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Abstract. A coupled system of nonlinear self-adjoint second-order ordinary differential inclusions supplemented with
nonlocal non-separated coupled integral boundary conditions on an arbitrary domain is studied. The existence results for
convex and non-convex valued maps involved in the given problem are proved by applying nonlinear alternative of
Leray-Schauder type for multi-valued maps, and Covitz-Nadler’s fixed point theorem for contractive multi-valued maps,
respectively. Illustrative examples for the obtained results are presented. The paper concludes with some interesting
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Existence results for a self-adjoint multi-valued coupled system

1. Introduction

Inspired by the work of Bitsadze and Samarskii [6] on nonlocal elliptic boundary value problems, I1’in and
Moiseev [19, 20] initiated the study of nonlocal boundary value problems for second order ordinary differential
equations. Nonlocal boundary value problems constitute an important area of research as such problems find
their applications in chemical engineering, thermo-elasticity, underground water flow and population dynamics,
for details and examples, see [5, 30]. For a variety of interesting results on nonlocal boundary value problems,
we refer the reader to the works [1-3, 8, 12-14, 16, 17, 23, 26, 28, 29] and the references cited therein. Self-
adjoint differential equations are found to be of great interest in certain disciplines, for example, see [7, 11, 25,
27]. In [24], a self-adjoint coupled system of nonlinear ordinary differential equations with nonlocal multi-point
boundary conditions was studied. In a recent article [4], the authors established existence results for a self-
adjoint coupled system of nonlinear second-order ordinary differential equations complemented with nonlocal
non-separated integral boundary conditions.

The aim of the present paper is to consider and investigate the existence of solutions for the multi-valued
case of the problem discussed in [4]. In precise terms, we consider a self-adjoint coupled system of second-order
ordinary differential inclusions on an arbitrary domain, subject to the nonlocal non-separated integral coupled
boundary conditions given by

(p()d/ (1)) € pu F(t,ult),v(t)), t € [a,b],
(a(t)0' (1)) € pa G(t,ult), v(t)), t € [a,b],

"
aru(a) + asu(db) = )\1/ (1.1

a

v(s)ds, azu’(a) + asu'(b) = Aa /77 v'(s)ds,

b b
Brv(a) + B2v(b) = AS/E u(s)ds, f3v'(a)+ B4’ (b) = /\4/E u'(s)ds,

where, a < n < & < b, p,qg € C([a,b],R"), v, 8i,\i € RT,i =1,2,3,4,u; € RY,j =1,2.and F,G :
[a,b] x R x R — P(R) are given multivalued maps, P(R) is the family of all nonempty subsets of R.

We establish existence criteria for solutions of the problem (1.1) for convex and non-convex valued
multivalued maps F' and G by applying the nonlinear alternative of Leray-Schauder type for multi-valued maps
in the convex case and Covitz and Nadler’s fixed point theorem for contractive multi-valued maps in the
non-convex case, respectively. The tools of the fixed point theory employed in our analysis are standard,
however their application to the problem (1.1) is new. We emphasize that the results derived in this paper are
new and enrich the literature on self-adjoint multivalued nonlocal boundary value problems.

The rest of the paper is organized as follows. We present background material about multivalued analysis in
Section 2, while the main results are presented in Section 3. Numerical examples illustrating the obtained results
are constructed in Section 4.

2. Preliminaries.

We begin this section by reviewing some basic definitions, lemmas, and theorems on multivalued maps from
[10, 18] which are related to study of the problem (1.1).

For a normed space (X, || - ||), we define the following:
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(i) Pu(X)={Y € P(X): Y isclosed},
(ii) Py(X) ={Y € P(X): Y is bounded},
(i) P.,(X) ={Y € P(X): Y is compact},
(iv) Popo(X) = {Y € P(X) : YV is compact and convex}.

A multi-valued map F : X — P(X) is:
(a) convex (closed) valued if F'(z) is convex (closed) for all z € X.

(b) F is called upper semi-continuous (u.s.c.) on X if for each zy € X, the set F'(z) is a nonempty closed
subset of X, and if for each open set /' of X’ containing F'(x¢), there exists an open neighborhood Ny of
xo such that F(Ny) C N.

(c) The map F is bounded on bounded sets if F'(B) = U,cpF(x) is bounded in X for all B € P,(X) (i.e.
sup, e {sup{ly| : y € F(z)}} < o0).

(d) F is said to be completely continuous if F'(B) is relatively compact for every B € P, (X). F has a fixed
point if there is € X such that x € F(x).

Remark 2.1. A multivalued map F : W — Py (R) is said to be measurable if for every b € R, the function
t — d(b,F(t)) = inf{|b — ¢| : ¢ € F(t)} is measurable.We define the graph of F to be the set Gr(F) =
{(z,y) € X x Y,y € F(x)}.The fixed point set of the multivalued operator F will be denoted by FixzF.

Remark 2.2. We recall the relationship between closed graphs and upper-semicontinuity ([10]): If F : X —
Po(X) isu.s.c., then Gr(F) is a closed subset of X XY, i.e. for every sequence {x, }nen C X and {yn tnen C
X, if when n — oo, T, = Ty, Yn — Yu and y, € F(x,), then y, € F(x,). Conversely, if F' is completely
continuous and has a closed graph, then it is upper semi-continuous.
Definition 2.3. A multivalued map F : [a,b] x R? — P(R) is said to be Carathéodory if
(i) t — F(t,u,v) is measurable for each u,v € R;

(ii) (u,v) — F(t,u,v) is upper semicontinuous for almost all t € [a, b];
Further a Carathéodory function F is called L' —Carathéodory if

(iii) for each p > 0, there exists 2, € L*([a, b], RT) such that

IF(t, w0 = sup{fa] : & € F(t,u,0)} < 9,(t)
Sor all ||ul|, ||v|| < p and for a.e. t € [a,b].

Definition 2.4. A function (u,v) € F x F, where F = C?([a,b],R) is a solution of the self-adjoint coupled
system in (1.1) if it satisfies the coupled boundary conditions of (1.1) and there exist functions f,§ € L' ([a,b], R)
such that f(t) € F(t,u(t),v(t)), §(t) € G(t,u(t),v(t)) a.e on [a,b].

Let us now recall the following lemma from [4].

3

s
2
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Lemma 2.5. For f1, 1 € C([a,b],R) and R # 0, E # 0, the solution of the linear system
(PO (1) = mfilt), t € la,b],
(@' (1)) = pogn (t), t € [a,b],

! / / T 2.1
aru(a) + agu(b) = )\1/ v(s)ds, asu'(a)+ aqu'(b) = )\2/ v'(s)ds,

a

b b
Brv(a) + Bav(b) = )\3/5 u(s)ds, B3v'(a) + Bav'(b) = )\4/E u'(s)ds,

can be expressed by the formulas:

/ (45 / fi(z du+ —az(ﬂr&-ﬁz)/: (ﬁ/@uﬁ(z)dz)du
+A1(B1 + B2) / / N2 /au dz duds — M P2(n—a) /ab(ql(Z) /augl(z)dz)du
+/\1)\377—a/§/a ﬁ/a flzdz duds

+ELR (E4a2([31 +ﬂ2)/b ﬁdZ*Eﬁq (B1+ B2) /?7 /s LClz ds
+EsAiB2(n — a)/b ()dz Esdids(n—a / / o) ——dzds
_RE4/ (‘;4‘“/ filz dz — Eso 51+52)/b$dz

n

b
+E3)\ /81+/32 / / ?dzds E3>\152(777a)/ %‘Z)dz

+EiMds(n—a / / %dzderREzl/t%dz)(/ 2“"(5)2 /:gl(z)dzds)
(E2a2 ﬂ1+ﬂ2)/bp— 2 — By (Br + f2) / / ks

+E1A1B2(n — a/i)z EyMAs(n— a// dzds

“rms [ ) (B8 [ ) 4 (~ Baoa ot ) [

a

n s b
+E1)\1(ﬂ1 +ﬁ2)/ / le)dz ds—El)\lﬁz(n—a)/ le)dz

LB As(n — a) /:/a ﬁddeREQ/: p(lz)dz)(/: ;‘25)1 /:fl(z)dz ds)],

o(t) = /t (%/ugl( )dz )du—i—]l% — az)a(b— g)/ ’(‘;) /aufl(z)dz)du
FAr s (b — g/ / “2 /u duds ﬂz(aﬁaz)/j(q‘(‘z) /augl(z)dz)du
+s(oa + an / / ‘“ / fi(z du ds]
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(E4a2A3(b—§)/ab$d ~ BsMis(b // Zdzds

+E3ﬁ2(0¢1 +042)/ ( )d E4)\3 041 —+ a2 / / Z dZ ds

B t a4u1 _ _ b

REg/a o) dz p( / filz dz ( Eacars(b g)/a P
b

+E3)\1)\3 b— / / qudz dS—E352(0é1 +O¢2)/ le)dz

b 1 t 1 17)\2“2 s
+Esx3(a1 + a2) i /ﬂ W zds+RE3/ ﬁdz)(/ q(s) / gl(z)dzds)

b
+ E2a2>\3 b— 5 / p(% Z—E1A1)\3 b— 5 / / dZdS

+ﬁ

b
1
+E1B2(0n + a2 / 7) — Ex)s(a1 + oz // dzds

,REl/ dz) ( q‘*(“; / dz) (7 Brashs(b—€) /ab ﬁdz
+E1 X1 As3(b /71/ q—dz ds — F1f2(a1 + as) /b le)dz
+E2s(ar + az) ' ﬁdz ds + RE: /t ﬁdz) (/: ’]\D‘Eg‘; / fi(2)dz ds)} .

3

where
R = (a1 +a2) (b1 + f2) = MAs(n — a) (b= &),
E = FE1Ey — EsEs,
a3 oy T Ao * A Bs Ba
B =2 4 24 E2=/ 224, E3:/ A gs, By = 2 4 EL
p(a) — p(b) a 4(s) ¢ p(s) q(a) ~ q(b)
Let (F,|| - ||) denote the Banach space of all continuous real valued functions where F = {u(¢)|u(t) €
C(la,b],R)} and |lu|| = sup{|u(t)], t € [a,b]}. Evidently the product space (F x F, ||(u,v)]||) is a Banach
space with the norm given by ||(u,v)|| = |Ju|| + ||v| for any (u,v) € F x F.

Let us consider the set of selections functions F and G for each (u,v) € F x F defined by
Sk uw = {f € L'([a,b],R) : f(t) € F(t,u(t),v(t)) forae. t € [a,b]},

and
Sa(uw) =19 € L'([a,b],R) : §(t) € G(t,u(t),v(t)) forae.t € [a,b]}.

Define the operators ©1,0 : F x F — P(F X F) by
©1(u,v) = {h1 € F x F : there exists fe SF,(uw)» 9 € SG,(u,v) such that
hi(u,v)(t) = Z1(t,u,v),Vt € [a,b]}, (2.2)
and
O2(u,v) = {he € F x F : there exists fe SF,(uw)» 9 € SG,(u,v) such that

ho(u,v)(t) = Za(t,u,v),Vt € [a,b]}, (2.3)

e
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Zs(u, v)(t)
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/ ( / fr(2)dz)du + fa2(ﬁ1+ﬁ2)/ab (5 / fu(2)dz) du
FA1(B1 + Ba) /a /a “2 /au dz du ds — M\ B2 — a)/ab(q*&j) /augl(z)dz)du
+/\1)\317—a/§/a ul / flzdz du ds

(E4a2(ﬁl+@2)/ S B\ (Br + Ba) / / e

Ll
ER

+E3)\1ﬁ2(77—a)/ dz EshAs(n— a// dzds

—RE, /tL p awl/ flzdz (—E4a2(61+ﬂ2)/b$dz

b
+E3)\1 ﬁl +,62 / / dZ ds — Eg)\lﬂz n— a)/ le)dz

FEMAs(n —a // dzds+RE4/ %dz)(/an 22(5)2 /:gl(z)dz ds)

+(E20£2(51 +52)/ dZ Ei ) (B1+ B2) / / dZ ds

+E1>\1ﬁ2(n—a)/ @dZ—EQAlAg n—a/g/mdzds

b

,REQ/G %dz)(i‘l(gi/a gl(z)dz) + (7E2a2(ﬁ1 +ﬁ2)/a ﬁdz

s b
+E1)\1(,6'1+/82)/n/ q—lz)dz d87E1/\1,82('r]7a)/ ﬁdz

B Ns(n — a) /gbLS]);@dzds+REg/lt]);ddz)(/§b>$/:fl(z)dz ds)],

/at (% /“ G1(2)dz ) du + Ly asAz(b—¢€) /ab (pl;;) /au f1(z)dz)du

Jau+ g
FA s (b — €) / / (q’;—z/ dz du ds — 52(a1+a2)/ab(q?i) /augl(z)dz)du
Gl

(z)dz) du ds:|

L (E4a2)\3(b—£)/bﬁdz—E3/\1)\3 (b—¢) /al/a %dzds

+E3B2(a1 + a2)/ dz Esds(oq + az / / dz ds

_ ti ap _ PNV
REg/a Bl (p(b) /a flzdz Esan)s(b g)/a Bl

n

s b
+E3)\1/\3(b*£)/ %)dz dS*Es/BQ(al +a2)/ ﬁdz

+E4)\3(a1+a2)/:/: ﬁdz ds + REs /:ﬁ&)(/an 2?5)2 /:gh(z)dz ds)
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+(E2a2)\3(b—£) /b L B / / Ldz ds
a p(Z) q(2)
1
+E1ﬂ2(0&1 + 052)/ ( )d EQ}\S Oél + o / / (Z ——dz ds
t b
[ o) G [ e
REl/a Pl )( N RS )dz) ( Brxdo(b =€) |- vds

+E1 A1 A3(b //—dzds Elﬁg(alJrag)/ @dz

FEos(an + as // (12 dzds-i—REl/a ﬁdz)(/ A“’“/ ficz dzds)].

Next we introduce an operator © : F x F — P(F x F) as

o Gl(uvv)(t)
O(u,v)(t) = <@2(u,v)(t)> ’

where ©1 and O, are defined by (2.2) and (2.3) respectively.
For the sake of computational convenience, we set the notation:

& =D1+4+ D3, E =Dy + Dy,

where
Dy = R[OS (101 + o + 52)) + Ml — )00~ (€= o]
1 Eyoz(B1 + B2)(b—a) E3>\1(51 +B2)(n—a)® | Eshifa(n—a)(b—a)
+am P 2 " 7
EdXs(n—a)[(b—a)’ — (£ —a)’] = REs(b— a)) (a4u1(b — a))
+ +
2p p Ip(b)
+<E2a2(ﬂl -;@2)(() —a) n Ei1 ) (b1 +2§2)(7] —a)? n E1)62(n ; a)(b—a)
Bxhids(n—a)[(b—a)* = (€ —a)*]  RE»(b—a)\ (Aapa[(b—a)? — (€ — a)?]
* % =) % )]
_ 2 [M(BtBe)(n—a)? 2
D: = g : X820 = a)(b— a)?]
1 Esaz(B1+ B2)(b—a) | Eshi(Bi+ B2)(n—a)® | EshiBa(n—a)(b—a)
+am P - 2 * 7
+E4>\1)\3(77 —a)[(b—a)’ = (£ —a)’] N RE4 (b — a)) (>\2M2(7] - a)2>
2p p 2q
Jr(]520t2(51 -;52)(() —a) E1>\1(51 +2§2)( —a) " Ei1MB2(n ; a)(b—a)
Rl ) B )
_ o [(b—a)® As(ar + az2)[(b—a)® — (£ — a)?]
Ds = |R;5\[ 5 (0220 —9) + 6 ]
1 E40¢2)\3(b—£)(b—a) E3A1A3(b—§)(n—a)2 E3ﬁ2(0[1 —|—O¢2)(b—0,)
" RE [( D + 27 + q
EiXs(a1 + a2)[(b— a)? — (€ — 0)2] RE3(b—a)\ [ aspi(b—a)
" % =) e )
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Elﬁg(al + az)(b — a)

+(E2a2>\3(b =&)(b—a) " Eidids(b—€)(n—a)?

p 2q * q
Bxds(ar+a2)[(b—a)® = (€—a)®] | REi(b—a)\ A [(b—a)’ = (£ —a)’]
+ 2p + P )< 2p )]’
_p2 [(b—a)® AMAs(b =€) (n —a)®
Dy = @[ 5 (|R|+52(O¢1+a2)) + 6 }
1 [/ Esa2): (bfg)(bfa) Eshids(b—&)(n—a)®>  Eszfa(on + a2)(b—a)
+ﬁ [( 3 . 3 3 T + 3 -
Eids(ar + a2)[(b—a)® — (£ —a)’]  RE3(b—a) Am
+ % =) L)
+<E2a2>\3(b - §)(b—a) n EidiAs(b —75)(77 —a)’ n Elﬂ2(a1 + az)( a)
D 2q
ExXz(ar +a2)[(b—a)’ — (€ —a)’]  RE\(b—a)\ (Bapa(b— a)
* % =) ()l @
ﬁ:zéﬁfb] Ip(2)l, ci—zlr[;fb]lq( z)|. (2.6)

3. The Carathéodory case

To prove our first existence result for the multivalued problem (1.1), we need the following known results.

Lemma 3.1. ([22]) Let X be a Banach space. Let F : [a,b] x R? — P, .(R) be an L'— Carathéodory
multivalued map and let ¢ be a linear continuous mapping from L*([a, b], R) to C([a, b], R). Then the operator

¢ o Sru: C(la, b, R) = Pep o(C([a, ], R)), wi= (p o Sku)(u) = ¢(Sru)
is a closed graph operator in C([a,b],R) x C([a,b],R).

Lemma 3.2. (Nonlinear alternative of Leray-Schauder type [15]). Let S be a Banach space, Sy a closed convex
subset of S, U an open subset of Sy and 0 € U. Suppose that F : U — P .,(S1) is a upper semicontinuous
compact map; here Py .,,(S1) denotes the family of nonempty, compact convex subsets of S1. Then either

(i) F has afixed point in U, or
(ii) thereisaw € OU and X € (0, 1) withu € A\F(u).
Now we are in a position to present our first main result.
Theorem 3.3. Assume that
1) F,G:[a,b] x R* — are L*-Carathéodory possessing compact and convex values;
Hy) F,G b] x R? P(R L'-Carathéod ] d l
(Hz) There exist continuous nondecreasing functions 11, Y2, ¢1, d2 : [0,00) — (0, 00) such that
IF(t,u,0)||p = sup{|f| : f € F(t,u,0)} <pa(&)[a(|[ull) + &1 (|lo])],
and
G (t,u,v)|lp :=sup{|g] : g € G(t,u,v)} < p2(O)[W2([[ull) + P2(llv]))],
for each (t,u,v) € [a,b] x R?, where p1,ps € C([a,b],RT);
(Hg) There exists a constant N > 0 such that

N
Erllpil|[Y1(N) + @1(N)] + E2|lp2|[12(N) + ¢2(N)]

where &; (i = 1,2) are given in (2.4).

> 1,

e
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Then self-adjoint coupled multi-valued system (1.1) has at least one solution on [a, b].

Proof. Consider the operators ©1,02 : F x F — P(F x F) defined by (2.2) and (2.3) respectively. It
follows from the assumption (H;) that the sets SF,(uw) and Sg,(u,») are nonempty for each (u,v) € F x F.

Then, for f € Sk (uv): 9 € Sa,(uw) and V (u,v) € F x F, we have

i (w, 0)(£) = /t( o /uf(z)dz)du—i—% —a2(ﬁ1+52)/ab (p’“(‘;) /au f(2)dz ) du
A1 (B + Ba) / / “2 / dz)dudsf)qﬁg( )/ab (% /aug(z)dz)du
-|—>\1)\3(77—a)/E /a PlZ;)/a f(z)dz)du ds:|

+ﬁ (E4a2(ﬁ1 + B2) /ab ﬁdz — E3Ai (61 + B2) /77 /5 le)dz ds
+E3A\1B2(n — )/b ﬁd — EyA13(n / / dz ds
—RE4 /ti CWI/ f(z dz E4a2(ﬁ1+ﬂ2)/b$dz

+E3A1(B1 + B2) // dzds Es\iB2(n /%
‘)

+E4>\1)\3(77—a)/ / %dzds+RE4/ (/"

+(E2a2(61+62)/a Syt B+ ) / / —dzds

+E1A152(n—a)/ab$d — B / / dds
_RE /tﬁdz)(&(g; /b o(2)dz) + (—E2a2(51+ﬁ2)/:ﬁdz
+E1 A1 (B1 + B2) / / dzds El)q/BQ(T]*a)/ab ﬁdz

FEa M Ns(n / / (12 dzds-i—REz/:p(lz)dz)(/: ;‘z’;)l /:f(z)dz ds)}

/ 2)dz ds)

and

s (u, 0) (1) :/t(q‘(‘z) /"A( )dz)du + —az)\g(b—é)/ab (p‘(‘;) /auf(z)dz)du
FA s (b — g// “2 / dz)duds—ﬂz(alJraz)/ab(q‘(‘Z) /aug(z)dz)du
+As(a1 + az // )duds]

(E4a2)\3(bf§)/b$d — EshAs(b // zdzds

+E3ﬁ2(0¢1 +a2)/ ( )d E4)\3 0(1 + o / / Z dZ ds

t b
—REg/ Bl 0‘4‘“/ f(z dz E4oz2)\3(b—f)/ ﬁdz
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BN (b— g/ / dzds—E5ﬂz(a1+a2)/(lb$dz
oo [ s | ([ 3 e
(meg(b ¢) / ﬁd — B / / s
+E1,6’2(a1+a2)/a 5z = Badafon + 0 / / e ds
_RE, /:ﬁd;:)(ﬁ?l;;/ §(=)dz) + (—E2a2A3(b—g) /abﬁdz

b
+E1)\1)\3 b— § / / dZ ds — Elﬂg(al +O[2)/ ﬁdz

T Eahs(an + as / / (12 dz ds + RE, /atp(lz)dz)(/; ;‘g)l /a F(2)dz ds)],

where hy € ©1(u,v), ha € O3(u,v) and hence (hy, ha) € O(u,v).
Now, we will verify the operator O satisfies the assumptions of the nonlinear alternative of Leray-Schauder
type. In the first step, we show that ©(u,v) is convex valued for each (u,v) € F x F. Let (h;, h;) €

(©1,03),7 = 1,2. Then there exist fi € SE (uv)> 9i € SG,(uw), 1 = 1,2, such that, for each ¢ € [a, b], we have

hi(t / (L / iz du+ fa2(/31+/82)/ab (p*(‘;) /au fi(2)dz)du

B+ Ba) // /u )dz)dudsf 1[32(77761)/;(;(‘;) /augi(z)dz)du
FA1As( —a// /fZ dz du ds

b s
+ﬁ (E4062(,31+52)/a ﬁdZ—Ef,)\l(ﬁl-f—BQ)/n/ ﬁdz ds
b
+E3)\152( )/ le)d E4)\1/\3 / / Z dZ ds
t b
RE4/ — a““l/ filz dz E4a2(51+,32)/ ﬁdz

B (B + o) // s nglﬁg(n—a)/:ﬁdz

e [ [ basasi e [ o) ([1 [ e a)
+(E2a2(61+,32)/a e = BB + ) // Tz ds
—&-El)\lﬁg(n—a)/abwlz)dz ExAis(n / / Sy ds

~RE, /t p(lz)dz)(ﬁ‘*(g)z /b gi(2)dz) + (—E2a2(51+52)/:$dz

+E (B + B2) // el Elklﬁg(nfa)/abﬁdz

+Ea M s(n / / (12 dz ds + RE» /:p(lz)dz)(/; ;‘E’S‘)l / fi(z)dzds)},
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— anhs(b— 5)/ ‘(‘;) /auﬁ(z)dz)du

Al — s// (L / ) ds ﬁz(awaz)/:(q‘(‘;)/augz-(z)dz)du

sl a1+a2// ‘“ / fi(z duds}

(E4a2)\3(b—§)/a —dz— Eshas(b—€) // odeds

+E3ﬂg(a1+a2)/ = Ea(on + // e ds

_RE, / e ‘;4“1 / fi(2)dz) + (= Brands(b— ) / b%dz

F B Na(b— g// e ds = By a1+a2)/abwlz)dz

rEston o) [ [ bazasire [ ban) ([ [0 a0
+(Baanrsd /I% 2~ Exad(b— 5// s

+E1B2(a1 + a2 / Lz Ex)s( a1+a2//—dzds

REl/ )( / ) (fEMQAg(bfg) /:I%dz
FE A (b — g/ / ooy s = il a1+a2)/ab$dz

+Es(a1 + oz / / dzds+RE1/ (lz)dz)(/: 24(’:)1 /:fi(z)dzds)].

L1
ER

Let 0 < w < 1. Then, for each ¢ € [0, 1], we have

[whi + (1 — w)ha](t) = /t( m /u[wfl(z)+(1fw)fg(z)]dz)du

o \p(u) Jo

| o) [ (L [+ (- ez au

+A1(B1 + B2) // “2 /[wgl (1—w)ga(z ]dz)duds
—A1f2(n — a/ M / [wg1(2) + (1 — w)g2(2)]d )du
A (g — a// (L /[wf1 (1= w)folz }dz)duds}

(E4a2(,81+ﬁ2)/bp( Syt~ B+ ) / / —dzds

L
ER

+E3 )\ 152(777a)/ dz Eisdds(n—a // dzds

_RE4/t— a4u1/[ f1 (1- wf2 ]dz)
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+(—E4a2(/31+52>/ e+ B (B + B2) // Ty ds

a

—E3\ Ba2(n — a)/ dz + Esdids(n —a / / dz ds

t
+RE4/ 1 / AZW/ [wgi(z) + (1 — w)ga(z ]dzds)

+(E2a2(61+52)/ Syt B+ ) // s

a

+E1)\162(7]—a)/ —dz EaXiAs(n— a// dzds

—RE, /ﬁd 54“2 / win(2) + (1~ w)i(2))dz)

+(—E2a2(51+52)/a et B (B1 + B2) / / P

b
1
—Fi )\ - —d EsMiAs(n— ——dzd
sl =) [ odz Bt “/g/ap(@ @ ds

+RE» /:p(lz)dz)(/: ;‘E’:)l /:[wfl(z)—f—(l—w)fg(z)]dz ds) |,

fwht + (1 - w)ha)(t) = /t (“—2) /au[wgl(z) + (1= w)ga(2))dz ) du

o Nqu

| —oans-9) [ b (s [Twhe) + 0 - w)hld:)du

A (b — 5// (L2 /uwg1 (1~ )i (2))dz ) du ds
—Bs a1+a2/ /[91 (1 - w)ga(z ]dz)du

Fs(ar + az / / ”1 / whi(z) + (1 — w) fa(2)]d )duds}
(E4a2)\3(b €) /b (1)dz Eshis(b—€) / / s
+FEsB2(a1 + ag)/a ——dz — Es)ds(on + a2 / / ® dz ds

_REg/t ﬁdz)((;?s)l/ whi(2) + (1~ ) fa()]d2)

+( Esanhs(b— g)/b (1)dz+E3/\1)\3b 5// s

+ﬁ

—FE3B2(c1 + a2) /

<[22 [ M)+ (- @)z ds)

+(E2a2)\5(b g)/ ()dz Eidis(b — 5/”/ s

L

dz ds
p(2)

boq b
+E152(00 + 042)/ ——dz — ExA3(a1 + a2) /
a q(Z) 3

133

dz+E4,\3 (1 + az // dzds+RE3/ %dz)

e




Bashir Ahmad, Amal Almalki, Sotiris K. Ntouyas and Ahmed Alsaedi

—rpn [ L) (222 [og )+ (- o))

+(—E2a2A3(b—g)/ ()dz+E1/\1)\3b 5// s

a

_E1ﬂ2(oe1 -‘rOéz)/ ( )dz-i-Ez)\g a1 + oo / / Z dz ds

+RE /at ﬁdz)( /5 ?;25)1 /S[Mfl(z)+(1—w)f2(z)]dzds)}

a

Since S, (u,v), SG,(u,v) are convex valued as F' and G are convex valued maps, therefore, whi + (1 — w)hs € Oy, why +
(1 — w)hs € O and hence w(h1, h1) + (1 — w)(he, ha) € O.

