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Abstract. Discretization of a continuous-time system of differential equations becomes inevitable due to the lack of analytical
solutions. Standard discretization techniques, however, have many things that could be improved, e.g., the positivity of the
solution and dynamic consistency may be lost, and stability and convergence may depend on the step length. A nonstandard
finite difference (NSFD) scheme is sometimes used to avoid inconsistencies. There are two fundamental issues regarding
the construction of NSFD models. First, how to construct the denominator function of the discrete first-order derivative?
Second, how to discretize the nonlinear terms of a given differential equation with nonlocal terms? We define here a uniform
technique for nonlocal discretization and construction of denominator function for NSFD models. We have discretized a
couple of highly nonlinear continuous-time population models using these consistent rules. We give analytical proof in each
case to show that the proposed NSFD model has identical dynamic properties to the continuous-time model. It is also shown
that each NSFD system is positively invariant, and its dynamics do not depend on the step size. Numerical experiments have
also been performed in favour of such claims.

AMS Subject Classifications: 37N25, 39A30, 92B05, 92D25, 92D40.

Keywords: Nonlocal discretization, denominator function, dynamic consistency, step-size independency, population models.
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1. Introduction

Nonlinear systems of ordinary differential equations are frequently used to unveil the underlying dynamics
of physical, chemical and biological phenomena. In most cases, it becomes impossible to find the analytical
solution of the system in a compact form. For this, the need for a numerical solution arises for which
discretization of the continuous-time model is essential. Standard finite difference schemes, such as the Euler
method, Runge-Kutta method etc., are commonly used discretization techniques for numerical solutions of both
ordinary and partial differential equations [1–3]. However, there are significant drawbacks to these widely used
discretization methods. First, the behaviours of standard finite difference schemes strictly depend on the step
size and therefore, such schemes exhibit step-size dependent instability [4]. For example, the simple logistic
equation in the continuous system and its corresponding Euler discrete equation are represented, respectively, by

ẋ = x(1− x), x(0) = x0 > 0, (1.1)

xt+1 = xt + hxt(1− xt), x0 > 0, (1.2)

where h > 0 is the step-size. It is easy to show that the nontrivial fixed point x = 1 of the continuous system
(1.1) is always stable. Still, for the discrete system (1.2), stability holds for h < 2 only and unstable if h > 2. The
bifurcation diagram (Figure 1) of the system (1.2) with step-size h as the bifurcation parameter shows period-
doubling bifurcation, leading to chaos [5]. Thus, the dynamics of the Euler discrete model (1.2) depend on the
step size and exhibits spurious behaviours which are not observed in the corresponding continuous system (1.1).

Figure 1: Bifurcation diagram of the discrete model (1.2) with respect to the step-size (h). The fixed point x = 1 is stable for h < 2 and
unstable for h > 2. Chaos exists through period-doubling bifurcation for higher values of h, indicating a strong dependency on the step size.

Secondly, the positivity of the solutions of the discrete system may not be preserved for all step-size. For
example, consider the continuous system

ẋ = −x, x(0) = x0 > 0. (1.3)

The solution of this equation x(t) = x0e
−t is always positive and monotonically converges to zero. However,

the solution xt = (1− h)tx0 of the corresponding Euler discrete system

xt+1 = (1− h)xt, h > 0, h ̸= 1, (1.4)

is not always positive but may be negative also depending on the step size. In fact, the solution remains positive
for 0 < h < 1, ∀t ≥ 0 and becomes alternatively positive and negative for h > 1 and t ≥ 0 (Figure 2). In the
latter case, all solutions having positive initial value converge to the fixed point x = 0 for any positive step-size
h < 2. More precisely, solutions show oscillatory (taking positive and negative values in consecutive iterations)
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Positivity and dynamics preserving discretization schemes for nonlinear evolution equations

convergence for 1 < h < 2 and oscillatory divergence for h > 2. Thus, huge differences exist in the dynamic
behaviour between a continuous system and its corresponding discrete system. Any discrete system that permits
negative solutions is supposed to show spurious dynamics, like bifurcation and chaos [2, 6, 7].
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Figure 2: (a) Solution of the continuous model (1.3) converges exponentially to zero. Similar solutions of the Euler discrete system (1.4) are
presented in Figure 2b-Figure 2d for different values of step-size. It shows different behaviours: (b) monotonic convergence for h = 0.2, (c)
oscillatory convergence for h = 1.5 and (d) oscillatory divergence for h = 2.2.

One technique for avoiding such dynamic inconsistency is the nonstandard finite difference (NSFD) scheme
introduced by Mickens [4, 5, 8] during 1989 − 1991 and has been shown to have identical dynamics with its
corresponding continuous model with zero truncation error [9]. It has also been shown that the dynamics of an
NSFD discrete model are entirely independent of step size and do not produce spurious dynamics [5]. In the
last few years, nonstandard methods have been successfully applied to various mathematical models in science
and engineering [10–23] mainly because its solution does not depend on the step-size, maintains positivity and
converges rapidly.

One of the most critical tasks in the NSFD scheme is to discretize the continuous system with nonlocal
discrete terms [24–26]. For example, in a nonstandard finite difference scheme, the first derivative has to be
discretized as dx

dt ≈ xk+1−xk

ϕ(h) , h = △t, where ϕ(h) is a real, positive and monotonic function of the step-size (h),
satisfying the condition ϕ(h) = h + O(h2); and/or both the linear and nonlinear terms have to be represented
nonlocally on the discrete computational lattice [5, 24, 26], e.g., x = 2x − x ≈ 2xk − xk+1, x2 ≈ xkxk+1,
x3 ≈ 2x3k − x2kxk+1. Unfortunately, there is no general rule for constructing the denominator function as well
as discretizing the nonlinear terms [5, 26]. In fact, one can construct different schemes for a given continuous-
time model, but several of them can fail to converge and give desired results [27]. Some techniques for nonlocal
discretization are given in [5, 26], and a methodology for calculating the form of the denominator function for
the positive system is prescribed in [28]. Particular forms of the denominator function have been defined for
continuous-time population models, where the total population is either constant (i.e., the system of differential
equations can be expressed as dL

dt = 0, where L is the total population) or where total population asymptotically
reaches to a constant value (i.e., the system can be expressed in the form dL

dt = b− dL, where b, d are constants).
In the first case, we have to consider any equation of the given continuous system, where the first-order derivative
has to be discretized by the Euler-forward method, and appropriate nonlocal approximations have to be given in
the right-hand side of the equation so that positivity of the discrete system holds. Then rearrange this discrete
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equation as (k + 1)-th time step dependent variable in terms of all k-th time step dependent variables. Thus if
any term of the form (1 + αh) occurs in the newly formed discrete equation, where α is composed of one or
more system parameters and h is the step size, then the denominator function will be ϕ(h) = eαh−1

α . If, however,
α = 0 then the denominator function can be taken as ϕ(h) = h (see pp. 677 in [28]). The denominator function
for other equations of the system will be the same. In the second case, the denominator function has to be written
as ϕ(h) = edh−1

d . The denominator function will also be the same for all equations of this considered system
[28, 29]. In other types of system equations, the denominator functions will be different for each equation of the
continuous system, and these denominator functions can be obtained by doing the same steps as mentioned in the
case of the conservative system [28]. We show that such a predetermined form of denominator function may not
work for higher dimensional systems. Instead of considering a predetermined denominator function, it is better
to choose a denominator function from the stability condition of the system. Here we also define some uniform
rules for the nonlocal discretization of a continuous system to preserve the positivity and dynamic consistency
of the discrete system with its continuous mother system. Several highly nonlinear systems from population
biology have been considered to demonstrate the application of prescribed rules. In each example, we prove that
the proposed NSFD models are positive for all step-size and dynamically consistent.

2. Nonlocal discretization techniques

One of the essential tasks in the NSFD method is the nonlocal representation of linear and nonlinear terms
that appear in the differential equation. The primary goal of such discretization is to maintain the positivity of
the constructed discrete system and to preserve the dynamics of the continuous system. We will demonstrate
the nonlocal discretization technique with a two-dimension system for simplicity. The method, however, can be
extended to any higher dimensional system of first-order difference equations.

Consider a two-dimensional continuous system of first-order differential equations:

dx

dt
= f(x, y),

dy

dt
= g(x, y),

(2.1)

where f and g are C1 functions. The following techniques may be adopted for dynamic preserving nonlocal
discretization.

(R1) If in the first equation of (2.1), there is any constant term (say, α) with a negative (or positive) sign, then it
would be discretized as −αxn+1

xn
(or α).

(R2) If there is any linear term with a negative sign in the first equation, e.g., −ax, a being a positive constant,
then it would be discretized as −axn+1 to keep the positivity for xn+1. However, if the sign is positive, it
would be discretized as axn.

(R3) For any higher degree term with a negative sign involving the first variable x only, e.g., −axm(m > 1), the
nonlocal approximation would be −axn+1x

m−1
n . On the contrary, if the higher degree term appears with

a positive sign, it would be expressed as axmn .

(R4) If there is any product term containing first variable x and second variable y of the form −axy (or axy) in
the first equation, then it would be discretized by −axn+1yn (or axnyn).

(R5) If any function ϕ(y) of the second variable appears alone (i.e., without involving the first variable x) in
the first equation, then it will be discretized as xn+1ϕ(yn)

xn
(or ϕ(yn)) if there is a negative (or positive) sign

before ϕ(y).

4
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(R6) In the first equation, the second variable y will always be discretized by yn and can’t be yn+1 as we have to
maintain a sequential form of calculation for using the initial condition. This rule is also valid for all other
variables except the first one.

(R7) Similar terms appearing in different equations must be discretized similarly. For example, if the first
equation contains the term axy and the second equation also contains axy then it will be replaced by axnyn
in both the equations. However, if the first equation contains −axy and the second equation contains axy,
then the nonlocal discretization will be −axn+1yn and axn+1yn, respectively. If the term in the second
equation is also negative, i.e., −axy, it would be discretized as −axn+1yn+1. Note that yn has to be
changed by yn+1 as the term is placed in the second equation, and there is a negative sign before it,
following (R2). Also, xn in this term has to be expressed as xn+1 because it was written in the first
equation. These rules are also applicable in discretizing other nonlinear terms.

(R8) For any rational function of the form F (x,y)
G(x,y) (G ̸= 0), then the denominator function G(x, y) will be

replaced by G(xn, yn) and the numerator function F (x, y) will be discretized by the techniques prescribed
in (R1) to (R7).

These rules are not unique, and one can find different nonlocal discretizations to construct an NSFD model for
a given continuous system. What we have tried here is to define some uniform rules that one can follow while
using the NSFD scheme of discretization. We here apply these rules to construct various NSFD models from their
respective highly nonlinear continuous population models and show that they are dynamically consistent and the
dynamics of these discrete systems are independent of the step size.

2.1. Example 1: Continuous-time epidemic model

Fayeldi et al. [30] have studied the following SIR (susceptible-infective-recovered) epidemic model with
constant birth and nonmonotonic incidence rate:

dS

dt
= b− dS − kSI

1 + αI2
,

dI

dt
=

kSI

1 + αI2
− (d+ µ)I ,

dR

dt
= µI − dR,

(2.2)

where S, I andR denote the numbers of susceptible, infective and recovered individuals at time t. The parameters
b and d represent, respectively, the recruitment and natural death rates of the host population; µ is the natural
recovery rate of the infected individuals. The term kSI

1+αI2 is the nonmonotone incidence rate, where k is the
disease transmission coefficient and α measures the inhibitory effect. Further description of the model can be
seen in [30, 31].

Stability results of the continuous-time epidemic model

The model (2.2) has been analyzed in [30]. It has two equilibrium points, viz., the disease-free equilibrium
point E1 =

(
b
d
, 0, 0

)
and the interior fixed point E∗ = (S∗, I∗, R∗), where S∗ = 1

d{b − (d + µ)I∗}, I∗ =
−k+

√
k2−4d2α(1−R0)

2αd and R∗ = µI∗

d , where R0 = bk
d(d+µ) . Stability results of the equilibrium points are stated

in the following theorems.

Theorem 2.1. The continuous system (2.2) is locally asymptotically stable around the fixed point E1 if R0 < 1,
and it is stable around the fixed point E∗ if R0 > 1.

We now use the nonlocal discretization techniques (R1) to (R8) for the construction of the NSFD model
corresponding to the continuous-time model (2.2).
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Construction of NSFD model and its analysis

The first-order derivative dS
dt will be replaced by Sn+1−Sn

ϕ1(h)
, where ϕ1(h) > 0 and can be expressed as ϕ1(h) =

h + O(h2). The constant term on the right-hand side will be left unaltered following (R1) because its sign is
positive. Observe that S appears in the first equation of system (2.2) with a negative sign, indicating that it has to
be replaced by Sn+1, following (R2). The nonlinear term SI

1+αI2 is present in both the first and second equations
of system (2.2) with opposite signs. The negative sign of this term in the first equation indicates that we have to
replace it by Sn+1In

1+αI2n
, following (R7) & (R8). Note that we can not replace In by In+1 in the first equation because

the sequential order will be lost. Similarly, the linear term I , which appears in the second and third equations
of system (2.2) with opposite signs, has to be replaced by In+1, following (R2) and (R7). Also, to hold the
positivity condition, the negative term −dR in the third equation of system (2.2) has to be replaced by −dRn+1,
following (R2). Based on these nonlocal discretizations, we obtain the following discrete system corresponding
to continuous system (2.2):

Sn+1 − Sn
ϕ1(h)

= b− dSn+1 −
kSn+1In
1 + αI2n

,

In+1 − In
ϕ2(h)

=
kSn+1In
1 + αI2n

− (d+ µ)In+1,

Rn+1 −Rn
ϕ3(h)

= µIn+1 − dRn+1,

(2.3)

where ϕi(h), i = 1, 2, 3, are denominator functions such that ϕi(h) > 0 and ϕi(h) = h + O(h2). After
rearranging, one have

Sn+1 =
Sn + bϕ1(h)

1 + ϕ1(h)
(
d+ kIn

1+αI2n

) ,
In+1 =

In

(
1 + ϕ2(h)kSn+1

1+αI2n

)
1 + ϕ2(h)(d+ µ)

,

Rn+1 =
Rn + ϕ3(h)µIn+1

1 + ϕ3(h)d
.

(2.4)

It is to be noted that all terms in the right-hand side of (2.4) are positive and therefore Sn > 0, In > 0, Rn > 0,

for all n and any value of the step-size h when initial values are positive.
Next, we show that the fixed points of the discrete system (2.4) are the same as in the continuous system (2.2)

and their linear stability properties are also the same. Equilibrium points or fixed points of (2.4) are determined by
substituting Sn+1 = Sn, In+1 = In, Rn+1 = Rn in (2.4) and then solving the following simultaneous equations
for Sn, In, Rn:

Sn =
Sn + bϕ1(h)

1 + ϕ1(h)
(
d+ kIn

1+αI2n

) ,
In =

In

(
1 + ϕ2(h)kSn

1+αI2n

)
1 + ϕ2(h)(d+ µ)

,

Rn =
Rn + ϕ3(h)µIn
1 + ϕ3(h)d

.

On simplifications, one can obtain the same equilibrium points E1 and E∗ as in the continuous case. The

6



Positivity and dynamics preserving discretization schemes for nonlinear evolution equations

variational matrix at any arbitrary fixed point (S, I,R) of (2.4) is given by

J(S, I,R) =

 a11 a12 0

a21 a22 0

a31 a32 a33

 , (2.5)

where 

a11 = 1

1+ϕ1(h)
(
d+ kI

1+αI2

) , a12 = − ϕ1(h)k(S+bϕ1(h))(1−αI2){
1+ϕ1(h)

(
d+ kI

1+αI2

)}2
(1+αI2)2

,

a21 = ϕ2(h)kI
{1+ϕ2(h)(d+µ)}(1+αI2)a11,

a22 = 1
1+ϕ2(h)(d+µ)

[
1 + ϕ2(h)kI

(1+αI2)a12 +
ϕ2(h)kS(1−αI2)

(1+αI2)2

]
,

a31 = ϕ3(h)µ
1+ϕ3(h)d

a21, a32 = ϕ3(h)µ
1+ϕ3(h)d

a22, a33 = 1
1+ϕ3(h)d

.

Definition 2.2. [32] A fixed point of the system (2.4) is said to be locally asymptotically stable if |λi| < 1 and a
source if |λi| > 1, where λi, i = 1, 2, 3, are the eigenvalues of the variational matrix J of system (2.4) evaluated
at the fixed point.

Lemma 2.3. [32] Let λ1 and λ2 be the eigenvalues of a matrix Ĵ = [âij ], i, j = 1, 2. Then |λ1| < 1 and |λ2| < 1

iff (i) 1− det(Ĵ) > 0, (ii) 1− trace(Ĵ) + det(Ĵ) > 0 and (iii) 1 + trace(Ĵ) + det(Ĵ) > 0.

We have the following theorem about the stability of fixed points of (2.4).

Theorem 2.4. The disease-free fixed point E1 =
(
b
d , 0, 0

)
is locally asymptotically stable if R0 < 1 and the

endemic fixed point E∗ is stable if R0 > 1, where R0 = bk
d(d+µ) .

Proof. It is easy to check that the eigenvalues at E1 are λ1 = 1
1+ϕ1(h)d

, λ2 =
1+

bkϕ2(h)
d

1+ϕ2(h)(b+µ)
and λ3 = 1

1+dϕ3(h)
.

Here, 0 < |λ1,3| < 1 and λ2 > 0 for any step-size h > 0. Thus, for any h > 0, λ2 < 1 if bk
d < d + µ, i.e., if

R0 < 1. Therefore, E1 is stable if R0 < 1.
At the endemic fixed point E∗ = (S∗, I∗, R∗), the variational matrix is given by

J(E∗) =

 a∗11 a∗12 0

a∗21 a∗22 0

a∗31 a∗32 a∗33

 ,

where 
a∗11 = 1

G , a
∗
12 = −ϕ1(h)kS

∗(1−αI∗2)
(1+αI∗2)2G

, a∗21 = ϕ2(h)kI
∗

(1+αI∗2)H
a∗11,

a∗22 = 1 + ϕ2(h)kI
∗

(1+αI∗2)H
a∗12 −

2ϕ2(h)kS
∗αI∗2

(1+αI∗2)2H
, a∗31 = ϕ3(h)µ

F a∗21, a
∗
32 = ϕ3(h)µ

F a∗22,

a∗33 = 1
F , G = 1 + bϕ1(h)

S∗ , H = 1 + ϕ2(h)kS
∗

1+αI∗2 , F = 1 + ϕ3(h)µI
∗

R∗ .

Note that 0 < a∗11 < 1 and 0 < a∗22 < 1 for any h > 0. Here one eigenvalue of the variational matrix J(E∗)

is λ3 = a∗33, which is always positive and less than unity for any h > 0. Other two eigenvalues λi, i = 1, 2, of
J(E∗) can be obtained by finding the eigenvalues of the matrix

J1(E
∗) =

(
a∗11 a∗12
a∗21 a∗22

)
.

Here trace(J1(E
∗)) = a∗11 + a∗22 and

det(J1(E
∗)) = a∗11a

∗
22 − a∗12a

∗
21

= a∗11

{
1 + ϕ2(h)kI

∗

(1+αI∗2)H
a∗12 −

2ϕ2(h)kS
∗αI∗2

(1+αI∗2)2H

}
− ϕ2(h)kI

∗

(1+αI∗2)H
a∗11a

∗
12

7
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= a∗11

(
1− 2ϕ2(h)kαS

∗I∗2

(1+αI∗2)2H

)
.

Since 0 < a∗11 < 1 for any h > 0, so det(J1(E
∗)) < 1 and the condition 1 − det(J1(E

∗)) > 0 always holds.
Simple algebraic manipulations show that

1− trace(J1(E
∗)) + det(J1(E

∗)) = 1− (a∗11 + a∗22) + a∗11

{
1− 2ϕ2(h)kαS

∗I∗2

(1 + αI∗2)2H

}
= − ϕ2(h)kI

∗

(1 + αI∗2)H

{
− ϕ1(h)kS

∗

(1 + αI∗2)G
+

2ϕ1(h)kαS
∗I∗2

(1 + αI∗2)2G

}
+

2ϕ2(h)kαS
∗I∗2

(1 + αI∗2)2H

bϕ1(h)

S∗G

=
ϕ1(h)ϕ2(h)kI

∗

(1 + αI∗2)2GH

[
kS∗ + 2αI∗

{
b− kS∗I∗

(1 + αI∗2)

}]
=
ϕ1(h)ϕ2(h)kS

∗I∗

(1 + αI∗2)2GH
(k + 2αdI∗) > 0

and

1 + trace(J1(E
∗)) + det(J1(E

∗)) = 1 + (a∗11 + a∗22) + a∗11

{
1− 2ϕ2(h)kαS

∗I∗2

(1 + αI∗2)2H

}
= 1 + a∗11 +

{
1− 2ϕ2(h)kαS

∗I∗2

(1 + αI∗2)2H

}
(1 + a∗11)−

ϕ2(h)kI
∗

(1 + αI∗2)H

ϕ1(h)kS
∗(1− αI∗2)

(1 + αI∗2)2G

= 1 + a∗11 +

{
1− 2ϕ2(h)kαS

∗I∗2

(1 + αI∗2)2H

}
(1 + a∗11)

− ϕ2(h)kS
∗

(1 + αI∗2)H

ϕ1(h)kI
∗

(1 + αI∗2)G

{
1− 2αI∗2

(1 + αI∗2)

}
= a∗11 +

[
1− 2ϕ2(h)kS

∗

(1 + αI∗2)H

αI∗2

(1 + αI∗2)

]
(1 + a∗11) +

2ϕ1(h)ϕ2(h)k
2αS∗I∗3

(1 + αI∗2)3GH

+

{
1−

ϕ1(h)
(
b
S∗ − d

)
G

ϕ2(h)
kS∗

(1+αI∗2)

H

}
.

(2.6)

Here we show the positivity of each term on the right hand side of (2.6). Note that a∗11 = 1
G , so 0 < a∗11 < 1.

Using the value of G and H , one can check that 0 <
ϕ1(h)( b

S∗ −d)
G

< 1 and 0 <
ϕ2(h)

kS∗
(1+αI∗2)

H
< 1. It is then easy

to see that the expression in curly bracket is positive. The third term is always positive as ϕ1(h), ϕ2(h), G and H
are all positive. To prove that the expression in the third bracket is also positive, we note that αI∗2

1+αI∗2 < 1. Thus,

if 2ϕ2(h)kS
∗

(1+αI∗2)H
< 1, then

{
1− 2ϕ2(h)kS

∗

(1+αI∗2)H
αI∗2

(1+αI∗2)

}
> 0. The first term gives 2ϕ2(h)kS

∗

(1+αI∗2)
< H = 1 + ϕ2(h)kS

∗

(1+αI∗2)
⇒

ϕ2(h)kS
∗

(1+αI∗2)
< 1 ⇒ ϕ2(h) < (1+αI∗2)

kS∗ = 1
(d+µ)

. Therefore 1 + trace(J1(E
∗)) + det(J1(E

∗)) > 0 if ϕ2(h) < 1
(d+µ)

.

One can then choose the denominator function as ϕ2(h) = 1−e−(d+µ)h

(d+µ) , so that ϕ2(h) < 1
(d+µ) holds. Also, the

denominator function is in the form ϕ2(h) = h+O(h2). It is to be noted that no restriction is required on ϕ1(h)
and ϕ3(h) to hold the stability conditions of E∗, and therefore simplest form can be considered for ϕ1(h) and
ϕ3(h) such that ϕ1(h) = h = ϕ3(h). Therefore, following Lemma 2.3, |λi| < 1, i = 1, 2. By Definition 2.2, the
endemic fixed point E∗ is stable whenever it exists, i.e., if R0 > 1. This completes the theorem. ■

Remark 2.5. The system (2.2) can be written as

dN

dt
= b− dN, (2.7)

where N(t) = S(t) + I(t) + R(t) is the total population at time t. Following Mickens rule as described in
[28], all the denominator functions ϕi(h), i = 1, 2, 3 will be same and it is ϕi(h) = edh−1

d . It is to be noted

8
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that the stability condition 1 + trace(J(E∗)) + det(J(E∗)) > 0 does not hold for this choice of denominator
function. However, one can easily determine the denominator function ϕ2(h) as shown above such that the
stability condition holds.

Euler discrete-time epidemic model

Discretization of the continuous model (2.2) by Euler-forward technique gives the following system:

Sn+1 = Sn + bh− hSn

(
d+

kIn
1 + αI2n

)
,

In+1 = In + hIn

{
kSn

1 + αI2n
− (d+ µ)

}
,

Rn+1 = µhIn +Rn(1− dh),

(2.8)

where h(> 0) is the step-size. Due to the presence of negative terms on the right-hand side, the solutions are
not unconditionally positive as in the case of NSFD model (2.12). Such systems are prone to exhibit spurious
dynamics. The following results are known for the Euler discrete system (2.8).

Theorem 2.6. [30] The discrete system (2.8) is stable around the fixed point E1 if R0 < 1, h < min
{

2
d ,

2
(1−R0)(d+µ)

, 2
µ

}
and it is locally asymptotically stable around the fixed pointE∗ if one of the following condition

holds: (a) R0 > R1 > 1 and h < min
{
h∗, 2

µ

}
, or (b) 1 < R0 < R1 and h < min

{
h1, h

∗, 2
µ

}
, where

R1 = kI∗

ϕ∗
e

{
1 +

k(d+ϕ∗
e+p)

2

4d(d+µ)(2dαI∗2+k)

}
, h∗ =

d+ϕ∗
e+p

dp+ϕ∗
e(d+µ)

,

h1 = h∗ −
√

4(d+ϕ∗
e+p)

2−16ϕ∗
e(d+µ)( 2dαI∗

k +1)
2ϕ∗

e(d+µ)( 2dαI∗
k +1)

, ϕ∗e =
kI∗

1+αI∗2 , p = 2α(d+µ)I∗ϕ∗
e

k .

Numerical experiments

We perform numerical experiments to compare the dynamics and step-size dependency of the NSFD model (2.4)
and Euler model (2.8). We have plotted bifurcation diagrams for both the systems (Figure 3) with respect to h.
Population density remains at its steady-state value for all h, indicating consistent dynamics with its continuous
counterpart. It shows that the dynamic behaviour of NSFD system (2.4) is independent of the step-size (Figure
3a). However, the dynamic behaviour of the Euler system (2.8) depends on the step size (Figure 3b). Here
population density remains stable for h < 3.4647 and becomes unstable for h > 3.4647. In fact, it exhibits
spurious dynamics as the step size is larger (h > 3.4647).

Figure 3: (a) Bifurcation diagram of the susceptible population of the NSFD system (2.4) with respect to the step size h. It shows no
instability, and population density is always maintained at its stable value for all step-size. (b) A similar bifurcation diagram of Euler system
(2.8) shows that population density remains stable for h < 3.4647 and becomes unstable for h > 3.4647. It shows chaotic dynamics as h is
further increased. Parameters are [30]: b = 2, k = 0.2, d = 0.2, µ = 0.15, α = 10.
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2.2. Example 2: Continuous-time ecological model

Here we consider another population model in continuous time and construct the corresponding NSFD model
using our nonlocal discretization technique. Chattopadhyay et al. [33] investigated the dynamics of following
continuous-time plant-herbivore-parasite ecological model:

dx

dt
= rx

(
1− x

K

)
− αxy,

dy

dt
= −sy + βxy − γyz,

dz

dt
= δyz − µz,

(2.9)

where x, y and z represent, respectively, the densities of plant biomass, herbivore and parasite populations at
time t. This model says that the plant population grows logistically to the environmental carrying capacity K
with an intrinsic growth rate r when there is no herbivore. Herbivore eats plant population following mass action
law with α as the rate constant. The parasite attacks herbivores, and the attack rate is proportional to the product
of herbivore and parasite densities with γ as the proportionality constant. Natural death rates of herbivores and
parasites are s and µ, respectively. The parameters β and δ represent the growth rates of herbivores and parasites.
All parameters are positive. The following results [33] are known for the system (2.9).

Theorem 2.7. The system (2.9) has four equilibrium points. (i) The equilibrium point EP0 = (0, 0, 0) is always
unstable. (ii) The axial equilibrium point EP1 = (K, 0, 0) is stable if βK < s. (iii) The planar equilibrium

point EP2 = (x̄, ȳ, 0), where x̄ = s
β , ȳ = r

α

(
1− s

βK

)
, exists and is locally asymptotically stable if βK > s

and δ < βKαµ
r(βK−s) . (iv) The interior equilibrium point E∗

P = (x∗P , y
∗
P , z

∗
P ), where x∗P = K

(
1− αµ

rδ

)
, y∗P =

µ
δ , z

∗
P = 1

γ

{
−s+ βK

(
1− αµ

rδ

)}
, exists and is locally asymptotically stable if βK > s and δ > βKαµ

r(βK−s) .

NSFD model and its analysis

For convenience, we rewrite the continuous model (2.9) as

dx

dt
= rx− r

K
x2 − αxy,

dy

dt
= −sy + βxy − γyz,

dz

dt
= δyz − µz.

(2.10)

The continuous system (2.10) is transformed to the following NSFD system using the previous nonlocal
discretization techniques (R1) to (R7):

xn+1 − xn
ψ1(h)

= rxn − rxn+1xn
K

− αxn+1yn,

yn+1 − yn
ψ2(h)

= −syn+1 + βxn+1yn − γyn+1zn,

zn+1 − zn
ψ3(h)

= δyn+1zn − µzn+1,

(2.11)

where ψi(h), i = 1, 2, 3, are such that ψi(h) > 0 and ψi(h) = h + O(h2). Note that the similar term xy in the
first & second equations and yz in the second & third equations have been discretized following the rule (R7).

10
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Rearranging (2.11), we get

xn+1 =
xn(1 + rψ1(h))

1 + ψ1(h)
(
rxn

K + αyn
) ,

yn+1 =
yn(1 + βψ2(h)xn+1)

1 + ψ2(h)(s+ γzn)
,

zn+1 =
zn(1 + δψ3(h)yn+1)

1 + ψ3(h)µ
.

(2.12)

Thus, the solutions of the discrete system (2.12) remain positive for all step-size h whenever the initial values are
positive.

As before, one can observe that the NSFD system (2.12) has the same four fixed points with the same existence
conditions as it were in the continuous system (2.9). The variational matrix corresponding to the system (2.12) at
any arbitrary fixed point (x, y, z) is given by

J(x, y, z) =

 a11 a12 0

a21 a22 a23
a31 a32 a33

 , (2.13)

where
a11 = 1+rψ1(h)

1+ψ1(h)( rx
K +αy)

− x(1+rψ1(h))

{1+ψ1(h)( rx
K +αy)}2

(
rψ1(h)
K

)
, a12 = − x(1+rψ1(h))

{1+ψ1(h)( rx
K +αy)}2αψ1(h),

a21 = βψ2(h)y
1+ψ2(h)(s+γz)

a11, a22 = 1+βψ2(h)x
1+ψ2(h)(s+γz)

+ βψ2(h)y
1+ψ2(h)(s+γz)

a12, a23 = −y(1+βψ2(h)x)γψ2(h)
{1+ψ2(h)(s+γz)}2 ,

a31 = δψ3(h)z
1+ψ3(h)µ

a21, a32 = δψ3(h)z
1+ψ3(h)µ

a22, a33 = 1+δψ3(h)y
1+ψ3(h)µ

+ δψ3(h)z
1+ψ3(h)µ

a23.

We have the following lemma in relation to the stability of system (2.12).

Lemma 2.8. [34] Suppose the characteristic polynomial p(λ) of the variational matrix (2.13) is given by

p(λ) = λ3 + a1λ
2 + a2λ+ a3.

Then the roots λi, i = 1, 2, 3, of p(λ) = 0 satisfy |λi| < 1, i = 1, 2, 3 iff

(i) p(1) = 1 + a1 + a2 + a3 > 0,

(ii) (−1)3p(−1) = 1− a1 + a2 − a3 > 0,

(iii) 1− (a3)
2 > |a2 − a3a1|.

Then the following results are true for the system (2.12).

Theorem 2.9. (i) EP0 is always an unstable fixed point. (ii) EP1 is locally asymptotically stable if βK < s. (iii)
EP2 is stable if βK > s and δ < βKαµ

r(βK−s) . (iv) The interior fixed point E∗
P is always stable if βK > s and

δ > βKαµ
r(βK−s) .

Proof. At the trivial fixed point EP0 , the eigenvalues are λ1 = 1 + rψ1(h), λ2 = 1
1+sψ2(h)

and λ3 = 1
1+ψ3(h)µ

.
As λ1 > 1, EP0 is always unstable ∀ h > 0.

At EP1 , the eigenvalues are given by λ1 = 1
1+rψ1(h)

, λ2 = 1+βKψ2(h)
1+sψ2(h)

and λ3 = 1
1+ψ3(h)µ

. Here λ1 and λ3
both are positive and less than unity. λ2 will be positive and less than unity for all h > 0 if βK < s. Therefore,
EP1 is stable if βK < s.

11
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At the boundary fixed point EP2 (x̄, ȳ, 0), the variational matrix is given by

J(EP2 ) =

 ā11 ā12 0

ā21 ā22 ā23
0 0 ā33

 , (2.14)

where {
ā11 = 1−

(
x̄
K

) ( rψ1(h)
1+rψ1(h)

)
, ā12 = − x̄

1+rψ1(h)
αψ1(h), ā21 = βψ2(h)ȳ

1+βψ2(h)x
ā11,

ā22 = 1 + βψ2(h)ȳ
1+βψ2(h)x̄

ā12, ā23 = − ȳ
1+βψ2(h)x̄

γψ2(h), ā33 = 1+δψ3(h)ȳ
1+ψ3(h)µ

.

One eigenvalue of the above variational matrix J(EP2 ) is ā33 = 1+δψ3(h)ȳ
1+ψ3(h)µ

, which is always positive and less

than unity if δ < µ
ȳ = βKαµ

r(βK−s) . Other two eigenvalues of the matrix J(EP2 ) will be the characteristics roots of
the matrix

J1 =

(
ā11 ā12
ā21 ā22

)
.

From the existence condition of EP2 , it is easy to see that 0 < ā11 < 1. After some algebraic manipulations, one
have

ā22 = 1− βψ2(h)ȳ

{1 + βψ2(h)x̄}
αψ1(h)x̄

{1 + rψ1(h)}
= 1−

(
βψ2(h)x̄

1 + βψ2(h)x̄

)r
(
1− s

βK

)
ψ1(h)

1 + rψ1(h)

 ,

implying that 0 < ā22 < 1. On substitution the values of ā22, ā21 and noting that x̄ < K, one can obtain
1− det(J1) = 1− ā11 ā22 + ā12 ā21

= 1− ā11 − βψ2(h)ȳ
1+βψ2(h)x̄

ā11ā12 +
βψ2(h)ȳ

1+βψ2(h)x̄
ā11ā12 = 1− ā11 > 0,

1− trace(J1) + det(J1) = 1− (ā11 + ā22) + ā11
= 1− ā22 > 0 and 1 + trace(J1) + det(J1) = 1 + 2ā11 + ā22 > 0.

Thus, whenever it exists, EP2 is locally asymptotically stable if δ < βKαµ
r(βK−s) .

At the interior fixed point E∗
P , the variational matrix is given by

J(E∗
P ) =

 a∗11 a∗12 0

a∗21 a∗22 a∗23
a∗31 a∗32 a∗33

 , (2.15)

where 

a∗11 = 1−
(
x∗
P

K

)(
rψ1(h)
G

)
> 0, a∗12 = −x∗

Pαψ1(h)
G < 0, a∗21 =

βψ2(h)y
∗
P

H a∗11 > 0,

a∗22 = 1 +
βψ2(h)y

∗
P

H a∗12 = 1− βψ2(h)x
∗
P

H ∗ αψ1(h)y
∗
P

G > 0, a∗23 = −y∗P γψ2(h)
H < 0,

a∗31 =
δψ3(h)z

∗
P

E a∗21 > 0, a∗32 =
δψ3(h)z

∗
P

E a∗22 > 0,

a∗33 = 1 +
δψ3(h)z

∗
P

E a∗23 = 1−
(
δψ3(h)y

∗
P

E

)(
z∗P γψ2(h)

H

)
> 0,

G = 1 + rψ1(h), H = 1 + βψ2(h)x
∗
P , E = 1 + δψ3(h)y

∗
P .

Following the existence conditions of the interior fixed point E∗
P , 0 < a∗ii < 1, i = 1, 2, 3. The characteristic

equation corresponding to the matrix J(E∗
P ) has the form

p1(λ) = λ3 +A1λ
2 +A2λ+A3 = 0, (2.16)

where the coefficients are
A1 = −trace(J(E∗

P )) = −a∗11 − a∗22 − a∗33,

12
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A2 = sum of principle minors of J(E∗
P )

= (a∗11a
∗
22 − a∗12a

∗
21) + (a∗22a

∗
33 − a∗23a

∗
32) + a∗11a

∗
33,

A3 = −det(J(E∗
P )) = −a∗11(a∗22a∗33 − a∗23a

∗
32) + a∗12(a

∗
21a

∗
33 − a∗23a

∗
31) < 0.

Simple manipulations give
a∗11a

∗
22 − a∗12a

∗
21 = a∗11 +

βϕ2(h)y
∗

H a∗11a
∗
12 −

βϕ2(h)y
∗

H a∗11a
∗
12 = a∗11,

a∗22a
∗
33 − a∗23a

∗
32 = a∗22 and a∗21a

∗
33 − a∗31a

∗
23 = a∗21.

Thus, the coefficients simplify to
A1 = −a∗11 − a∗22 − a∗33 (< 0), A2 = a∗11 + a∗22 + a∗11a

∗
33 (> 0), A3 = −a∗11 (< 0).

