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Nonlinear partial completely continuous operators in a partially ordered
Banach space and nonlinear hyperbolic partial differential equations
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Abstract. We prove a hybrid fixed point theorem for partial completely continuous operators in a partially ordered metric
space and derive an applicable hybrid fixed point result in an ordered Banach space as a special case. As an application,
we discuss a nonlinear hyperbolic partial differential equation for approximation result of local solutions by constructing the
algorithms. Finally, an example is indicated to elaborate the hypotheses and abstract result of this paper.
AMS Subject Classifications: 47H10, 35A35

Keywords: Partially ordered metric space; Hybrid fixed point principle; Hyperbolic partial differential equation; Dhage
iteration method; Local approximation result.
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1. Introduction

Relaxing the convexity condition of the well-known Schauder fixed point theorem in a Banach space, the present
author in Dhage [6] proved the following hybrid fixed point theorem in a partially ordered Banach space.

Theorem 1.1. Let S be a non-empty, partially compact subset of a regular partially ordered Banach space(
X, ∥ · ∥,⪯

)
and let every chain C in S be a Janhavi set. Suppose that T : S → S is a partially continuous and

monotone nondecreasing operator. If there exists an element x0 ∈ S such that x0 ⪯ T x0 or x0 ⪰ T x0, then T
has fixed point ξ∗ and the sequence {T nx0}∞n=0 of successive iterations converges monotonically to ξ∗.

Theorem 1.1 yields an applicable hybrid fixed point theorem in an ordered Banach space having numerous
applications to nonlinear analysis. See Dhage [4], Dhage et al. [9–12], Dhage and Dhage [7], Dhage et al. [8] and
references therein. Note that Theorem 1.1 removes the convexity condition from Schauder fixed pint theorem and
replaced it by monotonicity condition of the operator in question. However, as a result we obtain an additional
feature that it gives the algorithms which can be used to obtain the approximation of solution to the nonlinear
problems. Now, the problem with the above hybrid fixed point theorem is that it is difficult to find the partially
compact subset of an ordered Banach space always. To overcome this difficulty, here we relax the condition of
existence of a partially compact subset and replace it by partial complete continuity of the operator T on S which
is the main motivation of the present paper.

∗Corresponding author. Email address: bcdhage@gmail.com (Bapurao C. Dhage)
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Partial completely continuous operators and applications

2. A Hybrid Fixed Point Principle

Before going to the main hybrid fixed point result, we give some preliminary definitions which we need in what
follows. The details appear in Dhage [4, 5] and references therein.

Let
(
E, d,⪯

)
be a partially ordered metric space and let S ⊂ E. E is called regular if a monotone

nondecreasing (resp. monotone nonincreasing) sequence {xn} in E converges to x∗, then xn ⪯ x∗ (resp.
x∗ ⪯ xn) for all n ∈ N. The metric d and the order relation ⪯ are said to be compatible in S if a monotone
sequence {xn} in S has a convergent subsequence, then the original sequence {xn} is convergent and converges
to the same limit point. S is called a Janhavi set if d and ⪯ are compatible in it. S is called partial bounded
(resp. partially closed, partially compact) if every chain C in S is bounded (resp. closed, compact).

A mapping T : S → S is called monotone nondecreasing (resp. monotone nonincreasing) if x ⪯ y implies
T x ⪯ T y (resp. x ⪯ y implies T x ⪰ T y). T is monotone if it is either monotone nondereasing or monotone
nonincreasing. T is called partial bounded (resp. partially totally bounded or partially precompact) if T (S) is
partially bounded (resp. partially totally bounded or partially precompact for partially bounded S). T is partially
continuous if {xn} ⊂ S converges to x∗ with xn ⪯ x∗, then T xn → T x. T is called partial completely
continuous if it is partially continuous and partially totally bounded.

Now we are equipped with all the necessary details to state our main result if this section.

Theorem 2.1. Let S be a non-empty, partial closed and partial bounded subset of a regular partially ordered
complete metric space

(
E, d,⪯

)
and let every chain C in S be Janhavi set. Suppose that T : S → S is a

partial completely continuous and monotone nondecreasing operator. If there exists an element x0 ∈ S such
that x0 ⪯ T x0 or x0 ⪰ T x0, then T has a fixed point ξ∗ and the sequence {T nx0}∞n=0 of successive iterations
converges monotonically to ξ∗.

Proof. Assume first that we have an element x0 ∈ S such that x0 ⪯ T x0 and define a sequence {xn}∞n=0 of
points in S by

xn+1 = T xn, n = 0, 1, 2, . . . . (2.1)

From the monotonic nndecreasing nature of T , it follows that {xn}∞n=0 is a nondecreasing sequence of point
in S, i.e., we have

x0 ⪯ x2 ⪯ · · · ⪯ xn ⪯ · · · . (2.2)

Consequently, {xn}∞n=0 is a chain in S. Denote C = {xn}∞n=0. Then, C is bounded and by the construction
of {xn}∞n=0, we have

C = {x0, x1, x2, . . .}
= {x0} ∪ {x1, x2, . . .}
= {x0} ∪ T (C). (2.3)

As T is partially completely continuous, we have that T (C) is compact. From (2.3), C is also a compact set
in S. As a result, {xn}∞n=0 has a convergent subsequence {xnk

}∞k=0 converging to a point, say, ξ∗. By hypothesis,
C = {xn}∞n=0 is a Janhavi set in S, so the original sequence {xn}∞n=0 converges monotone nondecreasingly to
ξ∗. Since (E,⪯, d) is a regular, we have that xn → ξ∗ and that xn ⪯ ξ∗ for all n ∈ N. Finally, from partial
continuity of T , it follows that

ξ∗ = lim
n→∞

xn+1 = lim
n→∞

T xn = T
(
lim

n→∞
xn

)
= T ξ∗.

Similarly, if x0 ⪰ T x0, it can be shown using analogous arguments that T has a fixed point ξ∗ and the
sequence {xn}∞n=0 of successive iterations converges monotone nonincreasingly to ξ∗ Thus, in both the cases T
has a fixed point ξ∗ and the sequence {T nx0}∞n=0 of successive iterations converges monotonically to ξ∗. This
completes the proof. □
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Corollary 2.2. Let S be a non-empty, partial closed and partial bounded subset of a regular partially ordered
Banach space

(
X, ∥ · ∥,⪯

)
and let every chain C in S be Janhavi set. Suppose that T : S → S is a partial

completely continuous and monotone nondecreasing mapping. If there exists an element x0 ∈ S such that
x0 ⪯ T x0 or x0 ⪰ T x0, then T has a fixed point ξ∗ and the sequence {T nx0}∞n=0 of successive iterations
converges monotonically to ξ∗.

