(G), then the vertices u and v can be given the same label and if d(u, v) 6= diam(G) then
the vertices u and v should be assigned different labels. The radio antipodal geometric mean number of f ,
ragmn(f) is the maximum number assigned to any vertex of G. The radio antipodal geometric mean number of
G, ragmn(G) is the minimum value taken over all radio geometric mean labeling f of G, which will be denoted
as ragmn(G).

We were motivated to study the radio antipodal geometric mean number of ladder related graphs, since ladder
and ladder related graphs have wide range of applications in various fields. To name a few, ladder networks have
been useful in electronics, electrical and wireless communication networks [16].

In this paper, the upper bounds of radio antipodal geometric mean number of ladder related graphs have been
investigated.

2. Radio antipodal geometric mean number of ladder and triangular ladder graphs

In this section, the radio antipodal geometric mean number of ladder and triangular ladder graph have been
obtained.

Definition 2.1. [14] The Ladder graph denoted by LG(n), is a graph obtained by the Cartesian product of two
path graphs P2 and Pn, n ≥ 2. The nth dimension of a ladder graph has 2n vertices and 3n − 2 edges. The
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diameter of LG(n) is n. See Figure 1.

Figure 1: LG(n)

Definition 2.2. [14] A Triangular ladder graph, denoted by TLG(n), is a ladder graph obtained by adding the
edges (vi, vn+i−1), i = 2, 3, ..., n. TLG(n) has 2n vertices and its diameter is n. See Figure 2.

Figure 2: TLG(n)

Remark 2.3. For our convenience, the vertex set of LG(n) and TLG(n) is partitioned into two disjoint sets V1

and V2, where V1 = {vi : 1 ≤ i ≤ n} and V2 = {vi : n+ 1 ≤ i ≤ 2n}.

Theorem 2.4. The radio antipodal geometric mean number of ladder graph, ragmn(LG(n)) ≤ 3n− 6, n ≥ 4.

Proof. Let {v1, v2, ..., vn, vn+1, ..., v2n} be the vertices of LG(n).
In this vertex set, the vertices v1 and v2n are at diametric distance and hence they receive the same labeling.
Therefore, f(v1) = f(v2n).
Similarly, the vertices vn and vn+1 are at diametric distance and hence can be given same label, so that f(vn) =
f(vn+1).
The remaining 2n− 2 vertices of LG(n) are labeled by the mapping,

f(vi) =


n+ i− 3, 1 ≤ i ≤ n− 2

n− 3, i = n− 1

2n− 4, i = n

n+ i− 5, n+ 1 < i < 2n

(2.1)

Claim. The mapping (2.1) is a valid radio antipodal geometric mean labeling.
Let u, v be any two distinct vertices of LG(n).
Case 1. Let u, v ∈ V1.
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Case 1.1. Let u = vi and v = vj , 1 ≤ i, j ≤ n− 2.
In this case, d(u, v) ≥ 1.
By mapping (2.1), we have f(vi) = n+ i− 3 and f(vj) = n+ j − 3.
Therefore, d(u, v) + d

√
f(u)f(v)e ≥

1 + d
√
(n+ i− 3)(n+ j − 3)e ≥ n.

Case 1.2. Let u = vi, 1 ≤ i ≤ n− 2, v = vn−1.
By (2.1), we have f(vi) = n+ i− 3 and f(vn−1) = n− 3.
Also, d(u, v) ≥ 1.
This makes, d(u, v) + d

√
f(u)f(v)e ≥

1 + d
√
(n+ i− 3)(n− 3)e ≥ n.

Case 1.3. Suppose u = vi, 1 ≤ i ≤ n− 2 and v = vn.
Here, f(vi) = n+ i− 3 and f(vn) = 2n− 4. Also d(u, v) ≥ 2.
Hence, 2 + d

√
(n+ i− 3)(2n− 4)e ≥ n.

Case 1.4. If u = vn−1 and v = vn.
In this case, the distance between the vertices u and v will be 1.
Also, f(vn−1) = n− 3 and f(vn) = 2n− 4.
Hence, d(u, v) + d

√
f(u)f(v)e ≥ n.