Now our objective is to show that all the conditions of Lemma 2.8 are satisfied for the characteristic equation
(2.16). One can compute
p1(1) = 1 +A1 +A2 +A3 = 1− a∗33 − a∗11 + a∗11a

∗
33 = (1− a∗11)(1− a∗33),

(−1)3p1(−1) = 1−A1 +A2 −A3.
Noting the signs of a∗ij , Ai and a∗ii < 1, i, j = 1, 2, 3, one can easily observe that p1(1) and (−1)3p1(−1) both
are positive. Thus, first two conditions of Lemma 2.8 are satisfied. For the third condition, we first note that
|A2 −A3A1| < 1−A2

3 gives A2 −A3A1 −A2
3 + 1 > 0 and A2 −A3A1 +A2

3 − 1 < 0. Here

A2 −A3A1 −A2
3 + 1 = (a∗11 + a∗22 + a∗11a

∗
33)− a∗11(a

∗
11 + a∗22 + a∗33)− a∗11

2 + 1

= (a∗11 + a∗22)(1− a∗11) + (1− a∗11
2) = (1− a∗11)(1 + 2a∗11 + a∗22),

A2 −A3A1 +A2
3 − 1 = (a∗11 + a∗22 + a∗11a

∗
33)− a∗11(a

∗
11 + a∗22 + a∗33) + a∗11

2 − 1

= a∗11 + a∗22(1− a∗11)− 1 = (1− a∗11)(a
∗
22 − 1).

Observing the signs as before, one can then easily have

A2 −A3A1 −A2
3 + 1 > 0 and A2 −A3A1 +A2

3 − 1 < 0.

Combining these two inequalities, we have |A2 − A3A1| < 1 − A2
3. Thus, all three conditions of Lemma 2.8

hold and therefore, the interior fixed point E∗
P is locally asymptotically stable whenever it exists, i.e., βK > s

and δ > βKαµ
r(βK−s) . Hence the theorem. ■

Remark 2.10. It is to be noted that we do not need any restriction on ψi(h), i = 1, 2, 3, to prove the positivity and
dynamic consistency of the discrete system (2.12). Therefore, ψi(h) can take any form that satisfies ψi(h) > 0

and ψi(h) = h+O(h2), i = 1, 2, 3. In the simulations, we consider the simplest form of ψi(h) = h.

Remark 2.11. It is to be noted that the system (2.9) does not satisfy the conservation law. For this type of system,
Mickens [28] defined a rule for choosing the denominator functions ψi(h), i = 1, 2, 3. Following that rule, one
has to use the Euler-forward scheme for the first derivative and nonlocal approximations for other terms in all
three equations of system (2.9). After doing this for the first equation of system (2.9) and then solving for xn+1,
one has

xn+1 =
xn(1 + rh)

1 + h
(
rxn

K + αyn
) .

Since (1 + rh) occurs [28], it implies that the denominator function will be ψ1(h) =
erh−1
r . Similarly, from the

other two equations of system (2.9), one can find the other two denominator functions as ψ2(h) = esh−1
s and

ψ3(h) =
eµh−1
µ . Thus all three denominator functions have to be determined separately using the Euler forward

scheme and nonlocal approximations if the continuous system is not conservative and the transformed nonlocal
system contains terms like (1 + rh). But such a choice of separate denominator function for each equation of a
higher-order equation will multiply the complexity for analytical computation of stability conditions.

13



Priyanka Saha, Nandadulal Bairagi and Gaston M. N’Guérékata

Numerical experiments

For numerical comparison, we first write the Euler-forward discrete version of the continuous model (2.9):

xn+1 = xn + h
{
rxn

(
1− xn

K

)
− αxnyn

}
,

yn+1 = yn + h(−syn + βxnyn − γynzn),

zn+1 = zn + h(δynzn − µzn).

(2.17)

To compare the step-size independency and dynamic consistency of the NSFD model (2.12) with that of the Euler
model (2.17), we have plotted two bifurcation diagrams (Figure 4) of plant biomass with respect to the step-size
h. As there is no restriction on ψi(h), we consider ψi(h)=h for all i in (2.12). Figure 4a shows that the dynamic
behaviour of the NSFD system (2.12) is independent of the step-size, and Figure 4b depicts step-size dependent
numerical instabilities in Euler system (2.17). In the last case, plant biomass population density remains stable
for h < 1.1113 and shows instability for h > 1.1113.

Figure 4: Bifurcation diagram of plant biomass (Fig. a) of the NSFD system (2.12) with varying step-size (h). This figure shows no
instability in system (2.12) when step size is varied. Similar bifurcation diagram of Euler system (2.17) shows that the solution remains stable
for h < 1.1113 and loses its stability for h > 1.1113. Parameters are r = 0.95, K = 2.2, α = 0.8, s = 0.25, β = 0.55, γ = 0.23,
µ = 0.09, δ = 0.11.

2.3. Example 3: Continuous-time epidemic model

O’Keefe [35] has investigated the dynamics of an epidemic model having frequency-dependent disease
transmission. The model reads

dS

dt
= (S + ρI)(1− S − I)− βSI

S + I
− µS,

dI

dt
=

βSI

S + I
− (α+ µ)I ,

(2.18)

where S and I represent, respectively, the densities of susceptible and infective hosts at time t. Here ρ (0 ≤ ρ ≤ 1)
is the fertility coefficient of infected hosts, and β is the disease transmission rate. µ represents the natural death
rate of both hosts, and the additional death of infectives due to disease is represented by α. All parameters are
non-negative from a biological point of view. The following stability results are known from [35].

Theorem 2.12. The disease-free equilibrium point Ee1 = (1−µ, 0) always exists and it is locally asymptotically
stable if µ < 1, β < (α+ µ). The endemic (interior) equilibrium point Ee∗ = (Se∗, Ie∗), where Se∗ = A(α+µ)

B

and Ie∗ = A(β−α−µ)
B withA = −α−µ−α(α+µ)+β(α+µ)+ρ(α+µ)−βρ,B = β{ρ(α+µ)−α−µ−βρ},

exists and is locally asymptotically stable whenever β > α+ µ, A < 0.

We now construct the NSFD counterpart of the model (2.21) following the rules defined in Section 2.
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NSFD model and its analysis

For convenience, we rewrite the continuous model (2.18) as

dS

dt
= S − S2 − (1 + ρ)SI + ρI − ρI2 − βSI

S + I
− µS,

dI

dt
=

βSI

S + I
− (α+ µ)I .

(2.19)

Using the previous nonlocal discretization techniques R1-R8, the continuous system (2.19) can easily be
transformed to the following NSFD system:

Sn+1 − Sn
ξ1(h)

= Sn − SnSn+1 − (1 + ρ)Sn+1In + ρIn − ρSn+1I
2
n

Sn
− βSn+1In

Sn + In
− µSn+1,

In+1 − In
ξ2(h)

=
βSn+1In
Sn + In

− (α+ µ)In+1,
(2.20)

where the denominator functions ξi(h), i = 1, 2, are such that ξi(h) > 0, ∀h > 0 and ξi(h) = h + O(h2). One
should notice that the terms ρI and ρI2 of the first equation of (2.19) have been discretized following (R5).
Rearranging (2.20), we get

Sn+1 =
Sn

{
1 + ξ1(h)

(
1 + ρIn

Sn

)}
1 + ξ1(h)

{
Sn + (1 + ρ)In +

ρI2n
Sn

+ βIn
Sn+In

+ µ
} ,

In+1 =
In

(
1 + ξ2(h)

βSn+1

Sn+In

)
1 + ξ2(h)(α+ µ)

.

(2.21)

As expected, the NSFD system (2.21) is positively invariant; therefore, all solutions remain positive if they start
with a positive initial value. The discrete system (2.21) has the same equilibrium points as the continuous system
(2.18). The variational matrix at any arbitrary fixed point (S, I) of (2.21) is given by

J(S, I) =

(
a11 a12
a21 a22

)
, (2.22)

where 

a11 = 1+ξ1(h)

1+ξ1(h)
{
S+(1+ρ)I+ ρI2

S + βI
S+I +µ

} −
{1+ξ1(h)(1+ ρI

S )}ξ1(h)S
(
1− ρI2

S2 − βI

(S+I)2

)
[
1+ξ1(h)

{
S+(1+ρ)I+ ρI2

S + βI
S+I +µ

}]2 ,

a12 = ρξ1(h)

1+ξ1(h)
{
S+(1+ρ)I+ ρI2

S + βI
S+I +µ

} −
{1+ξ1(h)(1+ ρI

S )}ξ1(h)
{
(1+ρ)S+2ρI+ βS2

(S+I)2

}
[
1+ξ1(h)

{
S+(1+ρ)I+ ρI2

S + βI
S+I +µ

}]2 ,

a21 =
ξ2(h)

βI
S+I

1+ξ2(h)(α+µ)
a11 −

ξ2(h)
βSI

(S+I)2

1+ξ2(h)(α+µ)
,

a22 =
1+ξ2(h)

βS
S+I

1+ϕ2(α+µ)
+

ξ2(h)
βI

S+I

1+ξ2(h)(α+µ)
a12 −

ξ2(h)
βSI

(S+I)2

1+ξ2(h)(α+µ)
.

The following stability results for the discrete system (2.21) can be proved.

Theorem 2.13. The disease-free fixed point Ee1 = (1−µ, 0) is locally asymptotically stable if µ < 1, β < α+µ

and the endemic equilibrium point Ee∗ = (Se∗, Ie∗) is locally asymptotically stable if β > α + µ and A < 0,
where A = −α− µ− α(α+ µ) + β(α+ µ) + ρ(α+ µ)− βρ, i.e., Ee∗ is stable whenever it exists.

Proof. It is not a difficult tusk to check that the eigenvalues evaluated at Ee1 are λ1 = 1+ξ1(h)µ
1+ξ1(h)

and λ2 =
1+ξ2(h)β

1+ξ2(h)(α+µ)
. Note that 0 < λ1 < 1 as 0 < µ < 1, and λ2 > 0 for any positive step-size. Thus, for any h > 0,
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λ2 < 1 if β < α + µ. Therefore, if Ee1 exists then it will be stable if β < α + µ. In this case, the interior
equilibrium point Ee∗ does not exist.
At the interior equilibrium point Ee∗ = (Se∗, Ie∗), the variational matrix is given by

J(Ee∗) =

(
a∗11 a∗12
a∗21 a∗22

)
,

where 

a∗11 = 1− ξ1(h)
G

{(
Se∗ + ρIe∗

Se∗

)
− ρIe∗2

Se∗ − βSe∗Ie∗

(Se∗+Ie∗)2

}
,

a∗12 = ξ1(h)
G

{
ρ− Se∗(1 + ρ)− 2ρIe∗ − βSe∗2

(Se∗+Ie∗)2

}
,

a∗21 = ξ2(h)
H

{
βIe∗

Se∗+Ie∗ a∗11 −
βSe∗Ie∗

(Se∗+Ie∗)2

}
,

a∗22 = 1− ξ2(h)
H

{
βSe∗Ie∗

(Se∗+Ie∗)2 − βIe∗a∗12
Se∗+Ie∗

}
,

G = 1 + ξ1(h)
(
1 + ρIe∗

Se∗

)
, H = 1 + ξ2(h)

βSe∗

Se∗+Ie∗ .

We shall use Lemma 2.3 to prove the local stability of Ee∗. One can evaluate
trace(J(Ee∗)) = a∗11 + a∗22

=
{
1− ξ1(h)

G

(
Se∗ + ρIe∗

Se∗

)}
+ ξ1(h)

G

(
ρIe∗2

Se∗ + βSe∗Ie∗

(Se∗+Ie∗)2

)
+

{
1−

(
Ie∗

Se∗+Ie∗

)(
βSe∗ξ2(h)

(Se∗+Ie∗)H

)}
+ βIe∗ξ1(h)ξ2(h)

(Se∗+Ie∗)GH

{
ρ(1− Se∗ − Ie∗)− Se∗ −

(
ρIe∗ + βSe∗2

(Se∗+Ie∗)2

)}
=

{
1− ξ1(h)

G

(
Se∗ + ρIe∗

Se∗ + βSe∗Ie∗ξ2(h)
(Se∗+Ie∗)H

)}
+

{
1−

(
Ie∗

Se∗+Ie∗

)(
βSe∗ξ2(h)

(Se∗+Ie∗)H

)}
+ ξ1(h)

G

(
ρIe∗2

Se∗ + βSe∗Ie∗

(Se∗+Ie∗)2

)(
1− βSe∗ξ2(h)

(Se∗+Ie∗)H

)
+ ξ1(h)ξ2(h)βI

e∗

(Se∗+Ie∗)GH ρ(1− Se∗ − Ie∗).

Following the existence condition of Ee∗, we have Se∗ + Ie∗ = βA
B < 1 and then Se∗ + βSe∗Ie∗ξ2(h)

(Se∗+Ie∗)H =

1
H (Se∗ + ξ2(h)βS

e∗) < 1 and also ξ1(h)
(
Se∗ + ρIe∗

Se∗

)
< G and ξ2(h)βS

e∗

Se∗+Ie∗ < H .

Thus,
{
1− ξ1(h)

G

(
Se∗ + ρIe∗

Se∗ + βSe∗Ie∗ξ2(h)
(Se∗+Ie∗)H

)}
> 0. Hence we get trace(J(Ee∗)) > 0.

Also, det(J(Ee∗)) = a∗11a
∗
22 − a∗12a

∗
21

= a∗11

[
1− ξ2(h)

H

{
βSe∗Ie∗

(Se∗+Ie∗)2 − βIe∗

Se∗+Ie∗ a∗12

}]
− a∗12

ξ2(h)
H

{
βIe∗

Se∗+Ie∗ a∗11 −
βSe∗Ie∗

(Se∗+Ie∗)2

}
= a∗11 −

βSe∗Ie∗ξ2(h)
(Se∗+Ie∗)2H (a∗11 − a∗12).

Simple algebraic manipulations show that
1− det(J(Ee∗)) = 1− a∗11 +

βSe∗Ie∗ξ2(h)
(Se∗+Ie∗)2H (a∗11 − a∗12)

= ξ1(h)
G

{
Se∗ + ρIe∗

Se∗ (1− Ie∗)− βSe∗Ie∗

(Se∗+Ie∗)2

}
+ βSe∗Ie∗ξ2(h)

(Se∗+Ie∗)2H

(
1− ρξ1(h)

G + βSe∗ξ1(h)
(Se∗+Ie∗)G

)
+ βSe∗Ie∗ξ1(h)ξ2(h)

(Se∗+Ie∗)2GH

(
ρIe∗2

Se∗ + ρSe∗ + ρIe∗
)

= ξ1(h)
G

{
Se∗ + ρIe∗

Se∗ (1− Ie∗)
}
+ βSe∗Ie∗

(Se∗+Ie∗)2
1
GH {−Hξ1(h) +Gξ2(h)

+ξ1(h)ξ2(h)
(
−ρ+ βSe∗

Se∗+Ie∗

)}
+ βSe∗Ie∗ξ1(h)ξ2(h)

(Se∗+Ie∗)2GH

(
ρIe∗2

Se∗ + ρSe∗ + ρIe∗
)

= ξ1(h)
G

{
Se∗ + ρIe∗

Se∗ (1− Ie∗)
}
+ βSe∗Ie∗

(Se∗+Ie∗)2
1
GH {ξ2(h)− ξ1(h)}

+βSe∗Ie∗ξ1(h)ξ2(h)
(Se∗+Ie∗)2GH

{
(1− ρ) + ρIe∗

Se∗ + ρIe∗2

Se∗ + ρSe∗ + ρIe∗
}

.
Again,
1− trace(J(Ee∗)) + det(J(Ee∗)) = 1− (a∗11 + a∗22) + (a∗11a

∗
22 − a∗12a

∗
21)

= 1− a∗22 −
βSe∗Ie∗ξ2(h)
(Se∗+Ie∗)2H (a∗11 − a∗12)

= βIe∗ξ2(h)
(Se∗+Ie∗)2H {Se∗(1− a∗11)− Ie∗a∗12}

= βIe∗ξ1(h)ξ2(h)
(Se∗+Ie∗)2GH

(
Se∗

2
+ Se∗Ie∗ + ρSe∗Ie∗ + ρIe∗

2
)
> 0.
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One can easily check that 1 + trace(J(Ee∗)) + det(J(Ee∗)) > 0, as trace(J(Ee∗)) > 0 and also 1 −
trace(J(Ee∗)) + det(J(Ee∗)) > 0. If we choose the denominator functions ξ1(h) and ξ2(h) such that ξ2(h) ≥
ξ1(h), ∀h > 0, then 1− det(J(Ee∗)) is also positive. An obvious choice is ξi(h) = h, i = 1, 2, ∀h > 0. Thus,
the interior equilibrium point Ee∗ is stable whenever it exists. Hence the theorem is proven. ■

Remark 2.14. The system (2.18) does not satisfy the conservation law. In such a case, following Mickens [28]
rules, the denominator functions for the first and second equations will be ξ1(h) = eµh−1

µ and ξ2(h) = e(α+µ)h−1
α+µ ,

respectively. To hold the condition 1 − det(J(Ee∗)) > 0, the denominator functions ξi(h), i = 1, 2, have to
satisfy ξ2(h) ≥ ξ1(h). However, as mentioned above, the denominator functions ξ1(h) and ξ2(h) do not satisfy
this restriction for the nonzero value of α.

Numerical experiments

Again we construct the following Euler discrete system for the continuous-time (2.18)

Sn+1 = Sn + h

{
(Sn + ρIn)(1− Sn − In)−

βSnIn
Sn + In

− µSn

}
,

In+1 = In + h

{
βSnIn
Sn + In

− (α+ µ)In

}
,

(2.23)

and compare its dynamics with the NSFD discrete system (2.21). We have plotted bifurcation diagrams for
both the systems taking h as the bifurcation parameter (Figure 5). It shows that the dynamics of NSFD system
(2.21) is independent of the step-size (Figure 5a), but the Euler discrete system (2.23) shows step-size dependent
dynamics (Figure 5b) and produces spurious behaviour for higher step-size. Therefore, the Euler-discrete model
is dynamically inconsistent, but the NSFD model is dynamically consistent.

Figure 5: (a) Bifurcation diagram of the susceptible population with respect to step-size (h) for NSFD system (2.21). It shows that the
population is stable for any positive value of the step size. (b) Bifurcation diagram of the susceptible population with respect to step-size
(h) for Euler discrete system (2.23). It shows that the population becomes unstable as step-size h exceeds 2.73. Parameters are ρ = 0.65,
β = 0.45, µ = 0.23, α = 0.2.

3. Summary

In the last two-three decades, nonstandard finite difference scheme has received significant interest in the
discretization of the continuous system due to its superiority over other discretization techniques for various
reasons. First, the transformed discrete system can be made positively invariant using proper nonlocal
discretization techniques, though the standard discretization techniques often fail. Secondly, the NSFD model
can be shown to be dynamically consistent with its continuous counterpart, which means the stability property
of each equilibrium point of the continuous system remains the same for the NSFD model. However, in many
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cases, the discrete model formulated by the standard discretization technique shows (spurious) dynamics that are
not at all the dynamics of the original continuous system. Another great advantage of the NSFD technique is
that the dynamics, in this case, can be shown to be independent of the step size, which can reduce the
computational cost. There are two main steps in the construction of an NSFD system from a given continuous
system of first-order differential equations, viz. discretization of the first-order derivative of the continuous
system, where one has to choose a denominator function and discretize the interaction terms, where one has to
use nonlocal discretization for both the linear and nonlinear terms of the differential equation. Unfortunately,
there is no general rule for both of these steps [5, 26]. However, some techniques have been defined [5, 26, 28]
and successfully preserved both the positivity and dynamic properties of (relatively simple) continuous systems.
However, previous techniques of choosing the denominator function may fail in many cases to preserve the
dynamic properties of the continuous system. This study extends other studies mainly in two ways. First, we
have defined some uniform rules for nonlocal discretization that one can follow while using the NSFD scheme.
Secondly, the selection of the denominator function plays a crucial role in proving the dynamic consistency of
the discrete model with its continuous systems. Mickens and others have defined some denominator functions
for conservative and nonconservative systems. Such a predetermined form of the denominator function may not
work well, and the dynamics of the discrete system constructed after nonlocal discretization may depend on the
step size [36]. Instead of considering such a predetermined denominator function, we here show that the
denominator function can be selected from the stability conditions of the transformed discrete system. Using our
uniform rules for the nonlocal discretization of a continuous positive system, we have shown that highly
complex population models not only preserve the positivity and dynamic consistency of the continuous system,
but the dynamics also become independent of step-size, which has significant computational facility, especially
for coupled systems.
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1. Introduction

W. A. Kirk et al. [10] proposed using a cycle of domains to derive various fixed point theorems for metric
spaces. C. G. Moorthy and P. X. Raj considered an increasing sequence of subsets Ξ1 ⊆ Ξ2 ⊆ ... of a metric space

(Ξ, d), and a map G : Ξ → Ξ satisfying a contraction condition such that G(Ξi) ⊆ Ξi+1, ∀i, and Ξ =
∞⋃
j=1

Ξj in

[11]. Also, the fixed point results of [11] are generalized in some articles [14–16].
A.E. Bashirov et al. introduced multiplicative metric space (also known as MMS) in [5]. M. Ozavsar and A.

C. Cevikel [13] developed topological features of multiplicative metric spaces (or MMSs) and established fixed
point findings in MMSs. There are numerous papers [1–3, 7–9, 12, 17] for fixed point theory in MMSs.

b-Metric space, a generalisation of a metric space, was first introduced by Czerwik [6]. b-MMS was
introduced by M. U. Ali et al in [4]. There are some topological properties and fixed point results in b-MMSs.

By variations in b-MMS domains, we prove some more fixed point theorems for different types of
multiplicative contraction mappings with multiplicative closed graphs. Also, we generalize a main result of [11]
and we derive that result by using exponential transformation.

∗Corresponding author. Email address: gsivamaths2012@gmail.com (G. Siva)

https://www.malayajournal.org/index.php/mjm/index ©2024 by the authors.
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2. b-Multiplicative metric spaces

Let us give some preliminary and known results in this section. See [4] for further information.

Definition 2.1. [4] Assuming that Ξ ̸= ∅ is a set and s ∈ R with s ≥ 1. A multiplicative metric is a mapping
d : Ξ× Ξ → R+ = [0,∞) satisfying the next four axioms.

(i) d(κ, ι) ≥ 1, ∀ κ, ι ∈ Ξ,

(ii) d(κ, ι) = 1 if and only if(or, iff) κ = ι in Ξ,

(iii) d(κ, ι) = d(ι, κ), ∀ κ, ι ∈ Ξ,

(iv) d(κ, ι) ≤ [d(κ, ρ)d(ρ, ι)]s, ∀ κ, ι, ρ ∈ Ξ.

The triple (Ξ, d, s) is then referred to as a b-MMS.

Definition 2.2. [4] Assuming that (Ξ, d, s) is a b-MMS, {κn} is a sequence in Ξ, and κ ∈ Ξ. Then {κn} is called
multiplicative converging to κ, if for every multiplicative open ball Bϵ(κ) = {ι : d(κ, ι) < ϵ}, ϵ > 1, there exists
N ∈ N such that κn ∈ Bϵ(κ), ∀ n > N . It is denoted by κn → κ(n → ∞).

Lemma 2.3. [4] Assuming that (Ξ, d, s) is a b-MMS, {κn} is a sequence in Ξ and κ ∈ Ξ. Then κn → κ(n → ∞)

iff d(κn, κ) → 1(n → ∞).

Lemma 2.4. [4] Assuming that (Ξ, d, s) is a b-MMS, and {κn} is a sequence in Ξ. Then every multiplicative
convergent sequence {κn} has an unique multiplicative limit point.

Definition 2.5. [4] Assuming that (Ξ, d, s) is a b-MMS. The sequence {κn} ∈ Ξ is called a multiplicative Cauchy
sequence(or, MCS) if for every ϵ > 1, there exists N ∈ N such that d(κn, κm) < ϵ,∀m,n ≥ N .

Lemma 2.6. [4] Assuming that (Ξ, d, s) is a b-MMS and {κn} is a sequence in Ξ. Then {κn} is a MCS iff
d(κn, κm) → 1(m,n → ∞).

Definition 2.7. [4] Assuming that (Ξ, d, s) is a b-MMS. Then (Ξ, d, s) is said to be multiplicative complete, if
every MCS is multiplicative convergent in Ξ.

Theorem 2.8. [4] Assuming that (Ξ, d, s) is a b-MMS. Let {κn} and {ιn} be two sequences in Ξ such that
κn → κ, ιn → ι (n → ∞), κ, ι ∈ Ξ. Then d(κn, ιn) → d(κ, ι)(n → ∞).

Definition 2.9. Assuming that G : (Ξ, d, s) → (Ξ, d, s) is a self mapping on a b-MMS (Ξ, d, s). If whenever
κn → κ0 and Gκn → ι0 for some sequence {κn} in Ξ and some κ0, ι0 in Ξ, we have ι0 = Gκ0, then G is said
to have a multiplicative closed graph(or, MCG).

3. Main results

Let’s prove some fixed point theorems for various multiplicative contractions on b-MMSs in this section.

Theorem 3.1. Assuming that (Ξ, d, s) is a complete b-MMS, and G : Ξ → Ξ have a MCG. Let Ξ1 ⊆ Ξ2 ⊆ ...

be subsets of Ξ such that Ξ =
∞⋃
j=1

Ξj , G(Ξi) ⊆ Ξi+1, ∀i, and d(Gt,Gz) ≤ d(t, z)ξi , ∀t, z ∈ Ξi, ∀i, where

ξi ∈ (0,∞) are real positive constants such that
∞∑

n=1
snξ1ξ2...ξn < ∞. Then, for any fixed t1 ∈ Ξ, {Gnt1}

multiplicative converges to a fixed point.
Moreover, if ξi ∈ (0, 1), ∀i, then G has a unique fixed point(or, UFP) in Ξ.
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Proof. Fix t1 ∈ Ξ1, and set tn+1 = Gtn = Gnt1, ∀ n = 1, 2, 3, .... Then we have,

d(Gn+1t1, G
nt1) ≤ d(Gnt1, G

n−1t1)
ξn+1

≤ d(Gt1, t1)
ξn+1ξnξn−1...ξ2 .

Further, for 1 ≤ n < m, we have,

d(Gmt1, G
nt1) ≤ d(Gmt1, G

m−1t1)
sm−1

d(Gm−1t1, G
m−2t1)

sm−2

...d(Gn+1t1, G
nt1)

sn

≤ d(Gt1, t1)

(
m−1∑
i=n

siξ2ξ3...ξi+1

)
.

Therefore, d(Gmt1, G
nt1) → 1 (m,n → ∞). Since Lemma 2.6, {Gmt1}∞m=1 is an MCS in Ξ. Let {Gmt1}∞m=1

multiplicative converge to t∗ in Ξ, which is multiplicative complete. Remember that {Gm+1t1}∞m=1 is also an
MCS and it multiplicative converges to t∗ in Ξ. Also, MCG of G gives Gt∗ = t∗. Hence, we obtained a fixed
point t∗ of G.
These processes can be extended to the general case: t1 ∈ Ξn, for some n.
Assuming additionally that ξi ∈ (0, 1), ∀i.
If Gt∗ = t∗, Gz∗ = z∗ in G, then let t∗, z∗ ∈ Ξn, for some n, so we have

1 ≤ d(t∗, z∗) = d(Gt∗, Gz∗) ≤ d(t∗, z∗)ξn .

Then, d(t∗, z∗) ≤ d(t∗, z∗)(ξn)
m

, ∀ m ∈ N. Since (ξn)
m → 0 as m → ∞, d(t∗, z∗) = 1 and t∗ = z∗. Hence,

G has a UFP. ■

Corollary 3.2. Assuming that (Ξ, D) is a complete metric space, and G : Ξ → Ξ have a closed graph. Let

Ξ1 ⊆ Ξ2 ⊆ ... be subsets of Ξ such that Ξ =
∞⋃
j=1

Ξj , G(Ξi) ⊆ Ξi+1, ∀i, and D(Gt,Gz) ≤ ξiD(t, z), ∀t, z ∈ Ξi,

∀i, where ξi ∈ (0,∞) are real positive constants such that
∞∑

n=1
ξ1ξ2...ξn < ∞.

Then, for any fixed t1 ∈ Ξ, {Gnt1} converges to a fixed point. Also, if ξi ∈ (0, 1), ∀i, then G has a UFP in Ξ.

Proof. Let d = expD. That is d(t, z) = expD(t, z), ∀t, z ∈ Ξ. Then (Ξ, d) is a complete b-MMS with
s = 1. Also, d(Gt,Gz) ≤ (d(t, z))ξi , ∀t, z ∈ Ξi, ∀i, where ξi ∈ (0,∞) are real positive constants such that
∞∑

n=1
ξ1ξ2...ξn < ∞. Theorem 3.1 now leads to Corollary 3.2. ■

The above Corollary is Theorem 2.1 of [11]

Example 3.3. Let Ξ =
[
1
4 ,∞

)
. Assuming that d(t, z) = max{tz−1, zt−1}, ∀t, z ∈ Ξ.

Then (Ξ, d, s) is a complete b-MMS with s = 1.

Assuming that Ξn = [ 14 , n], and ξn = n2

(n+1)2 ∈ [ 14 , 1), for n = 1, 2, 3, .... Then
∞∑

n=1
snξ1ξ2...ξn < ∞.

Define G : Ξ → Ξ by Gt = t
1
4 , if t ∈ Ξn, for n ∈ N.

For t, z ∈ Ξn, we get

d(Gt,Gz) = max
{( t

z

) 1
4

,
(z
t

) 1
4
}

= (d(t, z))
1
4

≤ d(t, z)ξn , ∀n ∈ N.

Theorem 3.1’s hypotheses are then fulfilled. Moreover, the UFP is 1.
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Theorem 3.4. Assuming that (Ξ, d, s) is a complete b-MMS, and G : Ξ → Ξ have a MCG. Let Ξ1 ⊆ Ξ2 ⊆ ...

be subsets of Ξ such that Ξ =
∞⋃
j=1

Ξj , G(Ξi) ⊆ Ξi+1, ∀i, and d(Gt,Gz) ≤ (d(Gt, t)d(Gz, z))ξi , ∀t, z ∈ Ξi,∀i,

where ξi ∈ (0, 1) are real positive constants such that
∞∑

n=1
snϑ1ϑ2...ϑn < ∞, where ϑi =

ξi
1−ξi

, ∀i. Then G has

a UFP in Ξ.
Moreover, for any fixed t1 ∈ Ξ, {Gnt1} multiplicative converges to the UFP.

Proof. Fix t1 ∈ Ξ1, and set tn+1 = Gtn = Gnt1, ∀ n = 1, 2, .... Then we have

d(Gn+1t1, G
nt1) ≤ (d(Gn+1t1, G

nt1)d(G
nt1, G

n−1t1))
ξn+1

= d(Gn+1t1, G
nt1)

ξn+1d(Gnt1, G
n−1t1)

ξn+1 .

Now, we get

d(Gn+1t1, G
nt1) ≤ d(Gnt1, G

n−1t1)
ξn+1

1−ξn+1

= d(Gnt1, G
n−1t1)

ϑn+1 ,

≤ d(Gt1, t1)
ϑn+1ϑnϑn−1...ϑ2 .

Further, for 1 ≤ n < m, we have

d(Gmt1, G
nt1) ≤ d(Gmt1, G

m−1t1)
sm−1

d(Gm−1t1, G
m−2t1)

sm−2

...d(Gn+1t1, G
nt1)

sn

≤ d(Gt1, t1)

(
m−1∑
i=n

siϑ2ϑ3...ϑi+1

)
.

Therefore, d(Gmt1, G
nt1) → 1(m,n → ∞). By Lemma 2.6, {Gmt1}∞m=1 is an MCS in Ξ. Let {Gmt1}∞m=1

multiplicative converge to w∗ in Ξ, which is multiplicative complete. Remember that {Gm+1t1}∞m=1 is also an
MCS and it multiplicative converges to t∗ in Ξ. Also, MCG of G gives Gt∗ = t∗. Hence, we obtained a fixed
point t∗ of G.
These processes can be extended to the general case: t1 ∈ Ξn, for some n.
If Gt∗ = t∗, Gz∗ = z∗ in G, then let t∗, z∗ ∈ Ξn, for some n, so we have

1 ≤ d(t∗, z∗) = d(Gt∗, Gz∗) ≤ (d(Gt∗, t∗)d(Gz∗, z∗))ξn = 1.

Therefore t∗ = z∗. Hence, G has a UFP. ■

Corollary 3.5. Assuming that (Ξ, D) be a complete metric space, and G : Ξ → Ξ have a closed graph. Let Ξ1 ⊆
Ξ2 ⊆ ... be subsets of Ξ such that Ξ =

∞⋃
j=1

Ξj , G(Ξi) ⊆ Ξi+1, ∀i, and D(Gt,Gz) ≤ ξi(D(Gt, t) +D(Gz, z)),

∀t, z ∈ Ξi,∀i, where ξi ∈ (0, 1) are real positive constants such that
∞∑

n=1
ϑ1ϑ2...ϑn < ∞, where ϑi =

ξi
1−ξi

, ∀i.

Then G has a UFP in Ξ. Moreover, for any fixed t1 ∈ Ξ, {Gnt1} converges to the UFP.

Proof. Let d = expD. That is d(t, z) = expD(t, z), ∀t, z ∈ Ξ. Then (Ξ, d) is a complete b-MMS with s = 1.
Also, d(Gt,Gz) ≤ (d(Gt, t)d(Gz, z))ξi , ∀t, z ∈ Ξi, ∀i, where ξi ∈ (0,∞) are real positive constants such that
∞∑

n=1
ϑ1ϑ2...ϑn < ∞, where ϑi =

ξi
1−ξi

, ∀i. Theorem 3.4 now leads to Corollary 3.5. ■

Theorem 3.6. Assuming that (Ξ, d, s) is a complete b-MMS, and G : Ξ → Ξ have a MCG. Let Ξ1 ⊆ Ξ2 ⊆ ...

be subsets of Ξ such that Ξ =
∞⋃
j=1

Ξj , G(Ξi) ⊆ Ξi+1, ∀i, and d(Gt,Gz) ≤ (d(Gt, z)d(Gz, t))ξi , ∀t, z ∈ Ξi,∀i,
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where ξi ∈ (0, 1
2 ) are real positive constants such that

∞∑
n=1

snϑ1ϑ2...ϑn < ∞, where ϑi =
sξi

1−sξi
, ∀i. Then G

has a UFP in Ξ.
Moreover, for any fixed t1 ∈ Ξ, {Gnt1} multiplicative converges to the UFP.

Proof. Fix t1 ∈ Ξ1, and set tn+1 = Gtn = Gnt1, ∀ n = 1, 2, 3, .... Then we have

d(Gn+1t1, G
nt1) ≤ (d(Gn+1t1, G

n−1t1)d(G
nt1, G

nt1))
ξn+1

Since d(Gnt1, G
nt1) = 1, we get

d(Gn+1t1, G
nt1) ≤ d(Gn+1t1, G

n−1t1)
ξn+1

≤ (d(Gn+1t1, G
nt1)d(G

nt1, G
n−1t1))

sξn+1

= d(Gn+1t1, G
nt1)

sξn+1d(Gnt1, G
n−1t1)

sξn+1 .

Now, we get

d(Gn+1t1, G
nt1) ≤ d(Gnt1, G

n−1t1)

(
sξn+1

1−sξn+1

)
= d(Gnt1, G

n−1t1)
ϑn+1 ,

≤ d(Gt1, t1)
ϑn+1ϑnϑn−1...ϑ2 .

Further, for 1 ≤ n < m, we have

d(Gmt1, G
nt1) ≤ d(Gmt1, G

m−1t1)
sm−1

d(Gm−1t1, G
m−2t1)

sm−2

...d(Gn+1t1, G
nt1)

sn

≤ d(Gt1, t1)

(
m−1∑
i=n

siϑ2ϑ3...ϑi+1

)
.

Therefore, d(Gmt1, G
nt1) → 1 (m,n → ∞). By Lemma 2.6, {Gmt1}∞m=1 is an MCS in Ξ. Let {Gmt1}∞m=1

multiplicative converge to w∗ in Ξ, which is multiplicative complete. Remember that {Gm+1t1}∞m=1 is also a
MCS and it multiplicative converges to t∗ in Ξ. Also, MCG of G gives Gt∗ = t∗. Hence, we obtained a fixed
point t∗ of G.
These processes can be extended to the general case: t1 ∈ Ξn, for some n.
If Gt∗ = t∗, Gz∗ = z∗ in G, then let t∗, z∗ ∈ Ξn, for some n, so we have

1 ≤ d(t∗, z∗) = d(Gt∗, Gz∗) ≤ (d(Gt∗, z∗)d(Gz∗, t∗))ξn

= d(t∗, z∗)2ξn .

Then, d(t∗, z∗) ≤ d(t∗, z∗)(2ξn)
m

, ∀ m ∈ N. Since (2ξn)
m → 0 as m → ∞, d(t∗, z∗) = 1 and t∗ = z∗.

Hence, G has a UFP. ■

Corollary 3.7. Assuming that (Ξ, D) be a complete metric space, and G : Ξ → Ξ have a closed graph. Let Ξ1 ⊆
Ξ2 ⊆ ... be subsets of Ξ such that Ξ =

∞⋃
j=1

Ξj , G(Ξi) ⊆ Ξi+1, ∀i, and D(Gt,Gz) ≤ ξi(D(Gt, z) +D(Gz, t)),

∀t, z ∈ Ξi,∀i, where ξi ∈ (0, 1) are real positive constants such that
∞∑

n=1
ϑ1ϑ2...ϑn < ∞, where ϑi =

ξi
1−ξi

, ∀i.

Then G has a UFP in Ξ. Moreover, for any fixed t1 ∈ Ξ, {Gnt1} converges to the UFP.