If the Banach X is partially ordered by an order cone K in X , then in this case, we simply say that X is an
ordered Banach space and we denote it by (X,K). The details of order cones and related fixed point theorems
appear in the monographs Guo and Lakshmikantham [13] and Granas and Dugundji [14]. Then, we have the
following useful results proved in Dhage [4, 5].

Lemma 2.3 (Dhage [4, 5]). Every ordered Banach space (X,K) is regular.

Lemma 2.4 (Dhage [4, 5]). Every partially compact subset S of an ordered Banach space (X,K) is a Janhavi
set in X .

As a consequence of Lemmas 2.3 and 2.4 we obtain an applicable hybrid fixed point theorem in the area of
nonlinear analysis and applications.

Theorem 2.5. Let S be a non-empty, partially closed and partially bounded subset of an ordered Banach space
(X,K) and let T : S → S be a partially completely continuous and monotone nondecreasing operator. If there
exists an element x0 ∈ S such that x0 ⪯ Tx0 or x0 ⪰ Tx0, then T has a fixed point ξ∗ ∈ S and the sequence
{T nx0}∞n=0 of successive iterations converges monotonically to ξ∗.

Theorem 2.5 is an improvement of the following hybrid fixed point theorem of Dhage et al. [9] which is
comparatively more convenient for applications to nonlinear equations.

Theorem 2.6 (Dhage et al. [9]). Let S be a non-empty and partially compact subset of an ordered Banach space
(X,K) and let T : S → S be a partially continuous and monotone nondecreasing operator. If there exists an
element x0 ∈ S such that x0 ⪯ Tx0 or x0 ⪰ Tx0, then T has a fixed point ξ∗ ∈ S and the sequence {T nx0}∞n=0

of successive iterations converges monotonically to ξ∗.

Remark 2.7. We mention that Theorem 2.5 is an ordered Banach space version of the Schauder fixed point
theorem wherein the convexity argument is altogether omitted and replaced by the monotonicity of the operator
in question. The advantage of this approach over Schauder is that we obtain an algorithm which goes to the fixed
point when applied repeatedly.

3. Hyperbolic Partial Differential Equations

Given the closed and bunded intervals Ja = [0, a] and Jb = [0, b] in the real line R, for some real numbers a > 0

and b > 0, consider the nonlinear IVP of hyperbolic partial differential equation (in short HPDE)

∂2u

∂x∂y
= f(x, y, u(x, y)), (x, y) ∈ Ja × Jb, (3.1)

satisfying the initial conditions
u(x, 0) = ϕ(x) and u(0, y) = ψ(y), (3.2)

where f : Ja × Jb × R → R, ϕ : Ja → R and ψ : Jb → R are continuous functions.

Definition 3.1. By a solution of the HPDE (3.1)-(3.2) we mean a function u ∈ C(Ja × Jb,R) that satisfies
the equations in (3.1)-(3.2), where C(Ja × Jb,R) is the space of continuous real-valued functions defined on
Ja × Jb. If a solution u exists in a neighbourhood of a point z ∈ C(Ja × Jb,R), then we say that it is a local or
neighbourhood solution of the HPDE (3.1)-(3.2) defined on Ja × Jb.
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Partial completely continuous operators and applications

The HPDE (3.1)-(3.2) is fundamental in the theory of nonlinear hyperbolic partial differential equations and
widely discussed in the literature for existence of solution. See Lakshmikantham and Pandit [15] and references
therein. But to the knowledge of present author no approximation result is proved for local solution without the
assumption of Lipschitz condition on the function f or without the assumption of existence of both lower as well
as upper solution for the HPDE (3.1)-(3.2) on Ja × Jb. Therefore, the approximation result of this section seem
to be new to the theory of hyperbolic partial differential equations.

We put the HPDE (3.1)-(3.2) in the Banach space C(Ja × Jb,R). We introduce a supremum norm ∥ · ∥ in
C(Ja × Jb,R) defined by

∥u∥ = sup
(x,y)∈Ja×Jb

|u(x, y)|. (3.3)

and an order relation ⪯ in C(Ja × Jb,R) by the cone K given by

K = {u ∈ C(Ja × Jb,R) | u(x, y) ≥ 0 ∀ (x, y) ∈ Ja × Jb}. (3.4)

Thus,
u ⪯ v ⇐⇒ v − u ∈ K, (3.5)

or equivalently,
u ⪯ v ⇐⇒ u(x, y) ≤ v(x, y) ∀ (x, y) ∈ Ja × Jb.

It is known that the Banach space C(Ja × Jb,R) together with the order relations ⪯ becomes an ordered
Banach space which we denote for convenience, by

(
C(Ja ×Jb,R),K

)
. We denote the open and closed spheres

centred at z0 ∈ C(Ja × Jb,R) of radius r by

Br(z0) = {u ∈ C(Ja × Jb,R) | ∥u− z0∥ < r} = B(z0, r),

and
Br[z0] = {u ∈ C(J,R) | ∥u− z0∥ ≤ r} = B(z0, r),

respectively.

Remark 3.2. It is clear that an open ball B(z0, r) in C(Ja × Jb,R) centred at a point z0 ∈ C(Ja × Jb,R) of
radius r > 0 is a neighbourhood of the point z0, so if a solution u∗ of the HPDE (3.1)-(3.2) lies in a closed ball
B(z0, r) in C(Ja × Jb,R), then it is a local solution in view of the fact that B(z0, r) ⊂ B(z0, r) ⊂ B(z0, r + ϵ)

for every ϵ > 0. Note that the idea of local or nbhd-solution is different from the usual notion of a local solution
as mentioned in Coddington [1].

4. Local Approximation Results

We consider the following definition in the sequel.

Definition 4.1. A function f : Ja × Jb × R → R is said to be L1
R-Carathéodory if

(i) the map (x, y) 7→ f(x, y, u) is jointly measurable for each u ∈ R,

(ii) the map u 7→ f(x, y, u) is continuous for each (x, y) ∈ Ja × Jb, and

(iii) there exists a function h ∈ L1(Ja × Jb,R) such that

|f(x, y, u)| ≤ h(x, y) a.e. (x, y) ∈ Ja × Jb,

for all u ∈ R.
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Lemma 4.2 (Granas and Dugundji [14]). If f(x, y, u) is L1
R-Carathéodory, then the function

(x, y) 7→ f(x, y, u(x, y)) is jointly measurable for each u ∈ C(Ja × Jb,R).

We need the following hypotheses in what follows.

(H1) The function f is L1
R-Carathéodory.

(H2) f(x, y, u) is nondecreasing in u for each (x, y) ∈ Ja × Jb.

(H3) f(x, y, z0(x, y)) ≥ 0 for all (x, y) ∈ Ja × Jb, where z0(x, y) = ψ(y) + ϕ(x)− ϕ(0).