Case 2. Let u, v ∈ V2.
Case 2.1. Suppose u = vi and v = vj , n+ 2 ≤ i, j ≤ 2n− 1.
In this case, d(u, v) ≥ 1.
By mapping (2.1), we have f(vi) = n+ i− 5 and f(vj) = n+ j − 5.
Consequently, d(u, v) + d

√
f(u)f(v)e ≥

1 + d
√
(n+ i− 5)(n+ j − 5)e ≥ n.

Case 2.2. Let u = vn+1 and v = v2n.
Here, the distance between the vertices u and v will be n− 1.
By mapping (2.1), we have f(vn+1) = 2n− 4 and f(v2n) = n− 2.
Therefore, d(u, v) + d

√
f(u)f(v)e > n.

Case 3. Let u ∈ V1 and v ∈ V2.
Case 3.1. If u = vi, 1 ≤ i ≤ n− 2 and v = vj , n+ 1 < j < 2n.
In this case, d(u, v) ≥ 1.
Here by (2.1), we have f(vi) = n+ i− 3 and f(vj) = n+ j − 5.
Therefore, d(u, v) + d

√
f(u)f(v)e ≥

1 + d
√
(n+ i− 3)(n+ j − 5)e ≥ n.

Case 3.2. If u = vn and v = vn+1.
Here d(u, v) = n. Also, f(u) = f(v) = 2n− 4.
Hence, d(u, v) + d

√
f(u)f(v)e ≥ n+ d

√
(2n− 4)2e > n.

Case 3.3. Suppose u = v1 and v = v2n.
In this case, the distance between the vertices u and v will be n. As these two vertices are at diametric distance,
f(u) = f(v) = n− 2.
Therefore, d(u, v) + d

√
f(u)f(v)e ≥ n+ d

√
(n− 2)2e > n.

Hence, in all the cases it can be seen that the mapping (2.1) satisfies the radio antipodal geometric mean labeling
condition, d(u, v) + d

√
f(u)f(v)e ≥ n.

Therefore, (2.1) is a valid radio antipodal geometric mean labeling.
By the mapping (2.1) the vertex v2n−1 receives the maximum label which is given by,
f(v2n−1) = 3n− 6.
Hence, ragmn(LG(n)) ≤ 3n− 6, n ≥ 4 �

Theorem 2.5. The radio antipodal geometric mean number of triangular ladder graph, ragmn(TLG(n)) ≤
3n− 5, n ≥ 5.
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Proof. Let {v1, v2, ..., vn, vn+1, ..., v2n} be the vertices of TLG(n).
In these vertices v1 and v2n are at diametric distance and hence they receive the same labeling. Therefore,
f(v1) = f(v2n).
The remaining 2n− 1 vertices of TLG(n) are labeled by the mapping,

f(vi) =


n+ i− 3, 1 ≤ i ≤ n− 2

n− 3, i = n− 1

2n− 4, i = n

n+ i− 4, n+ 1 ≤ i < 2n

(2.2)

Claim. The mapping (2.2) is a valid radio antipodal geometric mean labeling.
Let u, v be any two vertices of TLG(n).
Case 1. Let u, v ∈ V1.
Case 1.1. Suppose u = vi and v = vj , 1 ≤ i, j ≤ n− 2.
In this case, by (2.2), we have f(vi) = n+ i− 3 and f(vj) = n+ j − 3.
Also, d(u, v) ≥ 1.
This assures, d(u, v) + d

√
f(u)f(v)e ≥

1 + d
√
(n+ i− 3)(n+ j − 3)e ≥ n.

Case 1.2. Let u = vi, 1 ≤ i ≤ n− 2, v = vn−1.
In this case, d(u, v) ≥ 1.
Also by (2.2), we have f(vi) = n+ i− 3 and f(vn−1) = n− 3.
Consequently, d(u, v) + d

√
f(u)f(v)e ≥

1 + d
√
(n+ i− 3)(n− 3)e ≥ n.

Case 1.3. If u = vi, 1 ≤ i ≤ n− 2 and v = vn.
Here, f(vi) = n+ i− 3 and f(vn) = 2n− 4. Also d(u, v) ≥ 2.
Therefore, 2 + d

√
(n+ i− 3)(2n− 4)e ≥ n.