Proof. Let d = expD. That is d(t, z) = expD(t, z), ∀t, z ∈ Ξ. Then (Ξ, d) is a complete b-MMS with s = 1.
Also, d(Gt,Gz) ≤ (d(Gt, z)d(Gz, t))ξi , ∀t, z ∈ Ξi, ∀i, where ξi ∈ (0,∞) are real positive constants such that
∞∑

n=1
ϑ1ϑ2...ϑn < ∞, where ϑi =

ξi
1−ξi

, ∀i. Theorem 3.6 now leads to Corollary 3.7. ■
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Theorem 3.8. Assuming that (Ξ, d, s) is a complete b-MMS, and G : Ξ → Ξ have a MCG. Let Ξ1 ⊆ Ξ2 ⊆ ...

be subsets of Ξ such that Ξ =
∞⋃
j=1

Ξj , G(Ξi) ⊆ Ξi+1, ∀i, and d(Gt,Gz) ≤ d(t, z)ξid(z,Gt)µi , ∀t, z ∈ Ξi,∀i,

where ξi, µi ∈ (0, 1) are real positive constants such that ξi + µi < 1, ∀i, and
∞∑

n=1
snϑ1ϑ2...ϑn < ∞, where

ϑi =
ξi+sµi

1−sµi
, ∀i. Then G has a UFP in Ξ.

Moreover, for any fixed t1 ∈ Ξ, {Gnt1} multiplicative converges to the UFP.

Proof. Fix t1 ∈ Ξ1, and set tn+1 = Gtn = Gnt1, ∀ n = 1, 2, 3, .... Then we have

d(Gn+1t1, G
nt1) ≤ d(Gnt1, G

n−1t1)
ξn+1d(Gn−1t1, G

n+1t1)
µn+1

≤ d(Gnt1, G
n−1t1)

ξn+1d(Gn−1t1, G
nt1)

sµn+1d(Gnt1, G
n+1t1)

sµn+1

= d(Gnt1, G
n−1t1)

(ξn+1+sµn+1)d(Gnt1, G
n+1t1)

sµn+1

Now, we get

d(Gn+1t1, G
nt1) ≤ d(Gnt1, G

n−1t1)

(
ξn+1+sµn+1

1−sµn+1

)
= d(Gnt1, G

n−1t1)
ϑn+1 ,

≤ d(Gt1, t1)
ϑn+1ϑnϑn−1...ϑ2 .

Further, for 1 ≤ n < m, we have

d(Gmt1, G
nt1) ≤ d(Gmt1, G

m−1t1)
sm−1

d(Gm−1t1, G
m−2t1)

sm−2

...d(Gn+1t1, G
nt1)

sn

≤ d(Gt1, t1)

(
m−1∑
i=n

siϑ2ϑ3...ϑi+1

)
.

Therefore, d(Gmt1, G
nt1) → 1(m,n → ∞). By Lemma 2.6, {Gmt1}∞m=1 is an MCS in Ξ. Let {Gmt1}∞m=1

multiplicative converge to t∗ in Ξ, which is multiplicative complete. Remember that {Gm+1t1}∞m=1 is also an
MCS and it multiplicative converges to t∗ in Ξ. Also, MCG of G gives Gt∗ = t∗. Hence, we obtained a fixed
point t∗ of G.
These processes can be extended to the general case: t1 ∈ Ξn, for some n.
If Gt∗ = t∗, Gz∗ = z∗ in G, then let t∗, z∗ ∈ Ξn, for some n, so we have

1 ≤ d(t∗, z∗) = d(Gt∗, Gz∗) ≤ d(t∗, z∗)ξnd(z∗, Gt∗)µn

≤ d(t∗, z∗)(ξn+µn).

Then, d(t∗, z∗) ≤ d(t∗, z∗)(ξn+µn)
m

, ∀m ∈ N. Since (ξn+µn)
m → 0 as m → ∞, d(t∗, z∗) = 1 and t∗ = z∗.

Hence, G has a UFP. ■

Remark 3.9. In Theorem 3.8, replacement of the condition d(Gt,Gz) ≤ d(t, z)ξid(z,Gt)µi , ∀t, z ∈ Ξi,∀i,
where ξi, µi ∈ (0, 1) are real positive constants such that ξi + µi < 1, ∀i, and

∞∑
n=1

snϑ1ϑ2...ϑn < ∞, where

ϑi =
ξi+sµi

1−sµi
, ∀i by the condition d(Gt,Gz) ≤ d(Gt,Gz)ξid(z,Gt)µi , ∀t, z ∈ Ξi,∀i, where ξi, µi ∈ (0, 1) are

real positive constants such that ξi + µi < 1, ∀i, and
∞∑

n=1
snϑ1ϑ2...ϑn < ∞, where ϑi =

sµi+1

1−sµi+1−ξi+1
, ∀i gives

a UFP.

Theorem 3.10. Assuming that (Ξ, d, s) is a complete b-MMS, and G : Ξ → Ξ have a MCG. Let Ξ1 ⊆ Ξ2 ⊆ ...

be subsets of Ξ such that Ξ =
∞⋃
j=1

Ξj , G(Ξi) ⊆ Ξi+1, ∀i, and
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d(Gt,Gz) ≤ d(t, z)ξi(d(Gt, t)d(Gz, z))µi(d(Gt, z)d(Gz, t))νi , ∀t, z ∈ Ξi,∀i, where ξi, µi, νi ∈ (0, 1
2 ) are real

positive constants such that ξi + 2νi < 1, ∀i, and
∞∑

n=1
snϑ1ϑ2...ϑn < ∞, where ϑi =

ξi+µi+sνi

1−µi−sνi
, ∀i. Then G

has a UFP in Ξ.
Moreover, for any fixed t1 ∈ Ξ, {Gnt1} multiplicative converges to the UFP.

Proof. Fix t1 ∈ Ξ1, and set tn+1 = Gtn = Gnt1, ∀ n = 1, 2, 3, .... Then we have

d(Gn+1t1, G
nt1) ≤ d(Gnt1, G

n−1t1)
ξn+1(d(Gn+1t1, G

nt1)d(G
nt1, G

n−1t1))
µn+1

(d(Gn+1t1, G
n−1t1)d(G

nt1, G
nt1))

νn+1 .

Since d(Gnt1, G
nt1) = 1, we get

d(Gn+1t1, G
nt1) ≤ d(Gnt1, G

n−1t1)
ξn+1(d(Gn+1t1, G

nt1)d(G
nt1, G

n−1t1))
µn+1

(d(Gn+1t1, G
nt1)d(G

nt1, G
n−1t1))

sνn+1 .

Now, we get

d(Gn+1t1, G
nt1) ≤ d(Gnt1, G

n−1t1)

(
ξn+1+µn+1+sνn+1

1−µn+1−sνn+1

)
= d(Gnt1, G

n−1t1)
ϑn+1 ,

≤ d(Gt1, t1)
ϑn+1ϑnϑn−1...ϑ2 .

Further, for 1 ≤ n < m, we have

d(Gmt1, G
nt1) ≤ d(Gmt1, G

m−1t1)
sm−1

d(Gm−1t1, G
m−2t1)

sm−2

...d(Gn+1t1, G
nt1)

sn

≤ d(Gt1, t1)

(
m−1∑
i=n

siϑ2ϑ3...ϑi+1

)
.

Therefore, d(Gmt1, G
nt1) → 1(m,n → ∞). By Lemma 2.6, {Gmt1}∞m=1 is an MCS in Ξ. Let {Gmt1}∞m=1

multiplicative converge to t∗ in Ξ, which is multiplicative complete. Remember that {Gm+1t1}∞m=1 is also an
MCS and it multiplicative converges to t∗ in Ξ. Also, MCG of G gives Gt∗ = t∗. Hence, we obtained a fixed
point t∗ of G.
These processes can be extended to the general case: t1 ∈ Ξn, for some n.
If Gt∗ = t∗, Gz∗ = z∗ in G, then let t∗, z∗ ∈ Ξn, for some n, so we have

1 ≤ d(t∗, z∗) = d(Gt∗, Gz∗) ≤ d(t∗, z∗)ξn(d(Gt∗, t∗)d(Gz∗, z∗))µn(d(Gt∗, z∗)d(Gz∗, t∗))νn

≤ d(t∗, z∗)(ξn+2νn).

Then, d(t∗, z∗) ≤ d(t∗, z∗)(ξn+2νn)
m

, ∀ m ∈ N. Since (ξn + 2νn)
m → 0 as m → ∞, d(t∗, z∗) = 1 and

t∗ = z∗. Hence, G has a UFP. ■

Theorem 3.11. Assuming that (Ξ, d, s) is a complete b-MMS. Let G : Ξ → Ξ have a MCG. Let ξi ∈ (0, 1),
∀i, such that for 1 ≤ n ≤ m, snξ1ξ2...ξm

1−snξn
→ 0 as n → ∞, and let Ξ1 ⊆ Ξ2 ⊆ ... be subsets of Ξ such that

G(Ξi) ⊆ Ξi+1, ∀i, and d(Gt,Gz) ≤ d(t, z)ξi , ∀t ∈ Ξi, ∀z ∈ Ξ,∀i. Suppose t1 ∈
∞⋃
j=1

Ξj . Then {Gnt1}

multiplicative converges to the fixed point of G in Ξ. If Ξ =
∞⋃
j=1

Ξj , then G has a UFP in Ξ.

Proof. Fix t1 ∈ Ξ, and set tn+1 = Gtn = Gnt1, ∀ n ∈ N. Then for each n, we have

d(Gn+1t1, G
nt1) ≤ d(Gnt1, G

n−1t1)
ξn

≤ d(Gt1, t1)
ξnξn−1...ξ1 .
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Therefore, d(tn+1, tn) ≤ d(Gt1, t1)
ξn−1ξn−2...ξ1 . Further, for 1 ≤ n < m, we have

d(tn, tm) ≤ d(tn, tn+1)
snd(tn+1, tm+1)

sn+1

d(tm, tm+1)
sm

≤ d(Gt1, t1)
snξ1ξ2...ξn−1d(tn, tm)s

n+1ξn+1d(Gt1, t1)
smξ1ξ2...ξm−1

so that,

d(tn, tm) ≤ d(Gt1, t1)
(snξ1ξ2...ξn−1)+(smξ1ξ2...ξm−1)

(1−sn+1ξn+1) .

Therefore, d(tn, tm) → 1 (n,m → ∞). Since Lemma 2.6, {tn} is a MCS. By Ξ is multiplicative complete,
{tn} → w∗, for some t∗ in Ξ. Then {Gtn} → t∗ and Gt∗ = t∗, because G has a MCG. Hence, we obtained a
fixed point t∗ of G.
These processes can be extended to the general case: t1 ∈ Ξn, for some n.

Assuming now Ξ =
∞⋃
j=1

Ξj . If Gt∗ = t∗, Gz∗ = z∗ in G, then let t∗, z∗ ∈ Ξn, for some n, so we have

1 ≤ d(t∗, z∗) = d(Gt∗, Gz∗) ≤ d(t∗, z∗)ξn

≤ d(t∗, z∗)(ξn)
m

, ∀ m > 1.

Therefore, d(t∗, z∗) = 1, because (ξn)
m → 0 as m → ∞. Hence, G has a UFP, when Ξ =

∞⋃
j=1

Ξj . ■

Theorem 3.12. Assuming that (Ξ, d, s) is a complete b-MMS, and G : Ξ → Ξ have a MCG. Suppose d(t, z) ≤
α,∀t, z ∈ Ξ and for some α ∈ [1,∞). Let ξi ∈ (0, 1), ∀i, be such that ξ1ξ2...ξn → 0 as n → ∞. Suppose

Ξ1 ⊆ Ξ2 ⊆ ... be subsets of Ξ such that G(Ξi) ⊆ Ξi+1, ∀i, and d(Gt,Gz) ≤ d(t, z)ξi , ∀t ∈ Ξi, ∀z ∈
∞⋃
j=1

Ξj ,

∀i. Let t1 ∈
∞⋃
j=1

Ξj . Then the sequence {Gnt1} multiplicative converges to a unique fixed point G in Ξ. If

Ξ =
∞⋃
j=1

Ξj , then G has a UFP in Ξ.

Proof. Fix t1, z1 ∈ Ξ1. Set tn+1 = Gtn = Gnt1, and zn+1 = Gzn = Gnz1, ∀ n ∈ N. For m < n, we have

d(tn, zm) = d(Gtn−1, Gzm−1) ≤ d(tn−1, zm−1)
ξm−1

≤ d(tn−m+1, z1)
ξm−1ξm−2...ξ2ξ1

≤ αξm−1ξm−2...ξ2ξ1 ,

because d(t, z) ≤ α,∀t, z ∈ Ξ. Hence, d(tn, zm) → 1 as m,n → ∞. Also d(tn, tm) → 1, and d(zn, zm) → 1

as m,n → ∞. So, {tn} and {zn} are multiplicative Cauchy sequences in Ξ, because of Lemma 2.6. By (Ξ, d)

is multiplicative complete, {tn} and {zn} multiplicative converges to a unique point t∗ in Ξ, because of Lemma
2.8. Since {tn} → t∗, we have {Gtn} → t∗. Also, MCG of G gives Gt∗ = t∗. Hence, we obtained a fixed point
t∗ of G.
These processes can be extended to the general case: t1, z1 ∈ Ξn, for some n.

Assuming now Ξ =
∞⋃
j=1

Ξj . If Gt∗ = t∗, Gz∗ = z∗ in G, then let t∗, z∗ ∈ Ξn, for some n, so we have

1 ≤ d(t∗, z∗) = d(Gt∗, Gz∗) ≤ d(t∗, z∗)ξn ≤ d(t∗, z∗)(ξn)
m

, ∀ m > 1.

So, d(t∗, z∗) = 1, because (ξn)
m → 0 as m → ∞. Therefore, G has a UFP, when Ξ =

∞⋃
j=1

Ξj . ■
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4. Conclusion

If s = 1 in a b-multiplicative metric space (Ξ, d, s), then it becomes a multiplicative metric space. All
fixed point results can be converted from b-multiplicative metric spaces to metric spaces through exponential
transformation. It has been illustrated in Corollary 3.2, Corollary 3.5, and Corollary 3.7. As a result, studies of
fixed points of multiplicative contractions in b-multiplicative metric spaces are important.
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Abstract. In this study, invariant total geodesic submanifolds, which are important submanifolds of Lorentz-Sasakian space
forms, have been investigated. An important class of the considered invariant submanifolds, called pseudoparallel, 2-
pseudoparallel, Ricci generalized pseudoparallel, and 2-Ricci generalized pseudoparallel invariant submanifolds, has been
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1. Introduction

ϕ−sectional curvature plays the an important role for Sasakian manifold. If the ϕ−sectional curvature of a
Sasakian manifold is constant, then the manifold is a Sasakian-space-form [1]. P. Alegre and D. Blair described
generalized Sasakian space forms [2]. P. Alegre and D. Blair obtained important properties of generalized
Sasakian space forms in their studies and gave some examples. P. Alegre and A. Carriazo later discussed
generalized indefinite Sasakian space forms [3]. Generalized indefinite Sasakian space forms are also called
Lorentz-Sasakian space forms, and Lorentz manifolds are of great importance for Einstein’s theory of Relativity.
Sasakian space forms, generalized Sasakian space forms and Lorentz-Sasakian space forms have been discussed
by many scientists and important properties of these manifolds have been obtained ([4]-[8]).

Many mathematicians have considered the submanifolds of manifolds such as K−paracontak, Lorentzian
para-Kenmotsu, almost Kenmotsu and studied their various characterizations ([9],[10],[11]).
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In this study, invariant total geodesic submanifolds, which are important submanifolds of Lorentz-Sasakian
space forms, have been investigated. An important class of the considered invariant submanifolds, called
pseudoparallel, 2-pseudoparallel, Ricci generalized pseudoparallel, and 2-Ricci generalized pseudoparallel
invariant submanifolds, has been defined and the characterizations of Lorentz-Sasakian space forms for these
types of invariant submanifolds have been revealed. Then, conditions are given for these obtained invariant
submanifolds to be total geodesic by means of concircular and projective curvature tensors.

Starting from this part of the article, for the sake of brevity, Lorentz Sasakian space form with LSS-form,
pseudoparallel submanifold with P-submanifolds, 2-pseudoparallel submanifold with 2-P submanifold, Ricci
generalized pseudoparallel submanifold with RGP-submanifold and 2-Ricci generalized pseudoparallel
submanifold with 2- RGP submanifold will be shown.

2. Preliminary

Let Ψ̃ be a (2m + 1)−dimensional Lorentz manifold. If the Ψ̃ Lorentz manifold with (ϕ, ξ, η, g) structure
tensors satisfies the following conditions, this manifold is called a Lorentz-Sasakian manifold

ϕ2Λ1 = −Λ1 + η (Λ1) ξ, η (ξ) = 1, η (ϕΛ1) = 0,

g (ϕΛ1, ϕΛ2) = g (Λ1,Λ2) + η (Λ1) η (Λ2) , η (Λ1) = −g (Λ1, ξ) ,(
▽̃Λ1

ϕ
)
Λ2 = −g (Λ1,Λ2) ξ − η (Λ2) Λ1, ▽̃Λ1

ξ = −ϕΛ1,

where, ▽̃ is the Levi-Civita connection according to the Riemann metric g.
The plane section Π in TxΨ̃. If the Π plane is spanned by Λ1 and ϕΛ1, this plane is called the ϕ-section. The

curvature of the ϕ-section is called the ϕ-sectional curvature. If the Lorentz-Sasakian manifold has a constant
ϕ-sectional curvature, this manifold is called the LSS−form and is denoted by Ψ̃ (c). The curvature tensor of
the LSS−form Ψ̃ (c) is defined as

R̃ (Λ1,Λ2) Λ3 =
(
c−3
4

)
{g (Λ2,Λ3) Λ1 − g (Λ1,Λ3) Λ2}

+
(
c+1
4

)
{g (Λ1, ϕΛ3)ϕΛ2 − g (Λ2, ϕΛ3)ϕΛ1

+2g (Λ1, ϕΛ2)ϕΛ3 + η (Λ2) η (Λ3) Λ1 − η (Λ1) η (Λ3) Λ2

+g (Λ1,Λ3) η (Λ2) ξ − g (Λ2,Λ3) η (Λ1) ξ} ,

(1)

for all Λ1,Λ2,Λ3 ∈ χ
(
Ψ̃
)
.

Lemma 2.1. Let Ψ̃ (c) be the (2m + 1)−dimensional LSS−form. The following relations are provided for the
LSS−forms.

▽̃Λ1
ξ = −ϕΛ1, (2)(

▽̃Λ1
ϕ
)
Λ2 = −g (Λ1,Λ2) ξ − η (Λ2) Λ1, (3)(
▽̃Λ1

η
)
Λ2 = g (ϕΛ1,Λ2) , (4)

R̃ (ξ,Λ2) Λ3 = −g (Λ2,Λ3) ξ − η (Λ3) Λ2, (5)

R̃ (ξ,Λ2) ξ = η (Λ2) ξ − Λ2, (6)
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R̃ (Λ1,Λ2) ξ = η (Λ2) Λ1 − η (Λ1) Λ2, (7)

S (Λ1, ξ) = −
[
(c+ 1)− 4m

2

]
η (Λ1) , (8)

where R̃, S and Q are the Riemann curvature tensor, Ricci curvature tensor and Ricci operator of Ψ̃ (c),
respectively.

Let Ψ be the immersed submanifold of the (2m + 1)−dimensional LSS−form Ψ̃ (c). Let the tangent and
normal subspaces of Ψ in Ψ̃ (c) be Γ (TΨ) and Γ

(
T⊥Ψ

)
, respectively. Gauss and Weingarten formulas for

Γ (TΨ) and Γ
(
T⊥Ψ

)
are

▽̃Λ1
Λ2 = ▽Λ1

Λ2 + h (Λ1,Λ2) , (9)

▽̃Λ1
Λ5 = −AΛ5

Λ1 +▽⊥
Λ1
Λ5, (10)

respectively, for all Λ1,Λ2 ∈ Γ (TΨ) and Λ5 ∈ Γ
(
T⊥Ψ

)
, where ▽ and ▽⊥ are the connections on Ψ and

Γ
(
T⊥Ψ

)
, respectively, h and A are the second fundamental form and the shape operator of Ψ. There is a relation

g (AΛ5Λ1,Λ2) = g (h (Λ1,Λ2) ,Λ5) (11)

between the second basic form and shape operator defined as above. The covariant derivative of the second
fundamental form h is defined as(

▽̃Λ1
h
)
(Λ2,Λ3) = ▽⊥

Λ1
h (Λ2,Λ3)− h (▽Λ1Λ2,Λ3)− h (Λ2,▽Λ1Λ3) . (12)

Specifically, if ▽̃h = 0, Ψ is said to be in the parallel second fundamental form or 1−parallel.
Let R be the Riemann curvature tensor of Ψ. In this case, the Gauss equation can be expressed as

R̃ (Λ1,Λ2) Λ3 = R (Λ1,Λ2) Λ3 +Ah(Λ1,Λ3)Λ2 −Ah(Λ2,Λ3)Λ1

+
(
▽̃Λ1

h
)
(Λ2,Λ3)−

(
▽̃Λ1

h
)
(Λ1,Λ3) .

(13)

Let Ψ be a Riemannian manifold, T is (0, k)−type tensor field and A is (0, 2)−type tensor field. In this case,
the tensor field Q (A, T ) is defined as

Q (A, T ) (Λ1, ..., Xk;X,Y ) = −T ((X ∧A Y ) Λ1, ..., Xk)

−...− T (Λ1, ..., Xk−1, (X ∧A Y )Xk) ,

(14)

where
(X ∧A Y )Z = A (Y,Z)X −A (X,Z)Y,

k ≥ 1,Λ1,Λ2, ..., Xk, X, Y ∈ Γ (TΨ)

3. Invariant Pseudoparalel submanifolds of Lorentz-Sasakian space forms

Let Ψ be the immersed submanifold of a (2m+ 1)−dimensional LSS−form Ψ̃ (c) . If ϕ (Tx1Ψ) ⊂ Tx1Ψ in
every x1 point, the Ψ manifold is called invariant submanifold. From this section of the article, we will assume
that the manifold Ψ is the invariant submanifold of the LSS−form Ψ̃ (c). So it is clear from (3) and (9) that

h (Λ1, ξ) = 0, h (ϕΛ1,Λ2) = h (Λ1, ϕΛ2) = ϕh (Λ1,Λ2) (15)

for all Λ1,Λ2 ∈ Γ (TΨ) .
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Lemma 3.1. Let Ψ be the invariant submanifold of the (2m + 1)−dimensional LSS−form Ψ̃ (c). The second
fundamental form h of the submanifold Ψ is parallel if and only if Ψ is the total geodesic submanifold.

Proof. The proof of the theorem is easily obtained if we choose Λ3 = ξ in (12) and make the necessary
adjustments. ■

Definition 3.2. Let Ψ be the invariant submanifold of the (2m+ 1)−dimensional LSS−form Ψ̃ (c). If R̃.h and
Q (g, h) are linearly dependent, M is called P-submanifold.

Equivalent to this definition, it can be said that there is a function L1 on the set
M1 = {Λ1 ∈ Ψ|h (Λ1) ̸= g (Λ1)} such that

R̃.h = L1Q (g, h) .

If L1 = 0 specifically, Ψ is called a semiparallel submanifold.

Theorem 3.3. Let Ψ be the invariant submanifold of the (2m + 1)−dimensional LSS−form Ψ̃ (c). If Ψ is
P-submanifold, then Ψ is either a total geodesic or L1 = −1.

Proof. Let’s assume that Ψ is a P-submanifold. So, we can write(
R̃ (Λ1,Λ2)h

)
(Λ4,Λ5) = L1Q (g, h) (Λ4,Λ5; Λ1,Λ2) ,

that is
R̃⊥ (Λ1,Λ2)h (Λ4,Λ5)− h (R (Λ1,Λ2) Λ4,Λ5)

−h (Λ4, R (Λ1,Λ2) Λ5) = −λ1 {h ((Λ1 ∧g Λ2) Λ4,Λ5)

+h (Λ4, (Λ1 ∧g Λ2) Λ5)} ,

(16)

for all Λ1,Λ2,Λ4,Λ5 ∈ Γ (TΨ) . If we choose Λ5 = ξ in (16) and make use of (7) , (15), we get

(1 + L1) {η (Λ2)h (Λ4,Λ1)− η (Λ1)h (Λ4,Λ2)} = 0. (17)

IIf we choose Λ2 = ξ in (17) , we obtain

(1 + L1)h (Λ4,Λ1) = 0.

This completes the proof. ■

Corollary 3.4. Let Ψ be the invariant submanifold of the (2m + 1)−dimensional LSS−form Ψ̃ (c). Ψ is
semiparallel if and only if Ψ is total geodesic submanifold.

Definition 3.5. Let Ψ be the invariant submanifold of the (2m + 1)−dimensional LSS−form Ψ̃ (c). If R̃.▽̃h

and Q
(
g, ▽̃h

)
are linearly dependent, M is called 2-P submanifold.

Equivalent to this definition, it can be said that there is a function L2 on the set
M2 =

{
Λ1 ∈ Ψ| ▽̃h (Λ1) ̸= g (Λ1)

}
such that

R̃.▽̃h = L2Q
(
g, ▽̃h

)
.

If L2 = 0 specifically, Ψ is called a 2-semiparallel submanifold.

Theorem 3.6. Let Ψ be the invariant submanifold of the (2m+ 1)−dimensional LSS−form Ψ̃ (c). If Ψ is 2-P
submanifold, then Ψ is a total geodesic submanifold.
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Proof. Let’s assume that Ψ is a 2-P submanifold. So, we can write(
R̃ (Λ1,Λ2) ▽̃h

)
(Λ4,Λ5,Λ3) = L2Q

(
g, ▽̃h

)
(Λ4,Λ5,Λ3; Λ1,Λ2) , (18)

for all Λ1,Λ2,Λ4,Λ5,Λ3 ∈ Γ (TΨ) . If we choose Λ1 = Λ3 = ξ in (18) , we can write

R⊥ (ξ,Λ2)
(
▽̃Λ4

h
)
(Λ5, ξ)−

(
▽̃R(ξ,Λ2)Λ4

h
)
(Λ5, ξ)

−
(
▽̃Λ4

h
)
(R (ξ,Λ2) Λ5, ξ)−

(
▽̃Λ4

h
)
(Λ5, R (ξ,Λ2) ξ)

= −L2

{(
▽̃(ξ∧gΛ2)Λ4

h
)
(Λ5, ξ) +

(
▽̃Λ4

h
)
((ξ ∧g Λ2) Λ5, ξ)

+
(
▽̃Λ4

h
)
(Λ5, (ξ ∧g Λ2) ξ)

}
.

(19)

Let’s calculate all the expressions in (19). So, we can write

R⊥ (ξ,Λ2)
(
▽̃Λ4

h
)
(Λ5, ξ) = R⊥ (ξ,Λ2)

{
▽⊥

Λ4
h (Λ5, ξ)

−h (▽Λ4
Λ5, ξ)− h (Λ5,▽Λ4

ξ)}

= R⊥ (ξ,Λ2)ϕh (Λ5,Λ4) ,

(20)

(
▽̃R(ξ,Λ2)Λ4

h
)
(Λ5, ξ) = ▽⊥

R(ξ,Λ2)Λ4
h (Λ5, ξ)− h

(
▽R(ξ,Λ2)Λ4

Λ5, ξ
)

−h
(
Λ5,▽R(ξ,Λ2)Λ4

ξ
)
= −ϕη (Λ4)h (Λ5,Λ2) ,

(21)

(
▽̃Λ4

h
)
(R (ξ,Λ2) Λ5, ξ) = ▽⊥

Λ4
h (R (ξ,Λ2) Λ5, ξ)− h (▽Λ4R (ξ,Λ2) Λ5, ξ)

−h (R (ξ,Λ2) Λ5,▽Λ4ξ) = −ϕη (Λ5)h (Λ2,Λ4) ,

(22)

(
▽̃Λ4

h
)
(Λ5, R (ξ,Λ2) ξ) =

(
▽̃Λ4

h
)
(Λ5, η (Λ2) ξ − Λ2)

=
(
▽̃Λ4

h
)
(Λ5, η (Λ2) ξ)−

(
▽̃Λ4

h
)
(Λ5,Λ2)

= −h (Λ5,Λ4η (Λ2) ξ + η (Λ2)▽Λ4 ξ)−
(
▽̃Λ4

h
)
(Λ5,Λ2)

= η (Λ2)ϕh (Λ5,Λ4)−
(
▽̃Λ4

h
)
(Λ5,Λ2) ,

(23)

(
▽̃(ξ∧gΛ2)Λ4

h
)
(Λ5, ξ) = ▽⊥

(ξ∧gΛ2)Λ4
h (Λ5, ξ)− h

(
▽(ξ∧gΛ2)Λ4

Λ5, ξ
)

−h
(
Λ5,▽(ξ∧gΛ2)Λ4

ξ
)
= ϕη (Λ4)h (Λ5,Λ2) ,

(24)
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(
▽̃Λ4

h
)
((ξ ∧g Λ2) Λ5, ξ) = ▽⊥

Λ4
h ((ξ ∧g Λ2) Λ5, ξ)− h (▽Λ4 (ξ ∧g Λ2) Λ5, ξ)

−h ((ξ ∧g Λ2) Λ5,▽Λ4
ξ) = ϕη (Λ5)h (Λ2,Λ4) ,

(25)

(
▽̃Λ4

h
)
(Λ5, (ξ ∧g Λ2) ξ) =

(
▽̃Λ4

h
)
(Λ5,−η (Λ2) ξ + Λ2)

=
(
▽̃Λ4

h
)
(Λ5,−η (Λ2) ξ)−

(
▽̃Λ4

h
)
(Λ5,Λ2)

= −ϕη (Λ2)h (Λ5,Λ4)−
(
▽̃Λ4

h
)
(Λ5,Λ2) .

(26)

If we substitute (20) , (21) , (22) , (23) , (24) , (25) , (26) for (19) , we obtain

R⊥ (ξ,Λ2)ϕh (Λ5,Λ4) + ϕη (Λ4)h (Λ5,Λ2) + ϕη (Λ5)h (Λ2,Λ4)

−η (Λ2)ϕh (Λ5,Λ4) +
(
▽̃Λ4

h
)
(Λ5,Λ2) = −L2 {ϕη (Λ4)h (Λ5,Λ2)

+ϕη (Λ5)h (Λ2,Λ4)− ϕη (Λ2)h (Λ5,Λ4)−
(
▽̃Λ4

h
)
(Λ5,Λ2)

} (27)

If we choose Λ5 = ξ and use (15) , we get

ϕh (Λ2,Λ4) +
(
▽̃Λ4

h
)
(ξ,Λ2) = −L2 {ϕh (Λ2,Λ4)

−
(
▽̃Λ4

h
)
(ξ,Λ2)

}
.

(28)

On the other hand, it is clear that (
▽̃Λ4

h
)
(ξ,Λ2) = ϕh (Λ2,Λ4) . (29)

If (29) is written instead of (28) , we obtain

h (Λ2,Λ4) = 0.

This completes the proof. ■

Corollary 3.7. The total geodesic of the invariant 2-pseudoparalell submanifold of the (2m + 1)−dimensional
LSS−form is independent of the choice of L2.

Definition 3.8. Let Ψ be the invariant submanifold of the (2m+ 1)−dimensional LSS−form Ψ̃ (c). If R̃.h and
Q (S, h) are linearly dependent, M is called RGP-submanifold.

Equivalent to this definition, it can be said that there is a function L3 on the set
M3 = {Λ1 ∈ Ψ|h (Λ1) ̸= S (Λ1)} such that

R̃.h = L3Q (S, h) .

Theorem 3.9. Let Ψ be the invariant submanifold of the (2m + 1)−dimensional LSS−form Ψ̃ (c). If Ψ is

RGP-submanifold, then Ψ is either a total geodesic or L3 =
−2

(c+ 1)− 4m
provided 4m ̸= (c+ 1) .
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Proof. Let’s assume that Ψ is a RGP-submanifold. So, we can write(
R̃ (Λ1,Λ2)h

)
(Λ4,Λ5) = L3Q (S, h) (Λ4,Λ5; Λ1,Λ2) ,

that is
R̃⊥ (Λ1,Λ2)h (Λ4,Λ5)− h (R (Λ1,Λ2) Λ4,Λ5)

−h (Λ4, R (Λ1,Λ2) Λ5) = −λ3 {h ((Λ1 ∧g Λ2) Λ4,Λ5)

+h (Λ4, (Λ1 ∧g Λ2) Λ5)} ,

(30)

for all Λ1,Λ2,Λ4,Λ5 ∈ Γ (TΨ) . If we choose Λ1 = Λ5 = ξ in (30) and make use of (8) , (15), we get[
1 +

(c+ 1)− 4m

2
L3

]
h (Λ4,Λ2) = 0.

It is clear from the last equation that either
h (Λ4,Λ2) = 0,

or

L3 =
−2

(c+ 1)− 4m
.

This completes the proof. ■

Definition 3.10. Let Ψ be the invariant submanifold of the (2m + 1)−dimensional LSS−form Ψ̃ (c). If R̃.▽̃h

and Q
(
S, ▽̃h

)
are linearly dependent, M is called 2-RGP-submanifold.

Equivalent to this definition, it can be said that there is a function L4 on the set
M4 =

{
Λ1 ∈ Ψ| ▽̃h (Λ1) ̸= S (Λ1)

}
such that

R̃.▽̃h = L4Q
(
S, ▽̃h

)
.

Theorem 3.11. Let Ψ be the invariant submanifold of the (2m + 1)−dimensional LSS−form Ψ̃ (c). If Ψ is

2-RGP-submanifold, then Ψ is either a total geodesic or L4 =
2

4m− (c+ 1)
provided 4m ̸= (c+ 1) .

Proof. Let’s assume that Ψ is a 2-RGP-submanifold. So, we can write(
R̃ (Λ1,Λ2) ▽̃h

)
(Λ4,Λ5,Λ3) = L4Q

(
S, ▽̃h

)
(Λ4,Λ5,Λ3; Λ1,Λ2) , (31)

for all Λ1,Λ2,Λ4,Λ5,Λ3 ∈ Γ (TΨ) . If we choose Λ1 = Λ5 = ξ in (31) , we can write

R⊥ (ξ,Λ2)
(
▽̃Λ4

h
)
(ξ,Λ3)−

(
▽̃R(ξ,Λ2)Λ4

h
)
(ξ,Λ3)

−
(
▽̃Λ4

h
)
(R (ξ,Λ2) ξ,Λ3)−

(
▽̃Λ4

h
)
(ξ,R (ξ,Λ2) Λ3)

= −L4

{(
▽̃(ξ∧SΛ2)Λ4

h
)
(ξ,Λ3) +

(
▽̃Λ4

h
)
((ξ ∧S Λ2) ξ,Λ3)

+
(
▽̃Λ4

h
)
(ξ, (ξ ∧S Λ2) Λ3)

}
.

(32)
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Let’s calculate all the expressions in (32). So, we can write

R⊥ (ξ,Λ2)
(
▽̃Λ4

h
)
(ξ,Λ3) = R⊥ (ξ,Λ2)

{
▽⊥

Λ4
h (ξ,Λ3)

−h (▽Λ4
Λ3, ξ)− h (Λ3,▽Λ4

ξ)}

= R⊥ (ξ,Λ2)ϕh (Λ3,Λ4) ,

(33)

(
▽̃R(ξ,Λ2)Λ4

h
)
(ξ,Λ3) = ▽⊥

R(ξ,Λ2)Λ4
h (ξ,Λ3)− h

(
▽R(ξ,Λ2)Λ4

ξ,Λ3

)
−h

(
ξ,▽R(ξ,Λ2)Λ4

Λ3

)
= −ϕη (Λ4)h (Λ2,Λ3) ,

(34)

(
▽̃Λ4

h
)
(R (ξ,Λ2) ξ,Λ3) =

(
▽̃Λ4

h
)
(η (Λ2) ξ − Λ2,Λ3)

−
(
▽̃Λ4

h
)
(Λ2,Λ3) = ▽⊥

Λ4
h (η (Λ2) ξ,Λ3)− h (▽Λ4η (Λ2) ξ,Λ3)

−h (η (Λ2) ξ,▽Λ4Λ3)−
(
▽̃Λ4

h
)
(Λ2,Λ3)

= ϕη (Λ2)h (Λ4,Λ3)−
(
▽̃Λ4

h
)
(Λ2,Λ3) ,

(35)

(
▽̃Λ4

h
)
(ξ,R (ξ,Λ2) Λ3) = ▽⊥

Λ4
h (ξ,R (ξ,Λ2) Λ3)− h (▽Λ4

ξ,R (ξ,Λ2) Λ3)

−h (ξ,▽Λ4R (ξ,Λ2) Λ3) = −ϕη (Λ3)h (Λ4,Λ2)

(36)

(
▽̃(ξ∧SΛ2)Λ4

h
)
(ξ,Λ3) = ▽⊥

(ξ∧SΛ2)Λ4
h (ξ,Λ3)− h

(
▽(ξ∧SΛ2)Λ4

ξ,Λ3

)
−h

(
ξ,▽(ξ∧SΛ2)Λ4

Λ3

)
= (c+1)−4m

2 ϕη (Λ4)h (Λ2,Λ3) ,

(37)

(
▽̃Λ4

h
)
((ξ ∧S Λ2) ξ,Λ3) =

(
▽̃Λ4

h
)
(S (Λ2, ξ) ξ − S (ξ, ξ) Λ2,Λ3)

= (c+1)−4m
2

{(
▽̃Λ4

h
)
(−η (Λ2) ξ + Λ2,Λ3)

}
= (c+1)−4m

2

{
−▽⊥

Λ4
h (η (Λ2) ξ,Λ3) + h (▽Λ4

η (Λ2) ξ,Λ3)

h (η (Λ2) ξ,▽Λ4
Λ3) +

(
▽̃Λ4

h
)
(Λ2,Λ3)

}
= (c+1)−4m

2

{(
▽̃Λ4

h
)
(Λ2,Λ3)− ϕη (Λ2)h (Λ4,Λ3)

}
,

(38)

38



Pseudoparallel submanifolds Of Lorentz-Sasakian space forms

(
▽̃Λ4

h
)
(ξ, (ξ ∧S Λ2) Λ3) =

(
▽̃Λ4

h
)
(ξ, S (Λ2,Λ3) ξ − S (ξ,Λ3) Λ2)

=
(
▽̃Λ4

h
)
(ξ, S (Λ2,Λ3) ξ) +

(c+1)−4m
2

(
▽̃Λ4

h
)
(ξ, η (Λ3) ,Λ2)

= (c+1)−4m
2 ϕη (Λ3)h (Λ4,Λ2) .