Now, by using the theory of partial differentiation and integration, we obtain the following useful result.

Lemma 4.3. If h ∈ L1(Ja × Jb,R), then the IVP of ordinary second order linear hyperbolic partial differential
equation

∂2u

∂x∂y
= h(x, y), (x, y) ∈ Ja × Jb,

u(x, 0) = ϕ(x) and u(0, y) = ψ(y),

(4.1)

is equivalent to the integral equation

u(x, y) = z0(x, y) +

∫ x

0

∫ y

0

h(s, t) ds dt, , (x, y) ∈ Ja × Jb, (4.2)

where z0(x, y) = ψ(y) + ϕ(x)− ϕ(0) is a continuous function on Ja × Jb.

Theorem 4.4. Suppose that the hypotheses (H1), (H2) and (H3) hold. Furthermore, if ∥h∥L1 ≤ r, then the HPDE
(3.1)-(3.2) has a local solution u∗ in Br[z0] and the sequence {un}∞n=0 of successive approximations defined by

u0(x, y) = z0(x, y), (x, y) ∈ Ja × Jb,

un+1(x, y) = z0(x, y) +

∫ x

0

∫ y

0

f(s, t, un(s, t)) ds dt, (x, y) ∈ Ja × Jb,

 (4.3)

where n = 0, 1, . . .; is monotone nondecreasing and converges to u∗.

Proof. Set X = C(Ja × Jb,R). Clearly, X is an ordered Banach space ordered by the cone K defined by (2.2).
Let u0 be a function on Ja×Jb such that u0 ≡ z0 on Ja×Jb. Define a closed ballBr[z0] inX , where r ≥ ∥h∥L1 .
By Lemma 4.2, the HPDE (3.1)-(3.2) is equivalent to the nonlinear hybrid integral equation (HIE)

u(x, y) = z0(x, y) +

∫ x

0

∫ y

0

f(s, t, u(s, t)) ds dt, , (x, y) ∈ Ja × Jb. (4.4)

Now, define an operator T on Br[u0] into X by

T u(x, y) = z0(x, y) +

∫ x

0

∫ y

0

f(s, t, u(s, t)) ds dt, , (x, y) ∈ Ja × Jb. (4.5)

We shall show that the operator T satisfies all the conditions of Theorem 2.5 onBr[u0] in the following series
of steps.

Step I: The operator T maps Br[z0] into itself.
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Firstly, we show that T maps Br[z0] into itself. Let u ∈ Br[z0] be arbitrary element. Then, by hypothesis
(H1),

|T u(x, y)− z0(x, y)| =
∣∣∣∣∫ x

0

∫ y

0

f(s, t, u(s, t)) ds dt

∣∣∣∣
≤

∫ x

0

∫ y

0

∣∣f(s, t, u(s, t))∣∣ ds dt
≤

∫ x

0

∫ y

0

h(s, t) ds dt

≤ ∥h∥L1 .

Taking the supremum over x and y in the above inequality yields

∥T u− z0∥ ≤ ∥h∥L1 = r

which implies that T u ∈ Br[z0] for all u ∈ Br[z0].

Step II: T is a monotone nondecreasing operator.

Let u, v ∈ Br[z0] be any two elements such that u ⪰ v on Ja × Jb. Then,

T u(x, y) = z0(x, y) +

∫ x

0

∫ y

0

f(s, t, u(s, t)) ds dt

≥ z0(x, y) +

∫ x

0

∫ y

0

f(s, t, v(s, t)) ds dt

= T v(x, y)

for all (x, y) ∈ Ja × Jb. So, T u ⪰ T v, that is, T is monotone nondecreasing on Br[x0].

Step III: T is partially continuous operator.

Let C be a chain in Br[z0] and let {un} be a sequence of points in C converging to a point u ∈ C. Then, by
dominated convergence theorem, we have

lim
n→∞

T un(x, y) = lim
n→∞

[
z0(x, y) +

∫ x

0

∫ y

0

f(s, t, un(s, t)) ds dt

]
= z0(x, y) + lim

n→∞

∫ x

0

∫ y

0

f(s, t, un(s, t)) ds dt

= z0(x, y) +

∫ x

0

∫ y

0

[
lim
n→∞

f(s, t, un(s, t))
]
ds dt

= z0(x, y) +

∫ x

0

∫ y

0

f(s, t, u(s, t)) ds dt

= T u(x, y)

for all (x, y) ∈ Ja × Jb. Therefore, T un → T u pointwise on Ja × Jb.

Next, we shows that T un is an equicontinuous sequence of functions on on the compact Ja × Jb. Let
(x1, y1), (x2, y2) ∈ Ja × Jb be arbitrary. Without loss of generality, we assume that x1 ≤ x2 and y1 ≤ y2. Then,
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by definition of T , we have that

|T un(x1, y1)− T un(x2, y2)|

≤ |z0(x1, y1)| − z0(x2, y2)|+
∫ x2

x1

∫ y2

y1

|f(s, t, un(s, t))| ds dt

≤ |z0(x1, y1)| − z0(x2, y2)|+
∫ x2

x1

∫ y2

y1

h(s, t) ds dt

→ 0 as (x1, y1) → (x2, y2), (4.6)

uniformly for all n, n = 1, 2, . . .. This shows that T un is an equicontinuous sequence of functions on Ja × Jb.
As a result, we have that T un → T u uniformly on Ja × Jb. Hence T is partially continuous operator on Br[z0].

Step IV: T is partially totally bounded.

Firstly, we show that T is partially uniformly bounded. Let C be a chain in Br[z0]. Then, by monotonicity
of T , the set T (C) is again a chain in T

(
Br[z0]

)
. Let v ∈ T (C) be arbitrary. Then, there is a point u ∈ C such

that v(x, y) = T u(x, y). Now, by hypothesis (H1),

|v(x, y)| =
∣∣T u(x, y)∣∣

≤ |z0(x, y)|+
∫ x

0

∫ y

0

|f(s, t, u(s, t))| ds dt

≤ ∥z0∥+
∫ x

0

∫ y

0

h(s, t) ds dt

≤ ∥z0∥+ ∥h∥L1 (4.7)

for all (x, y) ∈ Ja×Jb. Taking the supremum over (x, y), we obtain ∥v∥ ≤ ∥z0∥+∥h∥L1 for all v ∈ T (C). This
shows that T is a partially uniformly bounded on Br[z]. Next, proceeding as in the step III, it can be proved that
T (C) is an equicontinuous chain of points in T

(
Br[z0]

)
. As T (C) is uniformly bounded and equicontinuous

set, it is precompact. Consequently T is partially precompact or partially totally bounded operator on Br[z0].
Now T is partially continuous and partially totally bounded, so it is partially completely continuous on Br[z0].