Now, we show that © maps bounded sets into bounded sets in F x F. For a positive number v*, let By« = {(u,v) €
F X F : |[(u,v)|| < v*} be abounded set in F x F. Then, for each h; € O;,(i = 1,2), (u,v) € By=, there exist
f € SF,@,U),Q € SG,(u,u) such that

mw oo = [ N o f(z)dz)du-l—%

— (b +52)/ab (5 /au f(2)dz)du
i) [ (5 dz)duds—Alﬂz( )/ab(ﬁ/:g(z)dz)du
Yy

tom (E4a2(61+52)/a L5~ B (pr + ) / / s ds

+E3A182(n — )/b q(l) — Esdis(n / / o0 ——dz ds

—RE4/ 7 a4'ul/ f dz E4a2(,6’1 +ﬁ2)/ ﬁdz

b
+FE3\ [‘31 +/32 / / 7dZdS*E3)\1/32(777a)/ ﬁdz

rratn-a [ [ basassrm [ e ([0 [ i)
+(E2a2(51+ﬂ2)/a e B [ dsas
+E1)\1[32(177a)/ab$d — EsAhs(n // s

e [ L) (22 [ 50) ¢ (- messia ) [ e

n s b
+E1)\1(ﬂ1 +ﬂ2)/ / qidz dS—El)\lﬁz(?]—a)/ ﬁdz

a

FE2Ms(n /;/a ﬁdzds—l—REg/ p(lz)dz)(/: ;‘25)1 /:f(z)dz ds)],
ha(w, v)(£) = /t (q‘(‘;) /uﬂ( )dz)du+ 3

a et [ [ o
A s (b // “2 /u dz)duds—ﬁz(ozl-i-ozz)/ab(ﬁ/{lug(z)dz)du
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+)\3(a1+a2)/b / H /u f(z)dz du ds]

(E4ag>\3(b g)/b (1)dz EsAiAs(b — g// e

+E362(0n + 062)/ dz Eids(ar + az / / dz ds

+ﬁ

a4u1 1
7RE3/ 7 p / f dZ E4042)\3(b7£)/a @dz
b
—|—E3)\1>\3 b— 6 / / dZ ds — Egﬂz a1 —|—a2)/ ﬁdz

FEs(ar + az /:/ p(lz dz ds+REg/ %dz)(/ 22(‘;)2 /:g(z)dz ds)

b
Ezag)\:; b— 5)/ % z — El/\1A3 b— f / / Z dZ ds

b
1
—|—E1ﬁ2 a1 + oo / Z dz — EQ)\g a1 + o / / ( dZ ds

REl/ dz)(i“( / ) ( Esashs(b— 5)[%@

b
+Ei) )\3 b— f / / dZ ds — El/Bg 041 +CM2)/ LdZ
q(z o 4(2)

+EsXs(on + as /:/ p(lz dz ds+RE1/ é)dz)(/gb 2‘2’;)1 /a F(2)dz ds)].

Then, for ¢ € [a, b], we have

|h1(u,v)(t)|_/ |’“ /If \dZ)d“+|R|

] |Ozzﬂ1+ﬁ2\/ \,u1|/ |f (= |dz du

+|M(&+&)|/ﬂ/@ '“2|/\ )ld=)du ds + [ B a|/ ‘“2‘/ 9(2)1dz ) du
+|A1A3<n—a>\/b/ (Ll [ o) as

(|E4a2 b1+ B2) |/ ™ dZ+ |EsAi(B1 + B2) |/ / e dz ds

|ER|
+|E3\1B2(n — a) |/ Fdz+|E4)\1)\3 n—a \/ / rdzds

tq
+|RE,| / e "““1' / 7)1z + (1Baaa(B + 52)] / o

+|E3A1 (81 + B2) |/ / el dz ds + |EsAiB2(n —a |/

t
+|EsMAs(n —a |/ / ﬁdzds—HREd/ |pi |)\2M2|/ lg( |dzds

(|E2a2 B1+ B2) \/ 7 d2+|E1)\1 B1+ B2) |/ / |q )‘dzds

+|EiMB2(n—a |/ o dz+|E2)\1)\3 n—a \/ / ) dzds

e
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t
#irms] [ sae) (L2 gy 0s) + (1B + 50) / o

+E1 A1 (B + B2) |/ / 4(2) dZ ds + |E1A182(n |/ |q

B s (n |// dzds+|RE2|/ IA4’“‘/ 1f (= |dzds
Ip(2) Ip(2)] Z)I

s TO—O (1R) 4 an(s + ) + 22201 )[(b;“)?)‘“‘“)]}

[Rp|L 2
1 [<E4042(ﬁ1 + 52)(b— a) n Es\i (51 +p2)(n —a)’ n EsAifB2(n—a)(b—a)
q

|RE| p 2q

IA

+
p

Eids(n—a)[(b—a)* = (€ —a)’] | REs(b—a)\ oup(b—a)
2% " ) ()
+(1'32042(/5'1 +B2)(b—a) E1>\1(51 + B2)(n — a)® " E1AiB2(n —a)(b—a)
D 2q q
Exdis(n—a)[(b—a)® — (£ —a)’]  REx(b—a)\ Aapa[(b—a)® — (£ —a)?]
+ =) 5 )]}

2p 2
<ol () + 61 ()]

+{ |2qu| [Al(ﬂl + 6;)(77 —9° el — )b a)Q}
L [(Eioa(BitB2)b=a) | Eshi(Bi+B)(n=0) | Esdfaln—a)b—a)
+|RE| [( P + 57 + -
Edida(n = @)l - af ~ (€~ 0] | REA0 - a)) ()\ZM(?? _ a)2)
2p D 24

+(E2a2(51 + B2)(b—a) N B\ (B + B2)(n — a)? . FidBa(n — a)(b— a)

D 2q Z

ExXids(n—a)[(b—a)® = (£ —a)®]  REx(b—a)\ (Bapz(b—a)

: P " )( H\q(b)| )]}

Xpall [2(v") + 62 (7)]
= Dillpa 2 (v") + ¢1.(0°)] + Dellpalla(v”) + 62 ("))

p

Similarly, we can obtain that

|ha(u, v) ()] < Dsllprll[¥r(v7) + é1(v7)] + Dallp2ll[t2(v") + d2 (v7)].

Thus, we get
)+ ¢1 (V)] + Dallp2||[$2(v7) + d2(v7)],

11 (, )| < Dallpa[41 (v
)+ Dallpal[th2(v7) + ¢2(v7)],

[[h2(u, v)|| < Dsllpal[[1(v7) + ¢1(v
where D;, (i = 1,2, 3,4) are defined by (2.5). In consequence, we have

(R, h2)ll = ([P (u, v) || + [[h2(u, V)]
< (D + Ds)l\mll[%( )+ o1 ()] + (D2 + Da)Ip2lll2(v7) + ¢2(v7)]

= &lpill[r () + 1 (V)] + Eallp2lllb2(v7) + d2(v7)]

= /¢ (constant),

where &;,1 = 1, 2, are defined in (2.4).
Next, we verify that ©(u, v) is equicontinuous. Let t1, t2 € [a,b] with t; < ta. Then, for f € Sp (u,v),§ € SG,(u,v)

we get
ha(u, v)(t2) — ha(u,v)(t1)

e
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+

+(%(/4121%d2—/alﬁdz (O;;Z’Z)l ) f(T)dz))
4 (35 [ o)
t2 £ ape [
W5t ) (G | o)
By
(%

(
< [(&) (tg—a)2_(t1—a)2 N on (a4u1)(t27t1)(bia)

I 2 Elp| \[p(b)]
By (M) (t2 — t1)[(b — a)* = (£ — a)?] .
Y 5 JIpalen (o) + 610"
By (Dep2)(tz — t1)(n — a)® Bapiz
Eq 2 + 1 (i) = = 1000 -0

x|[p2||[th2(v™) + ¢2(v™)] — 0 as t2 — ¢1 independent of (u, v).
Analogously, it can be shown that
[ha(u,v)(t2) — ha(u,v)(t1)| — 0 as t2 — t1 independent of (u, v).

Therefore, the operator ©(u, v) is equicontinuous and hence we deduce that O(u, v) : F x F — P(F x F) is completely
continuous by the Arzeld-Ascoli Theorem.

In the next step, we show that ©(u, v) is upper semicontinuous. Instead it will be established that ©(u, v) has a closed
graph in view of the fact that a completely continuous operator is upper semicontinuous if it has a closed graph. Let
(ug,v5) — (ux,vs) and (hy, hg) € O(ur,vy) and (hy, hy) — (hs, hs). Then we have to show that (ha, h.) €
O(ux, v). Associated with (hy, hi) € O (ux, vx) and f;, € SF(uw), Gk € SG,(u,v), for each t € [a, b], we have

b (uk, ve)(t) = / / fu(z du+ — (B +52)/ab (1% /au fk(Z)dz)du

+/\1(ﬂ1+ﬁ2)/n/s ﬁ/ugk(z)dz)duds—AlﬁQ(n—a)/ab (%/ﬂu{]k(z)dz)du

+XiXs(n—a / / dz du ds
+E71R (E4Ct2(/31 Jrﬂz)/a ]ﬁdz — E3Xi (B + B2) /’7 /s ﬁdz ds

+EsA1Ba(n — a) /{fﬁd — Eahids(n / / e
—RE, /:]ﬁdz)(ﬁ’l;‘)l /abf( )dz) (—E4a2(51+52)/b$dz

+E3/\1(51+/32)/" Tl

b
—dz d87E3A1,32( )/ ﬁdz

[ ac
/% zds+RE4/t%dz)(/n ’:12(?)2 /:gk(z)dZdS)

+(E20é2(51 + B2) /blﬁ dz — E1 )\ (B1 + B2) / / dZ ds

~—

b
+Es i As(n — )/
3

e
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+E1 M1 B2(n — a)/ dz ExXi)s(n—a / / dz ds
—REs /t I%dz) (%l(l;)? /a (z)dz) ( — Eza2(B1 + B2) /ab ]%Z)dz
+E1 A (B + B2) / / 2@ ——~dzds — E1M1B2(n — a) /b ﬁdz

Y EsMAs(n —a // (12 dzds—l—REg/ (12)dz>(/: 2‘2’:)1 /asfk(z)dzds)}

— aors(b— g/ ‘“/fk dz

2)du ds — ﬂg(al—l—az)/b (“—2) /augk(z)dz)du

o Nq(u

+)\1>\3 b— é- /

+As( a1+a2// Ml / fr(z dUdS]

(E4a2)\3(b 5)/b (1)dz Eshis(b — 5// s

+E3ﬂ2(0&1 +4 052)/ dZ E4)\3 051 —+ a2 / / dZ ds

_REs / =) ( f:% / fi(2)dz) + (= Baaza(b - €) / ' I%dz
+E3\As(b— 5/ / dzds EsfBa( a1+o¢2)/b ﬁdz

+Es(a1 + oz / / Bl ds+RE3/ %dz)(/:%/:gk(z)dz ds)

b
EQO&QAS b— &)/ L dz — El)\1>\3 b— f / / dZ ds
p(2)

q(z)
+E1 B +a2)/b o) 2% Bhalen +a2)/ / (1

—RE, /at le)dz) (i“(g;/a gk(z)dz) (ngagx\g(bff)/a ﬁdz

n S b
+E1)\1)\3 b—€ / / LElZ dS—Elﬁg(Oq +C¥2)/ LdZ
o Ja alz o 4(2)

+Eahs(a + as / / dzds+RE1/ (lz)dz)</: ;4(’:)1 /asfk(z)dzds)].

5

dz ds

Consider the continuous linear operators Uy, U5 : L'([a, b], F x F) — C([a,b], F x F) given by

Uy (u,v)(t) = /t M /uf(z)dz du-i—%

— (B +/32)/ab (p’i‘;) [ f(2)dz) du
A1 (B + Ba) / / ”2 /u dz du ds — M f2(n — a) /ab (% /aug(z)dz)du
+AiA3(n—a /g /a plg;)/a f (2)dz duds:|
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+ET:¢

(E4a2(ﬂl +[52)/ Sy BByt ) / / el

a

+E3)\152(77—a)/ dz Eshds(n—a / / dz ds

b
/ 0‘4‘“ f dz — Esan( ﬂ1+ﬂg)/ L

p o P(2)
+E3A1(B1 + B2) / /
/s

b
1
—dzds E3\iB2(n — a)/a @dz
+E4)\1)\377 a/

2 (
% dz ds+ RE,4 /t p(l—z)dz) (/an );(5)2 /S g(z)dz ds)

a

(Ezouﬂl-i-ﬂz /bﬁz Ei)( 51—!-52// dzds

+E1 M\ B2(n — a/%z ExXihs(n — a// dzds

REQ/ dz)(q( / ) (szaz(ﬂ1+52)/ab$dz

+E1q( ,61+/32//q dz ds — E1A1B2(n — a/

b s
TE M As(n—a / / dzds+RE2/ dz)(/ ’\4’“/ dzds)]
3 p(z

Q

/t(q‘gz) /u ()dz)du+R — aas(b— 5)/; (p’(‘;) /auf(z)dz)du
M ds(b—€) // “2 /u dz du ds — /32(a1+a2)/: (ﬁ/:g(z)dz)du
+s(oa + az / / ‘“ / f(z duds}

(E4a2>\3(b 5)/bp(1)dz EsAiAs(b — 5// el

+E362(00 + Oéz)/ dz Esds(a1 + az / / dz ds

—RE; ) a‘*’“/ f(z dz — Eson)s(b— )/ L
p(b p(2)
b1
+E3)\1)\3 b— f / / Z dZ ds — E3/82 a1 + Qe / q(z
n s
+EsA3(a1 + az / / %dzds—i—REg/ dz) / /\QHQ/ dzds
b1 1
E2a2)\3 b— {)/ ? dz — E1A1)\3 b— f / / q(z ——dz ds

b
1
+E1ﬂ2 a1 + Qo / dz — Ez)\3 Cll =+ 2 / / ( dZ ds

REl/ dz)( / ) ( Egag,\g,(b—g)/bﬁdz

a

+ﬁ

e
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b

—|—E1)\ /\3 b— / / dZ dS—Elﬂz(al—Faz)/ —

ek
+E2A3(a1 + a2 / / (12 dz ds + REx /: ﬁdi;)( ; )]\;Z:)l /: f(z)dz ds):|

From Lemma 3.1, we know that (W1, ¥2) o (SF, Sa) are closed graph operators. Moreover, we have (h, hi) € (U1, ¥s) 0
(SF(uon) s G, (g op)) for all k. Since (ur, vi) — (s, ), (hiey hie) — (hay ), it follows that fu € Spu0), s €
S, (u,v) such that

a0 [ ([ o)

dz)du ds — M1 fa(n — a) /ﬂb (q’(‘z) /au g*(z)dz)du

o
/f* dz du ds

et = [ (5 [ fraz) i

+>\151+52//
ot [ [ (2

(Emz(ﬂl +52)/ mdsz3)\1 B1 + f2) / / s

b
+EsAi1B2(n —a) / 1 ——dz — EshiAs(n / / ——dz ds
o 4(2) p(2)

—RE4/ Z 054,11,1/ f* dZ E4a2(,81 +ﬁ2)/ ﬁdz

b
7dZ dS*Eg)q/BQ( )/ ﬁdz

q(2)
)dz ds + RE, /t %dz)(f7 22(’:)2 /Sﬁ*(z)dz ds)

L
ER

+E3X1(B1 + B2

b

+EiMAs(n —

a

&\;\@

a (
o Pz
+(E20é2(51 + B2 )

/ ——dz — E1 )\ ﬁ1+ﬁ2 / / dZdS
o p(z
b1
— Z*EQ}\1>\3 / / dZ ds
o 4(2)
b
2

=
)
YEMBa(n—a
—RE; /:ﬁ&)(i?lg) /bg*(z)dz) + (—E2a2(51+62)/a ﬁdz
)
- |

A
.

)
a)
+E1A(B1 + B2 /7’ /: q(a)dz ds — ErA1p2(n —a) /ab ﬁdz
T

1
:/a p(lz)dzderREz/: p(lz)dz)(/; ;‘25)1 /:f*(z)dzds)],

+Eo i As(n —

and

—ands(b—€) /ab (p‘(z) /au f*(z)dz)du

dz)du ds — B2(a1 + aw) /b (LQ) /au g*(z)dz)du

« Nq(u

P (e, ) (1) :/ (

/uA dz)du S
(G

| o
+/\3a1+a2// (pu/f* dz duds}

(E4ag)\3(b—§) /b%dz—Eg,)\l)\g / / e

+E7R

e
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—|—E3ﬂ2(0¢1 =+ O(Q)/ ( )dz — E4)\3 a1 —+ o / / Z dZ ds

_REg/a ﬁdz) (‘;‘EZ; /a f*(z)dz) n (— Eson)s(b — g)/a ﬁdz

n & b
+E3)\1)\3(b7§)/ / 7)d2 dS*E3/32(041+6¥2)/ ﬁdz

q\z

+Eis(ar + az) /: / ﬁdz ds + RE; /t %dz) (/77 22(5)2 / Gu(2)dz ds)
+(E2a2)\3(b—§) /b%dz—El)q/\g / / el

+E1B2(a1 + a2 / q(z) — Ex)3(a1 + a2 / / dz ds

—RE, /: ﬁdz) (/[;4(5)2 /a g*(z)dz) + (— EsazAs(b—€) /ab ﬁdz
+E1 A1 A3(b— &) / /S e ——dzds — E1B2(a1 + a2) /b ﬁdz

+Eg)\3(a1+a2)/:/a p(lz)dz ds + RE, /atp(lz)dz)(/: 2‘25)1 /a Fo(2)dz ds)],

which lead to the conclusion that (hy, hx) € O (u., v.).
Finally, we show that there exists an open set U C F x F — P(F x F) with (u,v) ¢ €O (u,v) for any ¢ € (0,1)
and all (u,v) € OU. Let € € (0,1) and (u,v) € €©(u,v). Then there exist f € Sr,(y,») and § € Sa,(u,v) such that, for

t € [a,b], we have
— az(B1 + p2) /ab (pl;;) /au f(z)dz)du

ult / ’“ / fz du+—
FA1(B1 + B2) / / /u dz)dudszlﬂg( )/ab(q’(‘z) /aug(z)dz)du
/ f dz duds:|

+/\1)\3 —a / /

@

+ﬁ (E4Oz2(ﬂ1 +52)/a ( ) — EsAi (B + B2) / / dz ds
+FEs\i182(n—a) /b ﬁd — Es\s(n / / dz ds
,RE4/ ® C;wl/ f(z dz E4a2(ﬁl+62)/ab$dz

B+ i) [ [ deds - Bty —a/
FEAs(y //—dzds+RE4/ d)(/
+(Bs0n(8s + o) /abp—szm b1+ B) / / Lz as

CE MG —a / 5z = Bl // dsds
s [ L) (B [y )+(_Ega2<ﬁl+a2>/j$dz

/ 2)dz ds)

e
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b
—|—E1)\1 514-/82 / / dZ d.S—El/\l/BQ( )/ le)dz

FEaMs(n / / ooy ds + RE> /atp(lz)dz)</: 24(’:)1 /:f(z)dzds)],

and

e

_|_7

o(t) = e/a (q(u /u dz)d — az)s(b— g)/ab (p‘(z) /auf(z)dz)du
FAs(b — g// (q’zz/ dz)duds—ﬁz(alJrag)/ab(q‘(‘z) /aug(z)dz)du
+As(ar + oz / / (p’(*; / HE dz duds}

(E4a2)\3(b g)/ mdz—EgAl,\g // Zdzds

+E3ﬁ2(0¢1 + 042)/ ( )dZ — E4)\3 041 —+ a2 / / dZ ds

+5R

t b
—REg/ o ) a‘*’“/ iz dz E4a2>\3(b—§)/ L
o P(2) o P(2)
b
1
+E3)\1)\3 b—¢ / 7d2 dS—E352(a1+O¢2)/ @dz

z)
b 1 t 1 n )\2/112 s )
+Ex3(a1 + a2 /g j W zds—l—REg/ ﬁdz)(/ () /a g(z)dz ds)

b
L Z—E1A1)\3 b f / / dZdS
p(z

+E1B2(a1 + a2 / qz — Ex)z(a1 + a2 / / —dzds

a

_REl/ dz)(i(# /b (z)dz) T (_EQaz,\g(b—g) /abﬁdz

b
+E1>\1>\3 b— / / 7d2’d8 E1,32(0¢1+(12)/ LdZ
o 4z o 4(2)

+E2A3(oq+a2)/g /a ﬁdz ds + RE; /at p(lz)dz)(/: 2‘2’:)1 /:f(z)dz ds)].

Using the arguments employed in the second step, we find that

[ull < Dallpafl[r (lull) + ¢1([[0ID] + Dellpzl [ (ull) + ¢2(]lv|)];

and

[0l < Dsllpall[a(([ull) + 1 ([[v]D] + Dallp2([[Y2(l[ull) + ¢2({[v])]-

Then we have

| (w, )[[[ull + llof] < (P + Da)l[pall[r(l[ull) + 1 (llv[D] + (P2 + Da)llpzll[2([[ull) + ¢2(llv[])]
< Ellpallga(llull) + o1 (llvlD] + Exllp2(l[2([ull) + ¢2([lvID],

where &;,7 = 1, 2, are given by (2.4). Consequently, we have

[[(w, o)
ExllpTIon (Tl + 61 (ToD)] -+ Eallp2 T (Tl + @(ol] ~
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According to (H3), there exists N such that || (u,v)|| # N. Let us set
U ={(u,v) € (FxF):|(u,v)]] <N}

Observe that the operator © : U — Pep,co(F) X Pep,ev (F) is completely continuous and upper semicontinuous. From the

choice of U, there is no (u,v) € AU such that (u,v) € €O (u,v) for some € € (0, 1). Therefore, by nonlinear alternative of

Leray-Schauder type (Lemma 3.2), we deduce that © has a fixed point (u,v) € U which is a solution of the problem (1.1).
O

4. The Lipschitz case.

The forthcoming result is based on the fixed point theorem for contraction multivalued operators due to Covitz-Nadler [9],
which is stated below.

Lemma 4.1. (Covitz-Nadler) Let (X, d) be a complete metric space. If G : X — P.(X) is a contraction, then FizG # (.

Remark 4.2. Let (X, d) be a metric space induced from the normed space (X || - ||). Consider Hq : P(X) x P(X) —
R U {co} given by

Hy(A,B) = max{:lelg d(a, B), sup d(A,b)},

where d(A,b) = infaca d(a;b) and d(a, B) = infpc g d(a;b). Then (Pbycl (X), Haq) is a metric space and (Pey(X), Hq) is
a generalized metric space (see [21]).

Theorem 4.3. Assume that the following conditions hold:

(Hs) F,G : [a,b] x R? — Pp(R) are such that F(-,u,v), G(-,u,v) : [a,b] = Pep(R) are measurable for eachu,v € R;
(Hg) Foralmostallt € [a,b] and u,v,u,v € Rwith B1, B2 € C([a,b],RT),

Hy(F(t,u,v), F(t,u,v) < Bi(t)(|lu — @| + |v — 9|), Ha(G(t, u,v),G(t,a,v) < Ba(t)(|lu — a@| + |[v — 7)),
and d(0, F'(t,0,0)) < Bi(t),d(0,G(t,0,0)) < Ba(t).
Then the self-adjoint coupled multi-valued system (1.1) has at least one solution on [a, b] if
E1]|Bi]| + &|1B:|| < 1,
where E1,E> are given in (2.4).

Proof. Consider the operators ©1, 03 : F x F — P(F x F) defined by (2.2) and (2.3) respectively.

Notice that the sets S, (u,») and Sg,(u,») are nonempty and consequently © # () for each (u,v) € F x F. Then, by the
assumption (Hs), the multivalued maps F'(-, (u,v)) and G(-, (u,v)) are measurable, and thus admit measurable selections.

Now we shall show that the operator O (u, v) satisfies the hypothesis of Lemma 4.1. Firstly, we Verify that ©(u,v) €
Pu(F) x Pu(F) for each (u,v) € F x F. Let (hy, hy) € O (uy,vy) such that (hy, hy) converges to (h, h) as k — oo in
F x F.So (h, h) € F x F and there exist fk € SF,(ur,,vx) Ad gk € Sc,(uy,,v,) Such that, for each ¢ € [a, b], we have

—az2(fr +52)/ab (I% /au fk(z)dz>du

ho (g, i) (£) = /: (p‘;;) /aufk(z)dz)du—f—%
+/\1(51+52)/n/8 (ﬁ /ugk(z)dz)duds—Alﬁg(n—a)/ab (% /augk(z)dz)du
FAAs(n / / “1 / frlz dz du ds

(E4a2(51+,82)/ Sy~ BB+ o) / / s

a

b
+E3>\1,32(77—a)/ Ld — EsMi23(n //—dzds
a Q(z) Z

L1
ER

e
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—re [ ) (S / foa) + (= Baoa(n v 50 [ e

+ B\ (B + Ba) / / e ds = Eahapa(n - )/:ﬁdz

st | [ | 5 [ 2 [
+(E2a2(51+,32)/abp(lz) — Bt (Br + B2) // s
+E1>\162(n—a)/:$d - Eaa(y // s

_RE /tlﬁdz)(%(l;; /aln (2)dz) + (—E2a2(51+52)/:$d2

s b
+E1) ﬂl +,32 / / q(lz dz ds — Elx\lﬂg(nfa)/ ﬁdz

+ B \s () /; / p(lz dz ds + RE; /:p(lz)dz)(/: ;‘E’S‘)l / Fe(2)dz ds)},

and

—az3(b— &) /ab (pl(t;) /au fk(z)dz)du

)du ds — P21 + a2) /b (% /au gk(z)dz)du

a

P (i, 04) () = / (g [ e )d“ﬂl%
+A1A3(b — 5//
+As(a1 + a2 //

<E4a2/\3(bf§)/ mdszg)\l)\gb 5// s

a

du ds]

Ll
ER

+E352(C¥1+a2)/a ()d — B a1—|—a2// dds
—REg/ az) ( Z“’“/ ful2)iz) E4a2)\3(b—§)/ab1%2)dz
+Eshida(b //q dz ds — Egﬁg(a1+a2)/abﬁdz

o [ [ gt [ ) ([ 55 [ o)
+(Braars(b— ¢ /bﬁz—&mgb 5// e ds

+E1B2(a1 + a2 / q(z — EaA3(a1 + a2 // dzds

t b ’
_REl/a ]ﬁdz) (%(g) / (Z)dz) + (— EsaXs(b —5)/@ ﬁdz

+E1)\1)\3 b— f / /S (12 dz ds — Elﬁz(al —‘rOtz)/ ﬁdz

+E2)\3(a1—|—a2)/§ /a mdzds+RE1 /: p(z)dz)(/:;‘zg)l/:fk(z)dzds)].

Since F' and G have compact values, we pass onto a subsequences (if necessary) to get that fk and gi converge to f and g in

+Esd3(a1 +

e
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L'([a, b], R) respectively. Then f € Sp,(uwy and § € Sg, (u,v) and for each ¢ € [a, b], we have

hi (wk, vi) (t) = h(u,v)(t)
— /t f /uf(z)dz du+% 7a2(ﬁ1+52)/ab (pl;;) /auf(z)dz)du

A1 (B + Ba) // ”2 /u dz du ds — B2 — a)/ab(%/aug(z)dz)du
+A1A3(n—a /§/a plg;)/a fzdz duds:|

(E4a2(51 + fB2) /ab Fl)dz — Es\i (B + B2) /77 /5 %dz ds

L
ER

+E3)\1B2(77—a)/ dz EshXs(n—a / / dz ds
t b
_RE4/ - 0‘4“1/ fz dz — Esan (B +52)/ ﬁdz
b
—I—Eg)\l ﬁl +,62 / / dZ ds — E3>\152 n— a)/ le)dz

YEMAs(n —a // (12 dzds+RE4/ %dz)(/n 22(‘:)2 /:g(z)dz ds)

(E2a2(51 +52)/ Sy B+ ) / / el

+E1Alﬁg(n—a)/ —dz EyXiAs(n — a// dzds

REQ/ %d )(54(5)2/ ()dz) ( EQag(ﬁ1+ﬁ2)/ ﬁdz

b
+E1A1(B1 + B2) // dzds Ei1M\B2(n — a)/ %Z)dz

+EMAs(n —a // dzds+RE2/ é)dz)(/: ;4(’;)1 /:f(z)dzds)}

and
hi (uk,vg)(t) — iL(u, v)(t)

- /t(q‘(‘z) /u ()dz)du+R — az)s(b— g)/: (p’(‘;) /auf(z)dz>du
T As(b—€) /a/a “2 /au dz du ds — 52(a1+a2)/:(q‘(‘2) /aug}(z)dz)du
T s( a1+a2// “1 / f(z duds}

(E4a2)\3(b g)/b (l)dz EshiAs(b — 5/(1/(1 — dxds

+E3ﬁ2(a1 + 012)/ dZ E4)\3 Oél + o / / dZ ds
t 1 a4u1/ /b 1
—RE: ——dz zdz —Ea)\ b— ——dz
) Gy [ 5 12X 0=8) |00
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b
—|—E3)\ )\3 b— f / / dZ ds — E552(C¥1 =+ az)/ ﬁdz

N R N I T
+(E2a2)\3(bf§) /abﬁ)d ~ Eds(b / / s

+ErBa(an +a2)/ab q(lz)d ~ Badslan + as / / e ds

_RE, /:le)dz)(?(/;;/ §(=)dz) + (—Ezag)\g,(b—g)/ab}%dz

B s (b //q dz ds — E1/J’2(ocl+ag)/ab$dz

T Eshs(an + as / / (12 dz ds + RE /:p(lz)dz)(/; ;‘E‘S‘)l /a F(2)dz ds)].