(39)

If we substitute (33) , (34) , (35) , (36) , (37) , (38) , (39) for (32) , we obtain

R⊥ (ξ,Λ2)ϕh (Λ3,Λ4) + ϕη (Λ4)h (Λ2,Λ3)− ϕη (Λ2)h (Λ4,Λ3)

+η (Λ3)ϕh (Λ4,Λ2) +
(
▽̃Λ4

h
)
(Λ2,Λ3) = −L4

{
(c+1)−4m

2 ϕη (Λ4)h (Λ2,Λ3)

− (c+1)−4m
2 ϕη (Λ2)h (Λ4,Λ3) +

(c+1)−4m
2 ϕη (Λ3)h (Λ4,Λ2) +

(c+1)−4m
2

(
▽̃Λ4

h
)
(Λ2,Λ3)

} (40)

If we choose Λ3 = ξ in (40) and use (15) , we get(
▽̃Λ4

h
)
(Λ2, ξ) + ϕh (Λ4,Λ2) = − (c+1)−4m

2 L4

{(
▽̃Λ4

h
)
(Λ2, ξ)

+ϕh (Λ4,Λ2)} .
(41)

On the other hand, it is clear that (
▽̃Λ4

h
)
(ξ,Λ2) = ϕh (Λ2,Λ4) . (42)

If (42) is written instead of (41) , we obtain

2ϕh (Λ2,Λ4) = [4m− (c+ 1)]L4ϕh (Λ2,Λ4) .

It is clear from the last equality

h (Λ2,Λ4) = 0 or L4 =
2

4m− (c+ 1)
.

This completes the proof. ■

4. Total geodesic submanifolds on concircular and projective curvature tensor

In this section, the invariant submanifold Ψ of the (2m+1)−dimensional LSS−form Ψ̃ (c) will be considered
with the concircular and projective curvature tensor. The concircular curvature tensor is defined as

Z̃ (Λ1,Λ2) Λ3 = R (Λ1,Λ2) Λ3 −
r

2m (2m+ 1)
[g (Λ2,Λ3) Λ1 − g (Λ1,Λ3) Λ2] , (43)

for all Λ1,Λ2,Λ3 ∈ χ
(
Ψ̃
)
. If we choose Λ1 = Λ3 = ξ in (43) and use (6) , we get

Z̃ (ξ,Λ2) ξ = −
[
1 +

r

2m (2m+ 1)

]
[−η (Λ2) ξ + Λ2] . (44)

Theorem 4.1. Let Ψ be the invariant submanifold of the (2m+1)−dimensional LSS−form Ψ̃ (c). If Ψ satisfies

the condition Z̃ (Λ1,Λ2)h = L5Q (g, h) ,then Ψ is either total geodesic or L5 = −
(
1 + r

2m(2m+1)

)
.
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Proof. Let’s assume that Ψ satisfies the condition(
Z̃ (Λ1,Λ2)h

)
(Λ4,Λ5) = L5Q (g, h) (Λ4,Λ5; Λ1,Λ2) , (45)

for all Λ1,Λ2,Λ4,Λ5 ∈ Γ (TΨ) . If we choose Λ1 = Λ5 = ξ in (45) and use (15) , we get

−h
(
Λ4, Z̃ (ξ,Λ2) ξ

)
= −L5h (Λ4,Λ2) . (46)

If we use (44) out of (46) , we obtain[(
1 +

r

2m (2m+ 1)

)
+ L5

]
h (Λ4,Λ2) = 0.

This completes the proof. ■

Theorem 4.2. Let Ψ be the invariant submanifold of the (2m+1)−dimensional LSS−form Ψ̃ (c). If Ψ satisfies
the condition Z̃ (Λ1,Λ2)h = L6Q (S, h) , then Ψ is total geodesic or L6 = 2[r+2m(2m+1)]

2m(2m+1)[(c+1)−4m] and (c+ 1) ̸=
4m.

Proof. Let’s assume that Ψ satisfies the condition(
Z̃ (Λ1,Λ2)h

)
(Λ4,Λ5) = L6Q (S, h) (Λ4,Λ5; Λ1,Λ2) , (47)

for all Λ1,Λ2,Λ4,Λ5 ∈ Γ (TΨ) . If we choose Λ1 = Λ5 = ξ in (47) and use (15) , we get

−h
(
Λ4, Z̃ (ξ,Λ2) ξ

)
= L6S (ξ, ξ)h (Λ4,Λ2) . (48)

If we use (44) and (8) out of (48) , we obtain[(
1 +

r

2m (2m+ 1)

)
+

(
(c+ 1)− 4m

2

)
L6

]
h (Λ4,Λ2) = 0.

This completes the proof. ■

The projective curvature tensor is defined as

P (Λ1,Λ2) Λ3 = R (Λ1,Λ2) Λ3 −
1

2m
[S (Λ2,Λ3) Λ1 − S (Λ1,Λ3) Λ2] , (49)

for all Λ1,Λ2,Λ3 ∈ χ
(
Ψ̃
)
. If we choose Λ1 = Λ3 = ξ in (49) and use (6) , (8) , we get

P (ξ,Λ2) ξ =
c+ 1

4m
[η (Λ2) ξ − Λ2] . (50)

Theorem 4.3. Let Ψ be the invariant submanifold of the (2m+1)−dimensional LSS−form Ψ̃ (c). If Ψ satisfies
the condition P (Λ1,Λ2)h = L7Q (g, h) , then Ψ is either total geodesic or L7 = − c+1

4m .

Proof. Let’s assume that Ψ satisfies the condition

(P (Λ1,Λ2)h) (Λ4,Λ5) = L7Q (g, h) (Λ4,Λ5; Λ1,Λ2) , (51)

for all Λ1,Λ2,Λ4,Λ5 ∈ Γ (TΨ) . If we choose Λ1 = Λ5 = ξ in (51) and use (15) , we get

−h (Λ4, P (ξ,Λ2) ξ) = −L7h (Λ4,Λ2) . (52)

If we use (50) out of (52) , we obtain [
c+ 1

4m
+ L7

]
h (Λ4,Λ2) = 0.

This completes the proof. ■
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Theorem 4.4. Let Ψ be the invariant submanifold of the (2m+1)−dimensional LSS−form Ψ̃ (c). If Ψ satisfies
the condition P (Λ1,Λ2)h = L8Q (S, h) , then Ψ is either total geodesic or L8 = 2(c+1)

4m[4m−(c+1)] and (c+ 1) ̸=
4m.

Proof. Let’s assume that Ψ satisfies the condition

(P (Λ1,Λ2)h) (Λ4,Λ5) = L8Q (S, h) (Λ4,Λ5; Λ1,Λ2) , (53)

for all Λ1,Λ2,Λ4,Λ5 ∈ Γ (TΨ) . If we choose Λ1 = Λ5 = ξ in (53) and use (15) , we get

−h (Λ4, P (ξ,Λ2) ξ) = L8S (ξ, ξ)h (Λ4,Λ2) . (54)

If we use (50) and (8) out of (54) , we obtain[
c+ 1

4m
+

[(c+ 1)− 4m]

2
L8

]
h (Λ4,Λ2) = 0.

This completes the proof. ■
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Abstract. Let Zn = 1, 2, 3, . . . denote a distinct non-negative n-order collection of numbers, and αω∗
n denote a star-like

transformation semigroup. The characterization of Pω∗
n star-like partial on the αω∗

n leads to the semigroup of linear operators.
The research produced a completely new classical metamorphosis that was divided into inner product and norm parts. The
study demonstrated that any specific star-like transformation λ∗

i , β
∗
j ∈ V ∗ is stable and uniformly continuous if there exists

Tϑ∗
: (V ∗, ⟨v − α∗u, u− α∗v⟩) −→ (V ∗, ⟨u− α∗v, v − α∗u⟩) with a star-like polygon ϑ∗ of ϑ∗V ∗ such that Tϑ∗

(v∗) =

ϑ∗V ∗. Every star-like composite vector space V ∗ ∈ Pω∗
n can be uniquely decomposed as the sum of subspaces w∗

i ≤ W ∗
i+1

and s∗j ≤ S∗
j+1 such that W ∗

i+1 + S∗
j+1 ⊆ V ∗ ∈ Pω∗

n. The study suggests that the research’s findings be used to address
issues in the mathematical disciplines of genetics, engineering, code theory, and telecommunications.

AMS Subject Classifications: 20M20, 20M20.

Keywords: Star-like transformation, semigroup, innerproduct, vector space.
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1. Introduction and Background

The study of vector spaces and vector space functions is known as linear algebra. They form the fundamental
objects of study in this paper. Once a star-like vector space is defined, its properties will be investigated. A
non-empty star-like transformation αω∗

n on which a polygon

ϑ∗ : αω∗
n × αω∗

n −→ αω∗
n

is defined as a star-like groupoid (αω∗
n, ϑ

∗). Then, (αω∗
n, ϑ

∗) is a star-like semigroup if the operation ϑ∗ disk
associative.
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Similar to how sets play a vital role in mathematics, mapping also aids in understanding the relationships
between various algebraic structures. Instead of using the term mapping, which refers to the former,
transformation is utilized. The publications of [1] and [2] provide additional details on semigroup mappings.
According to the terminology employed by [3] the domain and image set of any given transformation λ∗

i ∈ αω∗
n

were indicated by D(λ∗
i ) and I(λ∗

i ) respectively.

Let (-) signify the empty set and
(
u v l

r s t

)
be depicted as

(
r s t

)
not

(
r, s, t

)
not making the cycle

notation more complex to the point that any transformation that contains an empty map is referred to as a star-like
reducible transformation Pω∗

n.

If a mapping Pω∗
n is a star-like linear vector in a semigroup such that any star-like vector can be metricized

using the Hamming distance function method for every i, j ∈ Zn; i ≤ j ⇒ ri ≤ jr, then it is said to be star-like
order-preserving. One of the most potential transformation families for the current and upcoming generations
of academics is created by the associative function composition [1]. Hence, the new classical finite αωn∗
transformation semigroups.

Assuming that λ∗
i ∈ Pω∗

n is a star-like transformation, under the composition of mapping it generates another
star-like transformation of its form with trace of any composed star-like matrix β∗

j ∈ M∗ ⊆ Bω∗
n where tr(βj∗)

stands for the sum of its star-like diagonal points consisting of a finitely star-like polygon ϑ∗ ∈ ϑ∗V ∗. Then the
star-like polygon (transformation) ϑ∗ : R∗

0 −→ Q is a rule f : A −→ Q for some A ̸= ∅, A ⊆ R∗
0, where R∗

0 is a
star-like disk operator and Pω∗

n(R
∗
0) denotes the set of all star-like reducible transformations whose domain and

rank are subsets of R∗
0, then β∗ × λ∗ of β∗, λ∗ ∈ Pω∗

n(R
∗
0) is the transformation with domain

Q = (I(β∗) ∩D(λ∗))β−1∗

so that for each r∗0 ∈ R∗
0,

r∗0(β
∗ × λ∗) = (r∗0β

∗)λ∗.

Given two associated star-like subspaces of V ∗, W ∗
i+1 and S∗

j+1 with the rule ϑ∗ : W ∗
i+1 −→ S∗

j+1; β∗
j ∈

Pω∗
n(V

∗). The domain and rank of β∗
j are subspaces of V ∗ vector space V ∗, and a subspace W ∗

i+1 of V ∗

whenever Pω∗
n(V

∗,W ∗
i+1 −→ S∗

j+1) = {β∗ ∈ Pω∗
n(V

∗) : α∗V ∗ ⊆ αω∗
n if the following conditions are satisfy

(i) the range space W ∗
i+1(β

∗) of β∗, which consists of all β∗u with u in V ∗

(ii) the null space S∗
j+1(β

∗) of β∗, which consists of all u in V ∗ such that uβ∗ = 0.

If αω∗
n is considered to be star-like, then

|v − α∗u| ≤ |u− α∗v| (1.1)

for all u, v ∈ D(λ∗
i , β

∗
j ) and α∗u, α∗v ∈ I(β∗

j , λ
∗
i ) where

V ∗ =

(
u v . . . uvi,j

α∗u α∗v . . . α∗uvi,j

)
= (u, v, uvi,j , α

∗u, α∗v, α∗uvi,j). (1.2)

The inner product was characterized by star-like transformation semigroups αω∗
n such that for all β∗, λ∗ ∈ Pω∗

n

λ∗
i =

〈(
u v u . . . uvi,j
q1 q2 q3 . . . qi,j

)〉
, and β∗

j =

〈(
v u v . . . vuj,i

k1 k2 k3 . . . kj,i

)〉
equals to

⟨β∗⟩ = ⟨(β∗k1, β
∗k2, . . . β

∗ki,j)⟩ ,

⟨λ∗⟩ = ⟨(λ∗q1, λ
∗q2, . . . λ

∗qj,i)⟩ .

44



Certain operator algebras of star-like reducible Pω∗
n transformations

Then Uj = β∗
j and Ui = λi such that

U∗
i = (q + 1, q + 1− i), U∗

j = (k + 1, k + 1− j)

which implies

⟨Ui, Uj⟩ =
{(

u1 u2 u3 . . . ui+1

k1 k2 k3 . . . ki+1

)
,

(
v1 v2 v3 . . . vj+1

q1 q2 q3 . . . qj+1

)}
(1.3)

with the star-like disk operator R∗
0 ≥ 0 on the inner product of a star-like vector space V ∗ : [0,∞) → [0,∞)

such that 0α∗ = 0, and β∗(R∗
0) ≤ R∗

0, in which

∥⟨R∗
0(k), (u)⟩∥ ≤ ∥⟨R∗

0(v), (q)⟩∥ , (1.4)

such that ki,j , and qi,j are lower diagonal elements and upper diagonal elements of λ∗
i , β

∗
j ∈ Pω∗

n star-like
reducible semigroup respectively.

Let Mω∗
n denote a star-like monoid semigroup with unique identity 1 ∈ Mω∗

n : 1λ∗ = λ∗ = λ∗1 for all
λ∗ ∈ Mω∗

n. Putting λ0∗ = 1 (index law) holds for all b, d in N ∪ ∅ then αω∗
n contains a unique element 0 (zero):

β∗λ∗ = λ∗β∗

0β∗ = 0

λ∗0 = 0

For all β∗, λ∗ in Pω∗
n is disk associative, by equation (1.1) Pω∗

n ∪ ∅ is a semigroup obtained from Pω∗
n by

adjoining zero where necessary. If a semigroup Pω∗
n has the property that for all β∗, λ∗ ∈ Pω∗

n:
λ0∗ = 1, for all b, d ∈ R. Then

λb∗λd∗ = λb+d∗ =⇒ (λb)d∗ = λbd∗.

Thus, equations (1.3) and equation give useful characterizations of inner product normed space on the star-like
vector of a star-like mapping such that the star-like vector of order n in equations (1.1) and (1.2) for any given
β∗
i ∈ Pω∗

n is given by

β∗
i, j =

{
β∗
i,n −D(λ∗

i,n)

V ∗
i,j − n

(1.5)

such that

V ∗
i,j =

(
β∗
i β∗

j . . . β∗
n

λ∗
i λ∗

i . . . λ∗
n

)
The star-like order reversing of V ∗

i, j in (1.5) generates elements of Pω∗
n. Hence, a star-like vector space is a triple

(V ∗, +,×) over Pω∗
n(n, F ) comprised of a set V ∗ and Fn along with the operation ′+′ and ′×′ by real integers

such that the operations most produce vectors in the space and the following statements must be true;

(i) if β∗, λ∗ are vectors in V ∗ then β∗ + λ∗ is a vector in V ∗

(ii) if β∗ is a vector in V ∗ and b is a star-like scalar in Pω∗
n(n, F ) ∈ R then bβ∗ is a vector in V ∗.

As a result, a star-like vector space is a triple (V ∗, +,×) over Pω∗
n(n, F ) consisting of a set V ∗ and Fn as well

as the operations ′+′ and ′×′ by real integer and star-like disk operator such that the operations most produce
star-like vectors in the space and the following must be true:

(i) if β∗, λ∗ are vectors in V ∗ then β∗ + λ∗ is a vector in V ∗
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(ii) if β∗ is a vector in V ∗ and b is a star-like scalar in Pω∗
n(n, F ) ∈ R then β∗ is a vector in V ∗.

That is, given two vectors β∗, λ∗ in V ∗
i, j of equation (1.5), it associates a new vector in V ∗

i,j denoted by
β∗ + λ∗:

(+) : V ∗
i, j × V ∗

i, j −→ V ∗
i, j

(β∗, λ∗) −→ β∗ + λ∗

and given a vector β∗ in V ∗
i, j and a star-like disk operator r∗0 ∈ R∗

0, it associate a new vector in r∗0β
∗ ∈ V ∗

i, j such
that

(×) : R× V ∗
i, j −→ V ∗

i, j

(r∗0 , v
∗) −→ r∗0v

∗.

Let V ∗ ∈ Pω∗
n(n, F ) represent a star-like vector space. A mapping Tϑ∗

: V ∗ −→ V ∗ is a star-like mapping
if there exists a star-like disk operator (constant) r∗0 ⊆ V ∗ with 0 ≤ b ≤ 1 such that

V ∗(Tϑ∗
(β∗), λ∗) ≤ r∗0V

∗(Tϑ∗
(λ∗), β∗) (1.6)

As a result, a star-like map points closer diagonally together. For every β∗, λ∗ ∈ V ∗ and r ≤ 0, all points λ∗ in
the ball Br(β

∗) are mapped diagonally into a ball Bs(T
∗(β∗)) with s ≤ r. This is depicted in 1. It also follows

from equation (1.3) and (1.5) that a star-like mapping is uniformly continuous. If Tϑ∗
: V ∗ −→ V ∗ then a point

v∗ ∈ V ∗ such that ∣∣∣∣∣∣Tϑ∗
(v∗)

∣∣∣∣∣∣ = ||r∗0V ∗|| (1.7)

is called a star-like fixed point of Tϑ∗

The following is a partial list of papers and books:[4], [5], [6], [7], and [10] for basic and standard notions
in transformation semigroup theory. [8] factorized assertions about the relationships between metric spaces,
normed linear spaces, and inner product spaces. Refer to [9] for an introduction to functional analysis with
algebraic applications. The characterization relations of algebraic structure to linear operators have not been
investigated on Pω∗

n, hence the need for this research.
That exists between metric spaces, normed linear spaces, and inner product spaces.

2. Preliminary

There is a need to demonstrate the application of algebraic theory to other relevant pure mathematical topics.
The research study created mathematical relationships to connect some operator algebras with transformation
semigroups. Some fundamental concepts and preliminary information that would be required in the following
part were defined:

Definition 2.1. Star-like Mapping (−→∗): Consider the star-like sets of disk operators R∗
n and Q∗

n to be non-
empty. A star-like rule ϑ∗ : R∗

n −→∗ Q∗
n is a function ϑ∗ that transforms Q∗

n into R∗
n.

(i) D(ϑ∗) = R∗
n

(ii) for every r, n, k
′
, l

′ ∈ ρ∗ =⇒ r = k
′
, n = l

′
.

Definition 2.2. Star-like fixed point: A fixed point element m∗ ∈ I(β∗) of Pω∗
n is a function ϑ∗ : β∗ −→ β∗

such that f(β∗) = |m∗(β∗)|. It is read that β∗ fixes m∗.

Definition 2.3. Star-like vector space: A triple (V ∗,+,×) is a star-like space V ∗ ⊆ Pω∗
n containing a set of

mapping (vectors) and star-like operator + and × by real integer as follows:
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(i) Given two vectors β∗, λ∗ ∈ V ∗, a new star-like vector in V ∗ denoted by β∗ + λ∗ is obtained

(+) : V ∗ × V ∗ −→ V ∗

(β∗λ∗) −→ β∗ + λ∗

(ii) Given a star-like vector β∗ ∈ V ∗ and a real star-like disk operator r∗0 ∈ R∗
0, associates a new star-like

vector in V ∗ denoted by r∗0V
∗ and a real number b ∈ R so that

(×) : R× V ∗ −→V ∗

(r∗0 , V
∗) −→r∗0V

∗,

Then, (V ∗, +,×) is a (real) star-like vector space V ∗ if

(i) (β∗ + λ∗) + γ∗ = β∗ + (λ∗ + γ∗)

(ii) 0 ∈ V ∗ such that β∗ + 0 = 0 + β∗ = β∗

(iii) If β∗ ∈ V ∗ there exists −β∗ ⊆ V ∗ which satisfies β∗ + (−β∗) = 0

(iv) β∗ + λ∗ = λ∗ + β∗

(v) (r∗0 b)× λ∗ = r∗0 × (b× λ∗), for all r∗0 , b ∈ R

(vi) r∗0 × (β∗ + λ∗) = r∗0β
∗ + r∗0λ

∗, for every β∗, λ∗ ⊆ V ∗

(vii) (r∗0 b)× β∗ = r∗0 × (bβ∗)

(viii) 1β∗ = β∗ for every β∗, λ∗, γ∗ ⊆ V ∗

Definition 2.4. Supplementary subspaces: Let W ∗
i+1, S

∗
j+1 ∈ V ∗ be two subspaces of a star-like vector space

V ∗, Then W ∗
i+1 and S∗

j+1 are said to be supplementary subspaces if

W ∗
i+1 + S∗

j+1 = V ∗and W ∗
i+1

⋂
S∗
j+1 = ⟨0⟩ .

Definition 2.5. Star-like inner product space: Let (V ∗,+,×) represent a star-like vector space over the field
Pωn(n, F ). A star-like inner product is a space function ⟨×,×⟩ : V ∗ × V ∗ −→ R that assigns to each ordered
pair (γ∗, λ∗) in V ∗ and a scalar (real number) given that the following propositions are true.

(i) ⟨γ∗, γ∗⟩ ≥ 0 and ⟨γ∗, γ∗⟩ = 0 if and only if γ∗ = 0 for all γ∗ ∈ V ∗

(ii) ⟨r∗0γ∗, λ∗⟩ = r∗0 ⟨γ∗, λ∗⟩ for r∗0 ∈ R

(iii) ⟨γ∗, λ∗⟩ = ⟨λ∗, γ∗⟩ for all γ∗, λ∗ ∈ V ∗

(iv) ⟨γ∗, r∗0λ
∗ + bβ∗⟩ = r∗0 ⟨γ∗, λ∗⟩+ b ⟨γ∗, β∗⟩ for every β∗, λ∗, γ∗ ∈ V ∗.

Definition 2.6. In the case of any particular star-like transformation λ∗
i ∈ Pω∗

n, there exists a unique identity
star-like rule e∗λ∗

i
: λ∗

i −→ λ∗
i defined by eλ∗

i

∗(u) = u for all u ∈ λ∗
i .
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3. Main Results

The following results explain how particular operator algebras affect star-like Pω∗
n reducible transformation

semigroups.

Lemma 3.1. A R∗
0 ⊆ V ∗ in Pω∗

n element is a star-like disk operator if and only if R∗
0f(λ

∗
i ) ≤ I(R∗

0).

Proof. Suppose R∗
0f(λ

∗
i ) ≤ I(R∗

0), there exist λ∗
i s

∗
i ∈ I(R∗

0) such that λ∗
i s

∗
i (R

∗
0) = λ∗

i s
∗
i .

If
I(R∗

0) = {λ∗
i s

∗
iR

∗
0 : λ∗

i s
∗
i ∈ Pω∗

n} ,

Then
R∗

0 ∈ Pω∗
n ⇐⇒ |R∗

0(v)−R∗
0(λ

∗
iα

∗u)| ≤ |R∗
0(λ

∗
i u)−R∗

0(α
∗v)| ≤ R∗

0

Implies
λ∗
i v {|R∗

0(v)−R∗
0(λ

∗
iα

∗u)| ≤ |R∗
0(λ

∗
i u)−R∗

0(α
∗v)|} ≤ λ∗

i s
∗
iR

∗
0.

By (1.1)
|R∗

0(u)−R∗
0(λ

∗
iα

∗u)| ≤ |R∗
0(λ

∗
i v)−R∗

0(α
∗v)| ≤ KR∗

0

shows that
(λ∗

iα
∗vKR∗

0
)R∗

0 ≤ α∗uR∗
0

and
λ∗
i s

∗
iR

∗
0 ≤ λ∗

i s
∗
i .

Thus, R∗
0f(λ

∗
i ) ≤ I(R∗

0), for every λ∗
i s

∗
i ∈ I(R∗

0). ■

Theorem 3.2. Assume ϑ∗V ∗ is a star-like disknorm of V ∗ ∈ αω∗
n(n, F ) such that Pω∗

n ⊆ αω∗
n then the

following are true:

i Every element λ∗
n ∈ Pω∗

n is star-like reducible

ii Pω∗
n contains w+(ϑ∗V ∗) ≤ w−(ϑ∗V ∗)

iii There exists a unique r∗0 ∈ Pω∗
n(V

∗) : {r∗0 = ⟨Max(n,w+V ∗) × Min(n,w−V ∗)⟩} and

⟨(n,w+(V ∗), w−(V ∗))⟩ =
∑n

ϑ∗
i =1

(
2ϑ

∗−1

ϑ∗ + n− 1

)
such that r∗0 ⊆ R∗

0 is the star-like disk operator

degree of Pω∗
n.

Proof. (i) =⇒ (ii)

If r∗0 ∈ ϑ∗V ∗ is a star-like reducible degree order, then b ∈ Zn is in the range set d ∈ Zn : λ∗
n(b)d. Because

ϑ∗V ∗ is a star-like vector
(λ∗

n(b)ϑ
∗V ∗) = λ∗

n(b)ϑ
∗V ∗ (3.1)

Implies
λ∗
n(dϑ

∗V ∗) = dϑ∗V ∗. (3.2)

Then 〈
Max(n,w+ϑ∗V ∗)

〉
≤

〈
Min(n,w−ϑ∗V ∗)

〉
for some b, d ∈ D(λ∗

n) with a star-like disknorm

λ∗
n(bV

∗) = dv∗ : r∗0(λ
∗
n) ⩽ dV ∗. (3.3)

48



Certain operator algebras of star-like reducible Pω∗
n transformations

(ii) −→ (iii)

Let ϑ∗ ∈ V ∗
n : ϑ∗ = w+(λ∗

n)× w−(λ∗
n).

By star-like folding principle and composition of star-like reducible transformation.

D
〈
Max(n,w+(V ∗))

〉
gives the star-like order-reversing of

I
〈
Min(n,w−((V ∗))

〉
.

The theorem follows from 2
Since ϑ∗V ∗ possesses a reducible order of F (r∗0) in V ∗ ⊆ Pω∗

n, then F (n;w+(λ∗
n), w

−(λ∗
n) generates a

finitely reducible recurrence star-like disknorm:

〈
(n,w+(V ∗), w−(V ∗))

〉
=

n∑
ϑ∗
i =1

(
2ϑ

∗−1

ϑ∗ + n− 1

)
(3.4)

(iii) −→ (i)

Assuming λ∗
n ∈ Pω∗

n is star-like reducible such that ϑ∗V ∗ is a star-like vector space with a star-like disknorm,
then for any given star-like transformation

λ∗ ∈ D(ϑ∗V ∗
n ) : r

∗
0(λ

∗
n) ≤ Zn

such that bi+1 − bi is the domain and dj+1 − dj is the image order of λ∗
n ⊆ ϑ∗V ∗

ϑ∗V ∗
n | bi+1 − bi |≤ ϑ∗V ∗

n | dj+1 − dj | (3.5)

then r∗0 ∈ R∗
n : ϑ∗V ∗

n × ϑ∗V ∗
n = ϑ∗V ∗

n which completes the proof. ■

Proposition 3.3. Given a star-like vector space (V ∗,+,×), the following statements are true:

(i) 0× λ∗ = 0 for any λ∗ ∈ V ∗

(ii) (−r∗0)× λ∗ = r∗0 × (λ∗) for any r∗0 ∈ R

(iii) r∗0 × 0 = 0 for any r∗0 ∈ R

(iv) If r∗0 × λ∗ = 0 then either r∗0 = 0 or λ∗ = 0.

Proof. (i) Suppose λ∗ ∈ V ∗ such that V ∗ ∈ λω∗
n(n, F ), by definition 2.5 using (viii), (v) and (ii) gives

λ∗ + 0× λ∗ = 1× λ∗ + 0× λ∗

= (1 + 0)× λ∗ = λ∗ + 0.

By adding (−λ∗) to both sides of the equality: −λ∗ + λ∗ + 0× λ∗ = −λ∗ + λ∗ + 0.
Thus, 0× λ∗ = 0.

(ii) Let −(r∗0 × λ∗) be an element in V ∗ that satisfies property (iii) in definition 2.5, replace λ∗ by r∗0 × λ∗.
Now r∗0 × 0 = 0 for any r∗0 ∈ R∗

0 holds if −(r∗0 × λ∗) = (−r∗0)× λ∗.
Using (−r∗0)× λ∗ = r∗0 × (−λ∗) and r∗0 × λ∗ = 0

where (−r∗0)× λ∗ + r∗0 × λ∗ = (−r∗0 + r∗0)× λ∗ = 0× λ∗ = 0.

Then, (−r∗0)× λ∗ = r∗0 × (−λ∗) = 0.

(iii) In general, if λ∗
j ∈ V ∗ we see that:

r∗0 × 0 = r∗0 × (λ∗
j − λ∗

j ) = r∗0 × λ∗
j + r∗0 × (−λ∗

j )

= r∗0 × λ∗
j + r∗0 ×

{
(−1)× λ∗

j

}
= r∗0 × λ∗

j + (−r∗0)× λ∗
j

= r∗0 × λ∗
j − r∗0λ

∗
j = 0
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Therefore, r∗0 × 0 = 0 for any λ∗
j ∈ αω∗

n(n, F ).

(iv) Suppose r∗0 ̸= 0, and r∗0λ
∗ = 0.

Consider 1
r∗0

, then,

λ∗ = 1λ∗ = (
1

r∗0
r∗0)λ

∗

=
1

r∗0
(r∗0λ

∗) =
1

r∗0
0 = 0

Thus, if r∗0 = 0, then λ∗ = 0 or r∗0 . A reducible star-like transformation of Pω∗
n is the subset K∗ ⊂ αω∗

n, which
is closed by the same operation on Pω∗

n. If K∗ ⊂ αω∗
n, then it is a legitimate star-like sub-vector of V ∗

n that is
not equivalent to |Pω∗

n|. Then

∩j∈JK
∗
j ̸= ∅ =⇒ ∩j∈JK

∗
j ⊆ Pω∗

n.

Similarly, S∗
j+1 ⊆ V ∗ ∈ αω∗

n(n, F ) is a star-like vector addition and scalar multiplication closed subspace of
V ∗.
Therefore a star-like subspace S∗

j+1 ⊆ V ∗ in any given star-like triple (V ∗, +, ×) is a vector subspace of V ∗ if
it is a vector space with the induced operation and still satisfies properties (i) - (vii) of definition 2.5. ■

Proposition 3.4. Any star-like subset S∗
i+j of V ∗ is a star-like subspace if and only if the following requirements

are met:

(i) w∗
i + s∗j ∈ V ∗

i,j , for any w∗
i , s

∗
j ∈ V ∗

(ii) b s∗i+j ∈ Pω∗ for any b ∈ R.

Proof. (i) Given any Si+j ∈ V ∗ such that w∗
i + s∗j ⊆ S∗

i+j and any star-like real number b ∈ R such that
w∗

i + s∗j ≤ S∗
i+j . As a result of the limited vectors being well defined on S∗

i+j , the outcome vector is still in
S∗
i+j .

Furthermore, w∗
i + s∗j ∈ V ∗ : 0 = 0(w∗

i + s∗j ) ∈ S∗
i+j and −S∗

i+j = (−1)w∗
i + s∗jV

∗.

(ii) Suppose V ∗ ∈ αω∗
n(n, F ) and S∗

i+j ∈ V ∗ with i, j ∈ Zi ∪ ∅; Zi(i = {0, 1, 2,×}) : ∅ ∈ R, by the
properties of V ∗ ∈ Pω∗

n it is obvious that S∗
i+j is star-like subspace.

Therefore, by properties (i) - (iv) of definition 2.6, the proof is complete. ■

Remark 3.5. A star-like subset containing only zero vector, z∗ ∈ V ∗ = ∅, and the whole space V ∗ are trivial
subspaces, in which z∗ is the smallest possible star-like subspace and V ∗ ⊆ Pω∗ is the largest one.

Proposition 3.6. Let (V ∗, +, ×) represent a star-like vector space and W ∗
i+1, S∗

j+1 represent two star-like
subspaces. The following are interchangeable:

(i) W ∗
i+1

⋂
S∗
j+1 = ⟨1⟩

(ii) There exists a unique couple (w∗
i , s

∗
j ) ∈ W ∗

i+1×S∗
j+1 for each r∗0 ∈ W ∗

i+1+S∗
j+1 such that r∗0 = w∗

i +s∗j .

Proof. (i) =⇒ (ii) Assume a star-like vector operator r∗0 ∈ W ∗
i+1 + S∗

j+1 n be expressed in two paths: r∗0 =

u∗
i,j + v∗j,i and r∗0 = v∗i,j + u∗

j,i with uv∗i,j ∈ W ∗
i+1, and vu∗

j,i ∈ S∗
j+1.

Take note that
u∗
i,j − v∗i,j ≤ v∗j,i − u∗

j,i ∈ W ∗
i+1

⋂
S∗
j+1 = ⟨1⟩ .

As a result, r∗0v ≤ α∗u and r∗0u ≤ α∗v are equal
(ii) =⇒ (i) suppose by contradiction, there exists 0 ̸= r∗0 ∈ W ∗

i+1

⋂
S∗
j+1.

Therefore,
r∗0 = 0 + r∗0 ≤ r∗0 + 0 ∈ W ∗

i+1

⋂
S∗
j+1.
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This contradict the initial proposed statement, because any star-like vector in the same transformation can be
expressed uniquely as the combination of vectors in W ∗

i+1 and S∗
j+1, this means that r∗0V

∗ can be decomposed
in two different ways as a vector of W ∗

i+1 + S∗
j+1 ∈ V ∗ ⊆ Pω∗

n. ■

Remark 3.7. Every vector of equation (1.5) can be uniquely decomposed in proposition ?? as the combination
of a star-like vector in W ∗

i+1 and S∗
j+1.

Theorem 3.8. Let ∥V ∗∥ denote a star-like norm vector space with the disk operator r∗0 and let u∗ and v∗ be any
two star-like vectors in V ∗ then 2d(u∗, v∗) = ∥E∗(u∗)− F ∗(v∗)∥+ 2ϕr∗0 .

Proof. By a star-like operator

r∗0(u
∗) = r∗0(u

∗ − v∗ + v∗) ≤ r∗0(u
∗ − u∗ + v∗) + r∗0(V

∗)

which is equivalent to
E∗ − F ∗

2
+ ϕr∗0(u

∗)− r∗0(v
∗) ≤ 1

2
V ∗r∗0(v

∗ − u∗)

Then,

r∗0(v
∗)− r∗0(u

∗) ≤ r∗0(u
∗ − v∗) =

1

2
V ∗r∗0(v

∗u∗) (3.6)

It was deduced in equation (1.6) that r∗0 is a continuous star-like disk when using it as a norm on the star-like
vector space r∗0V

∗, using the absolute value as a norm on the real star-like space,

−2r∗0(v
∗ − u∗) ≤ E∗r∗0(v

∗)− F ∗r∗0(u
∗)

Gives
|r∗0(u∗)− v∗| ≤ 1

2
V ∗r∗0(u

∗ − v∗).

Given a star-like mapping

Tϑ∗
: (r∗0V

∗, ∥×∥) −→ (r∗0V
∗,

1

2
V ∗ ∥×∥)

such that a star-like operator r∗0 < b ≤ 1. Then

1

2
V ∗

∥∥∥E∗(Tϑ∗
(v∗), F ∗(u∗))

∥∥∥ ≤ 1

2
V ∗b

∥∥∥(Tϑ∗
(u∗), Tϑ∗

(v∗))
∥∥∥ (3.7)

As a result, the diagonal distance between two star-like vectors in a star-like disknorm space ϑ∗V ∗ is provided
by

2d(u∗, v∗) = ∥E∗(u∗)− F ∗(v∗)∥+ 2ϕr∗0 .

■

Example 3.9. Consider a star-like 3- dimensional real space R3 ∈ V ∗
i,j such that

V ∗
i,j =

(
β∗
i β∗

j . . . β∗
n

λ∗
i λ∗

i . . . λ∗
n

)
Then

R3 =


 β∗

1

β∗
2

β∗
3

 : β∗
1 , β

∗
2 , β

∗
3 ∈ R


with the usual operation + and × where

β∗ =

 β∗
1

β∗
2

β∗
3

 ,
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λ∗ =

λ∗
1

λ∗
2

λ∗
3

 .

Then

 β∗
1

β∗
2

β∗
3

+

λ∗
1

λ∗
2

λ∗
3

 =

 β∗
1 + λ∗

1

β∗
2 + λ∗

2

β∗
3 + λ∗

3

 such that

b

 β∗
1

β∗
2

α∗
3

 =

 bβ∗
1

bβ∗
2

bβ∗
3


for every β∗, λ∗ ∈ V ∗

i,j and b ∈ R.