Case 1.4. Let u = vn−1 and v = vn.
In this case, d(u, v) = 1.
Also, f(vn−1) = n− 3 and f(vn) = 2n− 4.
Hence, d(u, v) + d

√
f(u)f(v)e ≥ n.

Case 2. Let u, v ∈ V2.
Case 2.1. Suppose u = vi and v = vj , n+ 1 ≤ i, j ≤ 2n− 1.
Here, d(u, v) ≥ 1.
By mapping (2.2), we have f(vi) = n+ i− 4 and f(vj) = n+ j − 4.
This gives, d(u, v) + d

√
f(u)f(v)e ≥

1 + d
√
(n+ i− 4)(n+ j − 4)e ≥ n.

Case 2.2. Let u = vi, n+ 1 ≤ i, j ≤ 2n− 1 and v = v2n.
By (2.2), we have f(vi) = n+ i− 4 and f(v2n) = n− 2.
Also d(u, v) ≥ 1.
Therefore, d(u, v) + d

√
f(u)f(v)e ≥

1 + d
√
(n+ i− 4)(n− 2)e ≥ n.

Case 3. Let u ∈ V1 and v ∈ V2.
Case 3.1. If u = vi, 1 ≤ i ≤ n− 2 and v = vj , n+ 1 ≤ j < 2n.
In this case, the distance between the vertices u and v will be at least 1.
Here by (2.2), we have f(vi) = n+ i− 3 and f(vj) = n+ j − 4.
This assures, d(u, v) + d

√
f(u)f(v)e ≥

1 + d
√
(n+ i− 3)(n+ j − 4)e ≥ n.

Case 3.2. If u = vn and v = vn+1.
Here d(u, v) = n− 1. Also, f(u) = 2n− 4 and f(v) = n+ i− 4.
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Hence, d(u, v) + d
√

f(u)f(v)e ≥
(n− 1) + d

√
(n+ i− 4)(2n− 4)e > n.

Case 3.3. Suppose u = v1 and v = v2n.
As these two vertices are at diametric distance,
f(u) = f(v) = n− 2.
Here the distance between the vertices u and v will be n.
Therefore, d(u, v) + d

√
f(u)f(v)e ≥ n+ d

√
(n− 2)2e > n.

Hence, in all the cases it can be seen that the mapping (2.2) satisfies the radio antipodal geometric mean labeling
condition.
Therefore, (2.2) is a valid radio antipodal geometric mean labeling.
By the mapping (2.2), the vertex v2n−1 receive the maximum label and it is given by, 3n− 5.
Hence, ragmn(TLG(n)) ≤ 3n− 5, n ≥ 5 �

3. Radio antipodal geometric mean number of circular ladder and pagoda graphs

In this section, the radio antipodal geometric mean number of circular ladder and pagoda graphs have been
investigated.

Definition 3.1. [21] The circular ladder graph is a graph obtained from the Cartesian product Cn ×K2, where
K2 is the complete graph on two vertices and Cn represents the cycle on n vertices. It is denoted by CLG(n).
The nth dimension of CLG(n) is shown in Figure 3.

Figure 3: CLG(n)

Definition 3.2. [14] A pagoda graph is a ladder graph formed by adding a vertex va in such a way that it is
adjacent to the vertices v1 and v2. PG(n) has 2n+ 1 vertices and it’s diameter is n. See Figure 4.

Remark 3.3. For our convenience, the vertices in the internal cycle {v1, v2, ..., vn} of CLG(n) will be denoted
as C1 and the vertices in the outer cycle {vn+1, vn+2, ..., v2n} as C2.

Remark 3.4. The vertex set of PG(n) is partitioned into two disjoint sets V1 and V2, where V1 = {v2i−1 : 1 ≤
i ≤ n} and V2 = {v2i : 1 ≤ i ≤ n}.
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Figure 4: PG(n)

Theorem 3.5. The radio antipodal geometric mean number of circular ladder graph, ragmn(CLG(n)) ≤
2n− 3, n ≡ (1mod2), n ≥ 5.