Therefore (u,v) € © and hence ©(u, v) is closed.
Next we show that © is a contraction on P (F) X Pei(F), that is, there exists a positive number v < 1 such that

Hy(0(u,v),0(q,v)) < y(||u—a|| + ||v — 9||) foreach u,v,@,v € F.

Let (u, @), (v,8) € F x F,and (h1, h1) € ©(u,v). Then there exist f1(t) € Sr,(u,v) and §1(t) € S, (u,v) such that, for

each t € [a, b], we obtain
b u o
—as (A +52)/ (plg;) / fi(z)dz ) du

ha(u,v)(t / Ml / fi(z du+
dz)duds—)\lﬁg( )/ab (% /augl(z)dz)du

+A1(B1 + B2) / /
+AiAs(n—a / / dz)du ds
JrELR (E4042(61 + 52)/@ %dz — Es\i(B1+ B2) /" /S %Z)dz ds

+E3A182(n — )/b ﬁd — Eyx1s(n / / dz ds

fRE4/t—Z 0‘4‘“/ fu(2)dz) E4a2(51+ﬂz)/ab$dz
+E3)\1(61+ﬂz)/ / —dz ds — Es\ifa(n — a) /abﬁdz
FEMAs(n / / jdds + REy /t %)dz)(/n 2?’:)2 /:ﬁl(z)dz ds)
+(E2a2(b’1+ﬁ2)/a e B [ s
+E N Ba(n — a) /ab q(lz)dszmAg / / s

—RE; /tﬁdz)<i4(g)2 /b §1(2)dz) + (—Egaz(ﬁl—i—ﬂz)/abﬁdz

s b
+FE1)\ ﬁl +ﬁ2 / / q(lz dz ds — El)\lﬁg(n—a)/ ﬁdz

e
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+EaMiAs(n // —dzds-i—REz/ p(lz)dz)(/: ;‘2’:)1 /:ﬁ(Z)dzds)],

and

—anAs(b—€) /ab (p’;;) /au fl(z)dz) du

u

q(u) Jq
IS +a2)/: / (p‘(‘;) /au fr(2)dz ) du ds]
+ELR (E4a2)\3(b—§) /bﬁdz—E?,Am b—¢ /1/ e

+E3B2(a1 + OQ)/ e )dz — Ess(a1 + az / / dz ds

,RE;),/ 3 dz) 0;4‘“/ Filz dz — Esashs(b—€) /bﬁdz
+E3)\1)\3(b75)/ / e )dz ds — Es3f2 (a1 + az) /b %Z)dz
+E A 3(a1 + a2 /:/ ﬁdz ds + RE3 /t %dz) (/n 22(5)2 /S 91(2)dz ds)

b n
Egag)\g, b— / 1 dz — E1>\1A3 / / ——dz ds
o P(2) q(2)
b

+E1B2(a1 + a2 / idz — Ex)3(a1 + a2 / / 1 ——dz ds
q(z) p(2)

—REl/a ﬁdz)(%/ gl(z)dz)+(—E2a2A3(b—g)/a ﬁdz

n s b
+E1)\1)\3(b—§)/ / ﬁdz dS—Elﬂg(Oq-i-Oéz)/ @dz

+E2As3(an + a) /: /: ﬁdz ds + RF: /at ﬁdz)( Eb /]\;25)1 /: fi(z)dz ds>:|.

By (Hs), we have that

Ha(F(t,u,v), F(t,a,0)) < Bi(t)(|u(t) — a()] + |v(t) — 0(t)]),

and
Ha(G(t,u,v), G(t,4,0)) < B2(t)(|u(t) — at)] + [v(t) —0(t)])-

So there exist ¥ € F(t, u(t),v(t)) and J, € G(t,u(t),v(t)) such that
1f1(8) = 3¢ < Bi(®)(|u(t) — a(t)] + [o(t) — 0(1)]),

191.(t) = Jg| < Ba(t)(|u(t) — at)] + [v(t) — o (b))
Define W1, W5 : [a,b] — P(R) by
Wi(t) = {9y € L'(la,0),R) : | f1() = I5| < Bu(t)(Ju(t) — a(t)| + [o(t) = 2(t)])},
and

Wa(t) = {Jg € L' ([a,b),R) : 31 (t) — Jg| < Ba()(ult) — a(t)] + |o(t) — (1))}
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Since the multivalued operators W1 (¢) N F(¢,u(t),v(t)) and Wa(t) N G(¢, u(t),v(t)) are measurable, there exist functions
f2(t), §2(t) which are measurable selections for Wy and Wa. Thus fa(t) € F(t,u(t), v(t)), §2(t) € G(t, u(t), v(t)) and for
each t € [a, b], we have R R

|1 (@) = fa(®)] < Bu(@)(Ju(t) — a(t)| + [v(t) — v(t)]),
and

191(8) = g2(8)] < B2 (t)(|u(t) — a(t)] + |v(t) — v(t)]).

For each ¢t € [a, b], let us define

/ (4 / fo(2)dz)du + —a2(51+62)/: (p’(‘;) /aufg(z)dz)du
+A1(B1 + B2) / / a(a) /a dz du ds — M f2(n — a)/ab (% /augg(z)dz)du
X As(n — a// ‘“ / falz dz du ds

(E4042(ﬂ1 +Bz)/ dZ Es\i(B1 + B2) / / dz ds

a

NS
ER

+E3)\152(77—a)/ dz Esds(n—a / / dz ds

b
RE4/ OC4M1/ f2 dZ E40[2 ﬂ1+ﬂ2)/ ]%dz

p
+E3 (61 + B2) / /
/
b

—zds Es\iB2(n — a/ (

z)d
L)dz ds+ RE4 /t %dz) (/n /(\12(5)2 /: G2(2)dz ds)

b s
+Es 1 As( a/
41377 p(

£

(E2a2 ﬁ1+ﬁ2)/ 2z — Ex\ (B + Ba) / / s

dz — EaMiAs(n — a// dzds
(b/ ) ( EQa?(ﬁl‘*’&)/jﬁdz

b
——~dzds — E1 i B2(n — a)/ ﬁdz

‘»—A’B

+Ei A 15277 a/

—RE; / dz)(

+E1 A (B1 + B2)

Pf\
m\.,

Q

q(z

Sﬁ zds—‘,—REz/: p(lz)dz)</: ;\;zl:)l /:fz(z)dzds)],
— agA3(b— §/ /f2 dz du

dz du ds — ﬁg(al-i-ozg)/a (LZ) /augz(z)dz)du

q(u

\\

b
+E2A13(n —a) /
3

and

iLz(um)(t):/a ( /a dz)d
Fas(b—€) / / (q%
+As(a1 + az) // (pl(t

dz du ds:|

’—‘\\:U\

+ELR (E4a2)\3(bf§)/ Sy~ Bahida(b - g// s
b
+E352(O¢1+a2)/a @dz—Ez;)\s(oa +a2)/£ /a @dzds
S
iR
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—RF;s / dz) 0;4/*1 fQ dz — Eqoa)s(b— &) / bﬁdz
+E3A1A3(b— 5)/ / e )dZ ds — E3,32(Oz1—|—012)/ @ )
+E4>\3(oc1+a2)/;/5 p(lz)dz ds+RE3/ /" Azpiz / dzds

+(E2a2,\3(b €) b%z Eidis(b— g// s

b
—|—E152(a1+a2)/ @ dz — ExXs(oq + a2 / / dz ds

b

—REl/ ﬁdz)(%(g;/a gz(z)dz) (—EQaQ,\3(b—g)/a ﬁdz

s b
+E1)\1)\3(b §)/n/ q( )dZ dS*Elﬂg(Oq#»az)/ ﬁdz

b

+Ea)s(on + as) p(lz) dz ds + RE, /at ﬁdz) (/; /1\3?5)1 /a Fol2)dz ds)} .

3

Then

’h1 (u, v)(t) — ha(u,v)(t) ’

< [ (L5 [ 151 - fa )t
Ry TP —
A (Br + Ba) // (L / 61(2) — d2(2)d=) du ds
st (25 [ b

oo [ [ (2 [l peole duds]

(E40¢2(,61 +52)/ dZ E3Ai(B1 + B2) / / dZ ds

L
ER

+E3/\1,82(n7a)/ dz EshiAs(n— a// dzds

b
,RE4/ — a““l/ f1(2) |dz E4a2(51+52)/ ﬁdz

b
+E3)\ 51 +52 / / dZ ds — Eg)qﬁz ’I7 CL)/ ﬁdz

t
+Es i As(n — a//—dzds+RE4/ —d /)\2’@/ }g1 |dzds
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+(E2a2(/31 + ,82)/ dZ E1A1 ﬂl =+ 62 / / dz ds

+E1)\152(n—a)/ dz ExMis(n — a// dzds

b

e /ﬁdz)(i‘*(’;;/ 31(2) = g2(2)]dz ) + (—E2a2(61+52)/a ﬁdz
+E1 (B -I—ﬁz)/an /: ﬁdz ds — E1A1P2(n — a) /ab ﬁdz

+ExMAs(n—a // dzds—i—REz/t 1 / >\4u1/ i) }dzds}
/ (e / Bu(2)(Ju(z) — a(2)| + [v(z) — 5(2)])d=) du

# | = s+ ) [ (L [ B ()~ 020+ o(2) ~ o021
+A1(B1 + Be) // “2 / Ba(2)(Ju(z) — a(2)| + |v(z) — o(z )|)dz)duds
B — a/ (L / Ba(2)(fu(=) — ()| + fo(2) — (=) )dz ) du

s (n — a// (L / Bi(2)(|u(z) — a(2)] + Ju(z) — ()|)dz)duds}

Ll
ER

(Em(ﬂl +52)/a 2 dr— Bs\(Br + Bo) / / s

+E3)\152(n—a)/ dz EshAs(n— a// dzds

—rpn [ ae) (S8 [ Bt - 1)+ o(e) - 202 )

+(—E4012(/31 +52)/ dZ+E3A1 (B1 + B2) / / dz ds

7E3>\152(n7a)/a o Bl —a // dzds+RE4/ %dz)
/ A2“2/ Ba(2)(fu(=) — (=)| + o(z) — (=) |)dz ds)

b n s
+(E20(2(/31 + ﬁz)/ Zﬁdz —Ei\ (B + ,32)/ / ﬁdz ds
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b
1
— ——dz — Ex M As( dd
+E1 M B2(n a)/a a2) z 2 A1 A3 ( // B z ds

—rpn [ L) (222 [ () - 02+ o(e) — 5(2))ce)

+(—E20é2(51+52)/ e )dZ+E1/\1 (B + B2) / / dZ ds

a

_El)\lﬁg(n—a)/ab q(l)dz—f—EzAl)\g //—dzds—&—REg/ %dz)

X(/: ;4(/:)1 / Bi(7)(Ju(r) — @(2)| + |v(z) — 5(2)])|dz dS)}

{ |Il‘§3\ [(b _2a)2 (|R| + a2 (B + ﬂg)) + AMAz(n —a)[(b g a)® — (¢ — a)3]}

1 Esoo(B1+ B2)(b—a) | Eshi(B1+ B2)(n—a)> | EshiB(n—a)(b—a)
Y 1RE| ( + ¥ +

D 2q q

Eaxixs(n—a)[(b—a)® = (€ ~a)’] | REi(b—a)\  faum(b—a)
- 2% =) (M)

+(E2042(ﬁ1 + f2)(b—a) n Ei)i (B + B2)(n — a)? E1>\152(77 —a)(b—a)
D 2q q

2A1A3(1 — @ —a)’ = (£ —a)? 2(b—a apr[(b—a)® — (€ —a)?
L B2Aida(n )[(l;p) 3 )]+RE(; ))(Au[(b ;ﬁ ])]}

<[yl (|l — all + [lv — o)

+{ 2 [Al(ﬂl + B2)(n — a)®

o - + MiBa(n —a)(b — a)’]

n EsA(B1 + B2)(n — a)? n E3\iBa(n —a)(b—a)
b 2 7

n ‘RIE| [(E4a2(,61 + B2)(b—a)

Ei\ids(n—a)[(b—a)’ — (£ —a)’]  REs(b—a)\ [ Aspa(n —a)?
+ % ) ()

Jr(192062(51 +B2)(b—a) E1>\1(51 + B2)(n — a)® " Eihip(n—a)(b—a)

P 2q q

Eshis(n —a)[(b—a)? — (€ — a)? 2(b—a w2 (b—a
PR | G (P}

1Bzl (|l — all + [lv — o)

< (DB + D2||Ba) (1w = @l + [lo = ),

which implies that

71 (u, 0)(t) = h2(w, 0)(t)] < (D1l Bu| + Dz Bal)([lu — @l + [lv = o))
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In a similar manner, one can be establish that
[ (u, 0)(t) = ha(u, v)(8)] < (Ds]|Ball + Dal[Ba|l) (lu — all + v~ o).
In consequence, we get
(k1 h2), (R, ha)l| < (D1 + Ds)||Ba || + (D2 + Da)|B2l)](lu — @l + o — o))
<[(ElBull + EAB2DI(lw — all + [lv — o).
Similarly, by interchanging the roles of (u,v) and (&, v), we can obtain that
Ha(O(u,v), 0(u,v)) < [(E1[|B1l + E2|B2ID](lw — al| + [[v = o]).
Therefore, it follows by the assumption: &1 ||B1|| + £2||B2|| < 1 that © is a contraction, So, by Lemma 4.1, © has a fixed
point (u, v), which is a solution of the problem (1.1). The proof is finished. O
S. Examples

Example 5.1. Consider the following self-adjoint coupled system of second-order ordinary differential inclusions with

boundary conditions

(t+13) /t) € mF(t u,v), ¢ €[0,3],

/
/
(4t2 Yot 12 V() € meGltwv), £ €03,

(5.1

u(3) = /05 v(s)ds, gu/(O) +4'(3) = %/05 v'(s)ds,

7 1

3

5
3
1 2 3 3, 4, :

§v(0) + 51}(3) = ?/ u(s)ds, 3¢ (0) + Y 3) = 7[; u (s)ds.

(SIS

Here p(t) = 1/(t +13),q(t) = 8/(4t° + 2t + 12), p1 = 3/36, 2 = 2/93,a = 0,b = 3,np = 1/2,£ = 5/2,\1 =
1/7,)\2 = 2/77 )\3 = 3/7,)\4 = 4/7,0(1 = 7/3,0&2 = 5/3,0[3 = 4/37(14 = 1,51 = 1/9,,32 = 2/9,,63 = 3/9,54 = 4/9,
and F(t,u,v), G(t, u,v) will be fixed later.

Using the given data, we find that |R| =~ 1.323129 # 0, |E| ~ 115.6354 # 0, p ~ 0.0625, § = 0.148148, D; =
17.1389708, D2 ~ 0.06036034, D3 ~ 38.2023705, D4 =~ 4.565128967, &1 ~ 17.19933114 and & ~ 42.76749946
(P,qand D; (i = 1,2,3,4) are defined in (2.5), while &1, &> are given in (2.4)).

(a) For illustration of Theorem 3.3, we choose

F(tuv) = (1O8t2t+ =) u‘t:)(?'_,_ = |vl:)(|t2)|+ ).

and

s () Jo@)?
Gt u,v) = <t3 + 120) [\u(t)l +171+ Iv(t)l?’}'

For f € F, we have

2
= max{(108t2t+32 [\/IJH(I%)'% |v| (|2)‘+1” =2 {m}’

and for g € GG, we have

2 3 2
9l < max{(ti—:—l;O) [|u|(?)(\t)+| ik 1fﬁ)&)|s}} =2 {&;1;0}’“’” €R,te 0,3

u,v € R,t €0, 3],

Thus ¢

ToaE 53] = PO (lul) + e (o],

|F(tu,0)lp = sup{|] : £ € F(t,u,0)} <2 |

e

=
B
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and
2
1
Gt w,0)llp = sup{lgl g € Gt u,0)} < 2 [ 5—1o5] = pa(a(lul) + da(o]),
. t t+1 o
with p1 (1) = Joers 50 P2() = 1550 Yr(lul) = é1(lvl) = va(lull) = é2(v]) = 1. Furthermore, itis

found that N > Ni, where N1 = 0.81272506 (XN is given in (H3)). Clearly all the hypotheses of Theorem 3.3 are
satisfied. Thus, there exists at least one solution for the problem (5.1) on [0, 3].

(b) For illustrating Theorem 4.3, we take the multivalued maps F, G : [0,3] x R — P(R) as

F(t,u,v) = [( 1 >(|u|u(t)\ ,sinv(t)) + 17;5’0}’

4t + 150/ \Ju(t)[ + 1
_ 1 -1 |v(®)] RS
Glt,u,v) = [(31&2 i 140) (tan ) 7 |v(t)\> + 170’0]' (52)
Letting B (t) = ﬁlli’)o and Bz (t) = 3152—&-%40’ we find that Hq(F (¢, u,v), F(t, a, ’Di) < Bi(t)(Ju — @l + |v — v]) and
Hi(G(t,u,v),G(t,1,0)) < B2(t)(Ju— |+ |v — T|). Observe that d(0, F'(¢,0,0)) = 175 < Bi(t) and d(0,G(¢,0,0)) =
% < Ba(t) for almost all ¢ € [0, 3]. Obviously ||B1|| = 1/150 and ||Bz|| = 1/140 and

& ||Bi|| + E||Ba|| ~ 0.4201443466 < 1.

Consequently, all the assumptions of Theorem 4.3 hold true. Therefore, by conclusion of Theorem 4.3, the problem (5.1)
with F, G given by (5.2), has at least one solution on [0, 3].

6. Conclusions

We have developed the existence theory for a self-adjoint coupled system of nonlinear second-order ordinary differential
inclusions supplemented with nonlocal integral multi-strip coupled boundary conditions on an arbitrary domain. Our study
includes the cases of convex as well as non-convex multi-valued maps. Nonlinear alternative of Leray-Schauder type for
multi-valued maps and Covitz and Nadler fixed point theorem for contractive multi-valued maps are applied to prove the
main results. Numerical examples are constructed for the illustration of the obtained results. Our results are new in the
given configuration and enrich the related literature. Moreover, several new results can be recorded as special cases of the
present work by fixing the parameters appearing in the system. For example, we obtain the existence results for an anti-
periodic multi-valued boundary value problem of self-adjoint coupled second-order ordinary differential inclusions by fixing
a;, =1,8; =1,\; =0,i = 1,2, 3,4 in the results of this paper, which are indeed new.
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Abstract. Given a graph GG1, the vertex-corona (corona) and the edge-corona focus only on vertices and edges respectively,
in forming the corona product with other graphs. In the present work, we define a new corona by considering both vertices
and edges simultaneously in forming the corona aproduct with other graphs, called vertex-edge corona. Further, we study
the spectral polynomial for the vertex-edge corona of three arbitrary graphs, followed by some corollaries related to regular
graphs for their spectrum, energy and equienergetic graphs.
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1. Introduction

In 1969, R. Frucht et al. defined a new operation on two graphs G; and G5, called their corona [9] while studying
the isomorphism between the group associated with the new graph and the wreath product of the groups G; and
G. The corona of two graphs so defined, focus only on the vertices in forming the corona product with the other
graph, hance can be called as vertex-corona. Graph is associated with many concepts like: edges, neighbours,
subdivision of edges and more. With the advent of reseacrh various corona products are defined, namely:

1. edge corona (2010) [12],

2. neighbourhood corona (2011) [13],

3. subdivision-vertex and subdivision-edge corona (2013) [18],

4. subdivision-vertex and subdivision-edge neighbourhood coronae (2013) [16],

5. R-vertex, R-edge, R-vertex neighbourhood and R-edge neighbourhood corona (2015) [14],

6. N-vertex, N-edge, C-vertex and C-edge corona (2015) [1],

*Corresponding author. Email address: daneshwarip@gmail.com (Daneshwari D. Patil) Email addresses: hsramane@yahoo.com
(Harishchandra S. Ramane), daneshwarip @ gmail.com (Daneshwari D. Patil)
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7. Extended and extended neighbourhood corona (2016) [2].

The work related to their spectrum and various polynomials can be seen in [4-7, 15, 17, 20].

It is observed that, for a given graph G, the vertex-corona (corona) and the edge-corona focus only on
vertices and edges, respectively, in forming the corona product with other graphs. We thought to focus both on
vertices and edges simultaneously in forming the corona product with other graphs, hence define new corona,
called vertex-edge corona, which involves two more graphs G5 and G one corresponding to vertices and other
to edges of GG;. Further, we study the spectral polynomial for the vertex-edge corona of three arbitrary graphs,
followed by some corollaries related to regular graphs for their spectrum, energy and equienergetic graphs.

Remarkable observation is that, vertex-edge corona can be considered as the generalization of: vertex-corona,
edge-corona, R-vertex corona and C-edge corona, which is possible with the suitable selection of the graphs G4
and G3.

2. Preliminaries

All graphs considered here are simple, finite and undirected. If G is a graph on n vertices vy, vs, . .., v, and m
edges e, ez, .. ., e, then its adjacency matrix, A(G) = [a;j]nxn in Which a;; = 1 if the vertices v; and v; are
adjacent, and 0 otherwise, and the vertex-edge incidence (incidence) matrix R(G) = [bi;]nxm in which b;; =1

if the vertex v; and edge e; are incident, and 0 otherwise. The polynomial qS(A(G); x) = det (mIn - A(G))

associated with A(G) is called the spectral polynomial and the roots of the equation, d)(A(G); :c) = 0 are

the eigenvalues of GG, which constitute the spectrum of GG. If G has distinct eigenvalues A1, Ao, ..., Ax with
o . . AL A2 A
multiplicities n1, ns, ..., ny respectively, then we can write: (nl n2 nk > for the spectrum of G, where
1 N2 ... Ng

Ek 1M =Mn. The aggregate of the absolute values of these graph eigenvalues, called energy[10] of G is defined

as: £(G) = Z n; | A; |. The degree of a vertex v; in G denoted by d; is the number of edges incident to it,

ifd;, =7r(a constant) for all the vertices v; then G is called an r-regular graph. If G is r-regular graph, then
R(G)R(G)T = A(G) + rI,. The Kronecker product C' ® D of two matrices C' = [¢;;]mxn and D = [d;;]pxq
is the mp x ng matrix obtained from C by replacing each entry c;; by ¢;; D [11]. For matrices C, D, E and
F such that products CE and DF exist, (C ® D)(E ® F) = CE® DF, (C® D)™! = C~' @ D~! and
(C ® D) = CT ® D*. 1,, denotes the column vector of dimension n. K,, K, , denotes complete graph
and complete bipartite graphs respectively. Zero order graph is a graph with no vertices. For undefined graph
theoretical terminologies and notations, we follow the book [8].

Proposition 2.1. (Schur Complement [3]) Suppose that the order of all four matrices D11, D12, D21 and Do
satisfy the rules of operations on matrices. Then we have,

D1y Dia| _
Doy Doy

{ |Das| | D11 — D12D521D21 |, if Das is a non-singular matrix,

|D11| | Dag — D21D1_11D12|, if D11 is a non-singular matrix.

Definition 2.2. [9] Given a graph G on ny vertices, the vertex-corona (corona) G1 o Go of Gy with the graph
G is the graph obtained by taking one copy of G1 and n, copies of Gy, then joining the i*" vertex of Gy to every
vertex in the it" copy of Go.

Definition 2.3. [12] Given a graph G with m edges, the edge-corona G, © G4 of G1 with the graph G is the
graph obtained by taking one copy of G and m, copies of Ga, then joining two end vertices of the i'" edge of
G to every vertex in the it" copy of G.

e
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Definition 2.4. [19] Given a graph G on n vertiecs with the graph matrix M, where M is viewed as a matrix

over the field of rational functions C(x) with det(z1,, — M) non zero. The M-coronal T'pr(x) € C(x) of G is,
—1
Cp(z) =17 (Z‘In — M) 1. If M has a constant row sum r, T'pr(x) = n

T—7
3. Vertex-edge corona of graphs

Given a graph (i1, the vertex-corona (corona) and the edge-corona focus only on vertices and edges, respectively,
in forming the corona product with other graphs. Our prime purpose here is to focus both on vertices and edges
simultaneously in forming the corona product with other graphs, hence define a new corona, called vertex-edge
corona, which involves two more graphs G5 and G5 one corresponding to vertices and other to edges of G .

Definition 3.1. Let G1, G2, G3 be any three graphs on ni,ns, n3 vertices and my, mo, mg edges, respectively.
The vertex-edg corona G1 o G2 ¢ G3 of G1, G2 and G5 is the graph obtained by taking one copy of G1, ni copies
of G and m, copies of G3, then joining the it vertex of G to every vertex in the it" copy of G5 and two end
vertices of the i'"" edge of G to every vertex in the i'" copy of G.

It is noted that G1 o G2 ¢ G'3 has ny + ning + myns vertices and my + nyms + mims + ning + 2mins
edges.

Example 3.2. Let P, denotes the path on n vertices. Figure I depicts Py o P3¢ Ps.

Figure 1:

In the following section, we study the spectral polynomial for the vertex-edge corona of three arbitrary graphs,
followed by some corollaries related to regular graphs for their spectrum and energy. We also construct infinitely
many pairs of cospectral graphs by applying these results.

4. Spectral polynomial of vertex-edge corona of three graphs

Theorem 4.1. Let G1, Ga, G be any theree graphs on ni, na, ng vertices respectively. If G1 has m edges then
the spectral polynomial of the vertex-edge corona G1 o Go © G3 of three graphs is

(A (G10Ga0Ga); o)
- ¢><A (G2); x)nl ¢(A (Ga); r)mldet<xlnl — A(G1) =T a(gy) () R(G1) R(G1)T =T 4(ay) (@) Im).

Proof. The general adjacency matrix of the vertex-edge corona Gy o G5 ¢ G of G1, G2, G3 on ny, ng, N3
vertices respectively with m; edges in G is,

A(GY) I, ®1L  R(Gy)®1],
A (Gl o G2 <o GS) = Inl ® 1n2 Inl & A(GQ) On1n2 Xn3mi
R(Gl)T ® 1n3 On3m1 Xning Iml ® A(G3)
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The spectral polynomial is,
¢(A (G10GyoGs); x)
= det (x nvsminssming — A (G0 GaoGs) )

A(Gh) —Ip,, ® 17,

xln, —
I, ® (ﬂm - A(G2)>

71’(1,1 ® 177,2
—R(Gl)T ® 1n3 On3m1 Xning

On1 na2 Xngmi

—R(Gy) ® 17,

= det
‘Iml ® (xlna _ A(Gg))

Applying Proposition 2.1, we have
(A(GroGroGy); ) = 6(A(Gy); o)

eI, — A(Gy) I, ®17,
det _Im 02y 1712 Inl ® (xInz - A(G2)> -0

where,
—R(Gy)® 1% -1
S B < On( n1>)<nf m 3) <Im1 ® (:L.In3 N A(G3)>> (7R(G1)T ® 1n3 On3m1><n1n2)
—1
_ (R@G)RG)T @17, (m[ng - A(Gg)) 1, O
O O
Therefore,

¢(A (G1oGaoGy); x) = ¢(A (G3); x)
<$In1 — A(G1) — Sll‘ 71711 & 13;2 )
det ,

_Inl ® 17L2 ‘In,l ® (IInQ — A(G2))

-1
where Sy = R(G1)R(G1)T @17, (J;I - A(Gg)) 1o,
Again applying Proposition 2.1,

ny

¢(A (Gr0GaoGy); x) _ ¢>(A (Gs); x)mqu(A (Ga) x)
det (1, — A(Gr) ~ Su1 — I, @17, (2L, - A(Gg))fl%)

= 6(4(Gs)s 7)) 6(A(G): 7))
det(wl, = A(G1) = R(G)R(G1) T atcy) (2) = I, T g (@),

m

on re-arrangement result follows.
Corollary 4.2. If G1,Ga,G3g are all r1,79,75 regular graphs, respectively. If 11 = A1, Aa, ..., A\p, are the

eigenvalues of G, then
(4(Gr0GroGn: ) o(4(Gs)s2) " 6(A(G): @)
e} & T =
¢ 1 20 G3 (@ — )" (z —rg)m
H |:5L'3 - (>\1 —+ 1ro + T’3).’£2 + (/\ﬂ‘z + )\i'f'g — )\Z'TLg + ror3 —rin3g — 77,2)1’

=1
—‘r(/\i’l“g’fl:; — \;rors + r1rons + TL2T3):| .