Step V: The element u0 = z0 ∈ Br[z0] satisfies the order relation u0 ⪯ T u0 .

Since (H3) holds, one has

u0(x, y) = z0(x, y) +

∫ x

0

∫ y

0

f(s, t, u0(s, t)) ds dt

≤ u0(x, y) +

∫ x

0

∫ y

0

f(s, t, z0(s, t) ds dt

= z0(x, y) +

∫ x

0

∫ y

0

f(s, u0(s, t)) ds dt

= T u0(x, y)

for all (x, y) ∈ Ja × Jb. As a result, we have u0 ⪯ T u0 on Ja × Jb.

Thus, the operator T satisfies all the conditions of Theorem 2.5, and so T has a fixed point u∗ inBr[z0] and the
sequence {T nu0}∞n=0 of successive iterations converges monotone nondecreasingly to u∗. This further implies
that the HIE (3.4) and consequently the HPDE (3.1)-(3.2) has a local solution u∗ and the sequence {un}∞n=0

of successive approximations defined by (4.3) converges monotone nondecreasingly to u∗. This completes the
proof. □
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Remark 4.5. The conclusion of Theorems 4.4 also remains true if we replace the hypothesis (H3) with the
following one.

(H4) The function f satisfies f(x, y, z0(x, y)) ≤ 0 for all (x, y) ∈ Ja × Jb.

In this case, the HPDE (3.1)-(3.2) has a local solution x∗ defined on Ja × Jb and the sequence {un}∞n=0 of
successive approximations defined by (4.3) is monotone nonincreasing and converges to the solution u∗.

Remark 4.6. If the initial condition (3.2) is such that z0(x, y) > 0 for all (x, y) ∈ Ja × Jb, then under the
conditions of Theorem 4.4, the HPDE (3.1)-(3.2) has a local positive solution u∗ defined on Ja × Jb and the
sequence {un}∞n=0 of successive approximations defined by (4.3) converges monotone nondecreasingly to u∗.

Finally, we give an example to illustrate the abstract ideas involved in our main approximation result,
Theorems 4.4.

Example 4.7. Given a closed and bounded interval J1 = [0, 1] in R, consider the IVP of nonlinear second order
HPDE,

∂2u

∂x∂y
= (x+ y) tanhu(x, y),

u(x, 0) =
x

2
and u(0, y) =

y

2
,

 (4.8)

for all (x, y) ∈ [0, 1]× [0, 1].

Here, f(x, y, u) = (x + y) tanhu, ϕ(x) == x
2 and ψ(y) == y

2 for (x, y) ∈ [0, 1] × [0, 1] and u ∈ R.
We show that f satisfies all the conditions of Theorem 4.4. Clearly, f is L!

r-Carathéodory on [0, 1] × [0, 1] × R
with h(x, y) = x + y, and so the hypothesis (H1) is satisfied. Also the function f(x, y, u) is nondecreasing in
u for each (x, y) ∈ [0, 1] × [0, 1]. Therefore, hypothesis (H2) is satisfied. Next, we have z0(x, y) = x

2 + y
2 .

Therefore, f(x, y, z0(x, y)) = (x + y) tanh
(

x+y
2

)
≥ 0 for each (x, y) ∈ [0, 1] × [0, 1], and so the hypothesis

(H3) holds. Now, by an application of Theorem 4.4, the HPDE (4.8) has a local solution u∗ in the closed ball
B1[z0] of C([0, 1] × [0, 1],R) which is positive in view of Remark 4.6. Furthermore, the sequence {un}∞n=0 of
successive approximations defined by

u0(t) =
x+ y

2
, (x, y) ∈ [0, 1]× [0, 1],

un+1(t) =
x+ y

2
+

∫ x

0

∫ y

0

(t+ s) tanhun(s, t) ds dt, (s, t) ∈ [0, 1]× [0, 1],

converges monotone nondecreasingly to u∗.

5. The Comparison

We observe that the existence of solutions of the HPDE (3.1) can also be obtained by an application of topological
Schauder fixed point principle under the hypothesis (H1) and restricted domain of intervals of the problem, but in
that case we do not get any sequence of successive approximations that converges to the solution. Again, we can
not apply analytical or geometric Banach contraction mapping principle to the problem (3.1) under the considered
hypotheses (H1)-(H3) in order to get the desired conclusion, because here the nonlinear function f does not satisfy
the usual Lipschitz condition on the domain Ja × Jb × R. Similarly, we can not apply algebraic Tarski’s fixed
point theorem [16] or its extension obtained in Dhage [3] to HPDE (3.1) for proving the existence of solution,
because the ordered Banach space

(
C(Ja × Jb,R),⪯

)
is not a complete lattice (see Davis [2]). Therefore, all

these arguments show that our hybrid fixed point principle, Theorem 2.1 is very much advantageous to get more
information about the solution of nonlinear equations in the subject of nonlinear analysis.
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1. Introduction and Background

There is no an international accepted definition of terrorism. According to [1] terrorism is defined by Title
22 of the U.S. Code as politically motivated violence perpetrated in a clandestine manner against noncombatants.
Experts on terrorism also include another aspect in the definition: the act is committed in order to create a
fearful state of mind in an audience different from the victims. In [2] we have more than 260 other definitions
of terrorism compiled by Joseph J. Easson and Alex P. Schmid. This means that terrorism is not easy concept to
define because of its many manifestations: kidnappings of diplomats, sequestration of individuals not concerned
by the defended cause, acts of sabotage, assassinations, hijackings of planes etc. [3]. Whether or not an act is
considered as terrorism also depends on whether a legal, moral, or behavioral perspective is used to interpret the
act, see [1] and [4]. Given definition by the Economists T. Sandler and W. Enders in [5] and [6] is very close:
terrorism is ”the premeditated use, or threat of use, of extra-normal violence to achieve a political objective,
through intimidation or the fear of a large audience.” The authors point out that an act without specific political
motivation must be considered as a criminal offence rather than terrorist. They also consider violence to be
targeted at vulnerable target populations not directly involved in political decision-making processes such as
terrorists seek to influence. For [7], If a regime constrains the executive branch, then terrorism may be more
prevalent. If, however, a regime allows all viewpoints to be represented, then grievances may be held in check,
resulting in less terrorism. Regimes that value constituents’ lives and property will also act to limit attacks.