Example 3.10. : Let V ∗
i,j = R be the star-like space of real number with usual star-like norm: Tϑ∗

: R −→ R
be defined by

Tϑ∗
(β∗) = 2β∗

given that α∗, β∗ ∈ V ∗
i,j ∥∥∥Tϑ∗

(β∗) ≤ V ∗
i,j − λ∗

∥∥∥ = ∥2β∗ − 2λ∗∥ = 2
∥∥V ∗

i,j − 1
∥∥

So Tϑ∗
is a star-like mapping shown in 1.

Lemma 3.11. Suppose ϑ∗ ⊆ R∗
0 is a star-like polygon with star-like inner angles of Area(R∗

0) = (
∑∞

n=1 λn)−
(n− 2)π. Then the star-like norm ∥ϑ∗∥ : ϑ∗V ∗ −→ R is then continuous.

Proof. Let ξ and δ be any star-like elements such that ξ > 0 and δ = ξ. The star-like convex polygon in ϑ∗

of R∗
0 can be strictly accomplished by arranging ϑ∗ so that the origin is in the interior of R∗

0 and projecting the
boundary of ϑ∗ on T ∗2 using

ϑ∗(i, j, k) =
(i, j, k)√

i2 + j2 + k2
. (3.8)

The vertices of ϑ∗
n correspond to a portion of T ∗2, the edges correspond to a portion of great circles of (ϑ∗

n),
and the faces correspond to the star-like polygon. The union of ϑ∗

0,+ · · · ϑ∗
n forms a star-like polygon on T ∗2.

U(R∗
0) + U(R∗

1) + · · ·+ U(R∗
n) = Area(T ∗2) (3.9)

For each β∗, and λ∗ in ϑ∗V ∗

ϑ∗(λ∗, β∗) = ϑ∗|λ∗ − β∗|.

generates
1

2
V ∗ =

E∗ − F ∗

2
+ ϑ∗

Such that every star-like edge is shared by two star-like polygons and ∥|v − α∗u| ≤ |u− α∗v|∥ : V ∗ −→ R
gives

n⋃
i=1

n⋃
j=1

v − α∗uij −
n⋃

i=1

u− α∗v +

n⋃
i=1

2T ∗2 = 4π (3.10)
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which shows that

ϑ∗T ∗2(∥λ∗∥ , ∥β∗∥) = ϑ∗T ∗2| ∥λ∗∥ − ϑ∗T ∗2 ∥β∗∥ |.
≤ ϑ∗T ∗2 ∥λ∗ − β∗∥ < ξ = δ

and since the sum of star-like polygons at each vertex is 2π we obtain

2πV ∗ − 2πE∗ + 2πF ∗ = 4π

As a result, ∥ϑ∗∥ is continuous on ϑ∗V ∗. ■

Theorem 3.12. Let V ∗
i,j ∈ Pω∗

n be a star-like symmetric reducible vector space, then for any ϑ∗ ∈ V ∗
i,j then

⟨ab⟩ ∥ ⟨cd⟩ such that ⟨abc⟩ ≤ ⟨bcd⟩ for any a, b, c, d of ϑ∗ ∈ V ∗
i,j .

Proof. Given that a and d are on the star-like opposite side of the line bc in a star-like symmetric reducible vector
space shown in 3 below,

Then, by using the folding principle of a star-like reducible transformation

⟨abc⟩ ≤|< abc |−→ ⟨bcd⟩ ≤|< bcd | . (3.11)

Then
⟨ab⟩ ≤ ⟨cd⟩ = ⟨v − α∗u⟩ ≤ ⟨u− α∗v⟩ (3.12)

Therefore, for any given reducible star-like vector space, the transverse of each V ∗
i,j ∈ Pω∗

n makes an equal
alternative angle on two sides because the lines of any reducible star-like vector space V ∗

i,j are always reducible.
■

Theorem 3.13. Assume V ∗ is a vector norm space with a star-like disknorm. Then, on V ∗, every star-like
mapping Tϑ∗

is uniformly continuous.

Proof. Given the fact that (V ∗, ∥×∥) denotes a star-like vector normed space and
Tϑ∗

: (V ∗, ∥×∥) −→ (V ∗, ∥×∥) represents a star-like map, so, by equation (1.3) a star-like disknorm ϑ∗ ∈ R is
defined, with 0 < ϑ∗ < 2. Where ξ > 0 denotes an arbitrary element and δ = ξ

β∗ > 0, then Then∥∥Tϑ∗
(β∗), (λ∗)

∥∥ < δ such that ∥∥∥Tϑ∗
(β∗), (λ∗)

∥∥∥ < ϑ∗ × ξ

α∗ = ξ

Then, according to equations (1.5) and (1.7), every star-like mapping is continuous, implying that Tϑ∗
is

uniformly continuous on ϑ∗V ∗. As a result, a star-like inner product space (V ∗, ⟨ϑ∗, ϑ∗⟩) is a normed vector
space with the disknorm ||ϑ∗|| =

√
⟨v − α∗u, u− α∗v⟩. ■

Theorem 3.14. Let β∗, λ∗ ∈ V ∗ then ⟨β∗, λ∗⟩ =
〈(

q − k

k − 1

)
=

(
q − (k − 1)

q − k

)〉
.

Proof. ;
Suppose D(β∗, λ∗) ⊆ Zn.If

F (q, k) = ⟨β∗, λ∗ ∈ V ∗ ⊆ Pω∗
n : r(β∗, λ∗)⟩ = ⟨I(β∗, λ∗)⟩ = k

Consider uijvji ∈ D(β∗, λ∗) such that

uij ⟨β∗, λ∗⟩ ≤ ⟨λ∗, β∗⟩ vji (3.13)
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Implies
⟨uijvji⟩ = 0

So, uijvji ⊆ V ∗ has a q − 0 + 1 disknorm degree of freedom with star-like order〈(
q − k

q − 1

)
=

(
q − (k − 1)

q − k

)〉
= 1.

Therefore, since for star-like reducible transformation, ϑ∗V ∗ is a star-like subspace of all star-like vector space
and that if ⟨uijvji⟩ ∈ V ∗ : r(β∗, λ∗) = k, irrespective of the value of q ≥ 2 whenever q = (q − 1), there are
exactly two star-like disknorm of rank such that

⟨β∗, λ∗⟩ =
〈(

q − (k − 1)

q − k

)〉
. ■

Theorem 3.15. If Tϑ∗
: (V ∗, ⟨v − α∗u, u− α∗v⟩) −→ (V ∗, ⟨u− α∗v, v − α∗u⟩) is a star-like map, then for

each positive integer n ∈ Zn , Tϑ∗
n∗ : (V ∗, ⟨ϑ∗, ϑ∗⟩) −→ (V ∗, ⟨ϑ∗, ϑ∗⟩) is also a star-like map.

Proof. Assume Tϑ∗
: (V ∗, ⟨v − α∗u, u− α∗v⟩) −→ (V ∗, ⟨u− α∗v, v − α∗u⟩). Because Tϑ∗

is a star-like
map, there exists a positive real integer b ∈ R that satisfies〈
Tϑ∗

ϑ∗(uijvji), ϑ
∗(vjiuij)

〉
≤ b

〈
Tϑ∗

ϑ∗(uij), (vji)
〉
. Then〈

T 2ϑ∗(uij), (vji)
〉
=

〈
Tϑ∗

(Tϑ∗
(ϑ∗(uij))), T

ϑ∗
(ϑ∗(vji))

〉
≤ b

〈
Tϑ∗

(Tϑ∗
(ϑ∗(vji))), T

ϑ∗
(ϑ∗(uij))

〉
≤ b2

〈
Tϑ∗

(ϑ∗(uij)), (ϑ
∗(vji))

〉
= d

〈
Tϑ∗

(λ∗), (β∗)
〉
.

Where d = b2 ≤ 2. So, for n = 2, see that

T 2ϑ∗ : (V ∗, ⟨v − α∗u, u− α∗v⟩) −→ (V ∗, ⟨u− α∗v, v − α∗u⟩)

is a star-like map. Now, for n = ϑ∗

Tn : (V ∗, ⟨v − α∗u, u− α∗v⟩) −→ (V ∗, ⟨u− α∗v, v − α∗u⟩)

is a star-like map:
⟨Tn(vji), (uij)⟩ ≤ bn ⟨Tn((uij), (vji))⟩

for every β∗, λ∗ ∈ V ∗. Then,〈
Tϑ∗+1(uij), (vji)

〉
=

〈
Tϑ∗+1(vji), T

ϑ∗
(Tϑ∗

(uij))
〉

≤ b
〈
Tϑ∗+1(uij), T

ϑ∗
(vji)

〉
≤ bϑ

∗+1
〈
Tϑ∗

(vji), (uij)
〉
.

Hence, by mathematical induction, we deduced that

Tϑ∗
: (V ∗, ⟨v − α∗u, u− α∗v⟩) −→ (V ∗, ⟨u− α∗v, v − α∗u⟩)

is a star-like map for all positive integers Zn = 1, 2, 3, · · · . ■
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Figure 1: A star-like map Tϑ∗ : Tϑ∗(v∗) = ϑ∗V ∗
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Figure 3:

56



MALAYA JOURNAL OF MATEMATIK
Malaya J. Mat. 12(01)(2024), 57–70.
http://doi.org/10.26637/mjm1201/005

A quasistatic elastic-viscoplastic contact problem with wear and
frictionless

AHMED HAMIDAT*1 AND ADEL AISSAOUI2

1 Laboratory of Operator Theory and PDE: Foundations and Applications, Faculty of Exact Sciences, University of El Oued 39000, El
Oued, Algeria.
2 Department of Mathematics, University of El Oued 39000 El Oued, Algeria.

Received 17 August 2022; Accepted 04 November 2023

Abstract. We consider here a frictionless contact problem for elastic-viscoplastic materials, in a quasi-static process. The
contact with a rigid base is modeled without friction with condition of wear and damage. The damage the elastic deformations
of the material is modeled by an internal variable of the body called the damage field. The problem formula is given as a
system that includes a variational equation with respect to the displacement field, and a variational inequality of the parabolic
type with respect to the damage field. We prove a weak solution existence and uniqueness theorem relating to the problem.
The methods utilised are grounded in the concept of monotonic operators, followed by fixed-point arguments.
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1. Introduction

Contact-related problems, whether involving friction or not, between deformable bodies or between a rigid
body and a deformable one, are frequently encountered in both industrial settings and everyday experiences.
Considering the importance and the multitude of these phenomena, vast studies have been undertaken, also
the literature concerning contact mechanics is vast and addresses as many different subjects as are modeling,
mathematical analysis or approximation numerical contact problems, see the works [1, 2, 10, 11].

This paper explores an investigation concerning boundary conditions that mirror real-world phenomena like
contact, material wear and damage. In our study, we adopt an elastic-viscoplastic constitutive law to describe the
behavior of the material.

To illustrate the procedure of deformation of an elastic-viscoplastic body with wear when it contacts with
a rigid body foundation, been touched on many quasi-static elastic-viscoplastic frictional Contact problems
involving wear have been introduced and investigated under various conditions. For further details, we direct
the reader to [5, 6] and the cited references therein.

∗Corresponding author. Email address: hamidat-ahmed@univ-eloued.dz (Ahmed Hamidat), aissaouiadel@gmail.com (Adel Aissaoui)

https://www.malayajournal.org/index.php/mjm/index ©2024 by the authors.
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Chen et al.[4] were among the first to provide error estimates for fully discrete schemes designed to solve
quasi-static viscoplastic frictional contact problems with wear. Gasinski et al. [7] introduced a mathematical
model to describe quasi-static frictional contact with wear between a thermo-viscoelastic body and a moving
foundation. In a recent development, Jureczka and Ochal [9] conducted numerical analysis and simulations for
the quasi-static elastic frictional contact problem that accounts for wear.

There are other real phenomena which are very important. Such as material damage and body adhesion.
The consideration of damage holds fundamental significance in the field of design engineering since it has a
direct impact on the useful lifespan of the designed structure or component. There exists a substantial body of
engineering literature devoted to this subject. Mathematical models that incorporate the influence of internal
material damage on the contact process have been thoroughly examined. In [8], novel comprehensive damage
models have been derived based on the principle of virtual power. Further mathematical analyses of one-
dimensional problems related to this topic can be found in [3]. the material damage is described by capacity
damage. The damage function α varies between 0 and 1. When α = 1 there is no damage in the material,
when α = 0 the material is completely damaged, when 0 ≺ α ≺ 1 the damage is partial. This work is a
continuation in this line of research to the mathematical study of a frictionlessly contact problem for Viscoplastic
materials, in a quasi-static process. The contact with a rigid base is modeled without friction with condition of
wear and damage. Our focus is to establish the existence of a unique weak solution for the abstract problem
with regularized boundary conditions. The structure of the remainder of this paper is as follows: In Section 2,
we provide an inventory of notations and outline the assumptions concerning the problem data. Additionally, we
state our primary result regarding the existence and uniqueness of solutions. In Section 3, we delve into the proof
of the theorem, where we consider the existence and uniqueness of the solution, utilizing arguments derived from
the theory of monotonic operators and the Banach fixed-point theorem. In Section 4, we present an illustrative
example that demonstrates the practical application of the abstract result.

Problem P

Find the displacement field u : [0, T ] → V , the stress field σ : [0, T ] → H, the damage field α : [0, T ] → R.

(Au̇ (t) ,v)V + (Bu (t) ,v)V +

 t∫
0

F (σ (s)−Au̇ (t) ,u (s) , α (s)) ds,v


H

= (f (t) ,v)V a.e. t ∈ (0, T ) ,

(1.1)

(α̇(t), ξ − α(t))L2(Ω) + a(α(t), ξ − α(t))

≥ (S(σ (s)−Au̇ (t) ,u(t), α(t)), ξ − α(t))L2(Ω), ξ ∈ K, a.e t ∈ (0, T ),
(1.2)

u(0) = u0, α(0) = α0. (1.3)

We have three spaces denoted as V , H, and K. These spaces correspond to admissible displacements, stress,
and damage, and they are all Hilbert spaces. Notably, K is a nonempty, closed, and convex set within the space
V . It is defined as follows:

K = {ζ ∈ V | 0 ≤ ζ(x) ≤ 1 a.e. x ∈ Ω}.

The operators A,B, and F are associated with the constitutive law governing an elastic-viscoplastic material
with damage. The functional S is determined by the source function of the damage and the friction occurring on
part Γ3. The data f relates to both traction forces and body forces. The functions u0 and α0 represent the initial
data for displacement and damage, respectively. We denote the displacement field as u and the stress tensor field
as σ. The constitutive law applied here pertains to an elastic-viscoplastic material with damage. The interval
[0, T ] signifies the time span of observation. A dot above u and α indicates the derivative of displacement u and
the derivative of damage α with respect to the variable t.
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2. Preliminaries and notion

In this section, we introduce important tools for our main results. Specifically, we denote:
Sd as the space comprising second-order symmetric tensors defined on Ω ⊂ Rd (where d = 2, 3), and with a

smooth boundary ∂Ω = Γ. We designate Γ3 as the boundary contact .
We define ν = (νi) as the unit outward normal vector, and x ∈ Ω = Ω ∪ ∂Ω represents the position vector.

It’s worth noting that unless specified otherwise, the indices i, j range from 1 to d, and we apply the summation
convention to repeated indices. For the sake of simplicity, we do not explicitly indicate the variables’ dependence
on x.

The inner products and norms for Rd and Sd are denoted as follows:

u ·w = uiwi ∥w∥Rd = (w,w)1/2 for all u = (ui) ,w = (wi) ∈ Rd,

σ.ϑ = σijϑij ∥ϑ∥Sd = (ϑ,ϑ)1/2 for all σ = (σij) ,ϑ = (ϑij) ∈ Sd,

We denote the following quantities:
u = (ui) represents the displacement vector.
σ = (σij) denotes the stress tensor.
ε(u) = (ε(uij)) represents the linear strain tensor.
Furthermore, we use the following notation for components of displacement u on Γ:
Normal component: uν = u.ν

Tangential component: uτ = u− uνν

Similar notation is applied to u̇ν and u̇τ , which represent the normal and tangential velocities on the boundary,
respectively.

Regarding the stress field σ on the boundary, we define its components as:
Normal component: σν = (σν).ν

Tangential component: στ = σν − σνν

We use the following notations

H = L2(Ω)d =
{
u = (ui) | ui ∈ L2(Ω)

}
, H1 = {u = (ui) | ε(u) ∈ H} ,

H =
{
σ = (σij) | σij = σji ∈ L2(Ω)

}
, H1 = {σ ∈ H | Divσ ∈ H}.

The deformation operator ε and the divergence operator Div are defined as follows:

ε(u) = (εij(u)) , εij(u) =
1

2
(ui,j + uj,i) , Div σ = (σij,j) .

The spaces H , H1, H, and H1 are real Hilbert spaces equipped with the canonical inner products defined as
follows:

(u,w)H =

∫
uiwidx, ∀u,w ∈ H,

(u,w)H1
= (u,w)H + (ε(u), ε(w))H,∀u,w ∈ H1,

(σ,ϑ)H =

∫
σijϑijdx, ∀σ,ϑ ∈ H,

(σ,ϑ)H1 = (σ,ϑ)H + (Divσ,Divϑ)H , ∀σ,ϑ ∈ H1.

The associated norm in the space H , H1, H and H1, is denoted by ∥.∥H , ∥.∥H1
, ∥.∥H and ∥.∥H1

, respectively.
When σ is a regular function. The following Green-type formula holds

(σ, ε (w))H + (Divσ,w)H =

∫
Γ

σν.wda ∀w ∈ H1. (2.1)

For the displacement field, we necessitate the closed subspace of H1 defined as
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V = {w ∈ H1 | w = 0, on Γ1}.

Given that meas(Γ1) > 0, Korn’s inequality is satisfied, and there exists a positive constant Ck, which solely
depends on Ω and Γ1, such that

∥ε(w)∥H ≥ Ck∥w∥H1(Ω)d , ∀w ∈ V.

We define inner product on V by

(u,w)V = (ε(u), ε(w))H, ∥w∥V = ∥ε(w)∥H, ∀u,w ∈ V, (2.2)

and let ∥.∥V be the associated norm. Consequently, the norms ∥.∥H1(Ω)d and ∥.∥V are equivalent on V , and as
a result, (V, (, )V ) forms a real Hilbert space. Furthermore, in accordance with the Sobolev trace theorem, there
exists a constant C̃0, which relies solely on Ω, Γ1, and Γ3, such that

∥v∥L2(Γ3)
d ≤ C̃0∥v∥V , ∀v ∈ V. (2.3)

We recall some spaces W k,p(0, T ;V ), Hk(0, T ;V ), C(0;T ;V ) and C1(0;T ;V ) for a Banach space V

equipped with the norm ∥.∥V for 1 < p < +∞ and k ≥ 1. Let W k,p(0, T ;V ) be the space of all functions
from [0, T ] to V with the norm

∥ω∥Wk,p(0,T ;V ) =


∫ T

0

∑
1≤l≤k

∥∥∂l
tω
∥∥p
V
dt

1/p

, if 1 ≤ p < +∞

max0≤l≤k0≤t≤T supt
∥∥∂l

tω
∥∥
V
, if p = +∞.

When p = 2 or k = 0, W k,2([0, T ];V ) is written as Hk([0, T ];V ) or Lp([0, T ];V ), respectively. We denote by
C([0, T ];V ) the space of continuous functions from [0, T ] to V , and by C1(0, T ;V ) the space of continuously
differentiable functions from (0, T ) to V . These spaces are equipped with the following norms:

∥ω∥C([0,T ];V ) = max
t∈[0,T ]

∥ω(t)∥V .

∥ω∥C1([0,T ];V ) = max
t∈[0,T ]

∥ω(t)∥V + max
t∈[0,T ]

∥ω̇(t)∥V .

Clearly, C([0, T ];V ), W k,p([0, T ];V ) and Hk([0, T ];V ) are all Banach spaces when V is a Banach space.
In order to solve Problem P , we impose the following assumptions.
We consider operators A,B : V → V , F : H × H × H1(Ω) → V , the damage source function S :

H × H × H1(Ω) → R, and two initial values u0 ∈ V and α0 ∈ K. These operators and values satisfy the
following properties

There exists a constant MA ≻ 0 such that

(Av1 −Av2,v1 − v2) ≥ MA∥v1 − v2∥2,∀v1,v2 ∈ V. (2.4)

There exists a constant LA ≻ 0 such that

∥Av1 −Av2∥V ′ ≤ LA∥v1 − v2∥V , ∀v1,v2 ∈ V. (2.5)

There exists a constant LB ≻ 0 such that

∥Bv1 −Bv2∥V ≤ LB∥v1 − v2∥, ∀v1,v2 ∈ V. (2.6)

The f function satisfies:

f ∈ L2 (0, T ;V ) . (2.7)
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There exists a constant LF ≻ 0 such that

∥F (σ1,u1, ζ1)− F (σ2,u2, ζ2)∥ ≤ LF (∥σ1 − σ2∥+ ∥u1 − u2∥+ ∥ζ1 − ζ2∥), (2.8)

for all σi ∈ H, ui ∈ V, ζi ∈ H1(Ω), i = 1, 2.

There exists MS ≻ 0 such that

∥S (σ1,u1, ζ1)− S (σ2,u2, ζ2)∥ ≤ MS (∥σ1 − σ2∥+ ∥u1 − u2∥+ ∥ζ1 − ζ2∥), (2.9)

for all σi ∈ H, ui ∈ V, ∀ζi ∈ H1(Ω), i = 1, 2.

Now let problem P1 as it follows

Problem P1

Find u ∈ C1(0, T ;V ) such that {
Au(t) = f ,

u(0) = u0.
(2.10)

Theorem 2.1. If conditions (2.4),(2.5) and (2.7) are satisfied Then there exists u ∈ C1(0, T ;V ) solution to the
problem P1 satisfying

u ∈ H1(0, T ;V ) ∩ C1(0, T ;H). (2.11)

The previous result is a special case of the Minty-Browder Theorem.

Problem P2

Find α(t) ∈ K such that

(α̇(t), ρ− α(t))V ′×V + a(α̇(t), ρ− α(t)) ≥ (S(t), ρ− α(t))L2(Ω), ∀ρ ∈ K, (2.12)

α(0) = α0. (2.13)

We consider two real Hilbert spaces, denoted as V and H . It is important to note that V is densely embedded in
H , and this injection map is continuous. Furthermore, we identify the space H with both its own dual and as a
subspace of the dual space V ′ of V . In other words, we express this relationship as V ⊂ H ⊂ V ′, and this set of
inclusions is what defines a Gelfand triple.

The following is a well-established result for parabolic variational inequalities, and you can find it in standard
references such as [12].

Theorem 2.2. Consider a Gelfand triple V ⊂ H ⊂ V ′, where K is a nonempty, closed, and convex set in V .
Assume the existence of a continuous and symmetric bilinear form a(., .) : V × V → R satisfying the following
inequality for constants λ and γ:

a(α, α) + γ∥α∥2H ≥ λ∥α∥2V , ∀α ∈ V.

Under these conditions, for any initial value α0 ∈ K and source function S ∈ L2(0, T ;H), there exists a unique
function α ∈ H1(0, T ;H) ∩ L2(0, T ;V ) such that α(0) = α0 and α(t) ∈ K for all t ∈ [0, T ]. This α is the
unique solution to Problem P2.

The next section is dedicated to investigating the existence of a unique solution to Problem P .
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3. Proof of the main result

Theorem 3.1. Under the assumptions (2.4)-(2.9), there exists a unique solution of the problem P , Moreover the
solution satisfies:

u ∈ H1 (0, T ;V ) ∩ C1 (0, T ;H) , (3.1)

σ ∈ L2(0, T ;H), Divσ ∈ L2 (0, T ;H) , (3.2)

α ∈ W 1,2
(
0, T ;L2 (Ω)

)
∩ L2

(
0, T ;H1 (Ω)

)
. (3.3)

The proof of Theorem 3.1 is conducted through several sequential steps and relies on the subsequent abstract
result concerning evolutionary variational inequalities.

Suppose we have η ∈ L2(0, T ;V ), and let’s consider the following problem

Problem Pη

Find a displacement field uη : [0, T ] → V, such that
(Au̇η(t),v)V + (η(t),v)V = (f ,v)V ,

a.e. t ∈ (0, T ), ∀v ∈ V,

uη(0) = u0.

(3.4)

Here is the given result concerning Pη .

Lemma 3.2. A unique solution uη ∈ C1(0, T ;V ) to the problem Pη exists, and it satisfies the condition (3.1) .

Proof. We apply Theorem 2.1, The Riesz representation theorem allows us to define fη : [0, T ] → V, by(
fη (t) ,v

)
V

= (f (t)− η (t) ,v)V . Using hypotheses (2.4)-(2.7), and uη(t) = u0 +

∫ t

0

u̇η(s)ds, ∀t ∈

(0, T ), we directly find the result. ■

Subsequently, introduce θ ∈ L2(0, T ;L2(Ω)), and let’s examine the following problem

Problem Pθ

Find the damage field αθ : [0, T ] → R,

αθ(t) ∈ K, (α̇θ(t), ρ− αθ(t))L2(Ω) + a (αθ(t), ρ− αθ(t))

≥ (θ(t), ρ− αθ(t))L2(Ω) ,∀ρ ∈ K, a.e.t ∈ (0, T ),
(3.5)

αθ (0) = α0. (3.6)

Lemma 3.3. problem Pθ has a unique solution αθ such that

αθ ∈ W 1,2
(
0, T ;L2 (Ω)

)
∩ L2

(
0, T ;H1 (Ω)

)
. (3.7)

For the proof, we apply Theorem 2.2.
Finally, in the concluding step, formulate the subsequent Cauchy problem for the stress field
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Problem Pη,θ

Find the stress field ση,θ : (0, T ) → H, solution of the problem

ση,θ(t) = Buη(t) +

∫ t

0

F (ση,θ(s)−Au̇η(s),uη(s), αθ(s)) ds, a.e.t ∈ (0, T ). (3.8)

Lemma 3.4. The problem Pη,θ has a unique solution. Additionally, if uηi
, αθi , and σηi,θi represent the solutions

to problems Pη , Pθ, and Pη,θ for i = 1, 2, then there exists a positive constant C such that

∥ση1,θ1(t)− ση2,θ2(t)∥
2
H ≤C

(
∥uη1(t)− uη2(t)∥

2
V +

∫ t

0

∥uη1(s)− uη2(s)∥
2
V ds

+

∫ t

0

∥αθ1(s)− αθ2(s)∥
2
L2(Ω) ds

)
.

(3.9)

Proof. Consider the mapping
∑
η,θ

: L2 (0, T ;H) → L2 (0, T ;H) defined as

∑
η,θ

ση,θ(t) = Buη(t) +

∫ t

0

F (ση,θ(s)−Au̇η(s),uη(s), αθ(s)) ds. (3.10)

let σi ∈ L2 (0, T ;H) , i = 1, 2 and t1 ∈ (0, T ), we use the assumption (2.8) and the HÖlder inequality we find∥∥∥∥∥∥
∑
η,θ

σ1 (t1)−
∑
η,θ

σ2 (t1)

∥∥∥∥∥∥
2

H

≤ L2
FT

∫ t1

0

∥σ1(s)− σ2(s)∥2H ds. (3.11)

We have more ∥∥∥∥∥∥
∑
η,θ

∑
η,θ

σ1 (t1)

−
∑
η,θ

∑
η,θ

σ2 (t1)

∥∥∥∥∥∥
2

H

≤ L2
FT

∫ t1

0

∥∥∥∥∥∥
∑
η,θ

σ1 (t1)−
∑
η,θ

σ2 (t1)

∥∥∥∥∥∥
2

H

dt2

≤ L4
FT

2

∫ t1

0

∫ t2

0

∥σ1(s)− σ2(s)∥2H dsdt2.

By extending the inequality through recurrence, we deduce that for all t1, t2, ..., tn ∈ (0, T ) ,∥∥∥∥∥∥
(n)∑
η,θ

σ1 (tn)−
(n)∑
η,θ

σ2 (tn)

∥∥∥∥∥∥
2

H

≤ L2n
F Tn

∫ t1

0

∫ t2

0

. . .

∫ tn

0

∥σ1(s)− σ2(s)∥2H dsdtn . . . dt2.

Thus, we can deduce by integrating with respect to (0, T ) the following inequality∥∥∥∥∥∥
(n)∑
η,θ

σ1 −
(n)∑
η,θ

σ2

∥∥∥∥∥∥
2

H

≤ L2n
F T 2n

n!
∥σ1 − σ2∥2H . (3.12)

Then from (3.12), for n sufficiently large, the operator
∑(n)

η,θ , is a contraction on space L2 (0, T ;H) and
according to the Banach fixed point theorem, there is a single element ση,θ ∈ L2 (0, T ;H) such that
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∑(n)
η,θ ση,θ = ση,θ, which represents the unique solution of problem Pη,θ . Moreover, if uηi

, αθi and σηi,θi ,
represents the solutions of problem Pηi

,Pθi and Pηi,θi respectively. For i = 1, 2. designate
uηi

= ui,σηi,θi = σi, αθi = αi.
We have

σi(t) = Bui(t) +

∫ t

0

F (σi(s)−Au̇i(s), ui(s), αi(s)) ds, a.e. t ∈ (0, T ),

we use the assumption (2.6),(2.8)), we find

∥σ1(t)− σ2(t)∥2H ≤ C

(
∥u1(t)− u2(t)∥2V +

∫ t

0

∥σ1(s)− σ2(s)∥2H ds

+

∫ t

0

∥u1(s)− u2(s)∥2V ds+

∫ t

0

∥α1(s)− α2(s)∥2L2(Ω) ds

)
.

We employ the Gronwall argument within the resulting inequality to derive (3.9). ■

Now, let’s contemplate the mapping

Λ : L2(0, T ;H× L2(Ω)) → L2(0, T ;H× L2(Ω)),

Λ (η, θ) (t) =
(
Λ1 (η, θ) (t) ,Λ2 (η, θ) (t)

)
, (3.13)

defined by equalities

Λ1(η, θ)(t),= Buη(t) +

∫ t

0

F (ση,θ(s)−Au̇(s),uη(s), αθ(s)) ds, (3.14)

Λ2(η, θ)(t) = S ((ση,θ(t),uη(t)) , αθ(t)) . (3.15)

We have the following result.

Lemma 3.5. For (η, θ) ∈ L2
(
0, T ;H× L2 (Ω)

)
, the operator Λ(η, θ) : [0, T ] → H × L2(Ω) have a unique

fixed point denoted as (η∗, θ∗) ∈ L2
(
0, T ;H× L2 (Ω)

)
, satisfying

Λ (η∗, θ∗) = (η∗, θ∗).

Proof. Let t ∈ (0, T ) and (η1, θ1) , (η2, θ2) ∈ L2
(
0, T ;H× L2(Ω)

)
. We use the notation uηi

= ui, u̇ηi
=

u̇i, αηi
= αi, σηi,θi = σi ,For i = 1, 2 and using the assumptions (2.5),(2.6) and (2.8)

∥Λ1(η1, θ1) (t)− Λ1(η2, θ2) (t) ∥2H

= ∥Bu1(t) +

∫ t

0

F (σ1(s)−Au̇1(s),u1(s), α1(s)) ds

−Bu2(t)−
∫ t

0

F (σ2(s)−Au̇2(s),u2(s), α2(s)) ds∥2H

≤ LB∥u1(t)− u2(t)∥2V + LF

∫ t

0

(∥σ1(s)− σ2(s)∥2H+

LA∥u̇1(s)− u̇2(s)∥2V + ∥u1 (s)− u2 (s) ∥2V + ∥α1 (s)− α2 (s) ∥2L2(Ω))ds.

We utilise the estimate (3.9) to derive

∥Λ1(η1, θ1) (t)− Λ1(η2, θ2) (t) ∥2H

≤ C(∥u1 (t)− u2 (t) ∥2V +

∫ t

0

(∥u̇1(s)− u̇2(s)∥2V

+ ∥u1 (s)− u2 (s) ∥2V + ∥α1 (s)− α2 (s) ∥2L2(Ω)))ds.
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On the other hand, we know that ui(t) = u0 +

∫ t

0

u̇i(s)ds, for all t ∈ (0, T )

∥u1 (s)− u2 (s) ∥2V ≤
∫ t

0

∥u̇1 (s)− u̇2 (s) ∥2V ds. (3.16)

By Apply the inequality (3.16) becomes

∥Λ1(η1, θ1) (t)− Λ1(η2, θ2) (t) ∥2H ≤ C

∫ t

0

(∥u̇1(s)− u̇2(s)∥2V

+ ∥u1 (s)− u2 (s) ∥2V + ∥α1 (s)− α2 (s) ∥2L2(Ω))ds.

(3.17)

By a similar argument, from (3.9),(3.15) and (2.9) it follows that

∥Λ2(η1, θ1) (t)− Λ2(η2, θ2) (t) ∥2L2(Ω) ≤ C(

∫ t

0

(∥u̇1(s)− u̇2(s)∥2V

+ ∥u1 (s)− u2 (s) ∥2V + ∥α1 (s)− α2 (s) ∥2L2(Ω))ds

+ ∥u1 (t)− u2 (t) ∥2V + ∥α1 (t)− α2 (t) ∥2L2(Ω)).

(3.18)

Therefore,

∥Λ(η1, θ1) (t)− Λ(η2,θ2) (t) ∥2H×L2(Ω) ≤ C(

∫ t

0

(∥u̇1(s)− u̇2(s)∥2V

+ ∥u1 (s)− u2 (s) ∥2V + ∥α1 (s)− α2 (s) ∥2L2(Ω))ds

+ ∥u1 (t)− u2 (t) ∥2V + ∥α1 (t)− α2 (t) ∥2L2(Ω)).

(3.19)

Combine the inequality (3.16) with (3.19) to obtain

∥Λ(η1, θ1) (t)− Λ(η2,θ2) (t) ∥2H×L2(Ω) ≤ C

∫ t

0

(∥u̇1(s)− u̇2(s)∥2V

+ ∥u1 (s)− u2 (s) ∥2V + ∥α1 (s)− α2 (s) ∥2L2(Ω))ds.

(3.20)

Using the inequality (3.4), by adding the results obtained we have

(Au̇1(t)−Au̇2(t), u̇1(t)− u̇2(t))V = (η1(t)− η2(t), u̇1(t)− u̇2(t))V , t ∈ (0, T ), (3.21)

using inequality (2.4), we find

MA∥u̇1 − u̇2∥2V ≤ ∥η1 − η2∥V ∥u̇1 − u̇2∥V .

Therefore
∥u̇1(t)− u̇2(t)∥V ≤ C∥η1(t)− η2(t)∥V , ∀t ∈ [0, T ].

Let’s use (3.16)

∥u1(t)− u2(t)∥V ≤ C

∫ t

0

∥η1(t)− η2(t)∥V ds, ∀t ∈ [0, T ]. (3.22)

Using (3.5) we find

(α̇1 − α̇2, α1 − α2)L2(Ω) + a (α1 − α2, α1 − α2) ≤ (θ1 − θ2, α1 − α2)L2(Ω) ,

a · e · t ∈ (0, T ),
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By integrating the inequality with respect to time and incorporating the initial conditions α1 (0) = α2 (0) =

α0, along with the inequality a (α1 − α2, α1 − α2) ≥ 0, we combine this inequality with Gronwall’s lemma,
resulting in the following result

∥α1(t)− α2(t)∥2L2(Ω) ≤ C

∫ t

0

∥θ1(s)− θ2(s)∥2L2(Ω) ds,∀t ∈ [0, T ]. (3.23)

From the previous inequality and estimates (3.20), (3.22) and (3.23) it follows that now

∥Λ (η1, θ1) (t)− Λ (η2, θ2) (t)∥
2
H×L2(Ω)

≤ C

(∫ t

0

∥(η1, θ1) (s)− (η2, θ2) (s)∥
2
H×L2(Ω)ds

)
.

Let is introduce the following notations
I1 =

∫ t

0

∥(η1, θ1) (s)− (η2, θ2) (s)∥H×L2(Ω) ds,

...

Ik =

∫ t

0

∫ sk−1

0

· · ·
∫ s1

0

∥(η1, θ1) (r)− (η2, θ2) (r)∥H×L2(Ω) ,

Through an inductive process, denoting the mth power of the operator Λ as Λm, we arrive at the following
conclusion

∥Λm (η1, θ1) (t)− Λm (η2, θ2) (t)∥H×L2(Ω)

≤ Cm

(
m∑

k=1

Ck
mIm−k∥(η1, θ1) (t)− (η2, θ2) (t)∥H×L2(Ω)

)
,

(3.24)

for all t ∈ [0, T ] and m ∈ N,

Im−k ((η1, θ1)− (η2, θ2)) =

∫
(m−k) fois

.

∫
∥(η1, θ1)− (η2, θ2)∥

≤
∫ s

0

∫
· · ·
∫
(m−k) fois

∥(η1, θ1)− (η2, θ2)∥L2(0,T ;H×L2(Ω))

≤ tm−k

k!
∥(η1, θ1)− (η2, θ2)∥L2(0,T ;H×L2(Ω))

≤ Tm−k

k!
∥(η1, θ1)− (η2, θ2)∥L2(0,T ;H×L2(Ω)) ,

Consequently,

∥Λm (η1, θ1) (t)− Λm (η2, θ2) (t)∥2L2(0,T ;H×L2(Ω))

≤ Cm

(
m∑

k=1

Ck
m

Tm−k

k!
∥(η1, θ1) (t)− (η2, θ2) (t)∥

2
L2(0,T ;H×L2(Ω))

)

≤ (CT )m

m!
∥(η1, θ1) (t)− (η2, θ2) (t)∥

2
L2(0,T ;H×L2(Ω)) ,

this implies that for m large enough, the operator Λm of Λ is a contraction on Banach space
L2
(
0, T ;H× L2 (Ω)

)
. So Λm has a unique fixed point (η∗, θ∗) ∈ L2

(
0, T ;H× L2 (Ω)

)
, and therefore

(η∗, θ∗) is the only fixed point of Λ. ■
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Existence

Let (η∗, θ∗) ∈ L2
(
0, T ;H× L2 (Ω)

)
, be the fixed point of Λ defined by (3.14)-(3.15) and let uη, αθ, be

the solutions of problems Pη , Pθ, for η = η∗, θ = θ∗, u = uη∗ , α = αθ∗ , we find (u,σ, α) is a solution of
problem P . properties (3.1)-(3.3) follow from lemma 3.2, 3.3, 3.4.