<
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UP) .
in

Proof. Substituting R(G1)R(G1)” = A(G1) + 711w, Taes (@) = x’f’)m and Dy () =

Theorem 4.1, and expanding the determinant interms of \;, result follows. [ |

Corollary 4.3. If G1,G2,G3 are all r1,79,73 regular graphs, respectively. If 11 = A1, Ao, .., Apy, T2 =
W1y 2y oy fony, and T3 = 01,02, . . ., On, are the eigenvalues of G1,G2 and G35 respectively. Then

5<G1 oGy 0G3) = m15(G3) + Tng(GQ) — nl(rg + 7"3)

ny
+Z[|’7u|+|’¥2i\+|73i|
i=1

where Y1, vV2i, Y3; are roots of the polynomial,
|:I3 — ()\1 +7ro + 7“3).132 + ()\1‘7“2 + \iT3 — A\ing + 1rorg — ring — ng)l‘
+(Nirang — \jrars + rirong + nng)} .

Proof. Equating the polynomial in Corollary 4.2 for eigenvalues and applying the definition of energy, result
follows. u

Corollary 4.4. If Gy is an ry-regular graph, Go = G3 is an ro-regular graph, then

mi+mni
[ 6(A(Ga); @)
(b( ( 10 2<> 2)7 :I:) - (I’*T2)nl
ny
H |:I2 — ()\7 + TQ)JT + ()\i’f’g —Tring — )\,;7’2,2 — ’flg) .
i=1
where 11 = A1, Aa, ..., \p, are the eigenvalues of G1.

in Theorem 4.1 and

Proof. SlletitlltiIlg GQ = G3, R(Gl)R(Gl)T = A(Gl) + Tllnlv FA(G’g)('T) = T r
— 72

expanding the determinant interms of \;, result follows. |

Corollary 4.5. If G is an r1-regular graph, Go = G35 is an ro-regular graph, then spectrum of G1 o G ¢ G is:
T + )\1 + \/(7‘2 — Al)Z + 4712(7‘1 + )\7. + 1)

T2 H2 u3 s Hny 9
mimiy+nymy+ng ... mi+ny 1
fori=1,2,...,n1. Hence, energy

5(01 oGz G’2> = (n1 +m1)E(Ga) —miry + 30, r2+}\ii\/(rz_/\i;2+47L2(rl+Ai+l) :

Proof. Equating the polynomial in Corollary 4.4 to zero for the eigenvalues and applying the definition of energy,
result follows. |

Corollary 4.6. If G is an ri-regular graph, and G5 = Gz = K, 4 with p # q then

¢(A (Gl o Kpﬂ o Kp,q); x) — I(P+q—2)(n1+ml)(x2 _pq)ml
ny

H {x‘g — Nz — (pg+pr+qr+phi+aXhi+p+ )z
=1

—pg(A; + 2r + 2)} )
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Remark

1. If Hy, H, be a pair of cospectral graphs with same order and of same regularity, then for two regular graphs
G2, (3, the graphs H1 o G4 © G'3 and Hs o G5 © i3 are also cospectral.

2. In G1 OGQOGgZ

* if G5 is a zero order garph, then resulting corona is vertex-corona (corona).
* if G2 is a zero order garph, then resulting corona is edge-corona.
* if G5 is K7, then the resulting corona is R-vertex corona.

* if G5 is K1, then the resulting corona is C-edge corona.
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Abstract. This work explores some aspects of modeling and controlling narcoterrorism in the Sahel. We examine the
multidimensional factors underlying this dynamic, identifying interactions and recruitment within the narcoterrorist class.
We then develop a preventive model and decision-support tools to optimize resource allocation and formulate more effective
counter-narcotics and brigandage policies. This research will certainly contribute to the fight against narcoterrorism in the
Sahel by proposing solutions based on rigorous scientific approaches and assessing the benefits and limitations of optimal

modeling and control.
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1. Introduction and Background

The African continent offers Latin American and South American drug traffickers an uncontrolled transit
route, with its porous borders, ideal location close to Europe, and fragile, corrupted states. According to the
United Nations Office on Drugs and Crime (UNODC), the market value of cocaine transiting West Africa each
year was estimated at US dollars 1.25 billion in 2013. The map below illustrates drug trafficking and transit zones
from Latin and South America to Europe via West Africa and the Sahel, updated in February 2013 by the United
Nations Office on Drugs and Crime (UNODC).

EUROPE

SIS ’ <42
4

*y 3
2 MER MEDIYERRANEE

* Flux de cocaine | 7 \’x

|
! ’, Zones de transit /

OCEAN ATLANTIQUE

,/'

En provenance de :
Bolivie, Vénézuéla,
Colombie,

Equateur,
Perou,

Brésil 600 km

*

Figure 1: Map of drug trafficking and transit zones to Europe via West Africa and the Sahel.

In recent years, narcoterrorism has become a major problem in the Sahel. This deadly combination of drug
trafficking and terrorist activity creates a complex and constantly evolving security and humanitarian crisis,
requiring innovative approaches to understanding and controlling the threat. What are the dynamics of
narcoterrorism in the Sahel? What factors have encouraged the development of narcoterrorism in the Sahel over
the last few decades? Are there effective, targeted, and optimal strategies for eradicating narcoterrorism in the
Sahel? It would be interesting to find answers to these questions and develop decision-making tools for political
decision-makers and defense and security forces in the fight against drug trafficking, terrorism, and insecurity in
general. In this spirit, we have decided to tackle this problem using a mathematical approach that is intended to
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be modest, as we do not claim to be able to say that mathematics can answer all these questions.

The rise of narcoterrorism in the Sahel can be explained by several factors. These include geographical and
demographic factors. The Sahel’s vast, sparsely populated territory, porous borders, and proximity to major
drug-producing regions such as Latin America and West Africa make it an attractive transit route for drug
traffickers. Added to this is the weakness of governance and security structures in the Sahel, which is said to
benefit transnational criminal networks transporting illicit drugs, notably cocaine, heroin, and cannabis, across
the region. We also have ideological terrorism and insurgency movements in the Sahel. The Sahel is indeed
experiencing an increase in terrorist and insurgent activity, mainly perpetrated by groups such as Al-Qaeda in
the Islamic Maghreb (AQIM), Boko Haram, and the Islamic State in the Greater Sahara (ISGS). These extremist
groups exploit the region’s socio-economic and political vulnerabilities, including poverty, unemployment, poor
governance, and community tensions, to recruit fighters, finance their activities, and carry out attacks. The
presence of drug-trafficking networks is an additional source of revenue for these terrorist groups. Another
factor would be the financing of terrorism, as terrorist groups engage in a variety of criminal activities, including
protecting drug convoys, taxing drug traffickers, and drug trafficking itself. Profits from the drug trade would
enable these groups to continue their operations, buy weapons and recruit new members. The convergence of
these criminal and terrorist activities creates a complex and dangerous environment that challenges the security
forces and governments of the Sahel countries.
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- FUROPE
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EUROPE

¢’ SOUTH-EASTERN | "+
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" . s
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NORTH
AMERICA
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MEXICO & CARIBBEAN
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AMERICA ¢ e
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SOUTH-EAST o, * ASIA
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~* CENTRAL AFRICA =Z~"°7 Fy W
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e
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' LI AL Source : United Nations Office on Drugs and Crime (UNODC)

Figure 2: Map of the main cocaine trafficking flows.

The map above shows the scale of the threat. In November 2009, the image of the charred wreckage of a
Boeing 727 found north of Gao in Mali revealed the scale of a hitherto unknown phenomenon. The plane,
coming from Venezuela near the Colombian border, was carrying a cargo of several tonnes of cocaine. The
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media went so far as to popularise the concept of air cocaine”, while government intelligence services became
aware of the imminence of the new threat looming on the horizon as a result of the convergence between
extremist movements in the Sahel and drug traffickers in South America.

There is growing interest in the modelling and optimal control of the dynamics of narcoterrorism in the Sahel.
These approaches, which combine mathematical tools, advanced simulation methods, and empirical data, provide
a better understanding of the mechanisms underlying this complex dynamic. They also offer the possibility of
formulating more effective and targeted control strategies. In this study, we seek to explore the different aspects
of modeling and optimal control of narcoterrorism in the Sahel. We examine the multidimensional factors that
drive this dynamic. By identifying the interactions as in evolution studies [3], [11], [6], [5] and recruitment
within the narcoterrorist class we can better understand the mechanisms by which narcoterrorism spreads in
the region. Building on this knowledge and adapting it to the specific context of the Sahel, we are developing a
preventive model and decision-support tools to optimize resource allocation and formulate more effective counter-
narcotics and counter-brigandage policies. This research aims to contribute to the fight against narcoterrorism in
the Sahel by proposing solutions based on rigorous scientific approaches. Finally, by assessing the advantages
and limitations of modelling and optimal control, we hope that this work will be useful to political decision-
makers, security forces, and international players involved in the region. The specifics of the model are described
in more detail in the next paragraph.

2. Model formulation

In order to facilitate the description of this model, we have divided the total population (/V), into seven classes.
Thus, we have the class of non-combatant civilians (C), the class of volunteers for the defence of the homeland
and self-defence groups ('), the class of defence and security forces (A), the class of people discharged from
the ranks of the defence and security forces (R), the class of brigands (B), the class of narcoterrorists (7'), and
the class of prisoners (P). The sum of the fighting classes (A + V + B + T) is also referred to as 1.

YeR YoV YT
A T
“1C1‘ +8B agC Y
v
(u+8)V
oV
B
YR
7

aP—

I—| 'FzA — — P+1

] A '8 | —1° | 7]
[ B A+V
R || wsR—es u " T ﬂ BPrr Il i Il
| el Y whT (1 +8)A @By (u+65)B (n+n)P
A (u+8,)T

Figure 3: Diagram of the dynamics of narcoterrorism in the Sahel.
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Here A denotes the population renewal constant, -y; the rate of return to non-combatant civilian life for
individuals in classes A, P, R, B, T, and V respectively for ¢ ranging from 4 to 8. The probability of dying as a
result of combat is denoted by J;, ¢ ranging from 1 to 4 for individuals in classes V, A, B, and T respectively and
(; the intensity of the combat or nuisance force of individuals in classes B and T over those in classes V' and A
for ¢ ranging from 1 to 2 respectively but also those of individuals in classes V' and A over individuals in classes
B and T respectively for ¢ ranging from 3 to 4, 7 is the probability of dying as a result of the conditions of
detention and w is the natural mortality rate for all individuals in the population. The strength or capacity of
recruitment into the narcoterrorist class of individuals in classes B, A, and R is respectively by w;, where i
ranges from 1 to 3, and the strength of recruitment into brigandage of individuals in class R by w,. In the same
way, for individuals in class C, «; denotes the intensity of the force of determination in defense of the
homeland, as that of the force of attraction in brigandage, a3 the intensity of the force of attraction in
narcoterrorism activities, o1 and o9 are the rates of recruitment into class A of individuals in classes V and C'
respectively. It is assumed that these rates (o1 and o) are fixed by a given State in its defense strategy, but it is
also assumed that a slight disturbance could occur during this recruitment which would mean that individuals
from class B could be recruited with a probability v;. Furthermore, v, designates the rate of radiation or
desertion in class A and v3 the intensity of the conversion force in the brigandage of individuals in class A. The
parameters, 61 and 6, are the capacities of recruitment of prisoners by the narcoterrorists and the brigands
respectively, 7o and 73 the operational capacities of the classes V' and A to be able to put in prison the
individuals of the classes B and 7T respectively. It is assumed that these prisoners can be recruited as a result of
prison breaks, prison attacks, or just contacts before the end of their sentence. Last but not least, it should be
noted that recruitment is modelled on a contact or contagion process in epidemiology, taking into account in
some cases the dissuasive presence of defence and security forces as well as self-defence groups and volunteers
for the defence of the homeland. The equation of the model is formulated as follows:

% =A+vA+vsP+v%R+v7B+ 3T + vV — (alzi? +a20i1 +ascil + o2 +#)C (2.1)
%:uzA—(ngiﬁmRiﬂew)R 22)
Y oVt tnB - (Vs? +wQ§+v4+u2+u+c1TJ;B)A 3
%/=alcgijff(w+m+u+<2T§B)V @4
% = a2%+w4%+V3ATB +02prl — (m? +7_2A—}-V +y7r + 11 +M+C3A+V>B (2.5)
O =l +iBT AT bR + 0P — (rgAJ;V +’YS+M+C4A—’I_V)T 26)
%=TQBAJIFV+73TA§V7(91Pil+92pi[+ws+u+n)1) @.7)
with non-negative initial conditions given by:
C(0) > 0; V(0) > 0; A(0) > 0; R(0) > 0; B(0) > 0; P(0) > 0; T(0) > 0, N(0) < % 2.8)

The parameters of the system (2.1) — (2.7) are assumed to be all non-negative.

3. Mathematical analysis of the model

3.1. Existence and uniqueness of solution

The (2.1) — (2.7) model is described by a system of first order nonlinear differential equations. It is rewritten as
follows:

X'(t) = f(X(1) 3.1

3
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where X (¢) is a column vector of the number of individuals by class, and f : R” — R7 is a function. More
precisely,

C(t)
R(t)
A(t)
Xt)=|V(®) (3.2)
B(t)
T(t)
P(t)
and
T + X7 5 T5 b
A+ yax3 + V527 + Y6T2 + V7T5 + V8T6 + Yoxa — | 1 az + a2 +o2+tp )z
T1 + x8 T + T8 T1 + X8
( T 4 A S )
Vo3 — w, w. x
203 S L Y6 + 1) T2
5 Tg ze + Ts5
o124 + 02w +v125 — | V3— +wa— +yat+rv2ot+pu+G—— |3
g xrsg s
Te + g + x5
fz) = Q1T u 5 _ (’79+01+M+C2¥>:84 3.3)
1 + 8 xg
15 T2X5 T3Ts5 T7Ls Te r3 + T4 T3 + T4
s wa +vs 02 —(lwvi—+m——F+ v t+rit+tpu+—— )5
T + T8 T2 + T8 s T7 + T8 s s fur)
T6 T Te Te Te T3 + T4 T3 + T4
azT + wizs — + w2z — + waz2 + 017 — | 73 +v8 +pu+Ca———— |x6
z1 + s T8 g T2 + Tg z7 + T8 s g
T3 + x xr3 + x x x
T2XTs 2 4+7'3966 3 4—<91 ¢ 1o, 5 +’Y5+,u+77>$7
- T7 + Tg T7 + T8 E
with
7
T = (I1,$2,$3,$4,$57I6,$7) eR
and

Tg = T3+ T4+ T5 + Tp
T9g =1+ T2+ X3+ T4+ x5+ X6+ T7.

The function f is clearly locally lipschitzian with respect to . We then deduce the existence and the uniqueness
of the maximal solution to the Cauchy problem associated to the differential equation (2.1) — (2.7) related to the
initial condition (2.8).

3.2. Positivity of the solutions

For this model of the dynamics of mafia terrorism to be realistic, it is necessary to show that all state variables
remain positive at all times.

Proposition 3.1. (Positivity) The positive orthan R;O is positively invariant for the system (2.1) — (2.7), and
the initial condition (2.8) ensures the positivity of the solutions of the system (2.1) — (2.7) for any time t > 0.

Proof: We use the barrier theorem [2].
Let us show that the set < C' > 0} is positively invariant. Let x = (C, R, A V,B,T, P) and consider L an
application defined by
L(z)=-C 3.4)
The application L thus defined is differentiable and we have:

VL(z) = (~1,0,0,0,0,0,0) # Ogr. (3.5)
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The vector field for {C' = 0} is given by

A+v1A+ 7P +v%6R+ 7B+ T + vV

A*( —_— + —_— + Jru,)R
1% w. w.
2 SR+I 4R+I e

B T T+ B
o1V +u1B— V37+w27+74+1/2+u+(1 Vi A

T+ B
—("/9-"-01 +u+ 2 )V 3.6)

X(z) = I

B B
wiR—— + D3A7 + 6P

B ( T A+V A+V>B
R+1T

Prl w17+7'2 T +y7+v1+p+Cs T

T
0, P
rr1 PP

T A+V A+V
*(3 +s+u+Ca )T

BL 4 wal LR
w —_ w —_— w
PP TeRaT T 1 1

A4V A+4+V T
ToB + + 73T + - (9

B
7 7 + 0, I+v+u+ﬂ

'PrI P+

From (3.5) and (3.6), we have
(X(z), VL(z)) = — (A + A +75P + 96 R+ 7B + 5T + 79V> <0 3.7

From (3.5) and (3.7) we deduce that {C' > 0} is positively invariant by application of the barrier theorem.
Similarly, we show that {R > 0}, {A > 0}, {V > 0}, {B > 0}, {T > 0}, and {P > 0} are positively
invariant. Therefore, RZ, is positively invariant.

Also by the initial condition (2.8), we have #(0) € RZ,. Since RZ, is positively invariant, then this ensures
that all solutions of the system (2.1) — (2.7) stay positive for all time ¢ > 0 [,

3.3. Invariant region
Theorem 3.2. For initial conditions (2.8), the solutions of the system (2.1) — (2.7) are contained in the positively

invariant, compact and attractive region

A
U= {(C R,AV,B,T, P> ERL,:N() < u} (3.8)

Proof: Summing the equations (2.1) to (2.7), we find :

dN
E:A—MN—61V—52A—(533—64T—77P7
T+B T+B A+V A+V

withd; = (4 7 02 = (2 7 03 = (3 7 and 04 = (4 7
Since A, V, B, T, F, P are positive functions and using the positivity of the functions d1, d2, d3, d4, given that the
constants (1, (2, (3, (4 and 7 are strictly positive as well, we get:

AN
AN AN,
dr = .

Then
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So the Gromwall inequality gives

A A
N(it)——< (N(O) - )e_’”
p I
Thus
N(t) < A + (N(O) - )e_“t
Y M
A A
Since N(0) < —, then0 < N(t) < —.
I Iz
Therefore, all feasible solutions of the model (2.1) — (2.7) converge in the region V. O

4. Equilibrium without terrorist, nor brigand (z*), and basic reproduction rumber R

4.1. Equilibrium without terrorist, nor brigand x*

The uninfected compartments are C, R, A, V and the infected compartments are B, T, P. Given that we are at
equilibrium without narcoterrorist nor brigand then we can discard the P compartment and the infected
compartments being B, T, then an equilibrium solution with B=T=0 has the form:

. (c*,R*,Aao,o,o) @)
with

o Alys +p)(va+v2 + 1)

1[(v6 + 1) (ya + p+ 12 + 02) + o21)
R* = AVQUQ

1[(¥6 + 1) (ya + 1+ v2 + 02) + o215
A* = AO—Q(’YG + M)

1][(¥6 + 1) (ya + 1+ v2 + 02) + o215

4.2. Matrix of next generation /C, and basic reproduction number R

The Jacobian matrix of the system (2.1) — (2.7) is decomposed into J, (z*) = DF(x*) + DV(z*) with

o B L op B L, B
R FT T Ry TR

oL L iial 4 ur-"L
« w —_— w — wre E—
LY ey T T T T TR T

3

s
2
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_A+“/A+ R+ B+ I+ ‘/7( « + o2 + C_
64 [
4 e ke 8 Y9 3C T 1C T ZC T 2 123

and

A AT
2 BRyI TRy TOTH

B T T+ B
o1V +02C+viB— u37+w27+74+u2+u+61 7 A
V=
cILth g 1
o _
1 C+1 Y9 g1 14 2 1
14 A4V
+y7r+vi+p+Q3 T B

T A+
*<w17+7'2 7

A+V A+V
*(7'3 7 +v8 + 1+ Ca T )T

DF(z*) = 00 ; DV(z*) = i J2 with F= 0Fi(a") :
0F 0V Ox; 5<i,j<6
Ox; 1<i,j<4 Ox; 1<i<4:5<5<6 Ox; 5<4,j<6
Let:
=« ¢ + w R + v3;
I= Mo T R T
h=aq3—— _
a3C*+A* +w2+w3R* +A*
We get
_|90].
e= 03
—(o2+p) Ya Yo
g 0 —(w+n Vo 0
! 9 0 —(’Y4+M+V2) (o1
0 0 0 —(vo +p+01)
and
w1 ()
w U w
—Wipms 3
J2 = R +A )
vy —v3 —W2
c* c*
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with
Cc* Cc*
A Wt oy
Cc* C*
I L F T
— R*
ey

Note that J; is a non-singular Metzler matrix (see [1]).

with

d=vr+pu+m+rn+
e="Y+put+T13+

We also note that V is a Metzler-Hurwitz matrix and

L 0
V_lz d 1
0 _
e
1 0 I 0
vi=| d ||=Kk=-Fv'i=|9,
0 —- 0=
e e
where
g_( 1 )( Yo+ vo+ Vo )
g Qo Wy + s
d Yr+ T+ v+ p+ (s Y4+ Vo + 02+ 1 Yo + Vo2 + 1
h 1 Y4+ Vot 1 V2
- = as twe twyg—————
e Y8+ T3+ p+ G Yat+rvetoztp Y6 +v2+
and
h
Ro = p(K) = max {fp e} 4.2)

Theorem 4.1. The equilibrium without terrorist, nor brigand x*, is locally asymptotically stable if Ry < 1 and
is unstable if Ry > 1.
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See [14, 16].

Theorem 4.2. The equilibrium without terrorist, nor brigand x*, is globally asymptotically stable if Ry < 1 and
is unstable if Ry > 1.

Proof: From Theorem 4.1 when Ry < 1 the states B, T" — 0 when ¢ — oo. Identifying B and T" with zero,
it comes that (C, R, A,V, B, T, P) — x* when t — oo since z* is the unique point in the positively invariant,
compact and attractive solution region ¥, such that B =T = 0. O

5. Global thresholds

5.1. A sufficient condition for the eradication of narcoterrorism

The result we set out in this section highlights the fact that, when the recruitment capacity or the sum of the
forces of association with individuals in the narcoterrorist class is lower than the forces of exit from this class,
then we will see an eradication of narcoterrorism. It’s worth noting that when we talk about the forces of
attraction in narcoterrorism activities, we’re alluding in this study to the ability of narcoterrorists to offer a certain
improvement in living conditions in financial terms.

A+V
Theorem 5.1. Let My = a3 + w1 + wa + w3 + 01, A3 = (73 + (4)k + s with & the infimum of }_ . So for
A
all Ry = 22 < 1, we have lim T(t) = 0.
)\3 t—o0
Proof: From the equation (2.6) we have:
dT C T T T T A+V A+V
— =a3——T B— A— R 0P — _— T
@ Moy TP e T T e (73 7 Tty )
C B A R P A+V A+V
= (o ——— = = . 0 T— |t ™ T
(aagyg torp terg twsp g ) (T“ [ Tt )
C B A R P
< —_ — — 0 T— T
Slwgptwptwyteg G thy ) <T3“+78+<4”>
< (Otg + w1 + w2 + w3 + 01)T — <(7’3 =+ C4)Ii + ’78>T = ()\2 — )\3)T
It follows from the last inequality that 7" decreases exponentially to zero as soon as Ao < A3z.0J
Thus Ry = )\—2 < 1, gives a sufficient condition of the stabilization or eradication of narcoterrorism. This

3
result reflects the fact that the greater the nuisance capacity of the defense and security forces, as well as their
attractiveness in other legal activities, the more the narcoterrorist class tends towards elimination.

5.2. A sufficient condition of the eradication of brigandage.

The result that we also present in this section highlights the fact that, when the recruitment capacity or the sum of
the forces of association with individuals in the bandit class is less than the forces of exit from this class, banditry
is eradicated or stabilized.

+V

Theorem 5.2. Let A5 = g +wy + v3 + 02 and Ng = Tok + v7 + 11 + (3K with k respective infimum of
A

and of. So for all R4 = 25 <1, we have lim B(t) = 0.
)\6 t—o0

Sk
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Proof: From the equation (2.5) we have:

dB B B B A+V A—|—V
@ B8 - B
ar C+I—|—w4RR+I—|—V3 + 6, P Pl (Tg 7 + 7 +v1+ (3 >
< (2 +wy+v3+62)B— <72H+’Y7+V1+C3H)B
< (A5 — Ao) B

6. Numerical simulation

To highlight the results of our analysis, we carry out a numerical simulation in this section. This simulation is
carried out in Matlab using the difference method, in particular an explicit Euler scheme. Figure 4 shows that for
a value of R less than 1 we have a complete elimination or stabilization at zero of classes T, B, and P but also
of class V. The latter result can be explained by the fact that, in this model, class V is linked to classes T and B.
On the other hand, Figure 5 shows the persistence of narcoterrorism and brigandage for a value of R strictly
greater than 1. For this simulation, we consider the initial states C(0)=100000, R(0)=80, A(0)=1000, V(0)=2000,
B(0)=110, T(0)=110, P(0)=80 and the parameter values defined in the table below:

Table 1: Parameter values estimeted

Parameters | value for extinction | value for persistence
A 36900 36900
V4 0.047 0.047
¥s 0.0016 0.0016
Y6 0.00149 0.00149
y7 0.0046 0.00046
¥ 0.0000011 0.0000011
Yo 0.011 0.011
01 0.0032 0.22
02 0.0032 0.24
n 0.19 0.19
G 0.27 0.27
C2 0.27 0.27
3 0.37 0.37
Ca 0.37 0.37
I 0.148 0.148
2 0.02 0.02
Vo 0.01 0.001
V3 0.02 0.02
1 0.2 0.02
T2 0.125 0.0125
T3 0.125 0.125
o1 0.012 0.012
P 0.006 0.006
a1 0.2 0.2
a2 0.31 0.78
a3 0.31 0.48
w1 0.02 0.1
w2 0.02 0.147
w3 0.02 0.58
w4 0.04 0.5
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Figure 4: Evolution of the different classes of the model (2.1) — (2.7) with the extinction values. We get Rg = 0.7656, which is less than

unity.
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Figure 5: Evolution of the different classes of the model (2.1) — (2.7) with persistence values. We obtain Rg = 1.4966, which is greater

than unity.
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7. Optimal control analysis

7.1. Strategy to fight against narcoterrorism and brigandage

In light of the results of the analysis, optimal control theory is applied to the (2.1) — (2.7) model to fight
narcoterrorism and banditry. Thus, two time-dependent control variables are introduced: u4 (t) and us(t), which
are several strategies described in detail as follows:

(i) ui(t) is a strategy to fight against drug trafficking, organized crime, brigandage, and corruption. It also
integrates all police actions of proximity, investigation, and protection. By ensuring a better territorial network
and better training and equipment for the defense and security forces, as well as for volunteers for the defense of
the country. In addition to these actions, this strategy could also integrate all the actions of accompaniment and
reintegration of the accused or prisoners into active life. Note that the closer the us strategy is to 1, the more
efficient it is.

(i) ua(t) is a strategy to combat narcoterrorism. It places particular emphasis on the fight against drug
trafficking, which is the main source of funding for this type of terrorism. In addition, this strategy integrates all
actions aimed at increasing the firepower of defense and security forces, while developing operational intelligence
that is better adapted and better than that of narco-terrorists, so as to be able to carry out well-coordinated and
well-calculated actions to minimize narco-terrorist attacks. Note that the closer us is to 1, the more efficient it is.