Several models have been written in order to provide a good understanding of the problem, see [8], [9]
and [10]. In [11] terrorism is described as a new challenge to Nigeria stability. In [12] C.G. Ngari purpose a
mathematical model of Kenya domestic radicalization like a desease. Ngari incorporated rehabilitation centers
in his model like A. Gambo and M.O. Ibrahim in [13]. M.R. Pooda and al in [14] study the dynamics of
narcoterrorism int the Sahel and in [15] they state a multi-objective optimal control of counter-terrorism in the
Sahel Region in Africa. All of theses models ignore that defense and security forces can evolve into terrorist.
Our model has three major differences from existing models. Firstly, the death rates resulting from fighting
are not constant coefficients. They depend on the balance of power between the defense and security forces
and the terrorists. Secondly, terrorists are classified according to the roles they play on the chessboard, not in
any hierarchical order. Finally, we incorporate into our model the fact that defense and security forces can also
become terrorists. We propose in this paper a mathematical model of dynamics behavior of terrorism ideologies
using contacts process. Without loss of generality, this model can be applied to the G5 Sahel countries and to any
others similarity countries.

2. Model formulation

We divide the population in eight (08) compartments.

S(t) : Susceptible ,

D(t) : Defense and Security Forces (DSF),

H(t) : Homeland Defense Volunteers (HDV),

I(t) : Internally Displaced Persons (IDP)

P(t) : Prisoners or People in Detention Centers

T(t) : Terrorist,

TS(t) : Terrorist soldiers,

TL(t) : Terrorist leaders.
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We set

A = D +H + T + TS + TL (2.1)

N = S +D +H + I + P + T + TS + TL (2.2)

and Taking for initial conditions

S(0) > 0, D(0) > 0, H(0) > 0, I(0) ≥ 0, P (0) ≥ 0, T (0) ≥ 0, TS (0) ≥ 0, TL(0) ≥ 0, N (0) ⩽
Λ

µ
. (2.3)

We understand by susceptible any person capable of adhering to the terrorist ideology. This definition assumes
that the person may or may not be aware of this ideology but has not adopted or accepted it. A susceptible is not
a supporter of terrorist ideology and therefore she cannot propagate it.

A terrorist is a person who is a supporter of terrorist ideology. He can only propagate it by means which
exclude the taking up of arms. As soon as a weapon is taken or violence is used, we have to deal with a terrorist
soldier. We include in the class of terrorists all unarmed persons who provide assistance for the success of
the terrorist activity. These include intelligence officers and civilians who supply them. Terrorists and terrorist
soldiers are not only ideologically convinced people; some act out of coercion, or within certain limits to defend
themselves. The terrorist leaders are the masters of the terrorist chessboard: they set the course. They are the
ones who organize, decide on the areas to attack and instruct the actions to be carried out.

Internally Displaced Persons are, according to the United Nations High Commissioner for Refugees
(U.N.H.C.R.) in [16], people forced to flee within their own country because of the attacks perpetuated by armed
terrorist groups. In the practical dictionary of humanitarian law of Doctors Without Borders [17], we can read
that they do not constitute a particular legal category and therefore do not benefit from specific protection under
international law.

The regular army is designated by the term DSF. The Volunteers for the Defense of the Homeland (HDV)
is a groups of armed combatants created by the government in order to better respond to the demands imposed
on it by the terrorist hydra. We include in this class any self-defense groups and any other organization whose
objective is to fight alongside the DSF for the defense of the homeland.

The term prison or detention center includes areas regularly set up to accommodate persons deprived of their
freedom in connection with terrorism as well as probable detention areas which have been set up by the army for
its needs and which meet the criteria of prison. The following assumptions complete the model formulation.

First of all, we assume that the compartments are homogeneous and contained within the same territory. Thus,
the spatial distribution of terrorist ideology can be omit and everybody in the population has same average natural
death rate µ.

As Castillo Chavez and Bao Song in [18], for i = 1,6 εi , q and e measure the strengh of the recruitement force
and assumed to be proportionnal to the number of contacts per unit time as well as to the likelihood of success.
We also denote Λ5 and Λ8 as the per-capita recovery rate. Hence, 1/Λ5 and 1/Λ8 are the average residence
time respectively for terrorists and terrorist soldiers. This assumed that the residence times are exponentially
distributed.

The model equations follow a contact process. In other words, the transition from a class A to a class B is
obtained after contact with an individual of class B or an individual of another class who shares the convictions
that emanate from class B. For example, an individual can only become a terrorist following contact with a
terrorist, a terrorist soldier or a terrorist leader. Contact notion is any means by which individuals can stay
in touch such as family ties, telephone calls, radio and television broadcasts, sending letters, coded or explicit
messages, internet, etc.
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Parameters definitions
Parameters Definitions
η Death rate due to detention conditions
µ Natural mortality rate
Λ Susceptible recruitment rate
Λ1 DSF recruitment rate from S
Λ2 DSF out-going rate
Λ3 HDV recruitment rate from S
Λ4 HDV drop-out rate
Λ5 Terrorist soldiers repentance rate
Λ6 Prisoners out-going rate
Λ7 Force of radicalization
Λ8 Terrorist repentance rate
Λ9 Force of the determination in defense of the homeland
β1 Terrorist-to-terrorist-soldiers conversion rate
β2 Terrorist-to-terrorist-leaders conversion rate
β3 Terrorist-soldiers-to-terrorist-leaders conversion rate
δ1 DSF death rate due to violent extrmism
δ2 HDV death rate due to violent extrmism
δ3 Terrorists death rate due to counter-terrorist activities
δ4 Terrorist soldiers death rate due to counter-terrorist activities
δ5 Terrorist leaders death rate due to counter-terrorist activities
ε1 Strength of the recruitment force from D into T
ε2 Strength of the recruitment force from D into TS
ε3 Strength of the recruitment force from D into TL
ε4 Strength of the recruitment force from H into T
ε4 Strength of the recruitment force from H into TS
ε6 Strength of the recruitment force from H into TL
a Undergoing juducial process rate from TS
b Strength of the recruitment force from P into TS
h Undergoing juducial process rate from T
k Strength of the recruitment force from P into T
l1 Undergoing juducial process rate from TL
l2 Strength of the recruitment force from P into TL
n HDV recruitment rate from IDP
m DSF recruitment rate from IDP
π DSF recruitment rate from HDV
e Strength of the recruitment force from I into TS
q Strength of the recruitment force from I into T
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the model equations are given by:

dS
dt

= Λ+Λ2D +Λ4H +Λ5TS +Λ6P +Λ8T −
[
µ+Λ9

TS
A+ S

+Λ1
D +H
A+ S

+Λ3
TS

A+ S
+Λ7

T + TS + TL
A+ S

]
S (2.4)

dD
dt

=
(
Λ1S
A+ S

+
mI
A+ I

)
(D +H) +πH −

[
Λ2 +µ+ δ1

TS
A

+ ε1
T + TS + TL

A
+ ε2

TS + TL
A

+ ε3
TL
A

]
D (2.5)

dH
dt

= Λ3
TS

A+ S
S +n

D +H
A+ I

I −
[
π+µ+Λ4 + δ2

TS
A

+ ε4
T + TS + TL

A
+ ε5

TS + TL
A

+ ε6
TL
A

]
H (2.6)

dI
dt

= Λ9
TS

A+ S
S −

[
µ+ (n+m)