Uniqueness

The uniqueness of the solution is a result of the uniqueness of the fixed point of operator Λ.

4. Application

In this section, we will utilise the main result from Section 3 to analyse a problem of contact without friction
with condition of wear and damage. between an elastic-viscoplastic body and a rigid base in a quasistatic process.
We provide the physical context for the contact problem and introduce certain notations that will be employed
in the subsequent discussion. We consider a elastic-viscoplastic body which occupies a domain Ω ⊂ Rd, where
d = 2, 3, such that the boundary Γ = ∂Ω is Lipschitz continuous. The boundary ∂Ω is divided into three disjoint
measurable parts Γ1,Γ2 and Γ3 with meas(Γ1) > 0. We are interested in an evolution of the body in a finite
time interval (0, T ).

We consider the following classical formulation of the problem

Problem P

Find a displacement field u : Ω × [0, T ] → Rd, the stress field σ : Ω × [0, T ] → Sd, the damage field
α : Ω× [0, T ] → R.

0 = Divσ + f0, in Ω× (0, T ), (4.1)

σ(t) = Aε(u̇(t)) + Bε(u(t))

+

∫ t

0

F (σ(s)−Aε(u̇(s)), ε (u(s)) , α(s)) ds
in Ω× (0, T ), (4.2)

α̇− k0∆α+ ∂φK(α) ∋ ϕ(σ, ε(u), α), in Ω× (0, T ), (4.3)

u = 0, on Γ1 × (0, T ), (4.4)

σν = f2, on Γ2 × (0, T ), (4.5){
−σν = k∥u̇ν∥
στ = 0

on Γ3 × (0, T ), (4.6)

∂α

∂ν
= 0, on Γ× (0, T ), (4.7)

u(0) = u0, α(0) = α0, in Ω. (4.8)

Equation (4.1) describes the equation of motion, where f0 stands for the density of the voluminal forces exerted
upon the deformable body Ω. Equation (4.2) describes the constitutive law applicable to an elastic-viscoplastic
material with damage, (4.3) represents a differential inclusion describing the evolution of the damage field where
S is a damage source function. φK is the sub-differential of the indicator function of the set of admissible
damage functions K. The conditions (4.4) and (4.5) are displacement-traction conditions, (4.6) represent the
boundary contact conditions with wear and without friction. (4.7) represents the boundary condition of Neumann,
Finally,(4.8) represents the initial conditions.
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Next, we outline the assumptions concerning the data of the problem, starting with the viscosity operator
A : Ω× Sd −→ Sd satisfied

(a) There exists LA > 0 such that

∥A(x,υ1)−A(x,υ2)∥ ≤ LA∥υ1 − υ2∥, ∀υ1,υ2 ∈ Sd, a.e. x ∈ Ω.

(b) There exists mA > 0 such that

(A(x,υ1)−A(x,υ2)).(υ1 − υ2) ≥ mA∥υ1 − υ2∥2, ∀υ1,υ2 ∈ Sd, a.e. x ∈ Ω.

(c) The mapping x 7→ A(x,υ) is lebesgue measurable on Ω,∀υ ∈ Sd.
(d) The mapping x 7→ A(x,0) ∈ H.

(4.9)

The elasticity operator B : Ω× Sd → Sd satisfied

(a) There exists LB > 0 such that

∥B(x,υ1)− B(x,υ2)∥ ≤ LB∥υ1 − υ2∥, ∀υ1,υ2 ∈ Sd, a.e. x ∈ Ω.

(b) There exists mB > 0 such that

(B(x,υ1)− B(x,υ2)).(υ1 − υ2) ≥ mB∥υ1 − υ2∥2, ∀υ1,υ2 ∈ Sd, a.e. x ∈ Ω.

(c) The mapping x 7→ B(x,υ) is lebesgue measurable on Ω,

∀υ ∈ Sd.
(d) The mapping x 7→ B(x,0) ∈ H.

(4.10)

The relaxation function F : Ω× Sd × Sd × R → Sd, satisfied

(a) There exists LF > 0 such that

∥F(x,σ1,υ1, α1)−F(x,σ2,υ2, α2)∥ ≤
LF (∥σ1 − σ2∥+ |υ1 − υ2∥+ ∥α1 − α2∥)

∀σ1,σ2,υ1,υ2 ∈ Sd,∀α1, α2 ∈ R,∀t ∈ [0, T ], a.e. x ∈ Ω.

(b) The mapping x 7→ F(x,σ,υ, α) is lebesgue measurable on Ω,

∀σ,υ ∈ Sd, ∀t ∈ [0, T ], ∀α ∈ R.
(c) The mapping x 7→ F(x,0,0, 0) ∈ H,∀t ∈ [0, T ].

(4.11)

The function describing the source of damages, denoted as ϕ : Ω× Sd × R → R, is satisfied

(a) There exists Mϕ > 0 such that

∥ϕ(x,υ1, α1)− ϕ(x,υ2, α2)∥ ≤ Mϕ(∥υ1 − υ2∥+ ∥α1 − α2∥),
∀υ1,υ2 ∈ Sd,∀α1, α2 ∈ R, a.e. x ∈ Ω.

(b) The mapping x 7→ ϕ(x,υ, α) is lebesgue measurable on Ω,

∀υ ∈ Sd,∀α ∈ R.
(c) The mapping x 7→ ϕ(x,0, 0) ∈ L2(Ω).

(4.12)

The body force f0, surface traction f2, coefficient of friction k, initial conditions u0, have the following
properties 

f0 ∈ L2 (0, T ;H) ,

f2 ∈ L2
(
0, T ;L2 (Γ2)

d
)
,

k ∈ L∞ (Γ3) , k(x) ≥ 0 for a.e. x ∈ Γ3,

u0 ∈ V.

(4.13)
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We establish the bilinear form a : H1(Ω)×H1(Ω) → R as follows

a(ξ, ζ) = k0

∫
Ω

∇ξ∇ζdx (4.14)

and the micro crack diffusion coefficient verifies k0 > 0.
The initial damage α0 field satisfies

α0 ∈ K. (4.15)

To consider the field of displacements, we require the closed subspace V within the space H1, defined by:

V = {u ∈ H1 | u = 0 onΓ1 } . (4.16)

Using Riesz’s representation theorem, we find

(f(t),v)V =

∫
Γ

f0 · vdx+

∫
Γ2

f2 · vdx, ∀v ∈ V, t ∈ [0, T ]. (4.17)

It’s important to observe that condition (4.13) results in the implication that

f ∈ L2 (0, T ;V ) . (4.18)

Now, consider the application j : V × V → R, defined as follows

j (u,v) =

∫
Γ3

k ∥uν∥ vνda. (4.19)

The variational formulation for problem P is presented as follows

σ(t) = Aε(u̇(t)) + Bε(u(t))

+

∫ t

0

F (σ(s)−Aε(u̇(s)), ε (u(s)) , α(s)) ds a.e .t ∈ (0, T ),
(4.20)

(σ(t), ε(v))H + j(u̇(t),v) = (f ,v)V , ∀v ∈ V, (4.21)

α(t) ∈ K, (α̇(t), ζ − α(t))L2(Ω) + a(α(t), ζ − α(t))

≥ (ϕ(σ(t), ε(u(t)), α(t)), ζ − α(t))L2(Ω), ∀ζ ∈ K, t ∈ [0, T ],
(4.22)

u(0) = u0, α(0) = α0. (4.23)

Utilising Riesz’s representation theorem, we define the operator A : V → V as follows:

(Au,v)V = (A(ε(u)), ε(v))H + j(u,v), ∀u,v ∈ V. (4.24)

We will verify the hypotheses (2.4),(2.5). Let u1,u2 ∈ V . Using (4.9),(4.24) and the definition of j given by
(4.19), we let’s find

∥Au1 −Au2∥V = ∥Aε(u1)−Aε(u2)∥H + C2
0∥k∥L∞(Γ3)∥u1 − u2∥V

≤ LA∥ε(u1)− ε(u2)∥H + C2
0∥k∥L∞(Γ3)∥u1 − u2∥V

=
(
LA + C2

0∥k∥L∞(Γ3)

)
∥u1 − u2∥V , ∀u1,u2 ∈ V.

(4.25)

Similarly for all u1,u2 ∈ V we have

(Au1 −Au2,u1 − u2)V ≥
(
mA − C2

0∥k∥L∞(Γ3)

)
∥u1 − u2∥2V , ∀u1,u2 ∈ V. (4.26)

Let γ0 =
mA

C2
0

, it is clear that γ0 is positive which depends on Ω1,Γ3, and A. Then A is strongly monotonic on V

if
∥k∥L∞(Γ3) < γ0.

After confirming that all the assumptions of Theorem 3.1 are met, we can conclude that a unique weak solution
to problem P exists, satisfying (4.20)-(4.23), along with the regularity conditions (3.1)-(3.3).
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1. Introduction

In the enterprise international, each production firm/provider usually continues the inventory so one can sell
the product to their potential clients. There is a large question, how to keep the inventory degree and the way to
sell the goods to their capacity clients? Basically, most profit or minimal loss relies upon the idea of these two
questions. Here we are using some other factors such as controlling the deterioration rate and introducing some
attractive offers that promote greater products. Deteriorating products are the greatest challenge to companies.
Deterioration means damage, decay and spoilage of products from their condition initially. There is a fresh-
product phase for some disintegrating products, during which they hold onto their original quality and worth
before eventually degrading. These are non-instantaneous deteriorations. Permissible delay in payments is often
used in most of business organizations. Trade credit is the arrangement to buy the goods on the account without
making on the spot cash or cheque payments. Trade credit is a helpful device for developing companies. The
retailer gets a trade credit policy from the manufacturer. The retailer has to pay the amount to the manufacturer by
the next replenishment time. This helps the retailer to purchase products without paying immediately. Retailers
must pay the price plus some interest if they don’t pay within the allotted time. The retailer offered a return
policy to the customers. This offer makes customers buy the products and return the product within a specific
time period. For the returned product the retailer did not fully reimburse. Customer returns rise in proportion
to both sales volume and product price. Duary et al. (2022) developed model for delay in payments and
deteriorating items with partially backlogged shortages [1]. Geetha and Uthayakumar (2010) proposed the EOQ
model for non-instantaneous deteriorating items with permissible delay in payments and partial backlogging
[2]. Ghoreishi and Mirzazadeh (2013) studied the effect of inflation and customer returns on joint pricing and
inventory control for deteriorating items [3]. Ghoreishi et al. (2015) developed an economic ordering policy
model for non-instantaneous deteriorating items with selling price- and demand permissible delay in payments
and customer returns [4]. Ghoreishi et al. (2013b) studied the optimal pricing and inventory control policy for
non-instantaneously deteriorating items with the finite replenishment rate considering time- and price-dependent
demand, customer returns and time value of money [5]. Jani et al. (2021) developed an EOQ model for customer
returns and trade credit for deteriorating items with price sensitive demand [6]. Kumari and De investigated
an EOQ model for deteriorating items analyzing retailer’s optimal strategy under trade credit and return policy
with nonlinear demand and resalable returns [7]. Maihami and Kamalabadi (2012) developed inventory control
for non-instantaneous deteriorating items adopts a price and time dependent function with partially backlogged
[8]. Mashud (2020) developed a deteriorating EOQ inventory model according to consideration of the price with
shortage [9]. Musa and Sani (2010) developed a mathematical model on the inventory of deteriorating items
that do not start deteriorating immediately they are stocked with permissible delay in payments [10]. Ouyang
et al. (2006) investigated the inventory model for non-instantaneous deteriorating items considering permissible
delay in payments [11]. Singh and Mishra (2022) developed an inventory model for deteriorating items [12].
Sundararajan et al. (2019) developed a deterministic inventory model for non-instantaneous deteriorating items
with price and time-dependent demand with shortages [13] Yang et al. (2009) considered the optimal pricing
and ordering strategies for non-instantaneous deteriorating items with partial backlogging and price dependent
demand [14].

2. Assumptions

• The model includes a single non-instantaneous deteriorating item.

• Assume that the inventory system planning horizon is infinite.

• Demand rate is depends on time and selling price is given by:
D(y, t) = (α − βy)eηt where α is the demand scale, β represents price sensitivity, Demand is a linearly
decreasing function of the price and decreases (increases) exponentially with time when η < 0(η > 0).
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• Shortages are permitted. The unsatisfied demand is backlogged, and the fraction of shortage backordered
is ζ(x) = K0e

−µx (µ > 0, 0 < K0 ≤ 1), where x is a waiting time up to the upcoming replenishment and
µ is a positive constant.

• It is plausible to say that buyer returns grow as more goods are sold. So,

Λ(y, t) = νD(y, t) where 0 ≤ ν < 1.

The customers can return the products at any time in the replenishment cycle. But the retailer will not give the
total amount of initial value, and the retailer will provide half the amount of initial value. The returned products
can be resalable at the same selling price.

3. Notations

The terms used in the mathematical formulation are listed in the table 1.

Notation Unit Description
A $/ order ordering cost
C1 $/ unit/unit time holding cost
Cs $/ unit shortage cost
Cp $/ unit purchase price
Q order quantity
θ constant deterioration rate 0 < θ < 1

S unit time trade credit period offered by
the manufacturer to the retailer

td unit time time at which deterioration starts
Ir %/unit time interest earned by the retailer
Im %/unit time interest paid by the retailer to the manufacturer
R maximum shortage level
Decision Variables
y $/ unit selling price
t1 unit time time at which inventory level reaches to zero
t2 unit time time at partially backlogged shortage
TPC(y, t) $/ unit time Total profit

Table 1: Notations that are considered in the formulation of the inventory model

4. Model formulation

In this section, At the beginning of the cycle I0 units of item arrive at the inventory system. In the time of
interval, (0, td), the inventory level depend upon demand and returns, at that time there is no deterioration. At
t = td the deterioration starts takes place. During the interval (td, t1) the inventory level depends upon demand,
returns and deterioration. At next stage, during the interval (t1, t2) shortage caused by partial backlogging and
demand. In this research paper, it is assumed that the manufacturer offers permissible delay in payments to the
retailer. The customers offered a product can return during the replenishment cycle to the retailer. The returned
products can be sold again for the same price. And the retailer did not fully reimburse the amount of returned
product to the customer. During the time interval [0, td], the differential equation represents the inventory is given
by
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Figure 1:

dI1(t)

dt
= −(α− βy)eηt + ν(α− βy)eηt, 0 ≤ t ≤ td (4.1)

When t = 0, put I1(0) = I0 in above equation we get

I1(t) = I0 +
(ν − 1)(α− βy)(eηt − 1)

η
, 0 ≤ t ≤ td (4.2)

The differential equation for the time interval [td, t1] is,

dI2(t)

dt
= −(α− βy)eηt + ν(α− βy)eηt − θI(t), td ≤ t ≤ t1 (4.3)

When t = t1, put I2(t1) = 0 in above equation we get

I2(t) =
(α− βy)(ν − 1)e−θt

(η + θ)

[
e(η+θ)t − e(η+θ)t1

]
, td ≤ t ≤ t1 (4.4)

At t = td, the equations (2) and (4) becomes

I0 =
(α− βy)(ν − 1)e−θtd

(η + θ)

[
e(η+θ)td − e(η+θ)t1

]
− (ν − 1)(α− βy)(eηtd − 1)

η

(4.5)

Substitute equation (5) in equation (2) we get,

I1(t) =
(α− βy)(ν − 1)e−θtd

(η + θ)

[
e(η+θ)td − e(η+θ)t1

]
− (ν − 1)(α− βy)(eηtd − 1)

η
+

(ν − 1)(α− βy)(eηt − 1)

η
, 0 ≤ t ≤ td

(4.6)
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In the time interval [t1, t2], partially backlogged shortage occurs according to a fraction ζ(t2 − t1). Then the
differential equation for the inventory level is given by

dI3(t)

dt
= −(α− βy)eηtζ(t2 − t), t1 ≤ t ≤ t2 (4.7)

When t = t1 put I3(t1) = 0 in above equation we get

I3(t) =
(α− βy)

η + µ
e−µt2

[
e(µ+η)t1 − e(µ+η)t

]
, t1 ≤ t ≤ t2 (4.8)

Put t = t2 in eqn I3(t) where R is the maximum shortage level

R = − (α− βy)

η + µ
e−µt2

[
e(µ+η)t1 − e(µ+η)t2

]
(4.9)

The sum of R and I0 is the Order Quantity per cycle (Q) is

Q =R+ I0

=
(α− βy)(ν − 1)e−θtd

(η + θ)

[
e(η+θ)td − e(η+θ)t1

]
− (ν − 1)(α− βy)(eηtd − 1)

η

− (α− βy)

η + µ
e−µt2

[
e(µ+η)t1 − e(µ+η)t2

] (4.10)

This model’s various costs are specified as follows.

(1) Ordering cost = A

(2) Purchasing cost

PC =CpQ

=Cp

[
(α− βy)(ν − 1)e−θtd

(η + θ)

[
e(η+θ)td − e(η+θ)t1

]
− (ν − 1)(α− βy)(eηtd − 1)

η

− (α− βy)

η + µ
e−µt2

[
e(µ+η)t1 − e(µ+η)t2

]] (4.11)

(3) Sales revenue

SR = y

[∫ t1

0

D(y, t)dt−
∫ t1

0

Λ(y, t)

2
dt+R

]
= y

[∫ t1

0

(α− βy)eηtdt−
∫ t1

0

ν(α− βy)eηt

2
dt− (α− βy)

η + µ
e−µt2

[
e(µ+η)t1 − e(µ+η)t2

]]
= y

[[
(α− βy)(eηt1 − 1)

η

] [
1− ν

2

]
− (α− βy)

η + µ
e−µt2

[
e(µ+η)t1 − e(µ+η)t2

]] (4.12)

(4) Deterioration cost

DC = Cp

∫ t1

td

θI(t)dt

= Cp

∫ t1

td

θ
(α− βy)(ν − 1)e−θt

(η + θ)

[
e(η+θ)t − e(η+θ)t1

]
dt

=

[
Cp(α− βy)(ν − 1)

[
(θ + η)eηt1 − θeηtd − ηe(η+θ)t1e−θtd

]
η(η + θ)

] (4.13)
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(5) Holding cost

HC =C1

[∫ td

0

I(t)dt+

∫ t1

td

I(t)dt

]
=C1

[{
(α− βy)(ν − 1)e−θtd

(η + θ)

[
e(η+θ)td − e(η+θ)t1

]
− (ν − 1)(α− βy)(eηtd − 1)

η

}
td

+

[
(ν − 1)(α− βy)

(eηtd − ηtd − 1)

η2

]
−

[
(α− βy)(ν − 1)

θη(θ + η)

]
[
θeηtd − (θ + η)eηt1 + ηe(η+θ)t1e−θtd

]]
(4.14)

(6) Shortage cost

SC = c2

[∫ t2

t1

−I(t)dt

]
= c2

[∫ t2

t1

(α− βy)

η + µ
e−µt2

[
e(µ+η)t1 − e(µ+η)t

]
dt

]
= c2

[
(α− βy)

(η + µ)2
e−µt2

[
e(µ+η)t2 − e(µ+η)t1 [(t2 − t1)(µ+ η) + 1]

]] (4.15)

(7) Permissible delay in payments:
The retailer gets a trade credit policy from the manufacturer. The retailer has to pay the amount to the
manufacturer by the delay period S. We suggest three subcases for the delay period based on the values of
S, td, and t1.

(i) 0 < S ≤ td

(ii) td < S ≤ t1

(iii) S > t1

Case (i) : Payment delays occur previous to time deterioration: 0 ≤ S ≤ td
In this subcase, the retailer has to pay the amount before the deterioration starts. Otherwise, he have to pay
the interest to the manufacturer. Interest earns is estimated as follows:

IR1 =yIr

[∫ S

0

∫ t

0

(α− βy)eηududt−
∫ S

0

∫ t

0

ν(α− βy)eηu

2
dudt

]

=yIr

{
(α− βy)

η2
[
eηS − ηS − 1

] [
1− ν

2

]} (4.16)

Interest paid by the retailer to the manufacturer is estimated as follows:

IM1 =CpIm

[∫ td

S

I(t)dt+

∫ t1

td

I(t)dt

]
=CpIm

[{
(α− βy)(ν − 1)e−θtd

(η + θ)

[
e(η+θ)td − e(η+θ)t1

]
− (ν − 1)(α− βy)(eηtd − 1)

η

}
(td − S)

+

[
(ν − 1)(α− βy)

η

] [
S − td +

(eηtd − eηS)

η

]
− eηtd

η
− e(η+θ)t1e−θtd

θ

+

[
(ν − 1)(α− βy)

(η + θ)

] [
eηt1

θη
(θ + η)

]]
(4.17)
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The total profit per unit time is estimated as follows:

TPC1(y, t2)

=
SR−A− PC −DC −HC − SC − IM1 + IR1

t2

=y

[[
(α− βy)(eηt1 − 1)

η

] [
1− ν

2

]
− (α− βy)

η + µ
e−µt2

[
e(µ+η)t1 − e(µ+η)t2

]]
−A− Cp

[
(α− βy)(ν − 1)e−θtd

(η + θ)

[
e(η+θ)td − e(η+θ)t1

]
− (ν − 1)(α− βy)(eηtd − 1)

η

− (α− βy)

η + µ
e−µt2

[
e(µ+η)t1 − e(µ+η)t

]]
−

[
Cp(α− βy)(ν − 1)

[
(θ + η)eηt1 − θeηtd − ηe(η+θ)t1e−θtd

]
η(η + θ)

]

− C1

[{
(α− βy)(ν − 1)e−θtd

(η + θ)

[
e(η+θ)td − e(η+θ)t1

]
− (ν − 1)(α− βy)(eηtd − 1)

η

}
td

+

[
(ν − 1)(α− βy)

(eηtd − ηtd − 1)

η2

]
−
[
(α− βy)(ν − 1)

θη(θ + η)

]
[
θeηtd − (θ + η)eηt1 + ηe(η+θ)t1e−θtd

]]
− c2

[
(α− βy)

(η + µ)2
e−µt2

[
e(µ+η)t2 − e(µ+η)t1 [(t2 − t1)(µ+ η) + 1]

]]
− CpIm

[{
(α− βy)(ν − 1)e−θtd

(η + θ)

[
e(η+θ)td − e(η+θ)t1

]
− (ν − 1)(α− βy)(eηtd − 1)

η

}
(td − S)

+

[
(ν − 1)(α− βy)

η

] [
S − td +

(eηtd − eηS)

η

]
− eηtd

η
− e(η+θ)t1e−θtd

θ

+

[
(ν − 1)(α− βy)

(η + θ)

] [
eηt1

θη
(θ + η)

]]
+ yIr

{
(α− βy)

η2
[
eηS − ηS − 1

] [
1− ν

2

]}
.

(4.18)

Case (ii) :Payment delays occur between deterioration time and before the inventory cycle. td < S ≤ t1
Interest paid by the retailer to the manufacturer

IM2 = CpIm

[∫ t1

S

I(t)dt

]
= CpIm

[∫ t1

S

(α− βy)(ν − 1)e−θt

(η + θ)

[
e(η+θ)t − e(η+θ)t1

]
dt

]
= CpIm

[
(ν − 1)(α− βy)

(η + θ)

] [
eηt1

θη
(θ + η)− eηM

η
− e(η+θ)t1e−θS

θ

] (4.19)

Interest earns is estimated as follows:

IR2 =yIr

[∫ S

0

∫ t

0

(α− βy)eηududt−
∫ S

0

∫ t

0

ν(α− βy)eηu

2
dudt

]

=yIr

{
(α− βy)

η2
[
eηS − ηM − 1

] [
1− ν

2

]} (4.20)
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The total profit per unit time is estimated as follows:

TPC2(y, t2)

=
SR−A− PC −DC −HC − SC − IM1 + IR1

t2

=y

[[
(α− βy)(eηt1 − 1)

η

] [
1− ν

2

]
− (α− βy)

η + µ
e−µt2

[
e(µ+η)t1 − e(µ+η)t2

]]
−A− Cp

[
(α− βy)(ν − 1)e−θtd

(η + θ)

[
e(η+θ)td − e(η+θ)t1

]
− (ν − 1)(α− βy)(eηtd − 1)

η

− (α− βy)

η + µ
e−µt2

[
e(µ+η)t1 − e(µ+η)t

]]
−

[
Cp(α− βy)(ν − 1)

[
(θ + η)eηt1 − θeηtd − ηe(η+θ)t1e−θtd

]
η(η + θ)

]

− C1

[{
(α− βy)(ν − 1)e−θtd

(η + θ)

[
e(η+θ)td − e(η+θ)t1

]
− (ν − 1)(α− βy)(eηtd − 1)

η

}
td

+

[
(ν − 1)(α− βy)

(eηtd − ηtd − 1)

η2

]
−

[
(α− βy)(ν − 1)

θη(θ + η)

]
[
θeηtd − (θ + η)eηt1 + ηe(η+θ)t1e−θtd

]]
− c2

[
(α− βy)

(η + µ)2
e−µt2

[
e(µ+η)t2 − e(µ+η)t1 [(t2 − t1)(µ+ η) + 1]

]]
− CpIm

[
(ν − 1)(α− βy)

(η + θ)

] [
eηt1

θη
(θ + η)− eηM

η
− e(η+θ)t1e−θS

θ

]
+ yIr

{
(α− βy)

η2
[
eηS − ηM − 1

] [
1− ν

2

]}
.

(4.21)

Case (iii) : S > t1
In this subcase, the delay period is greater than the time at which the amount of inventory reaches zero.
During this time retailer pays completely all of his bills. Then

IM3 = 0. (4.22)

Interest earns is estimated as follows:

IR3 =yIr

[∫ t1

0

∫ t

0

(α− βy)eηududt−
∫ t1

0

∫ t

0

ν(α− βy)eηu

2
dudt

+(S − t1)

∫ t1

0

(α− βy)eηtdt− (S − t1)

∫ t1

0

ν(α− βy)eηt

2
dt

]
=yIr

{
(α− βy)

η2
[
eηS − ηS − 1

] [
1− ν

2

] [ (α− βy)(S − t2)(e
ηt2 − 1)

η

]} (4.23)
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The total profit per unit time is estimated as follows:

TPC3(y, t2)

=
SR−A− PC −DC −HC − SC − IM1 + IR1

t2

=y

[[
(α− βy)(eηt1 − 1)

η

] [
1− ν

2

]
− (α− βy)

η + µ
e−µt2

[
e(µ+η)t1 − e(µ+η)t2

]]
−A− Cp

[
(α− βy)(ν − 1)e−θtd

(η + θ)

[
e(η+θ)td − e(η+θ)t1

]
− (ν − 1)(α− βy)(eηtd − 1)

η

− (α− βy)

η + µ
e−µt2

[
e(µ+η)t1 − e(µ+η)t

]]
−

[
Cp(α− βy)(ν − 1)

[
(θ + η)eηt1 − θeηtd − ηe(η+θ)t1e−θtd

]
η(η + θ)

]

− C1

[{
(α− βy)(ν − 1)e−θtd

(η + θ)

[
e(η+θ)td − e(η+θ)t1

]
− (ν − 1)(α− βy)(eηtd − 1)

η

}
td

+

[
(ν − 1)(α− βy)

(eηtd − ηtd − 1)

η2

]
−

[
(α− βy)(ν − 1)

θη(θ + η)

]
[
θeηtd − (θ + η)eηt1 + ηe(η+θ)t1e−θtd

]]
− c2

[
(α− βy)

(η + µ)2
e−µt2

[
e(µ+η)t2 − e(µ+η)t1 [(t2 − t1)(µ+ η) + 1]

]]
+ yIr

{
(α− βy)

η2
[
eηS − ηS − 1

] [
1− ν

2

] [ (α− βy)(S − t2)(e
ηt2 − 1)

η

]}

(4.24)

5. Solution Procedure

The following method is used to resolve the aforementioned issue.

Step 1: Fill the equation with all of the values for the necessary parameters for the proposed model.

Step 2: Put ∂TPCi

∂y = ∂TPCi

∂t1
= 0, where i = 1, 2, 3

Step 3: Fix the optimization issue TPCi for i = 1, 2, 3 and hold the optimal values of y, t1 and TPC

Step 4: Compare the values of TPC1, TPC2 and TPC3

Step 5: Choose the highest value among TPC1, TPC2 and TPC3.

Step 6: Stop.

6. Numerical Example

Consider a numerical example to demonstrate the model. The parameter values are as follows: α = 290;
β = 4; td = 1/12; t1 = 0.765; Cs = 2.5; Ir = 10% per year; Im = 15% per year;

ν = 0.1; µ = 0.1; θ = 0.08; Cp = 20; Cs = 2.5; A = 200; η = −0.98; C1 = 1;

If S = 0.08;, then it is in the category of case (i), since S < td.
If S = 0.4;, then it is in the category of case (ii), since td < S ≤ t1.
If S = 0.91;, then it is in the category of case (iii), since S > t1.
Then we obtain the following results. y = 35.5357; t2 = 0.9.
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Expressions Case 1 Case 2 Case 3

S 0.08 0.4 0.91
Q 32.049 32.049 32.049

SR 1173.32 1173.32 1173.32
DC 11.77 11.77 11.77
HC 9.85 9.85 9.85
SC 0.5908 0.5908 0.5908
IR 0.609 13.769 60.435
IM 22.323 5.6123 0

TPC 320.435 353.626 411.713

Table 2: Results of numerical example

Parameter % Changes in parameters Case 1 Case 2 Case 3

-30 320.23 445.42 814.62
-20 320.30 460.72 881.77

Ir -10 320.37 476.02 948.92
10 320.50 355.16 418.43
20 320.57 356.69 425.14
30 320.64 358.22 431.86
-30 327.88 355.50 411.71
-20 325.40 354.87 411.71

Im -10 322.92 354.25 411.71
10 317.96 353.00 411.71
20 315.48 352.38 411.71
30 312.99 351.76 411.71
-30 545.47 573.09 629.30
-20 470.46 499.93 556.77

Cp -10 395.45 426.78 484.24
10 245.43 280.47 339.18
20 170.42 207.32 266.65
30 95.40 134.17 194.12
-30 387.10 420.29 478.38
-20 364.88 398.07 456.16

A -10 342.66 375.85 433.94
10 298.21 331.40 389.49
20 275.99 309.18 367.27
30 253.77 286.96 345.05
-30 323.72 356.91 415.00
-20 322.63 355.82 413.90

C1 -10 321.53 354.72 412.81
10 319.34 352.53 410.62
20 318.25 351.44 409.52
30 317.15 350.34 408.43
-30 -242.32 -243.55 -245.70
-20 -54.73 -44.49 -26.56

α -10 132.85 154.57 192.58
10 508.02 552.68 630.85
20 695.61 751.74 849.99
30 883.19 950.80 1,069.13

Table 3: Results of sensitivity analysis

7. Sensitivity Analysis

Using the numerical example, we do sensitivity analyses for various parameters. In any circumstance
requiring decision-making, uncertainty may cause parameter values to vary. Sensitivity analysis is given here for
the three cases. The changes are made from −30 percent to +30 percent. The result of this analysis is in the
following table 3 and table 4. The main conclusion from the sensitivity analysis are as follows:

• When α is increased (decreased), the total profit for the three cases increases(decreases).

• There is an increase (decrease) in the total profit for the three cases value when A, Cp, η and β are
decreases(increases).

• Ir is less sensitive and ν, C1 and θ are moderately sensitive.

• Other parameter modifications have minimal impact on the total profit.
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Parameter % Changes in parameters Case 1 Case 2 Case 3

-30 720.39 778.05 878.95
-20 587.08 636.57 723.20

β -10 453.76 495.10 567.46
10 187.12 212.15 255.97
20 53.80 70.68 100.22
30 -79.52 -70.79 -55.52
-30 328.57 361.65 419.72
-20 325.87 358.98 417.06

θ -10 323.16 356.31 414.39
10 317.71 350.93 409.03
20 314.97 348.23 406.33
30 312.22 345.52 403.63
-30 384.32 420.86 484.94
-20 361.85 397.22 459.21

η -10 340.58 374.83 434.83
10 301.35 333.52 389.79
20 283.25 314.45 368.98
30 266.08 296.36 349.22
-30 316.08 350.12 409.23
-20 317.53 351.29 410.06

ν -10 318.98 352.46 410.89
10 321.89 354.80 412.54
20 323.34 355.97 413.37
30 324.80 357.14 414.20
-30 320.56 353.75 411.83
-20 320.52 353.71 411.79

µ -10 320.48 353.67 411.75
10 320.40 353.59 411.67
20 320.36 353.55 411.63
30 320.32 353.51 411.59

Table 4: Results of sensitivity analysis

Figure 2:
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Figure 3:

Figure 4: Total profit by changing the parameters Cs and t2

Figure 5:

Figure 6:

Figure 7:
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8. Conclusion

In this work, an inventory model with a single item is developed for a non-instantaneous deterioration item
with a return policy, allowable payment delays, and partial backlogging. Customers may return products at any
time during the replenishment cycle. Products that have been returned may be resalable at the same selling price.
During shortages partially backlogged is considered. This model maximizes the total profit by selling price and
time. We investigated three cases. Solution procedure and numerical example are given. for future research, this
model can be extended to advance payment with fully backlogged and instantly deteriorating items.
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1. Introduction

The purpose of this study the following problem{
(Dαu) (τ) = f(τ, u (τ) , max

s∈[τ−r,τ ]
u (s)), τ ∈ J = [0,T],

u (τ) = φ (τ) , τ ∈ [−r, 0] ,
(1.1)

where Dα represents the conformable fractional derivative of order α, 0 < α ≤ 1, T > 0 and r > 0, f :

J × R× C → R is continuous with C = C ([−r,T] ,R) and φ : [−r, 0] → R continuous.
Conformable fractional derivative was first introduced in [23], later developed in [1] and it appears in many

fields (see [2], [3], [11], [17], [25], [35] along with the cited references therein).
However differential equations with maxima and differential inequalities with maxima were initially used in

automatic control and in the study stability of equations with retarded argument (see [30] and [19, Chapter 4
Section 5]). Nevertheless, a variety of fields, including there are a wide range of areas such as psychology (e.g.,
dynamic model for happiness), optimal control, theory of lateral inhibition, chemostat models and economy (see
[5], [6], [8], [15], [18], [20], [21], [28] and [33]) use differential equations with maxima.
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Some authors have studied conformable fractional differential equations with deviating arguments using fixed
point theorems, numerical methods, monotone iterative technique, and upper and lower solutions method see [14],
[16], [22], [24] and [31]). Let us recall some of them.

In [14], the authors studied the problem{
(Dαu)(τ) = f(τ, u (τ) , u (θ (τ))), τ ∈ J = [0,T],

u (0) = u (T ) ,
(1.2)

where 0 < α ≤ 1, T > 0, f : J × R× C (J,R) → R and θ : J → J are continuous with θ(J) ⊆ J .
The authors used the monotone iterative technique to establish some sufficient conditions for the existence of

extremal solutions for periodic boundary value problem (1.2).
In [16], the author studied the following problem{

(Dαv)(τ) = f(τ, v(τ), v (θ (τ))), τ ∈ J = [0,T],

v (0) = g (v) ,
(1.3)

where 0 < α ≤ 1, T > 0, f : J × R × C (J,R) → R and θ : J → J continuous with θ(J) ⊆ J , and
g : C (J,R) → R continuous increasing.

The author established the existence of minimal and maximal solutions for the problem (1.3) by combining
the upper and lower solutions method with the monotone iterative technique.

In [22], the authors studied the following problem{
(Dαy)(τ) + y (τ) = µy (µτ) , τ > 0,

y (0) = λ,
(1.4)

where 0 < α ≤ 1, λ and µ are real numbers with µ < 1.
The approximate solution for problem (1.4) was provided by the authors using the homotopy perturbation

method.
One well know that the existence of solutions for first order differential equations with maxima is proved

using the monotone iterative technique (see [4], [7], [8, Chapter 6] and the references cited therein). The aim of
this work is to demonstrate its successful application to problems of type (1.1).

This work is structured to the following plan. We provide some definitions and preliminaries results in Section
2. Section 3 presents and demonstrates the main results and finally Section 4 offers how our results are applied.

2. Definitions and Preliminary Results

Definition 2.1. [23]Let h : J → R continuous 0 < α ≤ 1. The conformable fractional integral of order α of h
is defined by

(Iαh)(τ) =

τ∫
0

sα−1h (s) ds, for τ > 0.

Definition 2.2. [23]Let h : J → R and 0 < α ≤ 1 . The Conformable fractional derivative of order α of h is
defined by  (Dαh)(τ) = lim

ρ→0

h(τ+ρτ1−α)−h(τ)

ρ , for τ > 0,

(Dαh)(0) = lim
τ→0+

(Dαh)(τ).
(2.1)

Example 2.3. We have

(i) (Dαc)(τ) = 0, where c ∈ R.
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(ii) (Dατ
λ)(τ) =


λτλ−α if τ > 0,
λ if λ = α and τ = 0,
0 if λ > α and τ = 0.

(iii) (Dαe
τα

)(τ) = αeτ
α

.

(iv) (Dα sin

(
tα

α

)
)(τ) = cos

(
τα

α

)
.

(v) (Dα cos

(
tα

α

)
)(τ) = − sin

(
τα

α

)
.

Theorem 2.4. [23, Theorem 2.1]If h : J → R is α-differentiable at τ0 > 0, then h is continuous at τ0.

Lemma 2.5. [23, Theorem 3.1]Let h : J → R be a continuous function and 0 < α ≤ 1, then we have
(Dα ◦ Iα)h = h.