7.2. Mathematical analysis of strategy optimality
Let’s put
ci(t) =1 —u,(t), Vi € {1,2}. (7.1)

Consequently, the optimal control model with the two aforementioned time-dependent variables is given by the
following differential equations

aC T+ B B T

— = A A P R B T V- D — : _— > —_— C

it +v4A+ 5P+ v R+ 7B+ 81 + 79 (a1C+I+(1azc+l+(za3c+l+02+#)

dR T

bl G 2 ‘ R

i V2 (62w3R+I+61w4R+I+’ye+u)

dA B T T+ B

— =o01V+o20+u1B—-(civ3— +cowa— +ma+rve+pu+(1 A

dt I 1 I

av T+ B T+ B (1.2)
=0 - 1% '
i ai or1 (79+01+M+C2 7 )

dB_ CB n RB n AB+€ PB T+ A+V+ i e A+V B
dt_cl a20+1 w4R+I VsI 2P+I CZWII P T Y7 +vi+p 377

darT T T T T T A4V A4V

— = C—- B— A— R——+60,P—— ) — _— T

7 Q(Oés C+I+wl [+w2 I+w3 R+I+ 1 P+I> (7'3 7 +v8 +p+ G 7 )

dP A+V A+V

— = 12B 3T — | 20 210 P

it T2 + 73 (621 +I+<’1 2P+I+75+u+77

with initial conditions given by (2.8). This system can be rewritten in matrix form as follows:
X'(t) =g(t, X,c) (7.3)

where X is defined in (3.2), ¢ = (c1(t),c2(t)) € R? verifies (7.1), and g : R x7 xR? — R7 is a non-linear
function written as in (3.3) but introducing the control ¢ in order to verify (7.2). The purpose of introducing the
two control variables is to find the optimal solution required to minimize the number of individuals in both the
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narcoterrorists class and the brigands class. Consequently, the objective function for this control problem is given
by

Sl = min_ [ : (j(t) - ;ku))dt (4)
where
J(t) = w1 B(t) + woT'(t) + w3 P(t)
k(0) = [waud0) + wsid(o)
where the constants w;,7 = 1,2,...,5 are positive weights required to balance the corresponding terms of

o . : 1
the objective function. We choose quadratic costs on the controls, where §w4u% (t), §w5u§ (t), are the total

costs of implementing the preventive measure and the military-police response to manage the active cases of
narcoterrorism and brigands over the time interval [0, 7]. More precisely, we are looking for the optimal dual

control u* = (uf,ué) such that

/(u]‘,ug) :min{/(ul,ug) DU, U EU}, (7.5)

where, U is the non-empty control set defined by

U— {(ul,uz)

Thus, to determine the necessary conditions that the optimal control must satisfy, we use the Pontryagin maximum
principle [12], which transforms the control problem (7.5) subject to the model (7.2) into a problem of pointwise
minimization of a Hamiltonian H. This Hamiltonian is given by

(7.6)

u;(t) is a piecewise continuous function on [0, T]
and 0<wu; <1, Yetel0,Ty], ¢=1,2

1
H = w1 B+ wT + ws P + 3 {wuﬁ(t) + wsug(t)}

[ T+ B B T
A1 A A P ; B T — —— 4+l —— + o3 ——
+ ' + 1A+ P+ R+ v B+ T + %V <a10+1+(10£2C+I+(2C¥50+I+0'2+,LL)C:|

[ B
+ A2 (12 A — <(12w3 +ciws—5——+ v + u) R}

T
R+1 R+1

B T T+B
+ A3 U1V+UQC+VlB*(61V3*+Czw2*+’74+1/2+,u+ﬁ1 i )A}

| T T T
(7.7)
T+B

[ T+ B
alci_('}’Q‘f'Ul"‘M"‘CZ + )V}

M| T I

'

tosfen (02 G BB L AB g, P (T A it 62
5_(?1 0420+I w4R+I 577 2P+I ‘2w1I T2 7 Y7 1+ M 377

[ T T T T T A+V A+V
+)\6-(»2(a3007+1+w137+W2A7+wsRR+[+91PP+I>—<T3 7 + 8+ p+Ca i )T:|

1

[ LA+V A+V T B
+ A7 _TQB + 3T — (Czalﬁ +(3102P7+I + 75 +:u'+"7)P:|
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where \;, ¢ = 1,2, ..., 7, represent the adjoint variables associated with the state variables of the model (7.2). The
standard existence results for the minimizing control problem, as they appeared in [7] are adapted as follows.

Theorem 7.1. There exists an optimal control (u},u3) € U satisfying (7.4) subject to the control system (7.2)
with non-negative initial conditions given by (2.8).

Proof: The existence of optimal control is obtained thanks to Fleming and Rishel [7]. Thanks to a result of
Lukes’s [10] which ensures the existence of solutions for the state system (7.2) with constant coefficients, the set
of controls and corresponding solutions is non-empty. In addition, the set of controls ¢/ is a closed convex set by
definition, and the vector field of the system (7.2) is bounded. Also, the integrand of the objective function is
convex, and g(t, X, ¢) in (7.3) is convex concerning c. On the other hand, there exist a1, az > 0 and 8 > 1 such
that

i
1 2 2 2 2 2
w1 B+ woT + w3 P + B waui(t) + wsus(t)| > ag | |ur]” + |uz| — as

since the state variables are bounded. Then, we deduce the existence of an optimal control (u},u3) that
minimizes the objective function _# (u1,us2). O

Theorem 7.2. Given that (ui‘, u§) minimizes the objective functional (7.4) subject to the corresponding state
system (7.2), then the adjoint variables \;,i = 1,2, ...,7, satisfy the following system:

d\ (T + B)I BI TI
ks (M — )\4)0&17(0 1) + (A1 — )\5)C1O¢27(C 1) + (A1 — )\6)620537(0_’_ 17 + (A1 = A3)o2 + Aip
d2 BI TI
H = (A2 - )\S)CIW4W + (>\2 - AG)CQW?,W + ()\2 - >\1)’YG + A2/J«
ds (T + B)C ~ BC ~ TC
a A3 —A1)va+ (Aa — M) C+1) + (A5 — A)araz C+1)7 + (X6 — A1)c2as C+1)7
TR BR B(V +T + B)
+()\6 - )\2)C2w3m + ()\5 - /\2)01W4W + ()\3 - AS)Q”B# (7.8)
TV+T+ B T+B)(V+T+ B T+ B)V
+(A37)\6)ng2%+/\3<1( + )(I2+ + ) +)\3H7)‘4C2%
PB B(T+ B TB
+(A5 - )\7)0192(P+7])2 + (As - )\7)7'2% + ()\6 - A5)62W1[T + ()\3 - AQ)VQ
B(T + B) TP T(T + B) T(T + B)
+)\SCST + (A6 — )\7)91W + (A6 — A7)73 2 + A6Ca 2
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% = (A3 = A)yo + (A — )\1)&1% + (A5 — )\1)01&2% + (X6 — )\1)02063%
+(X6 — /\Q)CMS(RZ—L*RI)Z + (X5 — )\2)610.}4% + (s — )\3)611,3% + O = Ao
+(X6 — Ag)cwg% - ,\341(7”;723)14 e T B)(/I;2+T+ B)
+(Xs — /\7)0192% (s — Mm@ + (e — /\5)02wlf%?
+>‘543w + (A6 — /\7)91% + (X6 — /\7)73W + AB@W

ds TR TC
—wi + (As — A1)yr + (X6 — /\2)02w3m + (X6 — /\1)62043(0_’_71)2 + (A5 — A3)11

dt

R(R+A+V +T)

+(\1 - /\4)a1% + (A1 = As)cion ce J(FCA:I;/Q +T) (N — As)erws A
s+ (As — )\6)02“)2% + (As — >\5)01sz + Asclw + M@W

+0s — Ay AT V)(;‘;r VAT) | oAt v)(;&; VAT - e PP —(|—PA++I;/2 +7)
0 — As)ezen 2+ (ks — A7)91% MM ACE: V) WRCE: V)

+(As — AG)@MW

C(C+A+V) BC BR
+ ()\5 - >\1)C1a2m + ()\5 - )\2)01W4W

A
28 = —wn 4 (A6 — Ai)ys + (A1 — Mo —E e

dt
+0h2 — Ao)eaws T J(FRA++IX)/2+ B) 4 - )\3)C1I/3B;_—;4 ¥ (s — AS)CMW N ABQW
“4@% + (X5 — A7)0192% + (s — A¢)eawn 24 +1¥ +B) _ Asch(A]j V)
0= 20)m ZAEY 4 ( agean P ?pA++1;+ By 6wy AEVETVED) 4,
s (A+ v)(;l; V+B) (M1 — Ae)eaas el(e; j(LCA:I; + B)

% = —ws + (A7 = Au)ys + (A7 — ’\5)6192% + (A7 — >\6)C291$ + Az + A7

with transversality conditions

N(Tf) =0, i=1,2,..,7.

Further, the optimal control (u}, u}) is given as follows
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BC BR BA BP
(As = A1) + (A5 — A2)ws + (A5 — A3)vz—— + (A5 — A7)02
* . C+1 R+1 I
max ¢ 0, min < 1,

P+I}}
waq

TC TR TA TB p 09
(X6 — A)as—— + (A¢ — A2)ws + (X6 = Az)wz — + (A6 — As)wi—— + (A6 — A7)01 5—
. { . { C+1 R+1I 1 1
max ¢ 0, min ¢ 1,

= St

Proof:

As mentioned earlier, the characterization of the optimal solution is obtained by applying the Pontryagin’s
maximum principle to the Hamiltonian of the system . The system of ordinary differential equations (7.8)
governing the adjoint variables is derived by differentiating the Hamiltonian.  Further, the control
characterizations in (7.9) are derived by solving, on the interior of the control set U, the partial differentials of

the Hamiltonian H with respect to each of the controls u; and ue. Hence, by standard arguments involving
control bounds, it follows that:

0 if 1 <0
uy =< riif 0<ri<1
1if rf>1
0 if 5 <0
uy =< ry if 0<ri<l1
1if r5>1
where,
B BR BA BP
. (As — Al)azm + (A5 — AQ)MLRi—l—I + (s — )\S)VST + (A5 — )\7)92P+ 7
1 wa
TC TR TA TB TP
. (A6 — )\1)063074_[ + (X6 — )\2)w3R7+I + (X6 — >\3)W2T + (X6 — )\5)@’17 + (X6 — /\7)91P iy
2 ws
This puts an end to the proof. (]

7.3. Numerical simulation

In this section, we use numerical simulation to illustrate the effect of control on the dynamics of the controlled
compartments, in particular compartments B and T respectively. For reasons of clarity, the color red has been
chosen for the curves of the classes with no control over the persistence parameters of brigandage and
narcoterrorism, while the color blue has been chosen for the curves with control. Figure 6 shows that if w4
control is very weak and us control is effective, banditry persists and narcoterrorism stabilizes. Figure 7 shows
that when u; control is effective and uy control is weak, banditry and narcoterrorism stabilize. Finally, there is a
very quick stabilization in classes B and T when the u; and uo controls approach 1, as shown in Figure 8.
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Figure 6: Dynamics of evolution of classes B and T illustrating the effect of control with u1 = 0.25, and ug = 0.75
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Figure 7: Dynamics of classes B and T illustrating the effect of control with u1 = 0.75, and ug = 0.25
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Figure 8: Dynamics of classes B and T illustrating the effect of control with w1 = 0.75, and ug = 0.75

8. Conclusion

In this study, we first designed a mathematical model to illustrate the dynamics of narcoterrorism, based on the
situation in certain Sahelian countries. The proposed mathematical model focused on the dynamics of recruitment
into the narcoterrorist and brigand classes, showing the importance of contact and the deterrent presence of certain
classes. We then carried out a rigorous mathematical analysis of the model. We then defined a first threshold R
for this model, which designates the number of basic reproductions in the brigand or narcoterrorist class. In other
words, the average number of people that a brigand or narcoterrorist manages to recruit into his class. From
this threshold, we give asymptotic stability conditions for the equilibrium without brigands or terrorists. We
also define two global thresholds, which are sufficient conditions for the eradication of narcoterrorism. Based
on the results of the analysis, a strategy for combating narcoterrorism and banditry was proposed through a
model check. The effectiveness of the strategy was then assessed using an optimality study based essentially on
the Pontryagin maxima principle and Fleming’s theorem. To make this study more readable, we carried out a
numerical simulation of the analysis and control results. On the strength of some of the results of this study, we
are convinced that to fight narcoterrorism and banditry more effectively, the Sahel and West African states must
work to strengthen their systems of governance adapted to their realities. This strengthening of governance could
be achieved through a better administrative and security network, as well as the development of local production
activities and the promotion of local products. It is still time for the countries of the Sahel to take their destiny
into their own hands. They will need to strengthen their cooperation on security, economic and social issues.
There is still time for the Sahel countries to apply measures of good governance and virtuous governance adapted
to their reality, all within a framework of faultless social cohesion and a local security system that is effective
against violent extremism, narcoterrorism, and all forms of organized crime.
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Abstract. In this concise article, we present alternative proofs of three significant inequalities relating to various
trigonometric functions. The key ingredients of these proofs are well-known series expansions defined with Bernoulli
numbers. We are thus contributing to the development of this technique to establish precise inequalities. In some sense, our
results provide a simplified overview of these fundamental mathematical relationships.
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1. Introduction

There are different methods for determining the characteristics of an inequality, each offering a valuable strategy
for understanding the behavior of mathematical functions. One approach, often used in calculus, is the derivative
test. This method involves examining the sign of the derivative of a function to determine whether it is increasing
or decreasing over a given interval. By analyzing critical points and concavity intervals, the derivative test
provides valuable information about the behavior of functions and their associated inequalities.

Another contemporary method of studying inequality is to use series expansion techniques. By expanding
a function into an integer series, one can better understand its behavior and derive inequalities based on the
properties of the series. This method is particularly useful for exploring inequalities in the context of complex
functions and their convergent properties. For a more comprehensive understanding of these methods and their
applications in inequality analysis, we may refer to the following references: [6], [7], and [8]. In them, detailed
explanations and examples to aid in the study of inequalities and their associated mathematical concepts are
provided.
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In particular, Guo et al. [11] presented an alternative proof for the following double-sided inequalities,
contributing to the examination of trigonometric inequalities and their properties:

24 Etans< () 180 o (2 sy 0<i< T
— an _— — an —.
45 t t T ’ 2

Still in the spirit of proposing an alternative proof, Nantomah [12] reestablished the following hyperbolic
inequalities:

. 2a a 2a a
sinh ¢ tanht t t
_— 2 t>0anda > 1.
( t ) +< t ) >(sinht> +(tanht> -5 > Danda =

On the other hand, Zhu [10] gives the very simple alternative proof of the following inequality:

. 2
sint tant s
— > 2, O<t< —.
( t ) + t 2

This inequality is known as Wilker’s inequality.
Later, Zhu and Zhang [9] gave a new concise proof of the following inequalities with the help of power series
expansion of trigonometric functions:

16,5 tant < (S0 2+tant o< S Ptant,  0<t< ™
—_— an _— — —_— an —.
2 t t 45 ' 2

Thus, the principle of alternative proof is central to understanding all the mathematical facets of inequalities. In
order to explain our contribution in this direction, some existing results need to be presented. As remarkable
advances in the field, the following three inequalities (in theorem form) are elucidated in [13]:

/1 + cost
2

Theorem 1.1. For 0 < t < /2, the following inequalities

/1 + cost
2

hold true, where v = 21n (7/2)/In 2 ~ 1.30299.

t 1
ttan- <In | — ).
2 cost
Theorem 1.3. For0 <t < 7/2, we have

t sint — tcost
n| — | <—/————.
sint 2sint

In [13], Bhayo, Ali, and Sandor established the validity of these inequalities using the concept of
monotonicity, thus demonstrating their importance in mathematical analysis. The main goal of this concise
article is to provide alternative proofs for Theorems 1.1, 1.2 and 1.3. Our approach relies on power series
expansions to demonstrate their validity, which remain new in the literature to the best of our knowledge. We
hope that this approach sheds more light on the fundamental principles underlying these inequalities and will be
inspirational in future proofs.

The remainder of the paper is organized into three distinct sections. Section 2 provides essential preliminaries
and introduces a pivotal lemma, while Section 3 details the alternative proofs. A conclusion is given in Section 4.

e

[V =)
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4/3 . 5
sint

Theorem 1.2. For 0 < t < 7/2, we have
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2. Preliminaries and Key Lemma

The Bernoulli numbers represent a crucial sequence of rational numbers. Several researchers are actively studying
them to solve various mathematical problems. These numbers have found applications in various areas of
mathematics, including number theory, combinatorics, and mathematical analysis. In this context, researchers
explore the properties and relationships of Bernoulli numbers to discover deeper insights into mathematical
structures and phenomena. A notable application of Bernoulli numbers is in their role in integer series expansions
for various trigonometric functions. Through the study of Bernoulli numbers, researchers have discovered
elegant expressions and relationships that facilitate the derivation of such expansions. These expansions play
a fundamental role in mathematical analysis, allowing the representation of trigonometric functions as infinite
series. The importance of these results is underlined in several references. In particular, [1], [2], [4], and [5]
provide comprehensive information on integer series expansions derived from Bernoulli numbers. These works
offer detailed explanations and mathematical proofs to support their claims.

In our current work, we exploit these established results as essential tools in our main proofs. Using integer
series expansions derived from Bernoulli numbers, we aim to elucidate key mathematical relationships and
advance our understanding of the underlying mathematical structures. Especially, the following inequalities will
be used in our main proofs:

1 > 22n|32n|t2n71
cott =1y T2 o<t < 2.1
t = (2n)!
t 22n 1 B n th
In (bm ) Z ‘ 2 | . o<[tl<m, 2.2)
e 22n—1(22n _ 1)|BQn|t2n T
1 t=— , t| < =, 2.3
1 COS P n(2n)| ‘ | 2 ( )
9
m—1 22n|B2 ‘th 2
, 0<|t] <m, 2.4
sint nz::l 2n)! g 24
> 22n(22n _ 1)|Bgn‘t2”_1 T
tant = , tl < — 2.5
T (2n)! <3 (2:5)
and
= (20— 1)227(227 — 1)| By, [t272 s
sec? t = Z ( )27 @n)! )| Bon| ) [t] < 5 (2.6)
n=1 :

In addition, the following technical lemma will play an important role in one of our proofs.

Lemma 2.1. [3] For 0 < R < oo, let A(t) = Y.~ ant™ and B(t) = Y7, bt™ be two real power series
converging on the interval (—R, R). If the sequence (a, /by )y, is increasing(decreasing) and b,, > 0 for all n,
then the ratio function A(t)/B(t) is also increasing(decreasing) on (0, R).

We are now in a position to prove Theorems 1.1, 1.2 and 1.3 in alternative manners through the use of
derivatives, Bernoulli’s series expansions, and Lemma 2.1 when appropriate.
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3. Proofs

Let us prove Theorems 1.1, 1.2 and 1.3, in turns.

3.1. Proof of Theorem 1.1

To prove this result, let us consider the function

F(t) — In (smt) — In (ﬁ) — In (Siflt) — A(t) (31)

1 1 In(—+ B(t)’
1n(«/(lJrcost)/Z) 1n<\/cos2;) (Cosé)

where
o 22n 1|B th 2n
A= () - P Z ant
where
22n—1 Ian|
a, = ————
n(2n)!
and
1 22n— 1(22" —1)|Bs |t
B(t) =1 | = n by, t2n
(t) =1n <cos 5) ; 22nn(2n)! Z
where
- 22n—1(22n _ )Ian|
" 227n(2n)!
Let us now set
by
Cp = —
an
221171(2271 _ |B2n| 2271 1|B2 | 22n -1
N 221n,(2n)! 22n

Clearly c,, is increasing for n > 1.
Therefore, by Lemma 2.1, B(t)/A(t) is strictly increasing and A(t)/B(t) is strictly decreasing, so F'(t) too.

4
This implies that F/(r/2) < F(t) < F(0). Since tliH(l) F(t) = 3 and
—

QID(E)
lim F(t) = 2/ — 1.30299 =
i Ft) = =55 = 130299 =1

It follows from Equation (3.1) that

4/3 ¥
[1+cost sint /14 cost
2 t 2
This ends this alternative proof. g
S
(V=]
MM
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3.2. Proof of Theorem 1.2

Let us set
1 t t
fit)=In () - ttan§ = —In(cost) — ttan >

cost

Therefore, we have

t ot t
f'(t) = tant — tan 373 sec? 3
Owing to Equations (2.5) and (2.6), we have
e 2271(2271 o 1)|an|t2n71 e 2271(2271 o 1)|BQn‘t2nfl
(2n)! 22n=1(2n)!

f'(t)

Il
—

l\D\Im 3
NE

n=1
(2n — 1)227(227 — 1)| By, [t27~2
2212 (2!

3
Il
_

_ i 2271(2271 _ 1)|B2n|t2n—1 B & 2(22n _ 1)|B2n|t2n_1
B — (2n)! — (2n)!
B i (2n — 1)2(22" — 1)| By, |t?"~!

— (2n)!

o

(22" — DIBanl (s

=> (2n)!" [2°" —2 —2(2n —1)]

n=1
_ i (22n B 1)|BQH‘t2n71 (22n _ 4n)
N — (2n)! '

For n > 1, it is clear that 22™ > 4n. This implies that f'(¢) > 0, so f(t) is strictly increasing. In particular, we
have f(t) > f(0) = 0, which is equivalent to

t 1
ttan - < In ()
2 cost

This ends this alternative proof. g

3.3. Proof of Theorem 1.3

Let us set

£(B) = In (t) _ sint —tcost

sint 2sint

Hence, after some developments, we establish that

£(t) = sint [sint — tcost 1 [sint(cost — cost + tsint) — cost(sint — t cost)
ot sin®t 2 sin?t
__sint—tcost 1 tsin?t —sintcost + tcos? ¢
~ tsint 2 sin? ¢
1 1 |t—sintcost 1 t cott
= — —cott— = . 2, :*7C0tt772+7
t 2 sin” ¢ t 2sin” t 2
1 cott t
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Owing to Equations (2.1) and (2.4), we have

111 0 22n‘B2n|t2n—1 t 1 & 22”(277, _ 1)|B2n|t2n—2
2|t (2n)! 2 | t? (2n)!

n=1 n=1

e 2271|B2n|t2n—1 e 22n(2n _ 1)|B2n|t2n_1
2(2n)! 2(2n)!

n=2 n=2
7 e 22n|B2n|t2n71 )
N Z (2n)! (1=n).

n=2

It is clear that 1 — n < 0 for n > 2, implying that f’(¢) < 0. Hence f(¢) is a strictly decreasing function and, in
particular, f(t) < f(0) =0, so

t sint — tcost
n|— | < ————.
sint 2sint

This ends this alternative proof. O

4. Conclusion

In this concise article, we have reestablished important existing theorems in the area of trigonometric inequalities,
with an approach involving series expansions based on Bernoulli numbers. In some sense, this extends the
applicability of such series expansions to explore comprehensive mathematical results beyond conventional
methodologies.
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the opposite one.
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1. Introduction

In this work, we consider a nonlinear Timoshenko system with distributed delay term,

{p1¢tt - k((b% + w)% =0,

paties — Db+ k(e + ) + by + [ m(7) e (56, 6 — T + F(1) =0, a-b

where (5¢,t) € (0,1) x RT. The system (1.1) with 1 = 170 = f = 0, was first proposed by Timoshenko [24]
as a model that describes the impact of vibrations on a thin elastic beam of length. The functions ¢ = ¢(, t)
and ¥ = 9 (5, t) describe the small transverse displacement of the beam and the rotation angle of the beam’s
filament. The parameters p1,p2, k and b are positive constants. The function f (1)) is a forcing term and 1)
designate a frictional damping. The distributed delay is given by [ f 2(7) e (3¢, t — 7)dT, where, 11, L5 > 0.
We provide the system (1.1) with the initial data

{¢(%a 0) = ¢05 ¢t(%30> = d)la ZZ)(% 0) = 1;[}07 1/Jt(%70) = d)l (1 2)
'(/)t(%a _t) = fo(%,t), S (071)7 '

*Corresponding author. Email address: lami_750000@yahoo.fr (Lamine Bouzettouta)

https://www.malayajournal.org/index.php/mjm/index ©2024 by the authors.



Lamine Bouzettout!, Houssem Eddine Khochemane? and Fahima Hebhoub?

and the boundary conditions

¢(07t) = ¢(1vt) = "/}(Ovt) = w(lﬂt) =0. (1.3)
We remember that Timoshenko system without delay has been considered by many authors. Their goal was to
achieve the asymptotic behaviour of the solutions of these systems by introducing different types of damping.
See for instance [1-3, 9, 11, 12, 15, 19] and references therein.
In recent years, including the delay term makes the problems of EDPs more interesting. In fact, delays can cause
destabilization of a system which is stable without the delays. Datko et al. [7] studied the the destabilizing
effect of arbitrarily small delays in the boundary control of a wave equation. In [17], the authors proved an
exponential decay result of the solution under suitable assumptions of the delayed wave equation where the delay
is considered both in the boundary condition and in the internal feedback. Later [18] the same authors introduced
a distributed delay on a part of the boundary, and they proved an exponential stability under some assumptions,
they also studied the following problem with internal feedback

ugy — Au + poug + ff a(se)p(T)ug(t — 7)dT

u=0 on  Ty(0,)

0

a—z =0 on TI1(0,a) (1.4)
u(s¢,0) = ug(s) and  ug(s2,0) = uq(sc) in Q

ug (3¢, —t) = fo(3¢, —t) in (0,2)

where a € L?(() is a function satisfies

o > Jlalla / p(r)dr.

L1

They obtained an exponential decay result for the energy.
In [22], the authors discussed the stability of a linear Timoshenko system with a constant delay

p1¢tt - k(¢% + 7/1)% = Oa (1 5)
P2t — b + k(s +0) + 1t + m2tpe (36,6 — 1) = 0.
a necessary condition which made the solutions of (1.5) exponentially stable is
k b
—=— (1.6)
P1 P2

It is most important to report that most of results on Timoshenko types systems is based on the above condition,
otherwise, only a polynomial stability was proved for the case of nonequal speeds (see [2, 9, 11, 12, 15]).
For a non linear Timoshenko system , Feng and Pelicer [8] added to (1.5) a forcing term f(¢)) in the second
equation and proved an exponential decay under an appropriate condition between the weights of the the delay
term and frictional damping, their result was extended by Hao and Wei [12] to nonlinear heatTimoshenko system
of based on the energy method. In the case where the speeds are nonequal, they established a polynomial decay
estimate.

System (1.1) was recently investigated by Bouzettouta et al. [4] and they proved an exponential decay result
of the energy when (1.6) holds, in this paper our goal is to complete their study for the case of non equal wave
speeds.

2. Preliminaries

The necessary assumptions and transformations needed to obtain the desired results were presented in this section.
As in [17], we use the following notation

X (3¢, p,7,8) =y (3,6t — p7), € (0,L), p€(0,L), t,7 € (11,12).

3
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The new variable  satisfies the following differential equation
TXt (%7 P Tat) + Xp (%7 P T7t') = 07 (%a 12 Tvt) € (07 L) X (05 L) X (Lla LQ) X (07 +OO) .
Therefore, the problem (1.1) becomes

Pt — k(s + 1) =0, € (0,L), t >0,

ptht - bw%% + k(¢% + 7/)) + uﬂl)t (2 1)
+fLL12 n2(T)x (52,1, 7,t)dT + f(¢) =0, € (0,L), t >0, '
Xt (22,0, 7,8) + X, (22,0, 7,8) =0, pe (0,L), T € (t1,L2), t >0,

with the initial data and boundary conditions

¢(%’O):¢Oa ¢t( ) ¢17 %6(0 L))
1/)(%70) = 1p07 1/%(%,0) 1/117 FAS ( 7L)7 (2 2)
X(%apaTaO) :fO(%apT)a ( )a P ( ) )a TE (O’LQ)v .
¢(0,t) = ¢(1,t) = ¥(0,t) = (1,t) =0, t > 0.
In what follows, we assume that ,
[ @l < 3
We assume that f : R — R satisfies
£ = F@)] < ko (] = [u2]”) [ - 2] 24)
for all Yo', 42 € R, where kg > 0, § > 0. Also
< f(y) < f(¥)Y, forall ¢ € R, (2.5)
with
- Yy
0= [ fear
Let H the Hilbert space,

H=H}(0,L) x L?(0,L) x H} (0, L) x L* (0, L) x L*((0, L) x (0, L) x (11,12)),

and for any U = (¢, u, ¥, v, X)t eH, U = (qb, z/;, v X) €H, we equip the spaceH with the inner product

<U,U> = /OL {pluﬂ—kpgvﬁ—i— k(¢ + 1) (&% —|—1Z) + bw%{ﬁv,,] dsx

/ / T n2 (7 |/ 2,0, T, %) X (32, p,7,t) dpdrds.

By introducing the variables ¢y = u and 1y = v, then the system (2.1)-(2.2) is equivalent to

U =AU+ F, t>0 2.6)

U (56,0) = U° (32) = (6%, 6", 4%, 9", fo)", '

and
m
AU = v : @2.7)
9%7/)%% - ((b% +9) — pz - % fLle n2 (1) x (56, p, 7, t) dT
_7XP( 7p77—7t)
S
T
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=1
2

(¥)

0

0

F = 0
=5

0

with the domain

D(4) = {(¢,u,v,0,)" € Hi |,

with

H,; = (H?(0,L) N H{ (0,L)) x H (0, L) x (H*(0,L) N H{ (0, L))
x H{ (0, L) x L* ((0,L) x (0, L) x (t1,2)) .