Proof. The graph CLG(n) has 2n vertices and 3n edges. In this 2n vertices there exists dn2 e vertices which are
at diametric distance and hence these vertices can receive the same label. These vertices are given by,
f(vi) = f(vn+dn2 e+i−1), 1 ≤ i ≤ dn2 e.
The vertices of CLG(n) are labeled by the mapping,

f(vi) = b
n

2
c+ i− 2, 1 ≤ i ≤ n+ bn

2
c (3.1)

Claim. The mapping (3.1) is a valid radio antipodal geometric mean labeling.
Let u, v be any two distinct vertices of CLG(n).
Case 1. Let u, v ∈ C1.
In this case, d(u, v) ≥ 1.
By mapping (3.1), we have f(vi) = bn2 c+ i− 2 and f(vj) = bn2 c+ j − 2.
Therefore, d(u, v) + d

√
f(u)f(v)e ≥

1 + d
√
(bn2 c+ i− 2)(bn2 c+ j − 2)e ≥ d.

Case 2. If the vertices u, v ∈ C2.
Case 2.1. Let u = vi and v = vj , n+ 1 ≤ i, j ≤ n+ bn2 c.
Then, f(vi) = bn2 c+ i− 2 and f(vj) = bn2 c+ j − 2 by (3.1).
Also, d(u, v) ≥ 1.
Hence, d(u, v) + d

√
f(u)f(v)e ≥ d.

Case 2.2. Suppose u = vi and v = vj , n+ bn2 c ≤ i, j ≤ 2n.
This case will be similar to Case 1.
Therefore, d(u, v) + d

√
f(u)f(v)e ≥ d.

Case 2.3. If u = vi, n+ 1 ≤ n+ bn2 c and v = vj ,≤ n+ bn2 c+ 1 ≤ j ≤ 2n.
In this case, the distance between the vertices u and v will be at least 1.
By (3.1), we have f(vi) = bn2 c+ i− 2 and f(vj) = bn2 c+ j − 2.
This guarantees, d(u, v) + d

√
f(u)f(v)e ≥ d.

Case 3. If u ∈ C1 and v ∈ C2.
Case 3.1. Suppose u = vi, 1 ≤ i ≤ n and v = vj , n+ 1 ≤ j ≤ n+ bn2 c.
In this case, d(u, v) ≥ 1.
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Also, f(u) = bn2 c+ i− 2 and f(vi) = bn2 c+ j − 2.
This assures, d(u, v) + d

√
f(u)f(v)e ≥ d.

Case 3.2. Let u = vi, 1 ≤ i ≤ n and v = vi, n+ bn2 c+ 1 ≤ i ≤ 2n.
In this case, the vertices u and v will receive same labels as they are at diametric distance and hence
f(ui) = f(vi) = bn2 c+ i− 2 .
This guarantees d(u, v) + d

√
f(u)f(v)e ≥ d.

Accordingly, in all the cases it can be seen that the mapping (3.1) satisfies the radio antipodal geometric mean
labeling condition, d(u, v) + d

√
f(u)f(v)e ≥ d.

Therefore, (3.1) is a valid radio antipodal geometric mean labeling.
By the mapping (3.1) the vertex vn+bn2 c receives the maximum label which is given by,
f(vn+bn2 c) = 2n− 3.
Hence, ragmn(CLG(n)) ≤ 2n− 3, n ≡ (1mod2), n ≥ 5 �

Remark 3.6. It is easy to verify that ragmn(CLG(4)) = 4 and ragmn(CLG(6)) = 6.

Theorem 3.7. The radio antipodal geometric mean number of circular ladder graph, ragmn(CLG(n)) ≤
2n− 3, n ≡ (0mod2), n ≥ 8.

Proof. The graph CLG(n) has 2n vertices out of which n
2 vertices are at diametric distance. Hence, these

vertices can receive same label. These vertices are given as follows,
f(vi) = f(vn+n

2 +i), 1 ≤ i ≤ n
2 . The remaining vertices of CLG(n) are labeled by the mapping:

f(vi) =


n
2 + i− 2, 1 ≤ i ≤ n− 2
n
2 − 2, i = n− 1

n+ n
2 − 3, i = n

n
2 + i− 3, n+ 1 ≤ i ≤ n+ n

2

(3.2)

We now claim that the mapping (3.2) is an valid radio antipodal geometric mean labeling.
Let u, v be any two distinct vertices of CLG(n).
Case 1. If u, v ∈ C1.
Case 1.1. Let u = vi, v = vj , 1 ≤ i, j ≤ n− 2.
In this context, by (3.2) we have f(u) = n

2 + i− 2 and f(v) = n
2 + j − 2. Also, d(u, v) ≥ 1.