Lemma 2.6. [23, Theorem 2.4]Let h : [a, b] → R continuous with 0 ≤ a < b and 0 < α ≤ 1. If h is
α-differentiable in (a, b), then

h (b)− h (a) =

(
bα − aα

α

)
(Dαh) (c) ,

with c in (a, b).

Notation 2.7. For 0 < α ≤ 1, we define Cα,0 (J,R) as follows

Cα,0 (J,R) = {h ∈ C (J,R) : Dαh ∈ C (J,R)} .

Lemma 2.8. Let h ∈ Cα,0 ([a, b] ,R) with 0 ≤ a < b. Then Dαh ≡ 0 in [a, b] if and only if h ≡ c in [a, b],
where c is a real constant.

Proof. Assume that h ∈ Cα,0 ([a, b] ,R) with 0 ≤ a < b.
Suppose that Dαh ≡ 0 in [a, b] and we put by definition

h (τ0) = min
τ∈[a,b]

h (τ) and h (τ1) = max
t∈[a,b]

h (t) .

From Lemma 2.6, one has
h (τ0) = h (τ1) ,

which means that
h ≡ c in [a, b], with c ∈ R.

Conversely if h ≡ c in [a, b] with c ∈ R, then by using the definition of Conformable fractional derivative,
we obtain h ∈ Cα,0 ([a, b] ,R). ■

Lemma 2.9. Assume that h ∈ Cα,0 (J,R), then we have

(Iα ◦Dα) (h (τ)) = h (τ)− h (0) , for τ ∈ J.

Proof. We put by definition
g (τ) = (Iα ◦Dα) (h (τ)) , for t ∈ J.

From Lemma 2.5, we obtain
(Dαg) (τ) = (Dαh) (τ) , for τ ∈ J,

which means that
(Dα) (g − h) (t) = 0, for t ∈ J ,
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and consequently since g (0) = 0 and from the preceding Lemma, we deduce that

g (τ) = h (τ)− h (0) , for τ ∈ J.

That is
(Iα ◦Dα) (h (τ)) = h (τ)− h (0) , for τ ∈ J.

■

Lemma 2.10. [32, Theorem 1 page 44] If the functions u : [c, d] → R and v : [c, d] → R are continuous on the
segment [c, d], then

max
τ∈[c,d]

|u (τ)− v (τ)| ≥
∣∣∣∣ max
τ∈[c,d]

u (τ)− max
τ∈[c,d]

v (τ)

∣∣∣∣ .
Lemma 2.11. If the functions u : [c, d] → R and v : [c, d] → R are continuous on the segment [c, d], then

max
τ∈[c,d]

u (τ)− max
τ∈[c,d]

v (τ) ≥ min
τ∈[c,d]

(u (τ)− v (τ)) .

Proof. We have
max
τ∈[c,d]

u (τ)− max
τ∈[c,d]

v (τ) = max
τ∈[c,d]

u (τ)− v (ς) ,

where ς ∈ [c, d].
Which implies that

max
τ∈[c,d]

u (τ)− max
τ∈[c,d]

v (τ) ≥ u (ς)− v (ς)

≥ min
τ∈[c,d]

(u (τ)− v (τ)) .

That is
max
τ∈[c,d]

u (τ)− max
τ∈[c,d]

v (τ) ≥ min
τ∈[c,d]

(u (τ)− v (τ)) .

■

Now consider the problem{
(Dαu) (τ) = g̃(τ, u (τ) , max

s∈[τ−r,τ ]
u (τ)), τ ∈ J,

u(τ) = ψ (t) , τ ∈ [−r, 0] ,
(2.2)

where 0 < α ≤ 1, g̃ : J × R×C ([−r,T] ,R)→ R continuous and ψ ∈ C ([−r, 0] ,R) .

Notation 2.12. For 0 < α ≤ 1 the space Cα ([−r,T] ,R) is defined as follows

Cα ([−r,T] ,R) = {u ∈ C ([−r, T ] ,R) : Dαu ∈ C (J,R)} .

The following result is an immediate consequence of Lemma 2.5 and Lemma 2.9.

Lemma 2.13. Let 0 < α ≤ 1. If u ∈ Cα ([−r, T ] ,R), then u is a solution of the following integral equation u (τ) = ψ (0) +
τ∫
0

sα−1g̃(s, u (s) , max
t∈[s−r,s]

u (t))ds, for all τ ∈ J,

u(τ) = ψ (τ) , for all τ ∈ [−r, 0] ,

if, and only if, u is a solution of the Cauchy problem (2.2).
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Now, we have the following result.

Theorem 2.14. Assume that the following hypothesis are satisfied

(H) There exists a positive constants L1 and L2 such that

|g̃ (t, u1, v1)− g̃ (t, u2, v2)| ≤ L1 |u1 − u2|+ L2 |v1 − v2| ,

for all t ∈ J , ui ∈ R and vi ∈ R for i = 1, 2.

Then the problem (2.2) admits a unique solution u ∈ Cα ([−r,T] ,R) .

Proof. Let u ∈ Cα ([−r,T] ,R) and consider the following equation

 u (τ) = ψ (0) +
τ∫
0

sα−1g̃(s, u (s) , max
t∈[s−r,s]

u (t))ds, for all τ ∈ J,

u(τ) = ψ (τ) , for all τ ∈ [−r, 0] .

Now we define the operator

A : Cα ([−r,T] ,R) → Cα ([−r,T] ,R)

u 7→ (Au) (τ) =

ψ (0) +
τ∫
0

sα−1g̃(s, u (s) , max
t∈[s−r,s]

u (t))ds, for all τ ∈ J,

u(τ) = ψ (τ) , for all τ ∈ [−r, 0] ,

and we define the following norm

∥v∥ = max
τ∈[−r,T]

e
−
λ

α
|τ |α

|v (τ)| ,

where v ∈ Cα ([−r,T] ,R) and λ > 0.

Since the norms ∥.∥∗ and ∥.∥0 are equivalent, then (Cα ([−r,T] ,R) , ∥.∥∗) is a Banach space.

Now let u1, u2 ∈ Cα ([−r,T] ,R), then for all τ ∈ J , one has

e
−
λ

α
τα

|(Au1) (τ)− (Au2) (τ)|

= e
−
λ

α
τα

∣∣∣∣∣∣
τ∫

0

sα−1

(
g̃(s, u1 (s) , max

t∈[s−r,s]
u1 (t))− g̃(s, u2 (s) , max

t∈[s−r,s]
u2 (t))

)
ds

∣∣∣∣∣∣
≤ e

−
λ

α
τα

τ∫
0

sα−1

∣∣∣∣g̃(s, u1 (s) , max
t∈[s−r,s]

u1 (t))− g̃(s, u2 (s) , max
t∈[s−r,s]

u2 (t))

∣∣∣∣ ds
≤ e

−
λ

α
τα

τ∫
0

sα−1

(
L1 |u1 (s)− u2 (s)|+ L2

∣∣∣∣ max
t∈[s−r,s]

u1 (t)− max
t∈[s−r,s]

u2 (t)

∣∣∣∣) ds.
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From Lemma 2.10, we obtain

e
−
λ

α
τα

|(Au1) (τ)− (Au2) (τ)|

e
−
λ

α
τα

τ∫
0

sα−1

(
L1 |u1 (s)− u2 (s)|+ L2 max

t∈[s−r,s]
|u1 (t)− u2 (t)|

)
ds

≤ e
−
λ

α
τα

(L1 + L2) ∥u1 − u2∥
τ∫

0

e

λ

α
sα

sα−1ds

= e
−
λ

α
τα

(L1 + L2) ∥u1 − u2∥

e
λ

α
τα

− 1

λ



= (L1 + L2) ∥u1 − u2∥

1− e
−
λ

α
τα

λ


<

(L1 + L2)

λ
∥u1 − u2∥ .

If we choose λ ≥ (L1 + L2), we obtain A is a contraction on (Cα ([−r,T] ,R) , ∥.∥) and therefore by Banach’s
fixed point theorem, the operator A admits a unique fixed point and consequently from Lemma 2.13, it follows
that the problem (2.2) admits a unique solution u ∈ Cα ([−r,T] ,R) . ■

Lemma 2.15. Let u ∈ Cα ([−r,T] ,R) satisfying{
(Dαu) (τ) ≤ −M1u (τ)−N1 min

s∈[τ−r,τ ]
u (s) , τ ∈ J ,

u (0) ≤ u (τ) ≤ 0, for all τ ∈ [−r, 0] ,
(2.3)

where 0 < α ≤ 1 and M1 and N1 are positive real numbers.
If

(M1 +N1)
Tα

α
≤ 1,

then u ≤ 0 in [−r,T] .

Proof. Assume that there exists t0 ∈ (0,T] such that

u (t0) > 0. (2.4)

We put by definition
u (η) = min

t∈[−r,t0]
u (t) ≤ 0,

where η ∈ [0, t0).
From Lemma 2.6, there exists σ ∈ (η, t0) such that

u (t0)− u (η) =

(
tα0 − ηα

α

)
(Dαu) (σ) .

Then by using (2.3) and (2.4), we obtain

−u (η) < −
(
M1u (σ) +N1 min

s∈[σ−r,σ]
u (σ)

)(
tα0 − ηα

α

)
.
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Which implies that

−u (η) < − (M1 +N1) u (η)

(
tα0 − ηα

α

)
< − (M1 +N1) u (η)

Tα

α
.

That is
(M1 +N1)

Tα

α
> 1 if u (η) < 0.

Which is a contradiction with the assumption

(M1 +N1)
Tα

α
≤ 1.

If u (η) = 0, we obtain also a contradiction.
Then, we have

u (t) ≤ 0, for all t ∈ [−r,T] .

■

Remark 2.16. The idea of the proof of the preceding Lemma 2.15 is similar to that of [26, Lemma 2.1 part i)].

Lemma 2.17. Assume that u ∈ Cα ([−r,T] ,R) satisfying{
(Dαu) (t) ≤ −M̃1u (t)− Ñ1 max

s∈[t−r,t]
u (s) , t ∈ J ,

u (t) ≤ 0, for all t ∈ [−r, 0] ,

where 0 < α ≤ 1, M̃1 ≤ 0 and Ñ1 ≤ 0.
If

−
(
M̃1 + Ñ1

) Tα

α
< 1,

then u (t) ≤ 0, for all t ∈ [−r,T].

Proof. Assume that there exists t1 ∈ (0, T ] such that

u (t1) > 0.

We put by definition
u
(
t̃
)
= max

t∈[−r,t1]
u (t) > 0,

where t̃ ∈ (0, t1].
We have

(Dαu) (t) ≤ −M̃1u (t)− Ñ1 max
s∈[t−r,t]

u (s) , t ∈ J .

Which implies
(Dαu) (t) ≤ −

(
M̃1 + Ñ1

)
u
(
t̃
)

Applying the operator Iα to the both sides of the previous inequality, we obtain

u
(
t̃
)
− u (0) ≤ −

(
M̃1 + Ñ1

)
u
(
t̃
) t̃∫

0

sα−1ds
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That is

u
(
t̃
)
− u (0) ≤ −

(
M̃1 + Ñ1

)
u
(
t̃
)

α
t̃α.

Which implies

u
(
t̃
)
≤ −

(
M̃1 + Ñ1

)
u
(
t̃
)

α
Tα.

Since u
(
t̃
)
> 0, we obtain

1 ≤ −

(
M̃1 + Ñ1

)
α

Tα.

Which is a contradiction with the assumption

−

(
M̃1 + Ñ1

)
α

Tα < 1,

and then, we get
u (t) ≤ 0, for all t ∈ [−r,T] .

■

3. Main Results

Definition 3.1. We say that u ∈ Cα ([−r,T] ,R) is a lower solution of (1.1) if{
(Dαu)(τ) ≤ f(τ, u (τ) , max

s∈[τ−r,τ ]
u (s)), τ ∈ J,

u (τ) ≤ φ (τ) , τ ∈ [−r, 0] .

Definition 3.2. We say that u ∈ Cα ([−r,T] ,R) is an upper solution of (1.1) if (Dαu) (τ) ≥ f

(
τ, u (τ) , max

s∈[τ−r,τ ]
u (s)

)
, τ ∈ J,

u (τ) ≥ φ (τ) , τ ∈ [−r, 0] .

Definition 3.3. If u ∈ Cα ([−r,T] ,R) and fulfills (1.1), then we say that u is a solution of (1.1).

We have the following result.

Theorem 3.4. Assume that there two constants M ≥ 0, N ≥ 0 satisfying

(H1) f(τ, x1, y1) − f (τ, x2, y2) ≥ −M (x1 − x2) − N (y1 − y2), for all τ ∈ J , u (t) ≤ x2 ≤ x1 ≤ u (t) and
max

s∈[t−r,t]
u (s) ≤ y2 ≤ y1 ≤ max

s∈[t−r,t]
u (s) , where u and u are lower and upper solutions respectively for

problem (1.1) such that u ≤ u in [−r,T].

(H2) u (τ)− u (0) ≤ φ (t)− φ (0) ≤ u (τ)− u (0) , for all τ ∈ [−r, 0] .

(H3) (M +N)
Tα

α
≤ 1.

Then the problem (1.1) has a minimal solution u− and a maximal solution u+ such that for every solution u

of (1.1) with u ≤ u ≤ u in [−r,T], we have

u ≤ u− ≤ u ≤ u+ ≤ u in [−r,T] .
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Proof. We take u0 = u, and we define the sequences (un)n≥1 by{
(Dαun+1) (τ) +Mun+1 (τ) +N min

s∈[τ−r,τ ]
un+1 (s) = fn (τ) , τ ∈ J,

un+1(τ) = φ (τ) , τ ∈ [−r, 0] ,
(3.1)

where
fn (τ) = f(τ, un (τ) , max

s∈[τ−r,τ ]
un (s)) +Mun (τ) +N min

s∈[τ−r,τ ]
un (s) .

Analogously, we take u0 = u and we define the sequences (un)n≥1 by{
(Dαun+1) (τ) +Mun+1 (τ) +N min

s∈[τ−r,τ ]
un+1 (s) = f̃n (τ) , τ ∈ J,

un+1(τ) = φ (τ) , τ ∈ [−r, 0] ,
(3.2)

where
f̃n (τ) = f(τ, un (τ) , max

s∈[τ−r,τ ]
un(s)) +Mun (τ) +N min

s∈[τ−r,τ ]
un (s) .

Step 1: For all n ∈ N, we have
un ≤ un+1 ≤ un+1 ≤ un in [−r,T] .

Let
v0 (τ) := u0 (τ)− u1 (τ) , τ ∈ [−r,T] .

By (3.1) and using the definition of lower solution and the hypothesis (H2), we have (Dαv0) (τ) +Mv0 (τ) +N

(
max

s∈[τ−r,τ ]
u0 (s)− max

s∈[τ−r,τ ]
u1 (s)

)
≤ 0, τ ∈ J,

v0 (0) ≤ v0 (τ) ≤ 0, for all τ ∈ [−r, 0] .

Then from Lemma 2.11, we obtain{
(Dαv0) (τ) +Mv0 (τ) +N min

s∈[τ−r,τ ]
v0 (s) ≤ 0, τ ∈ J,

v0 (0) ≤ v0 (τ) ≤ 0, for all τ ∈ [−r, 0] .

From Lemma 2.15, one has
v0 ≤ 0 in [−r,T] .

Which means that
u0 ≤ u1 in [−r,T] . (3.3)

Similarly, we can prove that
u1 ≤ u0 in [−r,T] . (3.4)

Now, we put by definition
w1 (t) = u1 (t)− u1 (t) , t ∈ [−r,T] .

Using (3.1) and (3.2), we have

(Dαw1) (τ) +Mw1 (t) +N min
s∈[τ−r,τ ]

w1 (s)

= f0 (τ)− f̃0 (τ)−N max
s∈[τ−r,τ ]

u1 (τ) +N max
s∈[τ−r,τ ]

u1 (τ) +N min
s∈[τ−r,τ ]

w1 (s) .

From Lemma 2.11, we obtain

(Dαw1) (τ) +Mw1 (τ) +N min
s∈[τ−r,τ ]

w1 (s) ≤ f0 (τ)− f̃0 (τ) , τ ∈ J.
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Since u0 = u ≤ u = u0 in [−r, 0] and using the hypothesis (H1) , we obtain

(Dαw1) (τ) +Mw1 (τ) +N min
s∈[τ−r,τ ]

w1 (s) ≤ 0, τ ∈ J. (3.5)

On the other hand, we have
w1(τ) = 0, for all τ ∈ [−r, 0] .

That is
w1(0) = w1(τ) = 0, for all τ ∈ [−r, 0] . (3.6)

By the previous equality and (3.5), we have{
(Dαw1) (τ) +Mw1 (τ) +N min

s∈[τ−r,τ ]
w1 (s) ≤ 0, τ ∈ J ,

w1(0) = w1(τ) = 0, for all τ ∈ [−r, 0] .

Then by hypothesis (H3) Lemma 2.15 implies

w1 ≤ 0 in [−r,T] .

Which means that
u1 ≤ u1 in [−r,T] . (3.7)

Then by (3.3), (3.4) and (3.7), we have

u0 ≤ u1 ≤ u1 ≤ u0 in [−r,T] .

Now we assume for fixed n ≥ 1, we have

un ≤ un+1 ≤ un+1 ≤ un in [−r,T] ,

and we show that
un+1 ≤ un+2 ≤ un+2 ≤ un+1 in [−r,T] .

We put by definition
vn+1 (τ) := un+1 (τ)− un+2 (τ) , τ ∈ [−r,T] .

By (3.1), we have {
(Dαvn+1) (τ) +Mvn+1 (τ) +N min

s∈[τ−r,τ ]
vn+1 (s) = gn (τ) , τ ∈ J,

vn+1(0) = vn+1(τ) = 0, τ ∈ [−r, 0] ,

where
gn (τ) = fn (τ)− fn+1 (τ) , for all τ ∈ J.

Since by the hypothesis of recurrence, we have un ≤ un+1 in J and from Lemma 2.11 and using the hypothesis
(H1), we obtain {

(Dαvn+1) (τ) +Mvn+1 (τ) +N min
s∈[τ−r,τ ]

vn+1 (s) ≤ 0, τ ∈ J,

vn+1(0) = vn+1(τ) = 0, τ ∈ [−r, 0] ,

and then from Lemma 2.15, we get
vn+1 ≤ 0 in [−r,T] .

That is
un+1 ≤ un+2 in [−r,T] . (3.8)
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Similarly, we can prove that
un+2 ≤ un+1 in [−r,T] , (3.9)

and
un+2 ≤ un+2 in [−r,T] . (3.10)

Then by (3.8), (3.9) and (3.10), we obtain

un+1 ≤ un+2 ≤ un+2 ≤ un+1 in [−r,T] .

Hence for all n ∈ N, we have
un ≤ un+1 ≤ un+1 ≤ un in [−r,T] .

Step 2: The consequence (un)n∈N converges to a minimal solution of (1.1).
By Step 1 and using Dini theorem, it follows that the sequence of functions (un)n∈N converges uniformly to

u−.
Let n ∈ N∗ and t ∈ J , then from Lemma 2.13 we get

un+1(τ)− un+1 (0) =

∫ τ

0

sα−1Fn (s) ds,

where
Fn (s) = fn (s)−Mun+1 (s)−N max

t∈[s−r,s]
un+1 (t) .

Now, as n tends to +∞, we obtain

Fn (s) → f(s, u− (s) , max
t∈[s−r,s]

u− (s)).

Which implies

−u−(τ)− u−(0) =

∫ τ

0

sα−1f(s, u− (s) , max
t∈[s−r,s]

u− (s))ds,

and from Lemma 2.13, we deduce

(Dαu−)(t) = f(τ, u− (τ) , max
t∈[τ−r,τ ]

u− (t)), τ ∈ J.

On the other hand, we have
u− = φ in [−r, 0] ,

and consequently it follows that u− is a solution of (1.1).
Now, we prove that if u is another solution of (1.1) such that u ≤ u ≤ u, then u− ≤ u.
Since u is an upper solution of (1.1), then by Step 1, we have

∀n ∈ N, un ≤ u.

Which implies that
u− = lim

n→+∞
un ≤ u.

This means that u− is a minimal solution of (1.1).
The second step’s proof is finished.
In a similar way, we can prove that the sequence (un)n∈N converges to a maximal solution u+ of (1.1).
The proof of Theorem 3.4 is complete. ■

For the uniqueness of solutions for the problem (1.1), it is necessary to impose additional conditions on f.
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(H4) There exists a negative real number M1 such that the function x 7−→ f(τ, x, y) +M1y is decreasing for all
τ ∈ J and y ∈ R.

(H5) There exists a negative real number N1 such that the function y 7−→ f(τ, x, y) +N1y is decreasing for all
τ ∈ J and x ∈ R.

(H6) − (M1 +N1)
Tα

α
< 1.

We have the following result.

Theorem 3.5. Assume that hypothesis (Hi) for i = 1,...,6 are satisfied, then the problem (1.1) admits a unique
solution u such that u ≤ u ≤ u in [−r,T].

Proof. By Theorem 3.4, the problem (1.1) admits a minimal and a maximal solutions u− and u+ such that

u ≤ u− ≤ u+ ≤ u in [−r,T] .

We put by definition
z (τ) = u+ (τ)− u− (τ) , τ ∈ [−r,T] .

We have
z ≥ 0 in [−r,T] . (3.11)

Now, we are going to prove that
z ≤ 0 in [−r,T] .

As we have {
(Dαz)(τ) = f(τ, u+ (τ) , max

t∈[τ−r,τ ]
u+ (t))− f(τ, u− (τ) , max

t∈[τ−r,τ ]
u− (t)), τ ∈ J,

z (0) = z (τ) = 0, τ ∈ [−r, 0] .

By using the hypothesis (H4), we obtain
(Dαz)(τ) +M1z(τ) ≤
f(τ, u− (τ) , max

t∈[τ−r,τ ]
u+ (t))− f(τ, u− (τ) , max

t∈[τ−r,τ ]
u− (t)), τ ∈ J,

z (0) = z (τ) = 0, τ ∈ [−r, 0] .

Now from Lemma 2.10, we have

max
t∈[τ−r,τ ]

z (t) = max
t∈[τ−r,τ ]

∣∣u+ (t)− u− (t)
∣∣ ≥ max

t∈[τ−r,τ ]
u+ (t)− max

t∈[τ−r,τ ]
u− (t) ,

and then according to hypothesis (H4), we obtain{
(Dαz)(τ) +M1z(τ) +N1 max

t∈[τ−r,τ ]
z (t) ≤ 0, τ ∈ J,

z (0) = z (τ) = 0, τ ∈ [−r, 0] .

From Lemma 2.17, we get
z (t) ≤ 0 in [−r,T],

and therefore, there is a unique solution to problem (1.1).
■
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4. Applications

4.1. Example 1

Consider the problem D 1
2
u (τ) =

√
τu (τ)− max

s∈[τ−1,τ ]
u (s) + cos τ, τ ∈

[
0,

1

4

]
,

u(τ) = τ, τ ∈ [−1, 0] .
(4.1)

Let u(τ) = τ and u(τ) = τ + 1 in
[
−1,

1

4

]
.

For the problem (4.1), u is a lower solution ifD 1
2
u (τ) ≤

√
τu (τ)− max

s∈[τ−1,τ ]
u (s) + cos τ, τ ∈

[
0,

1

4

]
,

u(τ) ≤ τ , , τ ∈ [−1, 0] .

That is 
√
τ ≤ τ

3
2 − τ + cos τ, τ ∈

[
0,

1

4

]
,

τ ≤ τ , τ ∈ [−1, 0] .

Since φ1(τ) =
√
τ − τ

3
2 + τ − cos τ ≤ 0 in

[
0,

1

4

]
,

Figure 1: Graph of the function φ1

we conclude that u is a lower solution for the problem (4.1).
Similarly if we have D 1

2
u (τ) ≥

√
τu (τ)− max

s∈[τ−1,τ ]
u (s) + cos τ, τ ∈

[
0,

1

4

]
,

u(τ) ≥ τ , τ ∈ [−1, 0] .

we obtain u is an upper solution for the problem (4.1).
That is  τ

3
2 − τ − 1 + cos τ ≤ 0, τ ∈

[
0,

1

4

]
,

τ + 1 ≥ τ , τ ∈ [−1, 0] .

Since φ2(τ) = τ
3
2 − τ − 1 + cos τ ≤ 0, for all τ ∈

[
0,

1

4

]
,
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Figure 2: Graph of the function φ2

we obtain the desired upper solution for the problem (4.1).
Now, if we select N = 1 and M = 0, then

(M +N)
Tα

α
=

(
1

4

) 1
2

1

2

= 1 ≤ 1,

and if we choose M1 = − 1
2 and N1 = 0, we have

− (M1 +N1)
Tα

α
=

(
1

4

) 1
2

2× 1

2

=
1

2
< 1.

Nevertheless, it is evident that the function τ 7→
√
τu (τ) − max

s∈[τ−1,τ ]
u (s) + cos τ satisfies the remaining

assumptions of Theorem 3.5. As a result, the problem (4.1) admits a unique solution u such that u ≤ u ≤ u.

4.2. Example 2

Consider the problemD 2
3
u (τ) =

τ
2
3

4
u (τ)−

max
s∈[τ−1,τ ]

u (s)

8
+

2

3
(τ

2
3 + 1) +

1

8
, τ ∈

[
0, 12

]
,

u(τ) = τ
2
3 , , τ ∈ [−1, 0] .

(4.2)

Let u(τ) = τ
2
3 and u(τ) = 2τ

2
3 + 1, in

[
−1, 12

]
.

For the problem (4.2), u is a lower solution if we haveD 2
3
u (τ) ≤ τ

2
3

4
u (τ)−

max
s∈[τ−1,τ ]

u (s)

8
+

2

3
(τ

2
3 + 1) +

1

8
, τ ∈

[
0,

1

2

]
,

u(τ) ≤ τ
2
3 , τ ∈ [−1, 0] .

That is 
2

3
≤ τ

4
3

4
− (τ − 1)

2
3

8
+

2

3
(τ

2
3 + 1) +

1

8
, τ ∈

[
0,

1

2

]
,

τ
2
3 ≤ τ

2
3 , τ ∈ [−1, 0] .
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Figure 3: Graph of the function φ3

Since φ3(τ) =
τ

4
3

4
− (τ − 1)

2
3

8
+

2

3
τ

2
3 +

1

8
≥ 0, for all τ ∈

[
0,

1

2

]
,

we get u is a lower solution for the problem (4.2).
Similarly if D 2

3
u (τ) ≥ τ

2
3

4
u (τ)−

max
s∈[τ−1,τ ]

u (s)

8
+

2

3
(τ

2
3 + 1) +

1

8
, τ ∈

[
0,

1

2

]
,

u(τ) ≥ τ
2
3 , τ ∈ [−1, 0] .

we obtain u is an upper solution for the problem (4.2).
That is 

4

3
≥ τ

2
3

4

(
2τ

2
3 + 1

)
−

(
2 (τ − 1)

2
3 + 1

8

)
+

2

3
(t

2
3 + 1) +

1

8
, τ ∈

[
0,

1

2

]
,

2τ
2
3 + 1 ≥ τ

2
3 , τ ∈ [−1, 0] .

That is 
τ

4
3

2
+

11

8
τ

2
3 − (τ − 1)

2
3

4
− 2

3
≤ 0, τ ∈

[
0,

1

2

]
,

τ
2
3 + 1 ≥ 0, , τ ∈ [−1, 0] .

Since φ4(τ) =
τ

4
3

2
+

11

8
τ

2
3 − (τ − 1)

2
3

4
− 2

3
≤ 0, for all τ ∈

[
0,

1

2

]
,

we obtain the desired upper solution for the problem (4.2).

Now, if we select M = 0 and N =
1

8
, then

(M +N)
Tα

α
=

1

8

(
1

2

) 2
3

2

3

= 0.11812 ≤ 1,
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Figure 4: Graph of the function φ4

and if we choose M1 = − 1
2 and N1 = 0, we have

− (M1 +N1)
Tα

α
=

(
1

2

) 2
3

2× 2

3

= 0.47247 < 1.

Nevertheless, it is evident that the function τ 7→ τ
2
3

4
u (τ) −

max
s∈[τ−1,τ ]

u (s)

8
+

2

3
(τ

2
3 + 1) +

1

8
satisfies the

remaining assumptions of Theorem 3.5. As a result, the problem (4.2) admits a unique solution u such that
u ≤ u ≤ u.

4.3. Example 3

Consider the problemD 1
2
u (τ) = −u (τ)

2
−

max
s∈[τ−π

2 ,τ]
u (s)

2
+
√
τ cos (τ) + sin (τ) , τ ∈

[
0,
π

16

]
,

u(τ) = 1 + τ , τ ∈
[
−π
2
, 0
]
.

(4.3)

Let u(τ) = sin (τ) and u(τ) = 1, for all τ ∈
[
0,
π

16

]
.

First u is a lower solution ifD 1
2
u (τ) ≤ −u (τ)

2
−

max
t∈[τ−π

2 ,τ]
u (t)

2
+

√
τ cos (τ) + sin (τ) , τ ∈

[
0,
π

16

]
,

u (τ) ≤ 1 + τ , τ ∈
[
−π
2
, 0
]
.

That is 
√
τ cos (τ) ≤

(
1− 2

2

)
sin (τ)

2
+

√
τ cos (τ) , τ ∈

[
0,
π

16

]
,

sin (τ) ≤ 1 + τ , τ ∈
[
−π
2
, 0
]
.
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Since sin(τ)− 1− τ ≤ 0 , for all τ ∈
[
−π
2
, 0
]
, we conclude that u is a lower solution for the problem (4.3).

Similarly if we have,D 1
2
u (τ) ≥ −u (τ)

2
−

max
s∈[τ−π

2 ,τ]
u (s)

2
+

√
τ cos (τ) + sin (τ) , τ ∈

[
0,
π

16

]
,

u(τ) ≥ 1 + τ , τ ∈
[
−π
2
, 0
]
.

we obtain u is an upper solution for the problem (4.3).
That is  0 ≥ −1 +

√
τ cos (τ) + sin (τ) , τ ∈

[
0,
π

16

]
,

1 ≥ 1 + τ , τ ∈
[
−π
2
, 0
]
.

Since φ5(τ) = −1 +
√
τ cos (τ) + sin (τ) ≤ 0, for all τ ∈

[
0,
π

16

]
,

Figure 5: Graph of the function φ5

we obtain the desired upper solution for the problem (4.3).

Now, if we select M = N +
1

2
, then

( π
16

) 1
2

1

2

= 0.88623 ≤ 1 and the function τ 7→ −
u
(
τ
2

)
2π

+
cos (

√
τ)

2
+

sin
(√

τ
2

)
satisfies the remaining assumptions of Theorem 3.5. As a result, the problem (4.3) admits a unique

solution u such that u ≤ u ≤ u.
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[11] M. BOHNER AND V. F. HATIPOĞLU, Cobweb model with conformable fractional derivatives, Math Meth Appl
Sci., 41(2018),1–8.

[12] T. A. BURTON, Volterra Integral and Differential Equations, Second Edition. Elsevier, Amsterdam, (2005).

[13] T. A. BURTON, Lyapunov Theory for Integral Equations with Singular Kernels and Fractional Differential
Equations, Publisher Amazon.com, (2012).

[14] H. CHEN, S. MENG AND Y. CUI, Monotone iterative technique for conformable fractional differential
equations with deviating arguments, Discrete Dyn. Nat. Soc., 2018(2018), Article ID 5827127, 9 pages.

[15] S. DASHKOVSKIY, O. KICHMARENKO AND K. SAPOZHNIKOVA, Approximation of solutions to the optimal
control problems for systems with maximum, J. Math. Sci. (N. Y.), 243(2019), 192–203.

[16] M. DERHAB, Existence of extremal solutions for a class of conformable fractional differential equations with
deviating arguments and with nonlocal initial Condition, Comm. Appl. Nonlinear Anal., 29(2022), 65 – 84.
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Abstract. In this paper, we investigate the regularity and existence of solutions in the α-norm for some second order partial
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1. Introduction

The aim of this work, we to study the existence and regularity of solutions in α-norm for the following second
order neutral partial functional differential equation

d

dt
[u′(t)− g(t, ut)] = Au(t) + f(t, ut, u

′
t) for t ≥ 0,

u0 = φ ∈ Cα,
u′0 = φ′ ∈ Cα,

(1.1)
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Second order partial neutral functional differential Equations with finite delay in Banach spaces

where A is the (possibly unbounded) infinitesimal generator of strongly continuous cosine family of linear
operators in X . Cα = C1([−r, 0], D((−A)α)), 0 < α < 1, denotes the space of continuous differentiable
functions from [−r, 0] into D((−A)α), (−A)α is the fractional α-power of A. This operator
((−A)α, D((−A)α)) will be describe later. Cα is endowed with the following norm ∥h∥Cα

= ∥h∥α + ∥h′∥α for
all h ∈ Cα = C1([−r, 0], Xα), where ∥h∥α = sup

−r≤0≤0
|h(θ)|α. The norm |.|α will be specified later. For

u ∈ C1([−r, b], D((−A)α)), t ≥ 0, b > 0, and t ∈ [0, b] ut denotes the history function of Cα defined by

ut(θ) = u(t+ θ) for θ ∈ [−r, 0],

f : R+ × Cα × Cα → X and g : R+ × Cα → Xα are given functions.
In [3] the authors study firstly the abstract semi-linear second order initial value problem and secondly they unify
and simplify some ideas from strongly continuous cosine families of linear operators in Banach spaces.
In [7], the authors reveal three properties of cosine families, distinguishing them from semi-groups of operators.
In [1] by use of the theory of cosine families of linear operators in Banach space, the author studied the existence
of solutions of following second order partial neutral functional differential equation

d

dt
[u′(t)− g(t, ut)] = Au(t) + f(t, ut, u

′(t)), t ∈ J = [0, T ]

u0 = φ ∈ B, u′(0) = z ∈ X.

(1.2)

To the best of the authors knowledge, the equation (1.2) and most similar other problems using cosine families
theory are studied without delay arguments. However time-delay is known to have a significant impact on the
asymptotic behavior and stability of these dynamic systems, it is inevitable that it be included in the mathematical
description of phenomena. For this purpose, in [5], Zabsonre et al. studied the existence and regularity of solution
for some nonlinear second order differential with finite delay in Banach spaces.

This present work is a generalization of [4] and a continuation of [1]. The neutral functional differential
equations, on the other hand, received a lot of attention in recent years due to the fact that they are present in
many areas of applied mathematics.
By use of the theory of strongly continuous cosine families of linear operator in Banach space, we will prove in
this paper the existence of mild and strict solution.
The organization of this work as follows, in Section 2, we recall some preliminary results about cosine families
theory and fractional α-power, in Section 3, we prove the existence and uniqueness of mild solution in the α-
norm for (1.1). In Section 4, we study the regularity of solutions. Finally, we illustrate our results, in Section 5
by examining an example.

2. Preliminary Results

Let (X, ∥.∥) be a Banach space and α be a constant such that 0 < α < 1 and A be the infinitesimal generator
of strongly continuous (C(t))t≥0 on X. We assume without loss of generality that 0 ∈ ρ(−A). Note that if the
assumption 0 ∈ ρ(−A) is not satisfied, one can substitute the operator −A by the operator (−A − σI) with σ
large enough such that 0 ∈ ρ(−A − σI). This allows us to define the fractional power (−A)α for 0 < α < 1,
as a closed linear invertible operator with domain D((−A)α) dense in X. The closeness of (−A)α implies that
D((−A)α), endowed with the graph norm of (−A)α, |x| = ∥x∥+ ∥(−A)αx∥, is a Banach space. Since (−A)α
is invertible, its graph norm |.| is equivalent to the norm |x|α = ∥(−A)αx∥. Thus, D((−A)α) equipped with the
norm |.|α, is a Banach space, which we denote by Xα.

Definition 2.1. [3] A one parameter family {C(t), t ∈ R} of bounded linear operators mapping the Banach
space X into itself is called a strongly continuous cosine family if and only if
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i) C(s+ t) + C(s− t) = 2C(s)C(t) for all s, t ∈ R
ii) C(0) = I

iii) C(t)x is continuous on R for each fixed x ∈ X .

The strongly continuous sine family {S(t), t ∈ R} associated to the given strongly continuous cosine family
{C(t), t ∈ R} by

S(t)x =

∫ t

0

C(s)xds, for x ∈ X, t ∈ R. (2.1)

Definition 2.2. The infinitesimal generator of strongly continuous cosine family {C(t), t ∈ R} is the operator
A : X −→ X define by

Ax =
d2C(t)x

dt2

∣∣∣
t=0

.

D(A) = {x ∈ X : C(t)x is a twice continuously differentiable function of t}.

We shall also make use of the set

E = {x : C(t)x is a once continuously differentiable function of t}.

Lemma 2.3. Let C(t),∈ R be a strongly continuous cosine family in X with infinitesimal generator A. The
following are true.
i) D(A) is dense in X and A is closed operator in X;

ii) if x ∈ X and s, r ∈ R then z =
∫ r

s

= S(u)xdu ∈ D(A) and Az = C(s)x− C(r)x;

iii) if x ∈ X , s, r ∈ R then z =
∫ s

0

∫ r

0

C(u)C(v)xdudv ∈ D(A) and

Az =
1

2
(C(s+ r)x− C(s− r)x);

iv) if x ∈ X , S(t)x ∈ E;

v) if ∈ X , the S(t)x ∈ D(A) and
dC(t)

dt
= AS(t)x:

vi) if x ∈ D(A), then C(t)x ∈ D(A) and
d2C(t)

dt2
= AC(t)x = C(t)Ax;

vii) if x ∈ E, then lim
t→0

AS(t) = 0;

viii) if x ∈ E, then S(t)x ∈ D(A) and
d2S(t)

dt2
= AS(t)x;

ix) if x ∈ D(A), then S(t)x ∈ D(A) and AS(t)x = S(t)Ax;
x) C(t+ s) + C(t− s) = 2AS(t)S(s) for all s, t ∈ R.