D +H
A+ I

+ e
TS + TL
A+ I

+ q
T + TS + TL

A+ I

]
I (2.7)

dP
dt

=
[
hT + aTS + l1TL

] D +H
A

−
[
µ+ η +Λ6 + l2

TL
A+ P

+ b
TS + TL
A+ P

+ k
T + TS + TL

A+ P

]
P (2.8)

dT
dt

=
[
Λ7

S
A+ S

+ q
I

A+ I
+ k

P
A+ P

+
ε1D + ε4H

A

](
T + TS + TL

)
−
[
Λ8 +µ+ (D +H)

(
h
A

+
δ3
A

)
+ β1

TS + TL
A

+ β2
TL
A

]
T (2.9)

dTS
dt

=
[
β1

T
A

+
ε2D + ε5H

A
+ e

I
A+ I

+ b
P

A+ P

](
TS + TL

)
−
[
µ+Λ5 + (D +H)

(
a
A

+
δ4
A

)
+ β3

TL
A

]
TS (2.10)

dTL
dt

=
[
β2

T
A

+ β3
TS
A

+
ε3D + ε6H

A
+ l2

P
A+ P

]
TL −

[
µ+ (D +H)

(
l1
A

+
δ5
A

)]
TL (2.11)

We get the terrorism network diagram.
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Figure 1: Flow diagram
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3. Model Analysis

It’s worth mentioning that the parameters of the formulated model are non-negative since the model describes the
dynamics of an ideology in an human population. Consequently, it suffices to state that the solutions of the model
are non-negative. We denote by R

8
+ the set [0;+∞[ and by Ω the set

Ω =
{

(S(t), D(t), H(t), I(t), P (t), T (t), TS (t), TL(t)) ∈R8
+; and N ≤ Λ

µ

}
. (3.1)

Lemma 3.1. The system (2.4) - (2.11) with initial contitions (2.3) has a unique solution in Ω.

Proof. We follow [19] and apply Cauchy-Lypschitz theorem about the existence and the uniqueness of solutions
for first-order autonomous systems with initial conditions (2.3). ■

Theorem 3.1. The feasible region Ω is positively invariant and attracting with respect the system (2.3) - (2.11).

Proof. The vector field associated to the system (2.4) - (2.11) is denoted by

V⃗ =



dS
dt

dD
dt

dH
dt

dI
dt

dP
dt

dT
dt

dTS
dt

dTL
dt



(3.2)

For this demonstration we follow [20], [21] and [22] using the barrier theorem by checking that the vector
field is always tangent or pointing inside the boundary ∂R8

+ of R8
+.

∂R8
+ = {S = 0} ∪ {D = 0} ∪ {H = 0} ∪ {I = 0} ∪ {P = 0} ∪ {T = 0} ∪ {TS = 0} ∪ {TL = 0}.
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On {S = 0}, the associated vector field is

V⃗1 =



Λ+Λ2D +Λ4H +Λ5TS +Λ6P +Λ8T(
dD
dt

)
S=0(

dH
dt

)
S=0(

dI
dt

)
S=0(

dP
dt

)
S=0(

dT
dt

)
S=0(

dTS
dt

)
S=0(

dTL
dt

)
S=0


We have e⃗1 = (1,0,0,0,0,0,0,0) and

V⃗1 · e⃗1 = Λ+Λ2D +Λ4H +Λ6P +Λ8T ≥ 0

So, the vector field V⃗1 is pointing inside the positive orthan.
The same reasoning can be done for {D = 0}, {H = 0}, {I = 0}, {P = 0}, {T = 0},
{TS = 0} and {TL = 0}.
We deduce that the set Ω is positively invariant with respect the model.

Moreover,

dN
dt

=
d (S +D +H + I + P + T + TS + TL)

dt
dN
dt

+µN ⩽ Λ (3.3)

According to [23], the solution of (3.3) is given by

N (t) ⩽N (0)exp(−µt) +
Λ

µ
[1− exp(−µt)] (3.4)

N (0) ⩽
Λ

µ
(3.5)

Furthermore, for t → +∞ in (3.4) the total population N approaches the caring capacity constant
Λ

µ
. It means

that limsupN (t)t→+∞ ≤
Λ

µ
, demonstrating that Ω is attractive within R

8
+; see [13], [21] and [24]. ■
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3.1. Basic reproduction number

The basic reproductive number, R0, is the average number of secondary infections produced by one infected
individual during the entire course of infection in a completely susceptible population. I serves as a threshold
parameter that predicts whether an infection dies out or keeps persistence in a population. We determine the basic
reproduction number by using Watmough and Van den Driessche method in [25]. The population is divided in
eight compartments in this order S,D,H,I,P ,T ,TS and TL. For our model, infected compartments are P ,T ,TS
and TL and we can discard the compartment P because it doesn’t change the basic reproduction number. The next
generation matrice is obtained by calculated G = FV −1.

Firstly we determine the Terrorist-free equilibrium (TFE) by solving the model equations for
T ∗ = T ∗S = T ∗L = 0. It yields

E0 =
(
Λ(µ+Λ2)

µΛ1
,
Λ (Λ1 −Λ2 −µ)

µΛ1
, 0, 0, 0, 0, 0

)
(3.6)

Now, we state the basic reproduction number.
Considering FT , FTS and FTL as the rates of appearance of newly radicalized
individuals respectively in compartments T ,TS and TL and for i ∈ {T , TS , TL}
νi = ν−i − ν

+
i with ν−i the rate of transfers of individuals out the class i and ν+

i the rate of transfers of individuals
into class i we get:

F = JF (E0) =



∂FT
∂T

∂FT
∂TS

∂FT
∂TL

∂FTS
∂T

∂FTS
∂TS

∂FTS
∂TL

∂FTL
∂T

∂FTL
∂TS

∂FTL
∂TL


(E0) and V = Jν(E0) =



∂νT
∂T

∂νT
∂TS

∂νT
∂TL

∂νTS
∂T

∂νTS
∂TS

∂νTS
∂TL

∂νTL
∂T

∂νTL
∂TS

∂νTL
∂TL


(E0)

where F =



FT

FTS

FTL


=



[
Λ7

S
A+ S

+
ε1D + ε4H

A
+ q

I
A+ I

]
(T + TS + TL)

[ε2D + ε5H
A

+ e
I

A+ I

]
(TS + TL)

[ε3D + ε6H
A

]
TL


This give us

F =



Λ7S
∗

D∗ + S∗
+ ε1

Λ7S
∗

D∗ + S∗
+ ε1

Λ7S
∗

D∗ + S∗
+ ε1

0 ε2 ε2

0 0 ε3


. (3.7)
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with

S∗

D∗ + S∗
=

µ+Λ2

Λ1
(3.8)

D∗

D∗ + S∗
=

Λ1 −Λ2 −µ
Λ1

(3.9)

Now, we are locking for V and V −1.