We state the following well-posedness result (see [8]).

Theorem 2.1. Let Uy €H and suppose that(2.3)-(2.5) hold. Then, the problem (2.1)-(2.2) has a unique weak
solution U € C (R, H). If Uy € D(A), then

UeC(RT,D(A)NC (RT, H).

3. Decay result

We exploit the multipliers technique, we show that the solution of (2.1)—(2.2) decays exponentially. First, we
present the following lemmas.

Lemma 3.1. The energy E of (2.1)—(2.2), defined by

1t 2 2 1t 2 2
EO)=; [ (e + o) et 5 [ {K (6t ) + 002} d
0 0
L (L o L
s [ @ ety drdpier [ i 6D
o Jo Ju 0
satisfies
L
B <, | wiax<o (32)
0
where my = g — ff |n2 (7)| dr.

Proof. Multiplying (2.1); by ¢¢, (2.1)2 by 14, integrating and combining the results, we get

1d [F 1d [F

375 | (ot ot et 5 [ {K (0t o) + 002}
L L L Lo

= / WRdoe— iy / f (@) de — / / Yema () X (36, 1,7, t) drde. (3.3)
0 0 0 L1

Multiplying (2.1)3 by |n2 (7)| x (3¢, p, 7, t), integrating over (0, L) x (0, L) X (¢1,t2), summing the result with
(3.3) and applying Young’s inequality, we have (3.1) and (3.2). |

Lemma 3.2. The functional

L L
B(©) == [ oo+ prowde = [t G4
S
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satisfies
dl (t L L L
L o [t mittt o [ it [ (o0
0 0 0
/14 L L2
+7 / / In2 ()| X2 (6,1, 7, t)drde, (3.5)
0 L1

Proof. Differentiating I; (t) with (2.1)1, (2.1)2 and Young’s and Poincaré inequalities, we obtain (3.5). ]

Now, we introduce the following problem
—Wiise = Y, w(0) =w (1) =0, (3.6)

where w the solution of the above problem is given by

__/0%1/,(2,1;)6124-%</OL1/)(z,t)dz>.

Lemma 3.3. The solution of (3.6) satisfies

L L L L
/ widrx < / Y2 dse and / widrx < / Yidse.
0 0 0 0

Proof. Multiplying (3.6) by w, integrating and introduce the Holder inequality, we arrive at

L L
/ wid% < / wzd%
0 0

Next, we differentiate (3.6) and using the same above technique, we get

L L
/ widse < / Yidse. (3.7)
0 0

Lemma 3.4. Let © = (¢, 1), x) be the solution of the system (2.1)—~(2.2). Then, for any o > 0, the functional

L
I (t) == /0 (P2¢t"/} + p1oew + %1/12) ds, (3.8)

satisfies

L
Al (¢) < *g/ VEdse + <+P2>/ 1/)td%+/71€2/ prdse (3.9)
0

dt
ul L L2
4+ — (/ |n2(7)|x(%17tdr)d% / f
452 0 11

Proof. By differentiation I5 (t) and using(2.1)4, (2.1)2, we obtain

dIQ /7/)td%—b/ ¢2d%+P1/ prwidsc — k/ 1/1d%—|-k/ w?dsx

- /0 F(b)uode — /0 of / e (1) X 1,7 ) (3.10)
;%
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Using (3.7), Young’s, Cauchy-Schwarz, Poincaré inequalities, we have
L
pl/ Prwidsxe < p1€2/ ¢td%+ d%
< /7152/ ¢%d%+ / PPz,
0

/w(/ nz(T)x(%,l,T,t)ldT> ds

L L2
< 61/ 1/12d + = 45 (/ |72 (’7’)|X2(%, 1,T,t)d7’) dx,

t

L L 0
/ \f<w)w|d%§/ 1?14 o] doe

0 0
1% 1 5001) 1% llago41) 101

L
¢l / Y2idse.
0

By substituting (3.11), (3.12), (3.13) in (3.10), recalling (2.5) and letting d;

A

IA

Lemma 3.5. The functional

L L
I3(t) = po /O V(e + ) + 2 /O Vrebudse,

satisfies

dr. AN ko[t
28 <otpeodiant (o B) [ utan=§ [ 0s i

+(M)/ Ve (b 4+ ) d

where c1 is a positive constant.

Proof. By differentiation I5 (t) and exploiting (2.1)1, (2.1)2, we have

+P2/ Vo Perdse
0

L L L
— [l + po /0 Wedse— k /O (60 + )50 — 1 /O Vel + )3t

L Lo L
- / / 2 (1) (6 + 0)x (52, 1, 7, t)drdoe — / F@) (e + )t
0 L1 0

198

= 9, we obtain (3.9).

L L iz L _
+01/ ¢id%+ﬂ// \772(7)|X2(%,1,T,t)d7d%7/0 F)dse

d13 ,,)2/ Yt (G0 + 1 d%+p2/ V(b + 1) d%+p2/ roird

(3.11)

(3.12)

(3.13)

(3.14)
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By functional inequalities, we arrive at

L
/ [t0¢ (d,e + 20)| dae < k/ (e + 1) d%+“1/ Y2ds, (3.16)

L '
/0 (¢ + ) / |2 (1) x (3¢, 1, 7, t)| dTd>s«

L1

L
§§/ (s + )2 doe + 51 / / In2 (1) x? (52, 1, 7, t)drdsx, (3.17)
0
and
L b2 L )
<
| rwioae < 5 / e+ 5 / Vi
£0 2 b2 L )
< —= » d d
<q [ (ot Pt 2 / vt g [t
L0 o L
< =L 2 dse. 1
<g | Gt w) d%+(2A b2+2pw)/o W (3.18)
1
Inserting (3.16)-(3.18) in (3.15) and letting pg = §kb2, we obtain (3.14). |

To manipulate the boundary terms appeared in (3.14), we introduce the function
q(s) = —4x+2, »x€(0,1).
So, we were able to find the following result.

Lemma 3.6. For any e, > 0, we have

boy d [T e d L
ety <~ 5 | v B2L q¢t¢~%d%+361 /O 02 dse

+(2P151 bp2 / Yidse +(k451+47)2)/ (s + ) ?doe

k 251
// 7 ()] X2 (5 1,7 6) doe
AR v mb 2+s /wzd (3.19)
A .
261 4)\1[)2 861/\1 451 !

Proof. Young’s inequality gives easily for e; > 0,

2

bty < €1 [0 (1) + 62 (0)] + 46—51 (W2 (1) + 92 (0)], (3.20)

we need the following fact

L

d L L
G | tosaviie =ton | quicinadoebpa [ v
0 0 0

e
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On the other hand

0

L L L
bos / Wethedse = B / Wotbedse— kb [l + O)budse
0 0

—b/ / qsema (1) x (5,1, 7,t) drds — b/ qf (W)d,.dsx

< =07 [ (1) + 2 ( +2b2/wd%

+ (k%1 + bg)/ (6 +9)7d

b2 €1 2

b
+( +2/\b2+ +u1b/wd%

+ b/ / |n2 (7)] 2 (5,1, 7,t) drdse.
0 L1
Therefore
L L
bo [ aveinaedse =200 | v
0 0

Similarly

L

L L
& | o= [ ot v+ [ maio e
< k62 (1) + 2 (0 +3k/ ¢ dox
L
+k/0 wid%+2p1/0 Yids

which gives us (3.19) by exploiting (3.20)-(3.21).

Lemma 3.7. ([13]) For n1 > 0, the functional

L L e
t) = / / / 7€ 7 |02 (1) X2 (3¢, p, 7, t) dTdpd>,
o Jo Ju
L L i
dl, (t) < *7]1/ / / T lna(7) X2 (54, p, 7, ) drdpdse
dt o Jo L

satisfies

L L2 L
—m / / In2 (7)| X2 (5¢,1, 7, %) drdse + 6/ pidse.
0 L1 0

where (3 is a positive constant.

Let L£(t) the Lyapunov functional given by
1
L(t)=NE(t) + gll (t) + N1Ls (t) + I3 (t) + Naly (t),

where N1, No, N > 0.
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Lemma 3.8. There exist 1, 2 > 0, such that L(t) verifies

BE(t) < L(t) < BE(t), vt >0, (3.25)
and
L'(t) < -ME((t)+ (M> / Vo (he + ), d (3.26)
Proof. Let L
L(t) = NE (t) + gfl (t) + N1z (t) + I3 (t) + Nody (t),
then

P1 g P2 B H1 v

L) - VB <2 [Tloalder 2 [Cwvdaer [ v
0 0 0

L

L L
+N1P2/ |¢t1/)|d%+N1P1/ |¢tw\d%+N1%/ Ve
0 0 0

L L
o [Pl + )|t [ el
0 0
L L L2
N [ [0 [ re e (0 G ) drdpe
0 0 L1
Exploiting some functional inequalities, we arrive at

L
L) = NE© <0 [ (5340 + 6t + (0.+0)) d

// 7l ()2 %,1,Tt)d7'd%+/ F(b)ds

<CE(t

By (3.2), (3.5), (3.9), (3.14), (3.23) and (3.19), we get

dL (t) i 2p1€ bp
7t :—(le N1<42+02)—N2M1—(p2+k1 _( ]il+2j + p2 / ¢td%

b co b2 1 v b b2 Lo
(=N, = =2 =
( 1- 3 ( 2+4b2+82+4€1+43+51) /ow”d%

k
_ (8 —€1 <k281 + lﬂ)) /0 (¢ + ) 2dse
L L Lo
- 2
N25/0 /0 /L1 T |n2 (7)| x* (3¢, p, 7, t) drdpd

H1 M1
— (N —N—————— 1,7.t)drd
( 2 s 32 451)/ / 2 ()| X (3¢, 1, 7, t)drds«

L
SN ) /0 F(w)dse,

L
+<p2kplb) i Uie (e + 1), doe

f1

e
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we getFirst, we choose €1 small to hold

k 1
g-&‘l <k251+ b2> > 0.

. P1
B tt = —
y setting €2 16N,

Choosing N, large to verify

b Co b2 1 62 ,ulb b2
NS o mo 0.
8 (25%+4b2+ +451 +451 te)>

Choosing NV large such that

2 2p161 b
Ny = Ny (25 4 py ) = Nopr — (o + 5L ) = (B2 4+ 22) 14 > 0,
462 k 2

and so that (3.25) remains valid. We obtain (3.26).

Here is the following polynomial stability result.

Lemma 3.9. Let ® = (9,1, x) be the solution of the system (2.1)—~(2.2) and suppose that %

Therefore, the solution ($,, x) decays in polynomial manner, i.e. there exists a > 0 such that
Et) <2 t>o0.

Proof. Using (3.26) and (1);, we obtain

L
L' (t) < —\ME(t) +</ Y Prrdoe,
0

b
i

k k— p1b
where ¢ = p— (prpl> , and by applying Young’s inequality, we get

1 1

L d L L ) |<|
S| Wxdredrx < *§E (Bset?h — Poctiy) dse + [s] p ¢xd%+ T/Jttd% p>0.
0 0
Because
L L L
R U R Y
0 0 0

we arrive at

L
/ Yo predse < *§jt (¢%t?/1 - ¢u1/1t) d» + Cy |§| pE (t)

Ll / V2 .

By substituting (3.30) in (3.27) and letting p = the inequality becomes as

2C’||

L L
L' (t) + gi/ (Psetth) — Poethy) doe < —1E (t) + Lg/ z/JtQtd%, t1,t2 > 0.
0

dt
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Now, let the functional

L
£o(t) = L(t)+5 / (6sts — bouthe) doe + N (E (8) + Ea (),

where E; (t) is the second order energy of the problem (2.1)—(2.2) and we choice

20 3 12}

N3 > ) ) )
3 max{ K o b o

for that £; (t) be equivalent to E (t) + E; (t). Indeed,

L L
L1 (6) = N (B () + Bo (6))] < AB (8) + | / |Gt doe + I / (6ot doe,

and by using some functional inequalities, we have
<l [* o sl [*
£(6) = Na (B (t) + B2 (6)] < BB(6) + 51 [ oot 5] [
0 0

L L
+ B/ @2 dsx + H/ Pidse.
2 Jo 2 Jo
It’s easily to show that

20l sl 3l

£2(6) - N (B(6) + B2 ()] < max { 2L 5L 26 50 4 4 ).

and by recalling (3.32), we deduce that
L1(t) ~E(t)+Es (t).

By using (3.31) and because E’ (t) < 0, we can conclude that

L
£(6) < ~uB () - (Namy — ) [ v
0
the choice of N3 given in (3.31) leads to
£l (t) < —uB(t).

Integrating the inequation (3.33), we obtain

t t
Ll/ E (t) dt < —/ L1 () dt,
0 0
and because E (t) is decreasing, we have
L1E (t) t S £1 (0) s
£, (0)

L1

which gives (3.33) by taking a = . Which complete the proof.
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1. Introduction

In past few years, various authors explored the brief structure of non commutative rings by developing the Lie
type theory of associative rings. In 1969, Herstein [9] introduced the notion of Lie structure for rings and obtained
several results which are helpful for rings of operators on a Hilbert space. The purpose of this study is to extend
these results for some more general structure, e.g., the algebraic structure of non-commutative semirings. But the
problem arises when we replace rings by semirings, as semirings do not have additive inverses, so we impose the
weaker version of additive inverses, i.e., the pseudo inverse introduced by Karvellas [10]. Recently, semirings
have been studied by various researchers (cf. [5, 11, 12]). In this paper, we generalized some of the Herstein’s
results in the framework of additively regular semirings which are further used to study the Lie structure of prime
semirings and some of its subsets. Moreover, the behavior of derivations on Lie ideals of semirings is studied.
Consequently, this enables us to measure the size of the centralizer of Lie ideals for the case of semirings. We
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also investigate some properties regarding Lie semirings which are very useful to investigate the Lie derivations
and higher derivations of Lie ideals of semirings.

The prime motivation for this paper is not only the intense desire to extend these well known results, in
the field of semirings, but to explore the close characterization of Lie theory and derivations in semirings. It is
natural to point out that the ideal theory, homomorphisms and the Jordan theory are easily accessible to analyse
in comparison to the Lie theory. As in the Lie case, the center of algebraic structure comes in our way and
thereby various well known results are untouched in the corresponding Lie theory of semirings which are true in
the aforementioned theories. Henceforth, this paper delivers the suitable techniques which can be efficiently used
more and more to study the enormous structure of Lie semirings.

2. Preliminaries and some examples

Recall from [6] that a non empty set .¥ is called a semiring if (-, +) is a commutative monoid; (-, ) is a
semigroup; and both distributive laws of multiplication over addition hold with 0 -t = 0 =1¢-0,V ¢ € ..
Further, an element ¢ € . is called additively regular if and only if 3 some element ¢’ of . witht + ¢+t = ¢
andt' + ' +t =t and . is known as an additively regular semiring if and only if . = ./ = reg(.¥), where
reg(.”) represents the set of all additively regular elements of .. The element s’ is the pseudo inverse [10] of
s. For instance, if B = {0, 1} is a boolean semiring with binary operationsas 0 + 0 =0;0+1=1=1+40;
1+1=1and0-0=1-0=0-1=0;1-1= 1, then B is an additively regular semiring, where t’ = t,V¢ € B
is the pseudo inverse of ¢ € B. One can easily check that the pseudo inverse of an element is always unique. In
1982, Bandelt and Petrich [1] considered an additively regular semiring .¥ with conditions:

(A1) :a1(ar + @) = a1 +a},Var € .75 (A2) : s1(a1 +a}) = (a1 + a})s1, Vai,s1 € F; (As) :
a1 + (a1 + af)s1 = 1,V a1, 51 € 7 and investigated various results for this class of semirings. In addition,
every Bandelt semiring [6] is an additively regular semiring with Ay —condition.

Further, . is said to be prime if H/C = (0) infers that either H = (0) or K = (0), where H and K are any
two ideals of .. A semiring which does not have any nilpotent ideals is called a semiprime semiring. Note that
every prime semiring is also a semiprime semiring.

For given a,b € .7, then [a, b] (the Lie bracket) symbolizes the element ab + b'a or ab + ba’. Indeed, for
H, K C .7, the Lie bracket [H, K] is an additive submonoid of . which is generated by all elements of the form
hk + k'h or hk + kh/, for h € H and k € K and (#) denotes the ideal generated by 7. However, an additive
submonoid .% of . is called a Lie ideal if [, .| C .£. Note that [.£], %] is also a Lie ideal of .7, for %} and
% are Lie ideals of .7, because of the existence of the Jacobi identity [rq, [s1, t1]] + [s1, [t1, 71]] = [[r1, s1], t1]-
Throughout this study, . represents an additively regular semiring with A;—condition and % is a Lie ideal
of ., unless otherwise mentioned. We now delay the discussion of higher commutators of .% until later and
proceed with some results which will be used frequently in the sequel.

For simplicity, we denote u, = u + ' and by As— condition, u, € Z(¥),V u € ., where Z (%)
represents the center of .7.

Lemma 2.1 ([6]). Let . be an additively regular semiring. Then the following hold:

(D) uf = wy; (i) uiv] = (Wjvr) = (wgv]) = (uv1)” = wyvy; (idi) (1)’ = wjvr = wvl; (iv) (ug +v1) =
uy +01; (v) Ifur+v1 = 0, then vy = ul; (Vi) uro+u1o = Uro = U1l (Vi) ur+u1o = ur; (Viii) vy +uio = uj;
(ix) U1,V = UV1 = (U1V1)o = U1oV1o = VioUlo = (V1U1)o, ¥V U1, V1 € 7.

Example 2.2. Consider . = {0,1, a} having all additively idempotent elements and the binary operations in it
can be illustrated with the help of the Cayley tables given below:

S2)

Q ~ OO
Q@ 2 Qe
Ql—‘O@
Q ~ O+
Q@ 2 O

o O OO

Q = R

0
1
a
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One can easily see that the pseudo inverse of a is a’ = a,V a € . Obviously, .7 is an additively regular
semiring with As—condition and £ = {0, a}, is a Lie ideal of % .

The forthcoming example demonstrates that every additively regular semiring may not satisfy As—condition.

Example 2.3. Consider a Boolean semiring B and . = { {a b} € Msyo(B) : a,b,c,d € B} with usual

cd

! Y
addition and usual multiplication of matrices. Define pseudo inverse of an element of . by [Z 2} = {Ccl, Z,} , v

b
{lcl d] € .. Then .7 is an additively regular semiring which does not satisfy As—condition.
The following lemma is easy to prove, so we omit it.

Lemma 2.4. Ifuy,v1,w; € .7, then
(i) [ur, viws] = [ur, vi]wy +v1[ur, wil; (i) [urvr, wi] = wg[vr, wi ]+ [wr, wi g (GQ) [ o1, wi] = [ug, w] +
[v1,w1]; (V) [u1, [v1, wi]] + [v1, [w1, u1]] = [[u1, v1], w1] (Jacobi Identity).

3. Lie Ideals and Higher Commutators

We hereby introduce the notion of higher commutators of semirings. Also, some results regarding higher
commutators of . are proved which play a significant part in characterizing the Lie structure of semirings.
Throughout this section, . represents a prime additively regular semiring satisfying A;—condition.

Proposition 3.1. Ifu; € % with ui[u1,.] = (0), then u; € Z (7).

Proof. By hypothesis,
upfug,r] =0, Vre.7. (D

Again by hypothesis, we have uy[uq,rs] =0,V r, s € . which implies that uy (u;rs +rs'u;) =0,V r, s € 7.
Further, Lemma 2.1 implies that

0 = up(uirs +rs'us + rosuy) = uy(urrs + rs'uy + rsouy)
= uy(u1rs + rs'uy + rsui,) = ui(uirs + rs'uy + ruy,s), by As—condition

= uy(urrs + r8'uy + rours) = uy ((urr + r'ur)s + r(urs + s'uy)).

Then by equation (1), we have u1r(uys+s'uy) =0,V r, s € .7, thatis, u1.%[uq, s] = (0),V s € .. Therefore,
primeness of . infers that either u; = 0 or [u1,.”] = (0) and hence u; € Z(.7). [ |

Lemma 3.2. If char . # 2 and [u1, [u1, ]| = (0), for uy € &, thenu; € Z (7).

Proof. For any 1 € .7, we have [u1, [u1, 21]] = 0 which gives that
upug, x1] + [ug, z1]u) = 0.
Then by adding both sides [u1, 21]u1, we obtain
urur, 1] + [ug, z1)u) + [ug, x1]ur = [ug, 21]u;.

This infers that
wr[ur, 21 + [ur, x1ur, = [ur, z1]ug.
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In view of Ay—condition, we obtain uq [u1, 1] + u1,[u1, 1] = [u1, 1]uy. Thus,
i (urzy + 2hur) = (urzy + iur)ug, Vg € 7. (1)
Again hypothesis leads to [u1, [u1, z1y]] = 0,V 21,y € .. Equivalently,
uy (urzry + 2yyun) + (wzy + Tiyu))uy = 0, forany x1,y € 7.

Thus, by Lemma 2.1 and A;—condition, we can replace uiz1y + 2jyuy by (uiz1 + 2ju1)y + 21 (u1y + y'uy)
which gives that

wy ((wim + 2iu)y + 21 (uy + y'ur)) + (urzy + 2ur)y + 21 (ury + y'ur))uy = 0, forany 21,y € 7.

Further, by applying equation (1), we obtain 2(u1 21 +zju1)(u1y+y'u1) = 0,V 21,y € .%. As the characteristic
of . is other than 2, so we are left with

[Ul,l’ﬂ[’dl,y]zo, vmhyey‘ (2)

Replacing x1 by 21z in (2), where z € ., then by Lemma 2.4 and equation (2), we get that [uy, 21]-[u1, y] =
(0),V 21,y € &. Now, since . is prime, therefore [u, 1] = 0 or [uy,y] = 0,V 21,y € .% and hence in both
cases uy € Z (). [ ]

Proposition 3.3. If char . # 2 and [£, ¥ = (0), then & C Z(.7).

Proof. Foranyl; € £, s, € ., we have [l1, 51] € Z. By hypothesis, [I1,[l1,51]] =0,V € %, s € ., that
is, [l1,[l1,]] = (0), V11 € .£. Lemma 3.2 concludes that £ C Z°(.%). [ |

One can easily prove the upcoming two lemmas by using the similar arguments of [9, Lemma 1.8 and Lemma
1.9] with necessary variations.

Lemma 3.4. If 7 # (0) is a left ideal of 7, then ¢ + [/, = 7.
Lemma 3.5. If £ # (0) withu,.Z = (0) or ZLuy = (0), for any uy € .7, then uq = 0.

Now, we turn our attention to define the higher commutator of .%’ and prove some basic lemmas which we
need later to prove results concerning the Lie structure of higher commutators.

Definition 3.6. The higher commutator of . is defined inductively by:
(1) O = .7 of weight 1;
2).7WM = [,.], of weight 2

and a higher commutator of . of weight n is defined by [P, Q|, where P is a higher commutator of . of
weight p, Q is of weight q, with p + q = n.

For convenience, we give notation .7 (*) for the following series of . defined as: . 0 = o
SV = [Z . S),...., SE) = [7E-D) pE-1))

It is pertinent to mention that the higher commutator of weight 2 is only [7,.7] = (), whereas the
higher commutator of weight 3 is only .7 () = [[.7,.7],.7]; there are two higher commutators of weight 4 viz,
7, [, [, ]]] and [.77,.7], [, .7]]; three of weight 5 viz, [Z, [, .7, [, L], .7, [, <), .7, -7]]
and [, 7], [, ], ]] and so on.

The next lemma follows verbatim as Lemma 3 in [8].
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Lemma 3.7. A higher commutator of . contains .*¥), for some k.
An application of the above lemma is

Corollary 3.8. If H is a higher commutator of .7, then (H), the ideal generated by H, contains ./ (), for some
k.

Lemma 3.9. Let H be a higher commutator of .. Then ‘H. is a Lie ideal of ..

Proof. Let H be a higher commutator of .# of weight n. We shall prove the result by using induction on n. For
n = 1, clearly . is a Lie ideal of .. Now, we suppose that it is true for n = k — 1, that is, H = [P, Q], where P
is a higher commutator of . of weight p and Q is of weight ¢, with p + ¢ = k — 1, is a Lie ideal of .. Further,
consider K = [H,.7] is a higher commutator of . of weight k. Then obviously, K is an additive submonoid of
& and [K, ] = [[H,],) C [H,] =K, as [H,.] C H. Therefore, K is a Lie ideal of .. This finishes
the proof. |

Theorem 3.10. If uy is any element of ¥ which satisfies [u1, [, .]] = (0), then uvq € Z (7).
Proof. For any x1,y € .%, we have [u1, [x1,y]] = 0 leading to

wi[z1,y] + [z, yluy + 21, Yl = (21, ylus.
Now, by applying A;— condition on this equality, we have

urfxy, y] + (v +uy)fey, y] = [21, ylw

which infers that
w11y + uyxy = syur +y'ru, Vay,y € 7. (1

Again by hypothesis, we have [u1, [x1,z1y]] =0,V 21,y € .. Thus,
0 = ur(z121y + T1y/21) + (T121Y + 21y 70 U]
= w1 (21y + y'x1) + 21 (ry + Y’ )uy, Yo,y €S

By equation (1), we obtain that uyz1 (z1y + y'z1) + 10} (z1y + v'21) = 0,V 21,y € . which is equivalent to

(w11 + z1u)) (T1y +y'71) =0, Vg, y € 7. )
Changing y with yu; in equation (2) and applying A2 —condition, we have

0 = (w11 + z1u)) (T1yus + yuyzr) = (w121 + 210} (1901 + T1Yous + YUi 1)
= (w11 + z1u)) (T1Yus + Yorrur + yuixr) = (urry + z1u)) ((21y + ¥'z1)ur + y(r1ug + uixy)).
Moreover, by equation (2), we obtain (u;21 + z1u})y(z1u; + vjz1) =0,V z1,y € .. Equivalently,
(u1z1 + 21u)) S (2101 + ujmy) = (0), Vo, € S

and in that case (.(z1u; + ujz1))? = (0), which is a contradiction, as .% does not have any non-zero nilpotent
ideal. Thus, ujz1 + v}y =0,V 21 € 7, thatis, u1z1 = z1uy, Vo € . Hence uy € Z (). [ ]

Remark 3.11. Let Z'(.7) be the center of #. We define the extended centroid of £ by the set Z. () = {s €
S sl =15,V 1 € L}, Also, one can easily check that Z () C Zy ().

Theorem 3.12. Let char . # 3 and P be an additive submonoid of . If [[p, [p, P]], s] = (0),Vp € P,s € .7,
then [P, [P, P]| C Z ().

e
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On derivations and Lie structure of semirings

Proof. The given hypothesis infers that
[k, [k,ma]],y] =0, VE,ms € P,y € 7. 1

Again by hypothesis, [[I; + k,[l1 + k,m1]],y] = 0, for any I;,m1,k € P,y € . Then by Lemma 2.4, we
obtain

0= [[ll + k» [llaml} + [kvml]]ay] = [[ll + ku [lluml]]vy} + [[ll + k? [k7m1]]7y]
for any [y, m1,k € P,y € .. Further, by Lemma 2.4 and equation (1), we get that
[k, [, mall,y] + [T, [k, ma]],y]l = 0, Vi, my, ke Py € 7. )

By using Jacobi identity, we can substitute [[I1, [k, m1]] 4 [[l1, k], m1] in place of [[k, [l1, m1]] in equation (2) and
thus we have
2[[l17 [kaml]]ay] + [[ll,k],mﬂ,y] = 07 vzhmla ke va €. (3)

By interchanging /; and m; in equation (3), we have
2[[ma, [k, 1], y] + [[ma, k], l1], 9] = 0,V li,my, k € P,y € .S
which is equivalent to
2([[11, k], ma), y] + [[l1, [k, m1]],y] =0, Vi1, m1,k € P,y € 7. 4
Further, by adding equations (3) and (4), we get that
3([[[l, k) mal gl + ([, [k mall,w]) = 0, Vil mas k€ Py € 7

Again using Jacobi identity, we have 3[[[l1, m1],k],y] =0,V l1,m1,k € P,y € .. As char .¥ # 3, so we are
left with [[[l1, m1], k], y] = 0,V l1,m1, k € P,y € .. Therefore, [P, [P, P]] C Z(). [ |

The next corollary is an important outcome of the previous result.
Corollary 3.13. If char . # 3 and [[I1, [l1, Z]], £]| = (0), forany I, € Z, then [Z,[L, L] C Zy ().
Theorem 3.14. If char .7 # 2 and [[£, L, Z]], Z] = (0), then [ £, [ £, ZL]] C Z (7).