This makes, d(u, v) + d
√

f(u)f(v)e ≥ d.
Case 1.2. If u = vi, 1 ≤ i ≤ n− 2 and v = vn−1.
In this instance, by mapping (3.2) f(u) = n

2 + i− 2 and f(vn−1) =
n
2 − 2.

Further, d(u, v) ≥ 1.
As a result, d(u, v) + d

√
f(u)f(v)e ≥ d.

Case 1.3. Let u = vn−1 and v = vn.
In this case, d(u, v) = 1.
Also by (3.2), we have f(u) = n

2 − 2 and f(v) = n+ n
2 − 3.

Hence, d(u, v) + d
√
f(u)f(v)e ≥ d.

Case 1.4. If u = vi, 1 ≤ i ≤ n− 2 and v = vn.
In the considered case, d(u, v) ≥ 2.
By (3.2), f(u) = n

2 + i− 2 and f(v) = n+ n
2 − 3.

As a consequence of this, we have d(u, v) + d
√
f(u)f(v)e ≥ d.

Case 2. Let u, v ∈ C2.
Case 2.1. Suppose u = vi, v = vj , n+ 1 ≤ i, j ≤ n+ n

2 .
By (3.2) we have f(u) = n

2 + i− 3 and f(v) = n
2 + j − 3.
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Further more, d(u, v) ≥ 1.
Therefore, d(u, v) + d

√
f(u)f(v)e ≥ d.

Case 2.2. If u = vi, v = vj , n+ n
2 + 1 ≤ i, j ≤ 2n.

This case will be similar to Case 1.1. and hence d(u, v) + d
√
f(u)f(v)e ≥ d.

Case 2.3. If u = vi, n+ 1 ≤ i ≤ n+ n
2 and v = vj , n+ n

2 + 1 ≤ j ≤ 2n.
In this case, the distance between the vertices u and v will be at least 1.
Also by (3.2), we have f(u) = n

2 + i− 3 and f(v) = n
2 + j − 2.

This assures d(u, v) + d
√

f(u)f(v)e ≥ d.
Case 3. Let u ∈ C1 and v ∈ C2.
Case 3.1. Suppose u = vi, 1 ≤ i ≤ n− 2 and v = vj , n+ 1 ≤ j ≤ n+ n

2 .
In the situation under consideration, the distance between the vertices u and v will be at least 1.
By (3.2), f(u) = n

2 + i− 2 and f(v) = n
2 + j − 3.

Therefore, d(u, v) + d
√

f(u)f(v)e ≥ d.
Case 3.2. If u = vi, 1 ≤ i ≤ n− 2 and v = vj , n+ n

2 + 1 ≤ j ≤ 2n.
This case will be similar to Case 1.1.
Therefore, d(u, v) + d

√
f(u)f(v)e ≥ d.

Case 3.3. Let u = vn−1 and v = vj , n+ 1 ≤ i ≤ n+ n
2 .

In this case, f(vn−1) = n
2 − 2 and f(v) = n

2 + i− 3.
It can be seen that d(u, v) ≥ 3.
Consequently, d(u, v) + d

√
f(u)f(v)e ≥ d.

Case 3.4. Let u = vn−1 and v = vj , n+ n
2 + 1 ≤ i ≤ 2n.

This case will be similar to Case 1.2. which guarantees d(u, v) + d
√
f(u)f(v)e ≥ d.

Case 3.5. If u = vn and v = vj , n+ 1 ≤ i ≤ n+ n
2 .

By (3.2), f(vn) = n+ n
2 − 3 and f(v) = n

2 + i− 3.
The distance between the vertices u and v will be at least 2.
Consequently, d(u, v) + d

√
f(u)f(v)e ≥ d.

Case 3.6. Suppose u = vn and v = vj , n+ n
2 + 1 ≤ i ≤ 2n.