ν =



νT

νTS

νTL



=



[
Λ8 +µ+ (D +H)

(
h
A

+
δ3

A

)
+ β1

TS + TL
A

+ β2
TL
A

]
T

[
µ+Λ5 + (D +H)

( a
A

+
δ4

A

)
+ β3

TL
A

]
TS −

[
β1

T
A

]
(TS + TL)

[
µ+ (D +H)

(
l1
A

+
δ5

A

)]
TL −

[
β2

T
A

+ β3
TS
A

]
TL


It comes that

V =



Λ8 +µ+ h+ δ3 0 0

0 Λ5 +µ+ a+ δ4 0

0 0 µ+ l1 + δ5


(3.10)

and

V −1 =



1
Λ8 +µ+ h+ δ3

0 0

0
1

Λ5 +µ+ a+ δ4
0

0 0
1

µ+ l1 + δ5


(3.11)

The next generation matrix denotes G = FV −1.
From (3.7), (3.11) and (3.6) we obtain the next generation matrix that is
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G =



Λ7 (µ+Λ2) +Λ1ε1

Λ1 (Λ8 +µ+ h+ δ3)
Λ7 (µ+Λ1) +Λ1ε1

Λ1 (Λ5 +µ+ a+ δ4)
Λ7 (µ+Λ1) +Λ1ε1

Λ1 (µ+ l1 + δ5)

0
ε2

Λ5 +µ+ a+ δ4

ε2

µ+ l1 + δ5

0 0
ε3

µ+ l1 + δ5


(3.12)

The basic reproduction number is the spectral radius of the next generation matrix. Then

R0 = max
{
Λ7 (µ+Λ2) +Λ1ε1

Λ1 (Λ8 +µ+ h+ δ3)
;

ε2

Λ5 +µ+ a+ δ4
;

ε3

µ+ l1 + δ5

}
. (3.13)

Applying theorem of Varga in [26], theorem 2 in [25] or theorem 6 in [27] and as [21] we claim the following
local stability result.

Theorem 3.2. The terrorist free equilibrium E0 is locally asymptotically stable if R0 < 1.

According to the theorem 3.2, as long as the value of R0 is less than one, terrorism can never take on the
scale of an epidemic. Note that this interpretation depends on the initial conditions, in particular the number of
terrorists, terrorist soldiers and leaders in the initial population. To get rid of this dependency, a global stability
result is needed.

Theorem 3.3. The terrorist free equilibrium E0 is globally asymptotically stable if R0 < 1.

Proof. According to theorem 3.2 the TFE is locally asymptotically stable and according to theorem 3.1 the
domain Ω of the feasible solution is attractive. Thus, we follow [20], [21] and [24] to get the global asymptotic
stability. ■

3.2. Endemic equilibrium

As soon as the basic reproduction number is greater than one, a single terrorist has a large recruitment capacity
and can put the whole nation at risk. We’re going to see an explosion in the number of terrorists, terrorist soldiers
and terrorist leaders. With soldiers as the armed wing, the result will be more violence and an increase in the
number of internally displaced people. There will be more deaths on the DSF and HDV sides. In the long term,
the whole nation will be at risk, and in the worst case scenario, we’ll have an occupation of the entire territory by
armed terrorist groups.

Theorem 3.4. if R0 > 1, the terrorist free equilibrium E0 is unstable.

Proof. We apply theorem 2 in [25]. ■

4. Numerical Analysis

In this section, we use numerical simulations to verified mathematical analysis results. This mean that forR0 < 1
we have to see that the populations of terrorists, terrorist soldiers and terrorist leaders are coming to disappear. In
the verse, for R0 > 1 these populations are growing and terrorism ideology is spreading.

The Table 1 gives parameters settings for extinction and the Table 2 gives parameters settings for persistence.
The populations of susceptible, DSF, HDV, IDP, prisoners, terrorists, terrorist soldiers and terrorist leaders at
initials conditions (t = 0) are given by :

S = 15089674 D = 23000 H = 50000 I = 1882391
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P = 7041 T = 470500 TS = 15089674 TL = 25

Table 1 : Parameters settings for extinction
Parameters and values Parameters and values
η = 0.0000025 ε1 = 0.0001
µ = 0.0034247 ε2 = 0.0001
Λ = 600 ε3 = 0.0001
Λ1 = 0.05 ε4 = 0.0000001
Λ2 = 0.001 ε4 = 0.0000001
Λ3 = 0.005 ε6 = 0.0000001
Λ4 = 0.0001 a = 0.0008
Λ5 = 0.0001 b = 0.001
Λ6 = 0.001 h = 0.20635
Λ7 = 0.056 k = 0.0016
Λ8 = 0.0001 l1 = 0.0001
Λ9 = 0.01 l2 = 0.0001
β1 = 0.9 ∗ 0.12 n = 0.01
β2 = 0.0792 m = 0.001
β3 = 0.00005 π = 0.005
δ1 = 0.00125 δ2 = 0.00125
δ3 = 0.0001 δ4 = 0.0005
δ5 = 0.0002 q = 0.005
e = 0.0025

Table 2 : Parameters settings for persistence
Parameters and values Parameters and values
η = 0.00000025 ε1 = 0.01
µ = 0.00034247 ε2 = 0.01
Λ = 600 ε3 = 0.01
Λ1 = 0.05 ε4 = 0.001
Λ2 = 0.001 ε4 = 0.001
Λ3 = 0.005 ε6 = 0.001
Λ4 = 0.0001 a = 0.00008
Λ5 = 0.00001 b = 0.001
Λ6 = 0.001 h = 0.0000010635
Λ7 = 0.156 k = 0.0016
Λ8 = 0.0000001 l1 = 0.00001
Λ9 = 0.01 l2 = 0.01
β1 = 0.1 ∗ 0.12 n = 0.01
β2 = 0.00792 m = 0.001
β3 = 0.00005 π = 0.005
δ1 = 0.00125 δ2 = 0.00125
δ3 = 0.00001 δ4 = 0.00005
δ5 = 0.02 q = 0.05
e = 0.065
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Figure 2: Evolution of the different populations with extinction values : R0 = 0,0268 < 1.
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Figure 3: Evolution of the different populations with persistence values : R0 = 40.1221 > 1
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Figures Comments:

Figure 2: It shows that terrorist, terrorist soldiers and leaders populations decrease until they stabilize at zero,
meaning the extinction of the radicalization and the spread of terrorist ideologies. As HDV were created to help
DSF, the decreasing of HDV compartment population is explained by the extinction of the spreading of terrorist
ideologies. As a result, the influence that terrorists had within the general population, justifying the existence
of the susceptible, no longer exists, hence the number of susceptible naturally stabilizes at zero. IDP who had
fled their areas will be able to return and lead a peaceful life again. It therefore goes without saying that the
IDV compartment is switched off. However, DSF population is growing. Indeed, the extinction of classes T , TS
and TL induces the cancellation of the transfer coefficients from DSF class to classes T , TS and TL. The only
coefficient which ensures the reduction in the number of individuals in the DSF class is the natural mortality rate
which is relatively small. Finally, there is no one left to imprison because the terrorists, soldiers and leaders have
all disappeared.