In [3], for 0 < α < 1 the fractional powers (−A)α exist as closed linear operators in X ,

D((−A)α) ⊂ D((−A)β) for 0 ≤ β ≤ α ≤ 1 and (−A)α(−A)β = (−A)α+β for 0 ≤ α+ β ≤ 1.

For our objective we assume that
(H0) A is the infinitesimal generator of a strongly continuous cosine family of linear operators on a Banach
space X .

By Lemma2.3, (H0)) implies that the operator A is densely defined in X , i.e D(A) = X . We have the
following result.
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Lemma 2.4. [3] Assume that (H0) hols. Then there are constants M ≥ 1 and ω ≥ 0 such that

∥C(t)∥ ≤Meω|t| and ∥S(t1)− S(t2)∥ ≤M
∣∣∣ ∫ t2

t1

eω|s|ds
∣∣∣, for all t1, t2 ∈ R.

From previous inequality, since S(0) = 0 we can deduce that

∥S(t)∥ ≤ M

ω
eωt for t ∈ R+.

In the sequel, let us pose M1 = max
(
M,

M

ω

)
.

Theorem 2.5. [3] If k : R+ → X is continuous, h : R+ → X is continuous and u is a solution of equation
(1.1), then u is a solution of integral equation

u(t) = C(t)x+ S(t)y +

∫ t

0

C(t− s)k(s)ds+

∫ t

0

S(t− s)h(s)ds.

(A1): For 0 < α < 1, (−A)α maps onto X and 1 − 1, so that D((−A)α) endowed with the norm |x|α =

∥(−A)αx∥ is a Banach space. We denote by Xα this space. In addition we assume that A−1 is compact. To
establish our results, we need the following Lemmas.

Lemma 2.6. [4] Assume that (H0) holds. The following are true
(i) For 0 < α < 1, (−A)−α is compact if and only if A−1 is compact.
(ii) For 0 < α < 1, and t ∈ R (−A)−αC(t) = C(t)(−A)−α and (−A)−αS(t) = S(t)(−A)−α.

Recall from [10], (−A)−α is given by the following formula

(−A)−α =
sinπα

π

∫ +∞

0

t−α(tI −A)−1dt.

Lemma 2.7. [4] Assume that (H0) holds. Let v : R −→ x such that v is continuously differentiable and let

q(t) =

∫ t

0

S(t− s)v(s)ds. Then

(i) q is twice continuously differentiable and for t ∈ R, q(t) ∈ D(A),

q′(t) =

∫ t

0

C(t− s)v(s)ds

and

q′′(t) =

∫ t

0

C(t− s)v′(s)ds+ C(t)v(0) = Aq(t) + v(t).

(ii) For 0 < α < 1 and t ∈ R, (−A)α−1q′(t) ∈ E.

Theorem 2.8. (Heine’s theorem)
Let f be a continuous function on a compact set K, then f is uniformly continuous on K.

Theorem 2.9. (Arzela-Ascoli theorem)
Let (X, dX) and (Y, dY ) be compact metric spaces, C(X,Y ) be the set of continuous functions from X to Y and
Let F be q subset of C(X,Y ). If F is closed and equicontinuous then, it is compact.

Theorem 2.10. (Schauder’s fixed point theorem)
Let X be a locally convex topological vector space, and let K ⊂ X be a non-empty, compact, and convex set.
Then given any continuous mapping f : K −→ K there exists x ∈ K such that f(x) = x.
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3. Existence of mild solutions

Definition 3.1. A continuous function u :] − r,+∞[→ Xα is said a strict solution of equation (1.1) if the
following conditions hold

(i) u ∈ C1([0,+∞[;Xα) ∩ C2([0,∞[;Xα)

(ii) u satisfies equation (1.1) on [0,+∞[.
(iii) u(θ) = φ(θ) for −r ≤ θ ≤ 0.

Proposition 3.2. Assume that (H0)) holds. If u is a strict solution of equation (1.1), then

u(t) = C(t)ϕ(0) + S(t)(ϕ′(0)− g(0, φ)) +

∫ t

0

C(t− s)g(s, us)ds+

∫ t

0

S(t− s)f(s, us, u
′
s)ds. (3.1)

Proof. It is just the consequence of Theorem 2.5. In fact, let us pose k(t) = g(t, ut) and h(t) = f(t, ut, u
′
t) for

t ≥ 0. The we get the desired results.■

Remark 3.3. The converse is not true. In fact if u satisfies equation (3.1), u may be not twice continuously
differentiable, that is why we distinguish between mild and strict solutions.

Definition 3.4. A continuous function u :]− r,+∞[→ Xα, for b > 0 is said to a mild solution of equation (1.1)
if

u(t) = C(t)φ(0) + S(t)(φ′(0)− g(0, φ)) +

∫ t

0

C(t− s)g(s, us)ds+

∫ t

0

S(t− s)f(s, us, u
′
s)ds for t ∈ [0, b],

u0 = φ(0),

u′0 = φ′(0).

In the following, we give a local existence of mild solutions of equation(1.1). We will use the Schauder’s
fixed point theorem. For this purpose, we make this following assumptions.

(H1)The function f : [0, b]× Cα → X satisfies the following conditions

i) f : [0, b]× Cα × Cα → X is continuously differentiable.

ii) There exists a continuous nondecreasing function β : [0, b] → R+ such that

∥f(t, φ, φ′)∥ ≤ β(t)∥φ∥α for (t, φ) ∈ [0, b]× Cα.

(H2) g : [0, b]× Cα → Xα is continuously differentiable and for each b > 0 there exist 0 < Lg < 1 such that

|g(t, φ)− g(t, ψ)|α ≤ Lg∥φ− ψ∥α for every t ∈ [0, b] and φ,ψ ∈ Cα.

(H3) A
−1 is compact on X.
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Theorem 3.5. Assume that (H0), (H1), (H2) and (H3) hold. Let φ ∈ Cα such that φ(0) ∈ D(A), φ′(0) −
g(0, φ) ∈ E and assume that

LgM1e
ωb + ∥(−A)α−1∥ sup

t∈[0,b]

[(
β(t)(1 + 2Meωb) +Meωb

]
< 1.

Then equation (1.1) has at least one mild solution on [0, b].

Proof. Let k > ∥φ∥Cα
, we define the following set

Bk = {u ∈ C([0, b], Xα) : u(0) = φ(0) and |u|∞ ≤ k},

where |u|∞ = sup
t∈[0,b]

|u(t)|α. For u ∈ Bk, define the ũ(t) : [−r, b] → Xα by

ũ(t) =


u(t) for t ∈ [0, b]

φ(t) for t ∈ [−r, 0].

The function t→ ũt is continuous from [0, b] to Cα. Now, define the operator K on Bk by

K(u)(t) = C(t)φ(0) + S(t)(φ′(0)g(0, φ)) +

∫ t

0

C(t− s)g(s, ũs)ds+

∫ t

0

S(t− s)f(s, ũs, ũ′
s)ds for t ∈ [0, b].

It is sufficient to show that K has a fixed point in Bk. We give the proof in several steps.

Step 1: There is a positive k > ∥φ∥α such that K(Bk) ⊂ Bk.

If not, then for each k > ∥φ∥Cα , there exist uk ∈ Bk and tk ∈ [0, b] such that |(Kuk)(tk)|α > k.

k < |(Kuk)(tk)|α

=
∣∣∣C(tk)φ(0) + S(tk)(φ

′(0)− g(0, φ)) +

∫ tk

0

C(tk − s)g(s, ũs)ds+

∫ tk

0

S(tk − s)f(s, ũs)ds
∣∣∣
α

< |C(tk)φ(0)|α + |S(tk)(φ′(0)− g(0, φ))|α +
∥∥∥− (−A)α−1

∫ tk

0

AS(tk − s)f(s, ũs, ũ′s)ds
∥∥∥

+
∣∣∣ ∫ tk

0

d

ds

(
S(s)g(tk − s, ũtk−s)

)
ds−

∫ tk

0

S(s)
d

ds

(
g(tk − s, ũtk−s)

)
ds
∣∣∣
α

< |C(tk)φ(0)|α + |S(tk)(φ′(0)− g(0, φ))|α

+
∣∣∣ ∫ tk

0

d

ds

(
S(s)g(tk − s, ũtk−s)

)
ds−

∫ tk

0

S(s)
d

ds

(
g(tk − s, ũtk−s)

)
ds
∣∣∣
α

+
∥∥∥(−A)α−1

[ ∫ tk

0

d

ds

(
C(tk − s)f(s, ũs, ũ′s)

)
ds−

∫ tk

0

C(tk − s)
d

ds

(
f(s, ũs, ũ′s)

)]∥∥∥
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< |C(tk)φ(0)|α + |S(tk)(φ′(0)− g(0, φ))|α + |S(tk)g(0, ũ0)|α +M1e
ωb|g(tk, ũtk)− g(0, ũ0)|α

+∥(−A)α−1∥
(
∥f(tk, ũtk , ũ′tk)∥+ ∥C(tk)f(0, ũ0, ũ′0)∥+Meωb∥f(tk, ũtk , ũ′tk)− f(0, ũ0, ũ′0)∥

)
< M1e

ωb
(
|φ(0)|α + |(φ′(0)− g(0, φ))|α

)
+M1e

ωb sup
s∈[0,b]

|g(s, 0)|α +M1e
ωbLg∥ũtk∥α

+2M1e
ωb|g(0, φ)|α + ∥(−A)α−1∥

[(
β(tk) +Meωb)∥ũtk∥α + 2Meωbβ(0)∥ũ0∥α

]
.

Since ∥ũt∥α ≤ k for all t ∈ [0, b] and u ∈ Bk. Then we have

k < M1e
ωb
(
|φ(0)|α + |(φ′(0)− g(0φ))|α

)
+M1e

ωbLgk +M1e
ωb sup

s∈[0,b]

|g(s, 0)|α + 2M1e
ωb|g(0, ũ0)|α

+∥(−A)α−1∥ sup
t∈[0,b]

[(
β(t)(1 + 2Meωb) +Meωb

]
k.

Dividing above sides of above inequality by k, it follows that

1 <
M1e

ωb
(
|φ(0)|α + |(φ′(0)− g(0, φ))|α

)
k

+ LgM1e
ωb +

M1e
ωb sup

s∈[0,b]

|g(s, 0)|α

k
+

2M1e
ωb|g(0, φ)|α
k

+

+∥(−A)α−1∥ sup
t∈[0,b]

[(
β(t)(1 + 2Meωb) +Meωb

]
.

When k → 0, we have

1 < LgM1e
ωb + ∥(−A)α−1∥ sup

t∈[0,b]

[(
β(t)(1 + 2Meωb) +Meωb

]
,

which gives contradiction.

Step 2: K is continuous.

Let (un)n ⊂ Bk with un → u and u′n → u′ in Bk. Then, the set

∆ = {(s, ũns , ũ′
n

s )), (s, ũs, ũs)) : s ∈ [0, b], n ≥ 1}

and

∧ = {(s, ũns ), (s, ũs) : s ∈ [0, b], n ≥ 1}

are compact respectively in [0, b]×Cα ×Cα and [0, b]×Cα. Heine’s theorem implies that f and g are uniformly
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continuous respectively in ∆ and ∧. Then, we have

|K(un)(t)−K(u)(t)|∞

≤ sup
t∈[0,b]

∣∣∣ ∫ t

0

C(t− s)
(
g(s, ũns )− g(s, ũs)

)
ds
∣∣∣
α

+ sup
t∈[0,b]

∥∥∥− (−A)α−1

∫ t

0

AS(t− s)
(
f(s, ũns , ũ

′n
s )− f(s, ũs, ũ′s)ds

)∥∥∥
≤ sup

t∈[0,b]

∣∣∣ ∫ t

0

d

ds

(
S(s)g(tk − s, ũntk−s)− g(tk − s, ũtk−s)

)
ds

−
∫ t

0

S(s)
d

ds

(
g(tk − s, ũntk−s)− g(tk − s, ũtk−s)

)
ds
∣∣∣
α

+ sup
t∈[0,b]

∥∥∥(−A)α−1
[ ∫ t

0

d

ds

(
C(t− s)f(s, ũns , ũ

′n
s )− f(s, ũs, ũ′s)

)
ds

−
∫ t

0

C(t− s)
d

ds

(
f(s, ũns , ũ

′n
s )− f(s, x̃s, ũ′s)ds

)]∥∥∥
≤ sup

t∈[0,b]

[
|g(0, ũn0 )− g(0, ũ0)|α +M1e

ωb
(
|g(0, ũn0 )− g(0, ũ0)|α + |g(t, ũnt )− g(t, ũt)|α

]
+ sup

t∈[0,b]

∥(−A)α−1∥
[(
f(t, ũnt , ũ

′n
t )− f(t, ũt, ũ′t)

)
− C(t)

(
f(0, ũn0 , ũ

′n
0 )− f(0, ũ0, ũ′0)

))
∥

+Meωb∥f(t, ũnt , ũ′
n

t )− f(t, ũt, ũ′t)
)
−

(
f(0, ũn0 , ũ

′n
0 )− f(0, ũ0, ũ′0)

))]
≤ sup

t∈[0,b]

[
(1 +Meωb)|g(0, ũn0 )− g(0, ũ0)|α +M1e

ωb|g(t, ũnt )− g(t, ũt)|α
]

+ sup
t∈[0,b]

∥(−A)α−1∥
[
(1 +Meωb)∥f(t, ũnt , ũ′

n

t )− f(t, ũt, ũ′t)∥

+2Meωb∥f(0, ũn0 , ũ′
n

0 )− f(0, ũ0, ũ′0)∥
]
→ 0 as n→ ∞,

and this yield the continuity of K on Bk.

Step 3: The set {K(u)(t) : u ∈ Bk} is relatively compact for each t ∈]0, b].

Let t ∈]0, b] be fixed and γ > 0 be such that α < γ < 1. Using the same reasoning like previously, it follows that

∥(−A)γK(u)∥ ≤ ∥(−A)γ−1∥
[
M1e

ωb
(
∥Aφ(0)∥+ ∥A(φ′(0)− g(0, φ))∥+ sup

t∈[0,b]

[(
β(t)(1 + 2Meωb) +Meωb

]
k

+M1e
ωb
[
Lgk + sup

s∈[0,b]

|g(s, 0)|γ + |g(0, φ)|γ
]
<∞.

Consequently for t ∈]0, b] fixed, the set {(−A)γK(u)(t) : u ∈ Bk} is bounded in X . By (H3), we deduce that
(−A)−γ : X → Xα is compact. It follows that the set {K(u)(t) : u ∈ Bk} is relatively compact for each
t ∈]0, b] in Xα.
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Step 4: The set {K(u) : u ∈ Bk} is an equicontinuous family of functions.

Let u ∈ Bk and 0 ≤ τ1 < τ2 ≤ b then, we have

|K(u)(τ2)−K(u)(τ1)|α ≤ |[C(τ2)− C(τ1)]φ(0)|α + |[S(τ2)− S(τ1)](φ
′(0)− g(0, φ))|α

+
∣∣∣ ∫ τ2

0

C(τ2 − s)g(s, ũs)ds−
∫ τ1

0

C(τ1 − s)g(s, ũs)ds
∣∣∣
α

+
∣∣∣ ∫ τ2

0

S(τ2 − s)f(s, ũs, ũ′s)ds−
∫ τ2

0

S(τ2 − s)f(s, ũs, ũ′s)ds
∣∣∣

≤ |[C(τ2)− C(τ1)](φ(0)− g(0, φ))|α + |[S(τ2)− S(τ1)](φ
′(0)− η)|α

+
∣∣∣ ∫ τ1

0

[C(τ2 − s)− C(τ1 − s)]g(s, ũs)ds−
∫ τ2

τ1

[C(τ2 − s)g(s, ũs)ds
∣∣∣
α

+
∣∣∣ ∫ τ1

0

[S(τ2 − s)− S(τ1 − s)]f(s, x̃s, ũ′s)ds
∣∣∣

+
∣∣∣ ∫ τ2

τ2

S(τ2 − s)f(s, ũs, ũ′s)ds
∣∣∣,

it follows that

|K(u)(τ2)−K(u)(τ1)|α
≤ |[C(τ2)− C(τ1)]φ(0)|α + |[S(τ2)− S(τ1)](φ

′(0)− g(0, φ))|α

+
∣∣∣ ∫ τ1

0

d

ds

(
[S(τ2 − s)− S(τ1 − s)]g(s, ũs)

)
ds−

∫ τ1

0

[S(τ2 − s)− S(τ1 − s)]
d

ds
g(s, ũs)ds

∣∣∣
α

+
∣∣∣ ∫ τ2

τ1

d

ds

(
S(τ2 − s)g(s, us)

)
ds−

∫ τ2

τ1

S(τ2 − s)
d

ds

(
g(s, us)

)
ds
∣∣∣
α

+
∥∥∥(−A)α−1

[ ∫ τ1

0

d

ds

(
[C(τ2 − s)− C(τ1 − s)]f(s, ũs, ũ′s)ds

−
∫ τ1

0

[C(τ2 − s)− C(τ1 − s)]
d

ds

(
]f(s, ũs, ũ′s)

)
ds
∥∥∥

+
∥∥∥(−A)α−1

∫ τ2

τ1

d

ds

(
C(τ2 − s)f(s, ũs, ũ′s)

)
ds−

∫ τ2

τ1

C(τ2 − s)
d

ds

(
f(s, ũs, ũ′s)

)
ds
∥∥∥.

Consequently, we have

|K(u)(τ2)−K(u)(τ1)|α
≤ |[C(τ2)− C(τ1)]φ(0)|α + |[S(τ2)− S(τ1)](φ

′(0)− g(0, φ))|α + |(S(τ2 − τ1)g(τ1, ũτ1)|α

+∥S(τ2)− S(τ1)∥|g(0, ũ0)|α + |S(τ2)− S(τ1)∥|(g(τ1, ũτ1))− (g(0, ũ0))|α
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+M1e
ωb|g(τ2, ũτ2)− g(τ1, ũτ1)|α + ∥(−A)α−1∥

[
∥(C(τ2 − τ1)− I)f(τ1, x̃τ1 , ũ

′
τ1)∥

+∥[C(τ2)− C(τ1)]f(0, ũ0, ũ′0)∥+ ∥f(τ2, ũτ2 , ũ′τ2)− C(τ2 − τ1)f(τ1, ũτ1 , ũ
′
τ1)∥

+Meωb∥f(τ2, ũτ2 , ũ′τ2) − f(τ1, ũτ1 , ũ
′
τ1)

]
→ 0 as τ1 → τ2.

Since (−A)α−1 is compact from X to X and (C(t)t∈R) is uniformly continuous on compact subset of X . Thus
K maps Bk into an equicontinuous family of functions.
So from Step 1 to Step 4 and by Ascoli-Arzela theorem, we can conclude that K : Bk → Bk is completely
continuous. Hence by Schauder’s fixed point theorem, we conclude that K has least one fixed point in Bk which
is a mild solution of equation (1.1) on [0, b]. ■

Our next objective is to prove the uniqueness of mild solution. For this purpose formulate the followings
assumptions

(H4): f : [0, b] × Cα × Cα → X is continuously differentiable and locally Lipschitzian with the respect on
second variable. Then there exists c0(r) > 0 such that for φ, ψ ∈ Cα with ∥φ∥Cα

, ∥ψ∥Cα
≤ r, we have

∥f(t, φ1, φ
′
1, )− f(t, φ2, φ

′
2, ) ≤ c0(r)∥φ1 − φ2∥Cα

for ∈ [0, b], φ1, φ2 ∈ Cα.

(H5) The maps t 7→ AC(t) is locally bounded.

Theorem 3.6. Assume that (H0), (H2), (H3), (H4) and (H5) hold. Let φ ∈ Cα such that φ(0) ∈ D(A) and
φ′(0)− g(0, φ) ∈ E. Assume that[

Lg

(
1 + (Meωb + µb)b

)
+ ∥(−A)α−1∥µc0(r)b(1 + b)

]
< 1.

Then Equation (1.1) has unique mild solution.

Proof. Let us consider the following set

F(φ) = {u ∈ C1([0, b]), Xα) : u(0) = φ(0)}.

For u ∈ F(φ) we define ũ : [−r, b] → Xα by

ũ(t) =


u(t) for t ∈ [0, b]

φ(t) for t ∈ [−r, 0].

Now, we define the operator Φ : F(φ) → F(φ) by

Φ(u)(t) = C(t)φ(0)+S(t)(φ′(0)−g(0, φ))+
∫ t

0

C(t−s)g(s, ũs)ds+
∫ t

0

S(t−s)f(s, ũs, ũ′s)ds for t ∈ [0, b].

We will show that Φ is a strict contraction. Let u, v ∈ F(φ) and µ be a positive real number such that
∥AC(t)∥ ≤ µ for t ∈ [0, b]. Then we have

Φ(u)(t)− Φ(v)(t) =

∫ t

0

C(t− s)[g(s, ũs)− g(s, ũs)]ds+

∫ t

0

S(t− s)[f(s, ũs, ũ′s)− f(s, ṽs, ṽ′s)]ds.

113



Mbainadji, Nayam and Zabsonre

Then

|Φ(u)(t)− Φ(v)(t)|α

≤
∣∣∣ ∫ t

0

C(t− s)[g(s, ũs)− g(s, ũs)]ds
∣∣∣
α
+

∣∣∣ ∫ t

0

S(t− s)[f(s, ũs, ũ′s)− f(s, ṽs, ṽ′s)]ds
∣∣∣
α

≤
∣∣∣ ∫ t

0

(
C(t− s)[g(s, ũs)− g(s, ũs)]

)
ds
∣∣∣
α
+

∣∣∣ ∫ t

0

(∫ t−s

0

C(σ)[f(s, ũs, ũ′s)− f(s, ṽs, ṽ′s)]dσ
)
ds
∣∣∣
α

≤ Meωb

∫ t

0

∣∣∣g(s, ũs)− g(s, ũs)]
∣∣∣
α
ds+ ∥(−A)α−1∥µb

∫ t

0

∥f(s, ũs, ũ′s)− f(s, ṽs, ṽ′s)∥ds

≤
(
MeωbLgb+ ∥(−A)α−1∥µb2c0(r)

)
∥u− ∥Cα ,

it follows that
|Φ(u)(t)− Φ(v)(t)|α ≤

(
MeωbLgb+ ∥(−A)α−1∥µb2c0(r)

)
∥u− ∥Cα (3.2)

On the other hand, by use of Equation (2.1) and Proposition 2.3, we have

(ϕ(u))′(t) = AS(t)φ(0) + C(t)(φ′(0)− g(0, φ)) + g(t, ut) +

∫ t

0

AS(t− s)g(s, ũs)ds

+

∫ t

0

C(t− s)f(s, ũs, ũ′s)ds.

Using the same reasoning like previously, then we have

|(Φ(u))′(t)− (Φ(v))′(t)|α ≤
[
Lg + µLgb

2 + ∥(−A)α−1∥µc0(r)b
]
∥u− v∥Cα . (3.3)

Adding equation (3.2) and equation (3.3), then we have

∥Φ(u)(t)− Φ(u)(t)∥Cα ≤
[
Lg

(
1 + (Meωb + µb)b

)
+ ∥(−A)α−1∥µc0(r)b(1 + b)

]
∥u− v∥Cα .

This means Φ is a strict contraction.Thus by Banach’s fixed point theorem, we deduce that Φ has a unique
fixed point in F(φ). Then Equation(1.1) has a unique mild solution on [0, b] ■

4. Existence of strict solutions

Theorem 4.1. Assume that (H0), (H2), (H3), (H4) and (H5) hold and f is continuously differentiable.
Moreover assume that the partial derivatives D1f and D2f are locally lipschitz in classical sens. Let
φ ∈ C3([−r, 0], D((−A)α)) such that φ(0), φ′′(0) ∈ D(A) and φ′(0)− g(0, φ), φ(3)(0) ∈ E and

φ′′(0)−Dtg(0, φ)−Dφg(0, φ)φ
′ = Aφ(0) + f(φ,φ′).

Then the corresponding of mild solution u becomes a strict solution of equation (1.1) on [0, b].

Proof Let φ ∈ C3([−r, 0], D((−A)α)) such that φ(0), φ′′(0) ∈ D(A), φ′(0)− g(0, φ), φ(3)(0) ∈ E and
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φ′′(0)−Dtg(0, φ)−Dφg(0, φ)φ
′ = Aφ(0) + f(φ,φ′).

Let u be the corresponding mild solution of equation (1.1) which is defined on [0, b]. Consider



v(t) = C(t)
[
Aφ(0) + f(φ,φ′)

]
+ S(t)A(φ′(0)− g(0, φ))

+[D1g(t, ut) +D2g(t, ut)u
′
t] +

∫ t

0

AC(t− s)g(s, us)ds

+

∫ t

0

C(t− s)[D1f(us, u
′
s)u

′
s +D2f(us, u

′
s)vs]ds

v0 = φ′′.

Now, we define w by



w(t) = φ′(0) +

∫ t

0

v(s)ds if t ∈ [0, b]

w(t) = φ′(t) if − r ≤ t ≤ 0

w′(t) = φ′′(t) if − r ≤ t ≤ 0.

(4.1)

Then we can see that wt = φ′ +

∫ t

0

vsds for t ∈ [0, b].

Consequently the map t 7→ wt and t 7→
∫ t

0

C(t− s)f(us, ws)ds are continuously differentiable. Then we have

d

dt

∫ t

0

C(t− s)f(us, ws)ds =
d

dt

∫ t

0

C(s)f(ut−s, wt−s)ds

= C(t)f(u0, w0) +

∫ t

0

C(t− s)
[
D1fs(us, ws)u

′
s +D2f(us, ws)vs

]
ds

= C(t)f(φ,φ′) +

∫ t

0

C(t− s)
[
D1fs(us, ws)u

′
s +D2f(us, ws)vs

]
ds,

it follows that

∫ t

0

C(s)f(φ,φ′)ds =

∫ t

0

C(t− s)f(us, u
′
s)ds−

∫ t

0

∫ s

0

C(s− τ)
[
D1f(uτ , wτ )u

′
τ +Df (uτ , wτ )vτ

]
dτds.

On other hand by Lemma 2.7 one has

∫ t

0

∫ s

0

AC(s− τ)g(τ, uτ )dτds =

∫ t

0

Aq′(s)ds = Aq(t) =

∫ t

0

AS(t− s)g(s, us)ds.
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Consequently we have

w(t) = φ′(0) +

∫ t

0

S(s)A(φ′(0)− g(0, φ))ds+

∫ t

0

C(s)Aφ(0)ds+

∫ t

0

C(t− s)f(us, ws)ds+ g(t, ut)− g(0, φ)

−
∫ t

0

∫ s

0

C(s− τ)
[
D1f(uτ , wτ )u

′
s +D2f(uτ , wτ )vτ

]
dτds

+

∫ t

0

AS(t− s)g(s, us)ds+

∫ t

0

∫ s

0

C(s− τ)
[
D1f(uτ , uτ )u

′
τ +D2f(uτ , uτ )vτ

]
dτds.

Moreover by Lemma 2.3, we have ∫ t

0

C(s)Aφ(0)ds = S(t)Aφ(0)

∫ t

0

S(s)A(φ′(0)− g(0, φ))ds = C(t)(φ′(0)− g(0, φ)− (φ′(0)− g(0, φ)).

It follows that

w(t) = φ′(0) + C(t)(φ′(0)− g(0, φ)) + S(t)Aφ(0)− (φ′(0)− g(0, φ)) + g(t, ut)− g(0, φ)

+

∫ t

0

AS(t− s)g(s, us)ds+

∫ t

0

C(t− s)f(us, ws)ds

+

∫ t

0

∫ s

0

C(s− τ)
[
D1f(uτ , u

′
τ )u

′
s +D2f(uτ , u

′
τ )vτ

]
dτds

−
∫ t

0

∫ s

0

C(s− τ)
[
D1f(uτ , wτ )u

′
τ +D2f(uτ , wτ )vτ

]
dτds.

Furthermore for t ≥ 0, we know that

u′(t) = AS(t)φ(0) + C(t)(φ′(0)− g(0, φ)) + g(t, ut) +

∫ t

0

AS(t− s)g(s, us)ds+

∫ t

0

C(t− s)f(us, u
′
s)ds,

then for t ∈ [0, b], we have

u′(t)− w(t) =

∫ t

0

C(t− s)[f(us, u
′
s)− f(us, ws)]ds+

∫ t

0

∫ s

0

C(s− τ)
[
(D1f(uτ , u

′
τ )−D1f(uτ , u

′
τ ))u

′
τ

+(D2f(uτ , u
′
τ )−D2f(uτ , wτ ))vτdτ

]
ds.

|u′(t)− w(t)|α

≤
∫ t

0

|C(t− s)[f(us, u
′
s)− f(s, us, ws)]|αds+

∫ t

0

∫ s

0

|C(s− τ)(D1f(uτ , u
′
τ )−D1f(uτ , wτ ))u

′
τ |αdτds

+

∫ t

0

∫ s

0

|C(s− τ)(D2f(uτ , u
′
τ )−D2f(uτ , wτ ))vτ |αdτds. (4.2)

Let us choose F =
{
u′s, ws : s ∈ [0, b]

}
. Then F is compact set. It follows that D1f and D2f are globally

Lipschitz on F . Let L1 > 0 be such that for t ∈ [0, b] and x, y, x′, y′ ∈ H , then we have
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∥f(x, x′)− f(x, y′)∥ ≤ L1∥x′ − y′∥α

∥D1f(x, x
′)−D1f(x, y

′)∥ ≤ L1∥x′ − y′∥α

∥D2f(x, x
′)−D2f(x, y

′)∥ ≤ L1∥x′ − y′∥α.

Consequently, using equation (4.2), we one can find a positive Constance k(b) such that by Gronwall’s lemma,

∥u(t)− w(t)∥α ≤ k(b)

∫ t

0

∥u′s − ws∥αds,

then we deduce that u′ = w. Consequently, we deduce that the mild solution is twice continuous differentiable
from [0, b] to Xα. Then functions t → g(t, ut) and t → f(t, ut, u

′
t) are continuously differentiable on [0, b].

According to the Theorem 2.5, we conclude that u is a strict solution of equation (1.1) on [0, b]. ■

5. Application

For our illustration, we propose to study the existence of solutions for the following model

∂

∂
[z′(t, x)−

∫ 0

−r

k(t, z(t+ θ, x))dθ] =
∂2

∂x2
z(t, x)]

+

∫ 0

−r

h(t,
∂

∂x
z(t+ θ, x),

∂

∂x
z′(t+ θ, x))dθ for t ≥ 0 and x ∈ [0, π]

z(t, 0)−
∫ 0

−r

k(t, z(t+ θ, x))dθ = 0 for t ≥ 0

z(t, π)−
∫ 0

−r

k(t, z(t+ θ, x))dθ = 0

z(θ, x) = φ0(θ)(x) for θ ∈ [−r, 0] and x ∈ [0, π],

where h : R× R× R −→ R is continuous and there exists a positive constant L such that for x, y, x1, y1 ∈ R,

|h(t, x, y)− h(t, x1, y2)| ≤ L
(
|x− x1|+ |y − y1|

)
.

we can choose for example

h(t, x, y) = e−t2 [sin(
x

2
) + sin(

y

2
)] for (θ, x, y) ∈ R− × R× R.

we can observe that
|h(t, x1, y1)− h(t, x2, y2)| ≤

1

2

(
|x1 − x2|+ |y1 − y2|

)
and k : R− × R −→ R is Lipschizian with respect to the second argument.
In the order to rewrite equation (5.1) in the abstract form, we introduce the space X = L2([0, π];R) vanishing at
0 and π, equipped with the L2 norm that is to say for all x ∈ X ,

∥x∥L2 =
(∫ π

0

|x(s)|2ds
) 1

2

.
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Let en(x) =

√
2

π
sin(nx), x ∈ [0, π], n ≥ 1, then (en)n≥1 is an orthogonal base for X .

Let A : X → X be defined by
Ay = y′′

D(A) =
{
y ∈ X : y, y′ are absolutely continuous, y′′ ∈ X, y(0) = y(π) = 0

}
Then the operator is computed by

Ay =

+∞∑
n=1

−n2(y, en)en, y ∈ D(A),

where

(u, v) =

∫ π

0

u(s)v(s)ds for u, v ∈ X.

It is well known that A is the infinitesimal generator of strongly continuous cosine family C(t), ∈ R in X
which is given by

C(t)y =

+∞∑
n=1

cosnt(y, en)en, y ∈ X

and that the associated sine family is given by

S(t)y =

+∞∑
n=1

1

n
sinnt(y, en)en, y ∈ X.

If we choose α =
1

2
. then (H0) is satisfied since

(−A) 1
2 y =

+∞∑
n=1

(y, en)en, y ∈ D((−A) 1
2 ).

and

(−A)− 1
2 y =

+∞∑
n=1

1

n
(y, en)en, y ∈ X.

From [4], the compactness of A−1 follows from Lemma 2.6 and the fact that the eigenvalues of (−A)− 1
2 are

λn =
1

n
, n = 1, 2 . . ., the (H3) is satisfied.

We define the space
C 1

2
= C1([−r, 0], X 1

2
),

where C1([−r, 0], X 1
2
) is the space of bounded uniformly continuous differentiable from [−r, 0] into X 1

2
, where

X 1
2

is endowed with the norm
|φ| 1

2
= sup

−r≤θ≤0
|φ(θ)|.

Let f : R× C 1
2
× C 1

2
−→ X and g : R× C 1

2
define by

f(t, φ, φ′)(x) =

∫ 0

−r

h(t,
∂

∂x
φ(θ)(x),

∂

∂x
φ′(θ)(x))dθ for x ∈ [0, π], t ≥ 0, φ,∈ C 1

2
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and

g(t, φ, )(x) =

∫ 0

−r

k(t, φ(θ)(x))dθ for x ∈ [0, π], t ≥ 0, φ,∈ C 1
2

where φ,∈ C 1
2

define by
φ(θ)(x) = φ0(θ, x)

and the norm in C 1
2

is given by

∥φ∥C 1
2

= sup
θ∈[−r,0]

(∫ π

0

∣∣ ∂
∂x

[φ(θ)(x)]
∣∣2dx) 1

2

+ sup
θ∈[−r,0]

(∫ π

0

∣∣ ∂
∂x

[φ′(θ)(x)]
∣∣2dx) 1

2

.

Let us pose v(t) = z(t, x). Then equation (5.1) takes the following abstract form

d

dt
[v′(t)− g(t, vt)] = Av(t) + f(t, vt, v

′
t) for t ≥ 0

v0 = φ ∈ C 1
2

v′0 = φ′ ∈ C 1
2
.

(5.1)

From [4], for all y ∈ X 1
2

, y is absolutely continuous and |y| 1
2
= |y|L2 Let φ,ψ ∈ C1([−r, 0], X 1

2
), since

|h(t, x1, y1)− h(t, x2, y2)| ≤
1

2

(
|x1 − x2|+ ∥y1 − y2|

)
, we have

|f(t, φ, φ′)− f(t, ψ, ψ′)|L2 ≤
(∫ π

0

(∫ 0

−r

h(t,
∂

∂x
[φ(θ)(x)],

∂

∂x
[φ′(θ)(x)]dθ

)
+
(∫ π

0

(∫ 0

−r

h(t,
∂

∂x
[ψ(θ)(x)],

∂

∂x
[ψ′(θ)(x)])dθ

)2

dx
) 1

2

≤ 1

2
r
[( ∫ π

0

∣∣∣ ∂
∂x

[φ(θ)(x)]− ∂

∂x
[ψ(θ)(x)]

∣∣∣2dx) 1
2

+
(∫ π

0

∣∣∣ ∂
∂x

[φ′(θ)(x)]− ∂

∂x
[ψ′(θ)(x)]

∣∣∣2dx) 1
2
]
.

By Minkowski’s Lemma, we have

|f(t, φ, φ′)− f(t, ψ, ψ′)|L2 ≤ 1

2
r
[( ∫ π

0

∣∣∣ ∂
∂x

[φ(θ)(x)]− ∂

∂x
[ψ(θ)(x)]

∣∣∣2dx) 1
2

+
(∫ π

0

∣∣∣ ∂
∂x

[φ′(θ)(x)]− ∂

∂x
[ψ′(θ)(x)]

∣∣∣2dx) 1
2
]

≤ 1

2
r
[

sup
θ∈[−r,0]

(∫ π

0

∣∣∣ ∂
∂x

[φ(θ)(x)]− ∂

∂x
[ψ(θ)(x)]

∣∣∣2dx) 1
2

+ sup
θ∈[−r,0]

(∫ π

0

∣∣∣ ∂
∂x

[φ′(θ)(x)]− ∂

∂x
[ψ′(θ)(x)]

∣∣∣2dx) 1
2
]
,

which implies that

|f(t, φ, φ′)− f(t, ψ, ψ′)|L2 ≤ 1

2
r∥φ− ψ∥C 1

2

.
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Consequently the function f satisfies (H4).

(H7) 0 < rLk < 1.

We claim that g is a contraction function with respect to the second argument with value in X 1
2

. Indeed let
φ1, φ2 ∈ C 1

2
and Lk the constant Lipschitz of k. Then we have

|g(t, φ)− g(t, ψ)| 1
2
≤ rLk∥φ− ψ∥C 1

2

.

Then, assumption (H7) implies that g is a strict contraction. Moreover the boundedness of (−A)− 1
2 implies that

g stays in X 1
2

. Consequently g satisfies (H2).
We have the following result.

Proposition 5.1. Under the above assumptions, equation (5.1) has a unique mild solution which is defined for
all t ≥ 0.
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Conclusion

In this paper we study the existence and regularity of solutions for some nonlinear neutral functional
differential equations with finite delay by use of the cosine family theory. Some results of this study when the
delay is infinite will be presented in next works.
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