This case will be similar to Case 1.4. which assures that d(u, v) + d
√

f(u)f(v)e ≥ d.
Hence the mapping (3.2) is an valid radio antipodal geometric mean labeling.
By (3.2), the vertex vn+n

2
receives the maximum label which is given by 2n− 3.

Therefore, ragmn(CLG(n)) ≤ 2n− 3, n ≡ (0mod2), n ≥ 8 �

Theorem 3.8. The radio antipodal geometric mean number of pagoda graph, ragmn(PG(n)) ≤ 3n−3, n ≥ 3.

Proof. Let {va, v1, v2, ..., vn, vn+1, ..., v2n} be the vertices of PG(n).
Let f(va) = n− 2.
In these 2n+1 vertices va and v2n are at diametric distance and hence they receive the same labeling. Therefore,
f(va) = f(v2n).
The remaining 2n− 1 vertices of PG(n) are labeled by the mapping,

f(vi) = n+ i− 2, 1 ≤ i < 2n. (3.3)

Claim. The mapping (3.3) is a valid radio antipodal geometric mean labeling.
Let u, v be any two distinct vertices of TLG(n).
Case 1. Let u, v ∈ V1.
Case 1.1. If u = vi and v = vj , 1 ≤ i, j ≤ n.
In this case, d(u, v) ≥ 1.
By mapping (3.3), we have f(vi) = n+ i− 2 and f(vj) = n+ j − 2.
Thus, d(u, v) + d

√
f(u)f(v)e ≥ n.

Case 2. Let u, v ∈ V2.
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Case 2.1. Suppose u = vi and v = vj , 1 ≤ i, j ≤ n− 1.
In this case, d(u, v) ≥ 1.
By mapping (3.3), we have f(vi) = n+ i− 2 and f(vj) = n+ j − 2.
Thus, d(u, v) + d

√
f(u)f(v)e ≥ n.

Case 2.2. Let u = vi, 1 ≤ i ≤ n− 1 and v = v2n.
In this case, by (3.3), we have f(vi) = n+ i− 2 and f(v2n) = n− 2.
Also, d(u, v) ≥ 1.
Hence, d(u, v) + d

√
f(u)f(v)e > n.

Case 3. Let vi ∈ V1 and vj ∈ V2.
Case 3.1. If u = vi, 1 ≤ i ≤ n and v = vj , 1 ≤ j < n.
In this case, d(u, v) ≥ 1.
Here by (3.3), we have f(vi) = n+ i− 2 and f(vj) = n+ j − 2.
Thus, d(u, v) + d

√
f(u)f(v)e ≥

1 + d
√
(n+ i− 2)(n+ j − 2)e ≥ n.

Case 3.2. If u = va and v = v2n.
Here d(u, v) = n.
Also, f(u) = f(v) = n− 2.
Hence, d(u, v) + d

√
f(u)f(v)e ≥ n.

Case 4. Suppose u = va and v ∈ V1 or v ∈ V2.
We will have the following two sub cases:
Case 4.1 If u = va and v ∈ V1

By (3.3), f(u) = n− 2 and f(v) = n+ i− 2.
Also, d(u, v) ≥ 1.
This assures d(u, v) + d

√
f(u)f(v)e ≥ n.

Case 4.2. Suppose u = va and v ∈ V2

Here, d(u, v) ≥ 1.
By (3.3), f(u) = n− 2 and f(v) = n+ i− 2.
Therefore, d(u, v) + d

√
f(u)f(v)e ≥

1 + d
√
(n− 2)(n+ i− 2)e ≥ d.

Hence, in all the cases it can be seen that the mapping (3.3) satisfies the radio antipodal geometric mean labeling
condition.
Consequently, (3.3) is a valid radio antipodal geometric mean labeling.
By the mapping (3.3), the vertex v2n−1 receive the maximum label and the label is given by, f(v2n−1) = 3n− 3.
Hence, ragmn(PG(n)) ≤ 3n− 3, n ≥ 3 �

4. Conclusion

In this paper, a new graph labeling technique called radio antipodal geometric mean labeling have been
introduced. By this technique the span of the given network can be minimized as the diametric opposite vertices
can receive same labels. The upper bounds of ladder, triangular ladder, circular ladder and pagoda graphs have
been investigated in this paper. This work can be extended further to other communication networks like
honeycomb, butterfly, mesh.
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