Proof. Since £ is a Lie ideal of .7, therefore [Z,[Z,.Z]] is also a Lie ideal of ..  Thus,
[l1,81] € [Z,[Z, 2], V11 € [Z,[ %, Y] and 51 € . Moreover, by hypothesis [, [l1,s1]] = 0, V
Iy € [Z,]Z,Z]],s1 € .7 and hence Lemma 3.2, concludes that [.Z, [Z, ]| C Z (). [ |

4. Lie structure of .7

The idea behind the results proved in this section was first brought to the author’s attention during the study of
the Lie structure of rings given by Herstein [7-9]. Throughout this section, .’ denotes a 2-Lie ideal (that is, a Lie
ideal having property 2/1m; € .2,V 11, m1 € £) of .. We now begin this section with an example:

Example 4.1. Consider . = 7Z x Z+* = {(u1,7m1) : uy € Z,71 € Z*}, where Z is the set of all positive
integers with binary operations @ and ©® by (u1,r1) ® (v,s) = (u1 + v,lem(r, s)) and (u1,7m1) © (v,8) =
(uyv, ged(ry,8)), ¥V (u1,71), (v,8) € 7. Further, define the pseudo inverse of an element (uy,71) of . by
(u1,m) = (—uy,71). Then clearly, . is an additively regular semiring with As—condition. Indeed, the set
2 ={(0,5) : s € Z*} is a 2-Lie ideal of & .

We now introduce a more general result which is a generalization of [9, Lemma 1.3].
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Theorem 4.2. If char % # 2, then either £ is contained in % () or £ contains a non-zero ideal of ..

Proof. In case [.Z,.Z] = (0), then by Proposition 3.3, we have ¥ C Z(.). But, if & ¢ 2°(.), then again
by Proposition 3.3, [.Z, .Z] # (0), so we shall prove the containment of the ideal 2.7 [.%, £].7 of . in £. We
claim that 2.7[.%, £] C Z. For this, let 2s[l1,m1] € 2.[.Z, L], forany l;,m1 € £, s € 7. Then

2511, m1] = 2(slymy + smily)

2
= 2(slymy + solymy + smily), by Lemma 2.1
= 2(slymq + l1som1 + smjly), by Ay—condition
2 sllml + l15m1 + llslml + s’mlll),by Lemma 2.1
2

(Iysmy + s'myly) + (lhs'my + slimy)) = 2[l1, sma] + 2[l1, 8'Jmy € Z.

—~ Y~~~

Hence, 2.7, £ C Z. This infers that
[2r[ly, m],8] € X,V 1l1,m € L1, s €S

which is equivalent to
2r[ly, my)s + 25'r[ly,m] € Z. (1

Also, since 2sr[ly, m1] € &, therefore equation (1) gives
2r(ly, m1)s + 2s'r[ly, mqy] + 2sr[ly, my] € Z.
Equivalently, 2r[l1, m1]s 4+ 2s.r[l1, m1] € Z. Thus, we obtain
2r(lymy + mil)s +2(s + §)r(lymy +mily) € Z.
In other words, 2r(Iymy + mjli)s + 2(sorlymy + sormily) € £. Then, A;—condition yields
2r(lymy + mily)s + 2rolymys + 2romilis € Z.

Therefore, Lemma 2.1 concludes that 2r(lymqy + mily)s € £,V li,m; € Z,r,s € % which gives
2.7%, X C Z. The theorem is thereby established. [ |

Definition 4.3. [2] A semiring .7 is called ideal-simple (id-simple for short), if % is non-trivial and .9 = &,
whenever 7 is a non-zero ideal of . such that .% contains atleast two elements respectively.

The above result immediately implies the following theorem which is a generalization of [9, Theorem 1.2]

Theorem 4.4. If .7 is an id-simple semiring with char % # 2, then either & C % (%) or £ coincides with
.

Lemma 4.5. [f char ¥ # 2 and £ ¢ Z (), then there exists an ideal I of 5/ such that .9 ,.7| C Z.

Proof. As proved in the Theorem 4.2, the non-zero ideal 2.7 [.Z, .7 of .# is contained in .Z, then it follows
easily that [2.7[.%, .¥].7, ] C .£. Hence proved. [

In the rest of this section, . denotes a prime semiring with char . # 2. It is easy to observe that every
id-simple semiring is a prime semiring. Therefore, all the forthcoming results of this section are also true for an
id-simple semiring.

Lemma 4.6. If £ ¢ Z() and uy,v € . with uy.Zv = (0), then either uy = 0 or v = 0.
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Proof. By the above lemma, there exists an ideal # of & with [ #,.] C Z. Letly € ZL,i € Z,s € 7.
Then [iuily, s] € [ 7 ,.7] C Z. Henceforth,

0 = uq[turly, slv = wy[iug, sllv + uyiug [l1, sjv = uq [iug, s)liv, as w1 Lo = (0)

= uq(iuys + s'iug)l1v = uriugslyv, as upLv = (0).

This shows that u; Zu;.¥Zv = (0). If u; # 0 and by using the fact that . is prime, we obtain v = (0),
then by Lemma 3.5, v = 0. [ |

Theorem 4.7. If [u1,[-Z,.L]] = (0), for any uy € .7, then either & C Z (%) or [u1,- L] = (0).
Proof. Assume that & ¢ Z°(.). For any l;,m; € £, hypothesis gives that [u1, [l1,m1]] = 0 which leads to
ul(llml + m’lll) + (l1m1 + m’lll)u’l + (l1m1 + m’1l1)u1 = (l1m1 + m’lll)ul.

This infers that
ur(lhmy +mil) = (Iymq +mily)u. (1)

Again by hypothesis, we have
[Uh [117 211m1]] = O,V ll,ml cZ.

Since char . # 2, therefore [u1, [l1,lym4]] = 0,V I, m; € £ which is equivalent to
urly(lymy +mily) + L (lomy + mil)uy =0,V 11, m; € Z.
Then by using equation (1), we get
urly(limy + mily) + L (Iymyg +mil) =0

which concludes that
(u1l1+llu’1)(llm1 er'lll) =0,VIl,m €2 2)

The replacement of m; with 2myn, where n € .Z, in equation (2) gives
2(U1[1 + llull)(llmln + m’lnll) =0.
But char . # 2 gives

O = (Ulll + llull)(llmln -+ m’lnll) = (u111 + llull)(llmln —+ mlonll —+ mln’ll)
= (u111 + llull)((llml —+ m’lll)n + ml(lln + n'll))
= (’U,lll + llu'l)(llml + m’lll)n + (u1l1 + llu’l)ml(lln + n’ll),

then equation (2) yields (uily + liuf)mi(lan + n'ly) = 0,V I, mq,n € Z. In other words,
(urly + Lu)) Z(Lin+n'ly) = (0), Vi, n € Z.

By the above lemma, for any I; € £, we obtain either u1l; + l1uj = 0orlin +n'l; =0,V n € Z. Now, if
[[1,Z2] = (0),V1 € Z, then [Z,.Z] = (0) and hence Proposition 3.3 yields . C Z°(.¥), which is absurd.
Therefore, there exists some k € .Z with [k, .£] # (0), then [uq, k] = 0. We now claim that [u,.Z] = (0).
For this, if possible, let j(# k) € £ with [u1, j] # 0. Thus, [j,.Z] = (0). This infers that [j + k,.Z] # (0) and
[u1,j + k] # 0 hold simultaneously, which is not true. Hence, [u1,.Z] = (0). [ |

An application of the above theorem is as follows:

e
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Corollary 4.8. If u; € . satisfies [u, £, Z]] = (0), then either £ C % () or uy commutes with every
element of £.

The upcoming theorem is a partial extension of [8, Theorem 1].
Theorem 4.9. If [u1, [u1,-Z]] = (0), for any uy € ., then either £ C Z () or [u1,Z] = (0).
Proof. Let ¥ ¢ Z(.). By given hypothesis, [u1, [u1,21]] = 0,V 21 € Z. This infers that u;[u, z1] +
[ug, z1]uy + [u1, 21]ur = [ug, x1)u, ¥V 21 € £. Further, A —condition implies that
uy(ury + 2hur) = (urzy + iur)ug, Vg € Z. (1)

Again by using hypothesis, we obtain [ug, [u1,2lym4]] = 0, for any {1, m; € Z. Then char ./ # 2 gives that
[u1, [u1,lim]] = 0, for any I, m; € £. Thus,

0= ul(ulllml + l/1m1’u,1) + (u1l1m1 + l’lmlul)u’l
= ul(ulllml + l10m1u1 + llmllul) + (u1l1m1 + l10m1u1 + l’lmlul)ull

= ul(ulllml + l10u1m1 + llmllul) + (u111m1 + l10u1m1 + l'lmlul)ull

which gives that
w ((urly +ur)my + 1 (uymy +miu)) + ((urly + 1w )my + 1 (uymy +miuyg))u) = 0, forany i1, m; € Z.

By using equation (1), we are left with 2(u1ly + ljur)(uimy + miur) = 0,V 11, m; € Z. Since char .7 # 2,
so we obtain
(u111 + l/lul)(ulml + m’lul) =0,Vl,m € A
or

[u1,ll][u1,m1] =0,VIl,m €Z. 2)

Further, by replacing /; by 2{;w, for any w € . in the above equation, we have
2[u1,l1w][u1,m1] =0,Vil,m € Z.

Again, since char . # 2, so we left with [ug, iw][u1,m] = 0,V I1,m; € Z. By Lemma 2.4 and
equation (2), we deduce that [uq, [1]w[ui, m1] = 0,V 1, m1,w € Z. Equivalently, [u1,[;]-Z[u1, m1] = (0), ¥
ly,my € £. Lemma 4.6, infers that either [u1,l1] = 0 or [u,m;] = 0,V l;,m; € Z. Both cases implies that
[u1,-Z] = (0). [ |

Corollary 4.10. Let [uy, [u1,.Z]] = (0), for any uy € .. Then either £ C % () or uy commutes with every
element of £ .

Now, we divert our attention to the study of the Lie structure of higher commutators as a Lie ideal of . and
hence as a Lie subsemiring of ..

Theorem 4.11. If a € . satisfies [a, [a, (H)]] = (0), where (H) is an ideal generated by H, for some higher
commutator H of 7, then either (H) C Z () ora € Z (7).

Proof. Let H be a higher commutator of .%. Then clearly (#) is a Lie ideal of .. Suppose that () ¢ Z(.7).
Thus, by Theorem 4.9, we have

[a, (H)] = (0). (M

By Corollary 3.8, (H) 2 .#®), for some k. Thus, equation (1) implies that [a,.#*)] = (0), that is,
[a,[#*~1) #(#=1D]] = (0). By Theorem 4.7 and the same argument as above we can say that [a, . (¥~ D] =
(0). Now, repeating the same process and using Theorem 3.10, we end up with a € Z(.¥). [ |
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5. Derivations in semirings

Throughout this section, .# represents a prime semiring with char .& # 2.
Definition 5.1. [4] An additive map d : . — . is called a derivation of 7 , if (vy)? = 2%y + 2y, Vx,y € 7.

Definition 5.2. Ler T be any arbitrary subset of .. Then the centralizer of T in % is Co(T) = {z € & :
[z, T] = (0)}.

Lemma 5.3. Co (%) is a Lie ideal and subsemiring of .7 .

Proof. Lett; € Co(Z). Forany s € .7, [[t1, s],l1] = [t1, [, l1]] + [s, [l1, t1]], by Jacobi identity. This gives
that [[t1, s],l1] = 0, as [t1,.Z] = (0). Thus, [t1, s] € C»(.Z). This concludes that C»(.%) is a Lie ideal of ..
Now, let t,ts € C;ﬂ(,,?) Then [tltg,ll] = tl[tz,ll] + [tl,ll]tg =0,V € % which yields tite € Cy(f)
This proves the lemma. |

Observe that the centralizer of a Lie ideal of .¥ is a 2-Lie ideal of ..
Theorem 5.4. If & ¢ Z(7), then Co (L) C Z ().

Proof. By the above lemma, C»(.%) is a Lie ideal and subsemiring of .. We now claim that C»(.%) can
not contain a non-zero ideal of .. On contrary, let .# be a non-zero ideal of .% such that .# C C» (%), i.e.,
[, %] = (0). This concludes that [.¥.#, ¥] = (0) which implies that [si,l;] =0,V s € ,i € Z, |, € L.
Thus, s[i,l1] + [s,l1]¢ = 0 leading to [s,l1]i = 0,V s € S,i € S,l; € £. Hence, [s,l;].¥ = (0), V
s € 11 € Z. This deduces that [s,11].7.# = (0),V s € ., l; € .Z. Primeness of . yields [s,l;] = 0,V
s € S,y € Z. Therefore, & C Z(.7), which is absurd. This concludes that C (%) does not contain any
non-zero ideal of .. By Theorem 4.2, we get that C» () C Z(.7). [

The next result can be directly deduced as an outcome of Theorem 4.7.
Theorem 5.5. If . is a 2-Lie ideal of ./ such that & ¢ % (%), then C»([.Z, Z]) = Co(ZL).
Theorem 5.6. If d is a derivation of . such that % = (0), then either ¥ C 2 (%) or d = 0.

Proof. As.Z? = (0), therefore 0 = [I1,5]* = (lhs + 8'l1)? = Ifs + lis” + (s) + &I,V 11 € Z,5 € .
This infers
llsd"’_(s/)dll:QVll €eZ,se”. (1)

In equation (1), the replacement of s with smy, where m; € &, gives Iy (s%m +sm$)+((s")¥my +s'm$)l; =0,
Vi, € Z,s € .. The given hypothesis concludes that

llsdml + (Sl)dmlll =0, Vh,ml € Z,S c 7. 2)

By applying Lemma 2.1 on equation (1), we get [157 = s%l; and then using this in equation (2), we have
sUymy + (8')%maly = 0,V Iy, my € &L, s € .7. In other words,

s, mi]=0,Y1l,m € L,s€.7. 3)

By putting st in place of s, with t € ., we get that (5% + st?)[l;,m;] = 0. Then equation (3) yields
5%.7[ly,m1] = (0). By the primeness of .7, either d = 0 or [l;,m;] = 0, ¥ [, m; € Z. By Proposition 3.3, we
get the desired conclusion. |

Proposition 5.7. If . is a 2-Lie ideal of . and d is a non-zero derivation of .’ with £ ¢ % (.%). Suppose
that a. 2% = (0) or £%a = (0), then a = 0.

e
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Proof. Asd # 0 and .Z ¢ (%), so by the above theorem, £ # (0). Since [l1,s)l1 = l1(sl1) + (s'l1)l1 €
(£, 7] C &, forany |} € £,s € .7, therefore 0 = a([l1,s]l1)? = a([l1,s]%; + [l1,s])l¢). The given
hypothesis infers that a[ly, s]I{ = 0,V ; € £, s € .. Replacing s by m{r, withm; € £, r € .7, we get that
0 = a[ly, mér)l¢ = am@[ly, r)i{+a[ly, md]ri,V 11, my € &L, r € .. This concludes that a(lymé+mdl})rid =
0,V1l,m € .Z,rc€.%, asami = 0. This implies that alymiri{ = 0,V l;,m; € Z,r € .. Equivalently,
ali. L4714 = (0), V 1y € &. Primeness of .7 gives that for any [; € &, either al;.#? = (0) or I{ = 0.
But £ # (0), so there exists some n € .Z such that n? # 0 and an.?? = (0). We further claim that
apL? = (0), ¥V p € Z. If possible, let p(# n) € £ with ap.£? # (0). This deduces that p? = 0. Thus,
a(p+n)L? = apL?+anf? # (0) and (p+n)? = n¢ # 0 hold simultaneously and it leads to a contradiction.
Hence, ap.Z¢ = (0),V p € &, equivalently a.Z.%? = (0). In view of Lemma 4.6, we obtain a = 0. [ ]

Finally, we give an extension of [3, Theorem 1].
Theorem 5.8. If d is a non-zero derivation of ¥ and £ is a 2-Lie ideal of ./ with P = (0), then & C Z ().

Proof. As we have proved earlier in Theorem 4.2, the ideal 2.7 [.Z, ). C £, therefore
(23[11,m1]n)d2 =0,V ly,m,ne ¥ se?.

This gives that

2

0 = ((2s[ly,m1])%n + 251y, mi|n®)¢ = (2s]l1, ml])dzn + (2s[l1, m1])4n® + (2s[l1, m1])n? + 2s[ly, mq|n?
Since 2.7 (%, ¥ C &£, n € £ and char ¥ # 2, therefore given hypothesis leads to
(s[l1,m1])n% =0,V l1,m,n € L, s €.7.

This infers that
Sd[ll,ml]nd + s[ll,ml]dnd =0,Vli,m,ne ¥, sc.. D

Replacing s by sr, with r € .% and obtain
sdr[ll, ml]nd + s(rd[ll, ml]nd + r[ly, ml]dnd) =0.

Then equation (1) implies that s%r[l;,m;]n? = 0 which is equivalent to s%.7[l;,m;]n% = (0), V l1,my,n €
Z,s € .. By primeness of ., we get that

[ll,ml]ndzo,Vll,ml,ne.i”. 2)

Further, replacing m; by 2mt, with t € £, we have 2([l1, m1]tn® + m[l1, tjn?) = 0. By using char . # 2
and equation (2), we are left with [I1,m,].Zn? = (0),V I, m1,n € Z. Then Lemma 4.6 gives either [I1,m;] =
Oorn? =0,V l;,m;,n € &. Then Proposition 3.3 and Theorem 5.6 concludes that ¥ C 2(.%). [ |

6. Conclusions

This paper characterized the Lie structure of semirings and action of derivations on Lie ideals of semirings. It
is observed that for a prime semiring ., with char . # 2 and [a, [.Z, Z]] = (0), for any Lie ideal .£ of .
and a € .7, either & C Z () or [a,.Z] = (0) and thereby partially generalized Herstein’s theorems in the
framework of additively regular semirings and their higher commutators. Moreover, an extension to Herstein’s
result: “For a ring R with char R # 2, any Lie ideal .Z is either contained in the center of R or contains a
non-zero ideal of R” is established which also enable us to extend Bergen’s theorem for derivations.
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Abstract. In this exploration, we introduce a certain family of regular (or analytic) functions in association with the right-
half of the Lemniscate of Bernoulli and the well-known Opoola differential operator. For the regular function f studied in
this work, some estimates for the early coefficients, Fekete-Szeg6 functionals and second and third Hankel determinants are
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1. Introductory Statements

Firstly, we represent by A, the family of normalized and regular functions whose form is of the Taylor’s series
fR)=2+> a.2" f(0)=f(0)-1=0 (1.1)
r=2

and z € X := {z € C, such that |z| < 1}. Also, represented by S is the family of functions f € A that are also
univalent in Y. A famous subfamily of S is the family S7 of starlike functions. A function f € § is said to be
in ST if the condition Re(z(f'/f)) > 0 holds. For function class S, the Koebe one-quarter theorem, see [10],
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is a famous theorem that affirms that the range of every function f € S includes the disk {w : |w| < 0.25}. For
this purpose, f € S has the inverse function f~! where

FFHf@) =2 z€X,
FEHw) =w,  fw| <7ro(f), ro(f) > 0.25,
and some computations show that
FHw) = w — agw? + (203 — az)w® — (5a3 — bagas + as)w* + - - - . (1.2)

We represent the family of regular functions of the form
p(z) =1+ pg2*, z€X (1.3)
r=1

by P where P is called the family of functions with positive real parts in 2. A generalization of (1.3) is the
function

pg(z)zl—l—(l—a)z:pwzr, 2€e X 0<o<1, (1.4)
=1

known as the function with positive real parts of order 0. Let P (o) represent the family of functions g, (z).
Let ”<” represent subordination. Then for f, F' € A, f(z) < F\(z) if there exists a Schwarz function

such that s(0) = 0, |s(z)| = |z| < 1, and f(z) = F(s(z)). Suppose F(z) is univalent in X, then
f(2) < F(z) if and only if f(0) = F(0) and f(X) C F(X).

Recently, the direction of research in theory of geometric functions shows that the study of some prescribed
domains p(X) is inexhaustible. In fact, special cases of functions p(z) have greatly motivated many researchers
to study various kinds of natural image domains of p(X'). Some of these domains can be found in [7, 9, 12,
13, 15, 16, 18, 21, 25-27, 29, 31] and the citations therein. Precisely, Sokél and Stankiewicz [32] reported the
subfamily SL(¢b) C ST satisfying the condition

e(z)=2(f/f) =b(z)=V1+2 zeXx (1.5)

such that function ¢ lies in the domain bounded by the right half of the lemniscate of Bernoulli which is
geometrically represented by |p? — 1| < 1, Vz € X. One can find some descriptive diagrams and more properties
of domain |p? — 1| < 1 in [32]. The work of Lockwood [20] is a treatise of curves available for further research.

The differential operator Df’f : A — A was announced by Opoola [23], see also [4, 17, 27]. For f € A of
the form (1.1),

DY f(2) = f(2)

Drff(z) =1+ (B—p—D7)f(2) — 27(8 — p) + 27f'(2) = T-(f(2))
D20 f(z) = T (Drh f(2))

D0 f(2) = T (D20 f(2))

and

DIf(2) = T (D7 £(2)
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which can be simplified as

Df;ff(z)zz—i—Z(l—l—(m—i—B—u—1)T)"a$z”3, zeX (1.6)

r=2

for parameters in (2.2). It is clear that from (1.6),
L. DYRf(2) = D () = Doy f(2) = £ (2).

2. D’fﬁﬁ (2) = D} f(2) = D" f(2) is the famous Siligean differential operator, see [3, 30].

3. DZ”’B f(z) = Dl f(2) = D} f(2) is the famous Al-Oboudi differential operator, see [2].

2. A New Family of Regular Functions

The function f in A is in the family Bﬂf (0,7, €b) if it satisfies the condition
DI

1_—2i622
(1 e2iszen Do

0b(z) 2.1

for

neNg=NU{0}, 0<u< B Br206¢e(-2.7),0<y<1, 2€ 3, 22)

£b(z) and DZﬁLB f(2) are functions declared in (1.5) and (1.6), respectively. We however demonstrate that the
following are special cases of B2 (8,7, (b). Let go(z) = (14 2)/(1—z) and §,(2) = (1+ (1 —20)z)/(1—z)
be the extremal functions, respectively in P and P(o), then

1. Bg:g (0,0, po) = R, the family of bounded turning functions presented in [1].
2. B2£(0,0,9s) = R(0), the family of bounded functions of order o presented in [33] and
3. B2A(0,1,9) = H, the family of functions presented in [11].

In this investigation, a new subfamily of regular functions is defined and some estimates for early coefficients,
Fekete-Szego functional (for both real and complex parameters), and the second, and third Hankel determinants
for the functions f € A are established. We also established the upper estimate for the third Hankel determinant
for the inverse function f~! of f € A. We are inspired by the works in [18].

3. Lemmas

The lemmas that follow shall be needed.
Lemma 3.1 ([6]). If p(z) € P and a € R, then

2(1 — a) when a <0,
< 2 when 0 < a < 2,
2(a — 1) when a> 2.

p fapj
2 2

Lemma 3.2 ([6]). If p(z) € P and 3 € C, then
2
1

po — ;#’2 < 2max{1, |1 — |}

Lemma 3.3 ([14]). If p(z) € P, a € Rand x,y € N, then

2 when 0<a<1,

iy — ; <
[Paty = appy| < { 2|2 — 1| elsewhere.

Lemma 3.4 ([10]). If p(2) € P, then |p;| < 2and x € N.
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4. Main Results

Henceforth, it is assumed that all parameters are as declared in (2.2) unless otherwise stated. Our results are

therefore as follows.

4.1. Coefficient Estimates

Theorem 4.1. If f € B2(5,7,(b), then

laz] < =
2¢
13 + 842
8¢3
25 + 82
1664
1603 + 83272 + 512+*
51265

las| <

las| <

las| <

where
Gr = (L (o 4+ f = = 1))+

Proof. Let f € B?(6,, (b), then the definition of subordination permits us to represent (2.1) as
T, p

DL f(2)

1 — 200,22
( )

e 7z

— tb(s(2))

or
(1 = e 292 22) (DI 1 (2)) = 21 + 5(2)] /2,

For brevity, we use ¢, in (4.5) so that simple computation shows that (4.6) expands as

2+ ¢oas2® + (B3a3 — e 209)23 + (daaq — e 202 Pran) 2 + (¢5as — e 202 p3az)z” + - -

1 1 8 1\ 3217 ]
1(419 , 105, 5
1

1 1 17 1/13 )
=z+-p12+ - (pz - p%)zs +7 < P — P2 +p3)24

204871 96 4 8

so that the comparison of the coefficients yields

az = 2L
42

0y — P2 WP e
43

(ps — %p1p2 + %p‘;’) + e 20y 2p,

2o

aq =

and

105 o 99 5
+ PiP2 — —P1P3 Py +pg |27+

as =

4¢s

221

(pa — 2pips — 203 + 32P3p2 + 59kP1) + (P2 — p7)e 21092 4 dem 41044

A.1)

4.2)

4.3)

4.4)

4.5)

(4.6)

4.7

(4.8)

4.9)

(4.10)
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Application of triangle inequality and Lemma 3.4 in (4.8) yields our result in (4.1). Also, from (4.9),
P2 — 03| + 4le ]
4¢3

and the application of Lemma 3.1 yields the result in (4.2). From (4.10), we have the presentation

laz| <

s — Spipe| + 58| + [e >y |p

4¢4
which by the application of Lemmas 3.1 and 3.4 yields our result in (4.3). To obtain estimate for a5 we have from
(4.11) that

las| <

2 2
oo = P = 3p1ps) = §pa(p2 = 5%5) + gquspi + (P2 — T )0y + dem M0y
5 — .
4¢5
and )
as] < P2 = Spups + Slpallpe — 351 + o2 pd] + |p2 — T B |le=2 |y + dle 0|y
50 <
495

which by the application of Lemmas 3.1, 3.3 and 3.4 yields our result in (4.4). |

4.2, Estimates for Fekete-Szego Functional
Another commonly studied property of the coefficient problems of f € A is the Fekete-Szego functional
FS(e,f)=|ag—ea3|, c€R (4.12)

announced in [8]. Interested reader may see [4, 5, 17-19, 24] and the citations therein for more properties,
applications, and background details.

Theorem 4.2. If f € B;‘f (8,7, €b), then for real parameter ¢,

2 2
% when e< — 127;;2
2 14242 1763 993
’ag 5a2’ < ST when — 2¢32 <e< — 2¢§ (4.13)
2
7“_21;“327 when > 7%

where
1743 + 2e¢3

4¢3
Proof. Let e € R. If we substitute (4.8) and (4.9) into (4.12) we will arrive at

(4.14)

a5 — ca?| = (p2 — §pi) +4e72°9*  ep?
o 463 1693
so that
17¢5 + 2245\ pi| | e %92
az — Ea’2| —_ 2 o +
4¢ 4¢3 2 ¢3
or
p1 ’72
az — €a §—p —a— + —
| 3 2| 4¢ ¢3

where « is defined in (4.14). The application of Lemma 3.1 means that for « that satisfies conditions o < 0,
0 < a<2and a > 2, we have the results in (4.13).
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Theorem 4.3. If f € Bﬁ[j (8,7, €b), then for complex parameter &,

1 72
as — &a2l < — max{1,[1 - B|} + — (4.15)
Jas = a3 < 5 mase{L. |1 3} + -
where )
17¢5 + 283
f=—"F" 4.16)
4¢3
Proof. Let ¢ € C. If we substitute (4.8) and (4.9) into (4.12) we will arrive at the inequality
1 17¢2 42 gb p2 6721'6 2
|a3—£a§|§p2—<22€3 =1 7
4¢3 4¢3 2 b3
or ) )
1 P gl
_fall < — _ gL .
las §a2\_4¢3 p2 = B5 4—¢3
where £ is defined in (4.16). The application of Lemma 3.2 produce the result in (4.15). |
4.3. Estimates for some Hankel Determinants
The yth-Hankel determinant
1 Q41 Az42 - Qpiy—1
Ar4+1 Qr42 oo ... Qgiy
HDy,T(f) — Ar4+2 Ag43 .- oo Op4yt1 (4_17)
Agt+y—1 Qz+y -+ - Qpp2(y—1)

(z,y € N) was introduced by Pommerenke [28]. (4.17) has its elements from the coefficients of f in (1.1).
Observe that from (4.17), we can establish that

[HD21(f)] = |as — a3], (4.18)
|HD22(f) = |azas — a3, (4.19)
HD31(f) = as(azas — a3) + as(azas — as) + as(asz — a3) (4.20)

hence,
[HD31(f)| < lasl|HD22(f)| + laal|G2(f)] + las||[HD2,1(f)]- 4.21)

where
G2 (f)] = |aztzi1 — azta|, = =1{2,3,4,...}. (4.22)

Even though the functionals in (4.12) and (4.18) have different historical background, yet it can be observed that
the functionals are related since |[HD21(f)| = FS(1, f).
For the inverse functions f~! in (1.2), Obradovic and Tuneski [22] established that

HD31(f )| = [HD31(f) — (az — a3)?| (4.23)

and obtained some estimates for some subfamilies of S. Interested reader may see [4, 5, 17-19] and the citations
therein for some properties and applications; and more background details on Hankel determinants.

Theorem 4.4. If f € B2(5,7,(b), then

1+ 242
HDy (f)] < (4.24)
203
Y A
MIM
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Proof. Substituting £ = 1 in (4.15) yields (4.24). |
Theorem 4.5. If f € B™P(6,,(b), then

oy

4
HDoo(f)| < —4A + 8B — 2C + 8D — E + 4F + L 4.25)
) ¢2
2
where
A= 1 _ 289¢2¢4—226¢§ N
6h2¢a’ 1024¢ J 1692’
L s 420
_ - _ 1.2 _ +93 .2
D= Gigsater E=27 and F =500
Proof. Substituting (4.8), (4.9) and (4.10) into (4.19) simplifies to
1 289¢24 — 2693 4 1 5 174 —5¢3 ,
H _ _
22 Z160,0, "7 T T 11bstfen 7 1637 T Gdgaddes T
1 iy 17 + 2 iy €—4i6 4
~ e 20,200 4 ¢2¢42 ¢3e 2572‘”?_ 2’Y
203 1620504 o3
and for brevity we get
4 2 2 2i6 ais o € M0t
HDs2o(f) = Apips — Bp] — Cp; + Dpips — Ee” “"py + Fe™""py — 72
2
for A, B, C, D, E and F in (4.26). Now some rearrangement and simplifications yield
B 2D p2 L 2F p2 6741'5,74
D = A - —p})-C — =) e - =)
[HDa,2(f)] ‘ P1 (ps Ap1> P2 (p2 C 2 ) € D2 E 2 ¢§
so that
B 2D p? iy 2F p? e 4104
D < |A — s C it ' § Fe—210 _ 2 A
|H 2,2(f)|—\ p1| |p3 Apl + |Cpa| |p2 C 2 + |Ee | 1p2 oo + tb%
and the appropriate application of Lemmas 3.1, 3.3 and 3.4 yields (4.25). |
Theorem 4.6. If f € B7(5,7,(b), then
Ga(f)| < —2G + 4H + 8T +2J (4.27)
where
G- 1 _ $at50a¢s 1792+ 13¢2ds 0 $ads — ¢472 4.28)
4y’ 16¢2¢3¢4 128¢2¢3hs 4p2¢304
Proof. Substituting (4.8), (4.9) and (4.10) into (4.22) simplifies to
¢4+ Dpadp3 1704 + 130203 3 a3 — Pa 95 o
G =aga3 — a4y = ——p3+ ——— - - e ™
2] = 0t == st Gt P2 T 128000 P Abadta
and for brevity we get 4
Go(f) = —Gps + Hpips — Ipi — Je *p,
for G, H, I and J in (4.28). Now some rearrangement and simplifications yield
H 3 —2i§
G2(f)| = |-G Ps = HP1p2 —Ipy —Je " m
so that "
(G2(N) <1 = Gl |ps = Grava| + pi] + [Je™**p1]
and the appropriate application of Lemmas 3.3 and 3.4 yields (4.27). |
S
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Theorem 4.7. If f € B22(5,7,(b), then

13 4 82 4
[HD31(f)] < (;g) {—4A+8B—20+8D—E+4F+;3}

25 + 8v2 1603 + 832y2 4+ 51294\ [1 + 242
_ —2G +4H + 81 +2J 4.29
(16¢4)[ AT %( 51265 2 | “
where A, B,C, ..., J are defined in (4.26) and (4.28).
Proof. Substitute (4.2), (4.3), (4.4), (4.24), (4.25) and (4.27) into (4.21) yields (4.29).
[ |

Theorem 4.8. If f € B27(5,7,(b), then

1 2 2
< B8 [—4A+SB—2C+8D—E+4F+;2]
2

D —1
HD31(f )] < 10
1+272{ 74] {25+872]2 { 1 ]6
4L — 2K +4N —2M +8P —4R+16Q + — |+ | ————| + |=— 4.30
2¢3 @ o5 16¢4 2¢2 (4.30)

where A, B,C, ..., J are defined in (4.26) and (4.28), and

+

17¢3¢3—6¢5 2

— 1 _ _5 S _
=35 L= Toa M =157 N = "nizse 15 4.31)
R=_5 _ 6¢s5+35¢3¢3 0= 8165 —419¢2 p3 :

T 32¢5° T 128¢2¢3ds = T 8192424305

Proof. Substituting (4.20) into (4.23) yields

3
HDgJ(f_l) = (ag(a2a4 — CL%) + a4(a2a3 — CL4> + a5(a3 — CL%)) — (a3 — a%)
= 2aasa4 — 2a3 — a2 + azas — a3as + 3azas — 3ajas + aS
= 2a3(azay — a3) + as(as — a3) + 3a3as(az — a3) — aj + a$

= 2a3(agaq — a3) + (a3 — a3)(3a3a3 + as) — aj + a$

so that
(4.32)

(HDs1(f )] < 2|as||azas — a3| + |az — a3||3a3as + as| + |as]* + |az|°

or
(4.33)

[HDs1(f~1)] < 2las|[HD22(f)| + [HD2,1(f)|[3a5a3 + as| + |as|® + |az|°.

Observe that by using (4.8), (4.9) and (4.11),

5 1 173p3 — 65 o,
20802, 2 e 25721)%

1
3a3a3 +as = —ps — —— + —e
2080 = Y5 P T 1605 1P T g 320235
—4i6 4

4¢
5 5, 6¢5+354303 , 816¢5 — 4190303 4 e 10y
— D 5 DiD2 3 P+
32¢5 128¢5p3¢s 8192¢5 ¢35 o5
so that for brevity,
y ’ —4id 4

3a3as + a5 = Kps — Lpips + Me *py — Ne *“pt — Rp3 + Ppips + Qpi + .
D
~o
MM
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for K, L, M, N, R, P and @ in (4.31). Now some rearrangement and simplifications yield

L . 2N 2 2P 2 e—4i6 4
13a3a3 + as| = ‘K <P4 - PlPS) + Me™2P (pz - p1> — Rp <P2 - 1?1> +Qpi + i

K M 2 R 2 b5
so that
L . 2N p2 2P p2 6—41'5,)/4
3 2 — |K _ = M 218 v R 0 4
[3a3as + as| = | K| |pa — pips| + [Me™™ | \p2 — =250 + [Rpel |p2 — 7 51| + 1Qpi| + ™
and the appropriate application of Lemmas 3.4, 3.1 and 3.3 yields
4
\3a§a3+a5|§4L72K+4N72M+8P74R+16Q+; . (4.34)
Now substituting (4.1), (4.2), (4.3), (4.24), (4.25) and (4.34) into (4.33) yields (4.30). |

5. Acknowledgement

The authors recognize and value the referee(s) and the editorial team for their worthy suggestions during the
review process of the paper.

References

[1] J.W. ALEXANDER, Functions which map the interior of the unit circle upon simple regions, Ann. Math.,
17(1)(1915), 12-22. https://doi.org/10.2307/2007212

[2] FM. AL-OBoUDI, On univalent functions defined by a generalised Saldgean operator, Int. J. Math. Math.
Sci., 2004(27)(2004), 1429-1436. https://doi.org/10.1155/S0161171204108090

[3] R.O. AYINLA, On some new results of a subclass of univalent functions, Researchjournali’s J. Math.,
4(1)(2017), 1-6.

[4] R.O. AviNLA AND T.O. OpooLa, The Fekete Szeg6 functional and second Hankel
determinant for a certain subclass of analytic functions, Appl. Math., 10(2019), 1071-1078.
https://doi.org/10.4236/am.2019.1012074

[5] R.O. AYINLA AND T.O. OPooLA, Initial coefficient bounds and second Hankel determinant for a certain
class of bi-univalent functions using Chebyshev polynomials, Gulf J. Math., 14(1)(2023), 160-172.
https://doi.org/10.56947/gjom.v14i1.1092

[6] K.O.BABALOLA AND T.O. OPoOLA, On the coefficients of a certain class of analytic functions. In: Advances
in Inequal. Ser. (S.S. Dragomir and A. Sofo, eds.), Nova Science Publishers Inc., Hauppauge, New York,
2008, 1-13.

[7] J. Dziok, R.K. RAINA AND J. Sok6r, On a class of starlike functions related to a shell-
like curve connected with Fibonacci numbers, Math. Comp. Model., 57(2013), 1203-1211.
https://doi.org/10.1016/j.mcm.2012.10.023

[8] M. FEKETE AND G. SZEGO, Eine bemerkung iiber ungerade schlichte funktionen, J. Lond. Math. Soc.,
8(1933), 85-89. https://doi.org/10.1112/jlms/s1-8.2.85

[9] S. GANDHI AND V. RAVICHANDRAN, Starlike functions associated with a lune, Asian-Eur. J. Math.
10(3)(2017), 1-12. https://doi.org/10.1142/S1793557117500644

e

[V =)
MM

226



[10]
(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

(19]

(20]
(21]

(22]

(23]

[24]

[25]

[26]

Coefficient properties of a certain family of regular functions

A.W. GOODMAN, Univalent Functions, Mariner Publishing Company Inc., Tampa, Florida, (1983).

W. HENGARTNER AND G. SCHOBER, On schlicht mappings to domain convex in one direction, Commentarii.
Mathematici. Helvetici., 45(1)(1970), 303-314. https://doi.org/10.1007/BF02567334

W. JANOWSKI, Some extremal problems for certain families of analytic functions I, Ann. Polon. Math.,
28(3)(1973), 297-326. https://doi.org/10.4064/ap-28-3-297-326

S. KaNAs aND D. RADUCANU, Some classes of analytic functions related to conic domains, Math. Slovaca.,
64(5)(2014), 1183-1196. https://doi.org/10.2478/s12175-014-0268-9

F.R. KEOGH AND E.P. MERKES, A coefficient inequality for certain classes of analytic functions, Proc. Amer.
Math. Soc., 20(1)(1969), 8—12. https://doi.org/10.1090/S0002-9939-1969-0232926-9

M.G. KHAN, B. AHMAD, W.K. MASHWANI, T.G. SHABA AND M. ARIF, Third Hankel determinant problem

for certain subclasses of analytic functions associated with nephroid domain, Earthline J. Math. Sci.,
6(2)(2021), 293-308. https://doi.org/10.34198/ejms.6221.293308

K. KUROKI AND S. Owa, Notes on new class for certain analytic functions, Adv. Math. Sci. J., 1(2)(2012),
127-131.

A.O. LASODE, A.O. AJIBOYE AND R.O. AyINLA, Some coefficient problems of a class of close-to-star
functions of type « defined by means of a generalized differential operator, Int. J. Nonlinear Anal. Appl.,
14(1)(2023), 519-526. http://dx.doi.org/10.22075/ijnaa.2022.26979.3466

A.O. LASODE AND T.0. OpooLA, Coefficient problems of a class of g-starlike functions associated with
g-analogue of Al-Oboudi-Al-Qahtani integral operator and nephroid domain, J. Class. Anal., 20(1)(2022),
35-47. https://doi.org/10.7153/jca-2022-20-04

A.O. LASODE AND T.0. OpoOLA, Fekete-Szego estimates and second Hankel determinant for a generalized
subfamily of analytic functions defined by g-differential operator, Gulf J. Math., 11(2)(2021), 36-43.
https://doi.org/10.56947/gjom.v11i2.583

E.H. LocKkwooD, A Book of Curves, The Syndics of The Cambridge University Press, London, (1961).

R.K. MAURYA AND P. SHARMA, A class of starlike functions associated with petal like
region on the positive half of complex plane, J. Indian Math. Soc., 87(3)(2020), 165-172.
https://doi.org/10.18311/jims/2020/25449

M. OBRADOVIC AND N. TUNESKI, On third order Hankel determinant for inverse functions of certain classes
of univalent functions, Eur. J. Math. Appl., 2(2)(2022), 1-7.

T.0. OpooLA, On a subclass of univalent functions defined by a generalised differential operator, Int. J.
Math. Anal., 11(18)(2017), 869-876. https://doi.org/10.12988/ijma.2017.7232

H. ORHAN, G. MURUGUSUNDARAMOORTHY AND M. CAGLAR, The Fekete-Szeg6 problems for subclass
of bi-univalent functions associated with sigmoid function. Facta Universitatis (Nis) Ser. Math. Inform.,
37(3)(2022), 495-506.

E.A. OYEKAN AND A.O. LASODE, Estimates for some classes of analytic functions associated with Pascal
distribution series, error function, Bell numbers and g-differential operator, Nigerian J. Math. Appl.,
32(2022), 163—173. http://www.njmaman.com/articles/2022/PAPER 14.pdf

E.A. OYEKAN, T.A. OLATUNJI AND A.O. LASODE, Applications of (p,q)-Gegenbauer polynomials
on a family of bi-univalent functions, Earthline J. Math. Sci, 12(20)(2023), 271-284.
https://doi.org/10.34198/ejms.12223.271284

e

[V =)
MM

227



Rasheed Olawale AYINLA and Ayotunde Olajide LASODE

[27] E.A. OYEKAN AND T.0. OpooLA, On subclasses of bi-univalent functions defined by generalized Séldgean
operator related to shell-like curves connected with Fibonacci numbers, Libertas Math. (new series),
41(2021), 1-20.

[28] C. POMMERENKE, On the coefficients and Hankel determinants of univalent functions, Proc. Lond. Math.
Soc., 41(1)(1966), 111-122. https://doi.org/10.1112/jlms/s1-41.1.111

[29] M.H. PriYA AND R.B. SHARMA, On a class of bounded turning functions subordinate to a leaf-like domain,
J. Phy. Conf. Ser., 1000(1)(2018), 1-14. https://doi.org/10.1088/1742-6596/1000/012056

[30] G.S. SALAGEAN, Subclasses of univalent functions, Lect. Notes Math., 1013(1983), 362-372.
https://doi.org/10.1007/BFb0066543

[31] K. SHARMA, N.K. JAIN AND V. RAVICHANDRAN, Starlike functions associated with a cardioid, Afr. Math.,
27(5)(2016), 923-939. https://doi.org/10.1007/s13370-015-0387-7

[32] J. SOKOL AND J. STANKIEWICZ, Radius of convexity of some subclasses of strongly starlike functions, Zeszyty
Nauk. Politech. Rzeszowskiej. Mat., 19(1996), 101-105.

[33] P.D. TuAaN AND V.V. ANH, Radii of starlikeness and convexity for certain classes of analytic functions, J.
Math. Anal. Appl., 64(1)(1978), 146-158. https://doi.org/10.1016/0022-247X(78)90027-6

This is an open access article distributed under the Creative Commons Attribution

@ @ License, which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

3

s
2

228



MALAYA JOURNAL OF MATEMATIK
Malaya J. Mat. 12(02)(2024), 229-232.
http://doi.org/10.26637/mjm1202/008

The outer-independent edge-vertex domination in trees

K1JuNG Kim*!
L Department of Mathematics Education, Daegu Catholic University, 38430, Republic of Korea.

Received 18 July 2021; Accepted 15 January 2024

Abstract. Let G = (V, E) be a finite simple graph. A vertex v € V is edge-vertex dominated by an edge e € E if e is
incident with v or e is incident with a vertex adjacent to v. An edge-vertex dominating set of GG is a subset D C E such that
every vertex of G is edge-vertex dominated by an edge of D. A subset D C E is called an outer-independent edge-vertex
dominating set of G if D is an edge-vertex dominating set of G and the set V(G) \ I(D) is independent, where I(D) is the
set of vertices incident to an edge of D. The outer-independent edge-vertex domination number of G, denoted by v2:(G),
is the smallest cardinality of an outer-connected edge-vertex dominating set of G. In this paper, we study outer-independent
edge-vertex domination numbers. In particular, we prove that ”‘TH'I < 'y;’f, (T) < 2”_3#2 for every tree 1" of order n > 3
with [ leaves and s support vertices. We also characterize the trees attaining the bounds.
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1. Introduction and Terminology

Let G = (V, E) be a finite simple graph with vertex set V(G) and edge set F(G). The cardinality of V' is
called the order of G. The set N(v) = {u € V(G) | uv € E(G)} is called the open neighborhood of v € V(G).
The degree of v € V(G) is the cardinality of N (v). We denote it by degg (v). The distance between two distinct
vertices in G is the length of a shortest path between them. The diameter of G is denoted by diam(G). A
diametral path of G is a path with the length which equals diam(G).

Let T be a tree. A vertex v of T is called leaf if degr(v) = 1. A support vertex is a vertex adjacent to a
leaf. A weak support vertex is a support vertex that is adjacent to exactly one leaf. A rooted tree T' differentiates
one vertex r called the root. For a vertex v(# r) € V(T), the parent of v is the neighbor of v placed on the
unique (7, v)-path, while a child of v is any other neighbor of v. We denote the set of children of v by C(v). A
descendant of v is a vertex w # v such that v is contained in the unique (7, w)-path. In particular, every child of
v is also a descendant of v. We denote the set of descendants of v by D(v). The subtree induced by D(v) U {v}
is denoted by T),. The star is a complete bipartite graph K ;. The double star is the graph obtained by joining
the centers of two stars K j, and K 4. Subdividing an edge e is to delete e, add a new vertex x, and join z to the
ends of e. A healthy spider Sy is the graph obtained from a star K ; by subdividing each edges of K ;. For a
subset S C V(G), G — S denotes the subgraph of G induced by V(G) \ S.

*Corresponding author. Email address: kkim@cu.ac.kr (Kijung Kim)
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A vertex v € V(G) is edge-vertex dominated by an edge e € E(G) if e is incident with v or e is incident
with a vertex adjacent to v (See [2]). An edge-vertex dominating set of GG is a subset D C E(G) such that
every vertex of G is edge-vertex dominated by an edge of D (See [2]). A subset D C E(G) is called an outer-
independent edge-vertex dominating set (OIEVDS) of G if D is an edge-vertex dominating set of G and the set
V(G) \ I(D) is independent, where I(D) is the set of vertices incident to an edge of D. The outer-independent
edge-vertex domination number of G, denoted by 72 (G), is the smallest cardinality of an outer-connected edge-
vertex dominating set of G. A 72! (G)-set is an OIEVDS of G with the cardinality 7% (G).

Edge-vertex domination in graphs was introduced and studied in [2, 4]. Recently, variations of
outer-independent and edge-vertex domination were given in [1, 5, 6]. In this paper, we study outer-independent
edge-vertex domination numbers. We prove that ”if’“ < AON(T) < 2”35’2 for every tree T" of order n > 3
with [ leaves and s support vertices. We also characterize the trees attaining the bounds.

Finally, we give a lemma whose proof follows from straightforward observation.

Lemma 1.1. The following holds.

1. Every support vertex of T is incident to an edge of every ¥ (T)-set.

2. For every tree T with diameter at least three, there exists a *ygf)

any leaf.

(T')-set whose elements are not incident to

2. Main Result 1

In this section, we prove that if 7" is a tree of order n > 3 with [ leaves, then ”_Tl"‘l < 42 (T). We also give a
characterization of all trees with =1 = 421 (T).

First of all, we introduce a family 7 of trees that be obtained from 77, ..., T,, (m > 1) of trees such that T}
is a path P, with two support vertices u, v, and let S(77) = {uv}. If m > 2, then T} be obtained recursively

from T; by one of the following two operations for 1 <¢ < m — 1.

Operation O :
(i) Attach a vertex by joining it to a vertex incident to edges of S(T;).

Operation O; :
(i) Attach a path P; := uvw by joining « to a leaf of 7.
(i) Set S(Ti+1) = S(TZ) U {uv}

Proposition 2.1. Ifa tree T belongs to T, then % (T) = 2=l

ev 3

Proof. We use the induction on the number of operations performed to construct the tree 7. If T' = T} = Py,
then v2¢ (T') = 1. Let m be a positive integer. Suppose that every tree 7" constructed by m — 1 operations satisfies
Yo(T") = % Let T = T,,41 be a tree constructed by m operations.
First, we assume that 7" is obtained from 7" by Operation O;. Thenn =n' + 1and [ = I’ + 1. It is easy to
see that S(T") = S(T) is an OIEVDS of T'. Thus, 72 (T) = A5(T") = W=l = nolo(oDHL _ nolil
Second, we assume that 7" is obtained from 7" by Operation Oy. Thenn = n’ + 3 and | = I’. It is easy to
see that S(T) = S(T") U {uv} is an OIEVDS of T and 72! (T) = 42! (T") 4+ 1 Thus, 72 (T) = v (T") + 1 =

! ’ A _
7L—3{+1+1:n 33l+1_’_1:n§+1. ]

Theorem 2.2. Let T be a tree of order n > 3 with [ leaves. Then ”%Hl < 4% (T) with equality if and only if
TeT.

Proof. If T' = P4, then clearly "‘TIH = % < 4% (T) = 1. Assume that the order of T is at least 4. If T'is a
star, then =1 = 2 < 4o/(T) = 1. If T is a double star, then 2=+ = 1 = ~42¢(T"). By using Operation O,
repeatably, we have T € 7.
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Now assume that dzam(T) > 4. We use the induction on the order of T'. Suppose that every tree 7" of order
n'(< n) satisfies “=L*1 < 49 (T") with equality only if 7" € 7.

Among all of dlametrlcal paths in T', we choose 1 . . . 4 so that it maximizes degr(xq4—1). Root T at x.
We divide our consideration into four cases.

Case 1. degr(x4—1) > 3.

Let u (# x4) be a leaf adjacent to z4—1. Let T/ =T — {u}. Thenn = n' + 1 and [ = I’ + 1. It is easy to see
that any 79! (T")-set D is an OIEVDS of T'. Applying the induction hypothesis to 7", we have 2 ’?l) L <o (T,
Thus, 2= = W=lEL < qoi (7)< 408(T). If 2=l = 490(T), then P=L*+L < 49/(T") and T" € T. By
Operation 01, we have TeT.

Case 2. degr(x4—1) = 2 and degr(zq—2) > 3.

Assume that there exists a support vertex v € C(z4—2) \ {#q—1}. Let T/ = T — T,. Thenn = n’ + 2
and [ =1+ 1. Itis easy to see that ’ym (T") < ~%(T) — 1. Applying the induction hypothesis to 7", we have
)+

— ev

oL < (). Thus, SEDE ' ) <5 (1) — Landso 5L < i),

Assume that there exists a leaf u € C(xq_3). Let 7" = T — {u}. Then n = n’ + landl =0+ 1. It
is easy to see that 42} (7”) = ~2.(T). Applying the induction hypothesis to 7", we have =L+ < 490 (T").
Thus, 2—1=U=DFL — /=4l < ol (/) < 408(T) and so 2= < A0 (T). If 2= = 421 (T), then

n —l =4l < 701 (T") and T” E T By Operation (’)1, wehave T € T.

Case 3. degr(xq—1) = 2, degr(xq—2) = 2 and degr(zq—3) > 3.

LetT" =T—-T,, ,. Thenn = n/—|—3 andl = I’ +1. Itis easy to see that v2 (1) < 4% (T')—1. Applying the
induction hypothesis to 7", we have l +1 < ~0i (7). Thus, "=3= (l D+ — "/_31/“ < AT <~2(T) -1
and so =L < 420(T).

Case 4. degr(xq—1) = 2, degT(xd o) =2 and degr(x4—3) = 2.
LetT' =T - T, Thenn = n’ + 3and [ = I'. Itis easy to see that 72! (T’) 7% (T) — 1. Applying the

Td—2"
induction hypothesis to 77, we have 2=t+1 < 42! (T’) Thus, =320 = n/=l < YO(T") < ~42UT) — 1

and so 2= < 408 (T). If 2=l = 'yev(T), then 2 _3l tl < 4o (T’) and T € ’T. By Operation O3, we have

TeT. [ ]

3. Main Result 2

In this section, we prove that if 7" is a tree of order n > 3 with s support vertices, then 72 (T') < % We
also give a characterization of all trees with 72} (T) = 22=5=2,

Theorem 3.1. Let T be a tree of order n > 3 with s support vertices. Then v°:(T) < w with equality if
and only if T is a healthy spider.

Proof. If T' = Ps, then clearly ¢ (T) = 1 and T is a healthy spider. Assume that the order of T' is at least 4. If
T is a star, then 72 (T) = 1 < 22=*=2_ If T is a double star, then 725 (T) = 1 < 2n=5=2 = 224,
Now assume that diam/(T) > 4 We use the induction on the order of 7. Suppose that every tree T of order
n'(< n) satisfies y2! (T") < % with equality only if 7" is a healthy spider. Among all of diametrical paths
in T, we choose xoz1 ... x4 so that it maximizes degr(x4—1). Root T at zy. We divide our consideration into
three cases.

Case 1. degr(x4—1) > 3.

Let u (# x4) be a leaf adjacent to x4_1. Let T/ = T — {u}. Thenn = n’ + 1 and s = ¢’. It is easy to see
that any 72! (T")-set is an OIEVDS of T' So, Yo (T) < 4% (T"). Applying the induction hypothesis to 7", we
have 'YOIZ(T/) < 2n'—s'—2 75 -2 ThllS ,}/ (T) < ,_quz}(T/) < 2n'735'72 < 2n73572-

Case 2. degT(md,l) = 2and degT(xd,g) = 2.
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Let 7" = T — {®4—2,%4-1,7q}. Itis easy to see that v/ (T) = % (T") +1, s —1 < s’ < s and

n = n’ + 3. Applying the induction hypothesis to 7”, we have 72 (T") < % Thus, 7% (T) — 1 =
,ygz(T/) < 2n’—33’_2 < 2n—6—33+1—2 and so ’Yg};(T) < 2n—3$—2.

Case 3. degr(x4—1) = 2 and degr(zq—2) > 3.

Assume that there exists a leaf ¢ € C(x4_2). Let T/ = T — {v}. By the argument as in Case 1, we have
Ve (T) < #5=2.

Assume that there exists a support vertex ¢ € C'(z4—2) \ {z4—1}. By the assumption, c is weak and has a child
w. Let T’ = T—T,. Itis easy to see that 72! (1) = v%/(T")+1, s = s’+1 and n = n’+2. Applying the induction
hypothesis to 7", we have 424 (T") < 2V=5=2_ Thus, 7%(T) — 1 = 72(T") < =522 = 2n=dostl=2 apg
s0 7 (T) < 252,

Now we assume that T}, , is a healthy spider S; ;. Let T/ = T — V (T}, _,). It is easy to see that 72! (T) <
YOU(T') +t,s —t < s andn =n' + 2t + 1. If [V(T")| > 3, then by the induction hypothesis on 7”, we have
NOT) < 22822 Thus, 428(T) — t < 72 (T") < 20822 = 2n=dizdostt=2 ypd g0 0 (T) < 20522 |f

ev

[V(T")| = 2, then clearly 2} (T") = 22=*=2 and T is a healthy spider. [ |

References

[1] N. DEHGARDI, M. CHELLALI, Outer independent Roman domination number of trees, Commun. Comb.
Optim., 6(2) (2021) , 273-286.

[2] J. LEwis, Vertex-edge and edge-vertex parameters in graphs, Ph.D thesis, Clemson university, 2007.

[3] B. KRISHNAKUMARI, Y.B. VENKATAKRISHNAN, M. KRZYWKOWSKIYZ, On trees with total domination number
equal to edge-vertex domination number plus one, Proc Math Sci, 126 (2016), 153-157.

[4] K.W. PETERS, Theoretical and algorithmic results on domination and connectivity, Ph.D thesis, Clemson
university, 1986.

[5] I. LaAMPROU, I. SIGALAS, V. ZISSIMOPOULOS, Improved budgeted connected domination and budgeted edge-
vertex domination, Theoret. Comput. Sci., 858 (2021), 1-12.

[6] D.A. MOJDEH, I. PETERIN, B. SAMADI, I.G. YERO, On three outer-independent domination related parameters
in graphs, Discrete Appl. Math., 294 (2021), 115-124.

This is an open access article distributed under the Creative Commons Attribution

@ @ License, which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

3

s
2

232