Figure 3 : The populations of terrorist, terrorist soldiers and leaders are continuously growing; showing that
the terrorist ideology is spreading. There would be more violent and more deaths on the DSF and HDV sides
explaining the decreasing of these populations. The slight growth that we are seeing in the first few weeks in
the DSF and HDV compartments can be explained by the fact that the government, in response, will increase the
recruitment of DSF and HDV to try to contain the growing hydra of terrorism. Since terrorist ideology will be
predominant, susceptible and people in the IDP and prisoner compartments will spend less time in their respective
compartments. They will be absorbed very quickly in compartments T, Ts and TL; thus contributing to the growth
of the number of individuals in these compartments. Thus, in the long term, the whole nation will be in danger.
This situation may result in the stabilization of the number of individuals in compartments T , Ts and TL in the
sense that the need for recruitment will decrease to a certain threshold which will be maintained in order to keep
the territory under control. At this stage in the evolution of terrorism, the susceptible will no longer be susceptible
but terrorists, which explains the stabilization of the number of susceptible at zero.

5. Optimal control model and analysis

5.1. Optimal control model formulation

We introduce three (03) time-dependent control u1(t), u2(t) and u3(t) which are described as follows.

(i) u1(t) covers all the actions undertaken by government, civil organizations, traditional authorities and
political parties to raise awareness through public conferences, preaching and socio-religious seminars.
This include television, radio and interactive broadcasts, as well as newspapers articles and pages used in
the fight against terrorism.

(ii) u2(t) represents the ability of DSF and HDV to respond to attacks and carry out preventive operations.
This capacity is expressed through military equipment, the quality of that equipment, military training,
knowledge and control of the territory, the commitment of the players and their numbers.

(iii) u3(t) is any action that allows to identify and to neutralise terrorist leaders.
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Adding the tree aforementioned time-dependent control we get the control system.

dS
dt

= Λ+Λ2D +Λ4H +Λ5TS +Λ6P +Λ8T −
[
µ+Λ9

TS
A+ S

+Λ1
D +H
A+ S

+Λ3
TS

A+ S
+ (1−u1)Λ7

T + TS + TL
A+ S

]
S (5.1)

dD
dt

=
(
Λ1S
A+ S

+
mI
A+ I

)
(D +H) +πH −

[
Λ2 +µ+ δ1

TS
A

+ (1−u1)ε1
T + TS + TL

A
+ (1−u2)ε2

TS + TL
A

+ (1−u3)ε3
TL
A

]
D (5.2)

dH
dt

= Λ3
TS

A+ S
S +n

D +H
A+ I

I −
[
π+µ+Λ4 + δ2

TS
A

+ (1−u1)ε4
T + TS + TL

A
+ (1−u2)ε5

TS + TL
A

+ (1−u3)ε6
TL
A

]
H (5.3)

dI
dt

= Λ9
TS

A+ S
S −

[
µ+ (n+m)

D +H
A+ I

+ (1−u2)e
TS + TL
A+ I

+ (1−u1)q
T + TS + TL

A+ I

]
I (5.4)

dP
dt

= [hT + aTS + l1TL]
D +H
A

−
[
µ+ η +Λ6 + (1−u3)l2

TL
A+ P

+ (1−u2)b
TS + TL
A+ P

+ (1−u1)k
T + TS + TL

A+ P

]
P (5.5)

dT
dt

= (1−u1)
[
Λ7

S
A+ S

+ q
I

A+ I
+ k

P
A+ P

+
ε1D + ε4H

A

]
(T + TS + TL)−

[
Λ8 +µ+ (D +H)

(
h
A

+
δ3
A

)
+ (1−u2)β1

TS + TL
A

+ (1−u3)β2
TL
A

]
T (5.6)

dTS
dt

= (1−u2)
[
β1

T
A

+
ε2D + ε5H

A
+ e

I
A+ I

+ b
P

A+ P

]
(TS + TL)−

[
µ+Λ5 + (D +H)

( a
A

+
δ4
A

)
+ (1−u3)β3

TL
A

]
TS (5.7)

dTL
dt

= (1−u3)
[
β2

T
A

+ β3
TS
A

+
ε3D + ε6H

A
+ l2

P
A+ P

]
TL −

[
µ+ (D +H)

(
l1
A

+
δ5
A

)]
TL (5.8)

5.2. Optimal control model analysis

Our goal is to seek the optimal solution required to minimize the number of terrorists, terrorist soldiers and
terrorist leaders responsible for spreading the terrorist ideology int the population at minimum cost. Hence, the
objective functional for this control problem is given by

J (u1,u2,u3) = min
0≤u1 ,u2 ,u3≤1

∫ T

0

(
ω1T (t) +ω2Ts(t) +ω3TL(t) +ω4u

2
1 +ω5u

2
2 +ω6u

2
3

)
dt (5.9)

where, constants ωi , i = 1,2, ...,6 are positive weights required to balance the corresponding terms in the objective
functional. The optimal controls u∗1,u

∗
2 and u∗3 we are looking for are the solutions of the problem

J
(
u∗1,u

∗
2,u
∗
3

)
= min {J (u1,u2,u3) : u1,u2,u3 ∈ U} . (5.10)

U = {(u1,u2,u3) : (u1(t) , u2(t) , u3(t)) are measurable for t ∈ [0;T ]} (5.11)

Theorem 5.1. The problem of optimal control (5.1)-(5.11) has a unique solution in U .

Proof. Luke’s results [28] assure us of the existence of solutions for system (5.1)-(5.8). Since the state variables
are bounded, the set containing the system’s solutions is bounded. Consequently, we obtain the result by applying
Flemming-Rishel’s theorem; [29] and [30]. ■

Pontryagin’s maximum principle [31] gives the necessary conditions that the control u∗1,u
∗
2 and u∗3 must

satifsy. These conditions allow us to determine the optimal values of the control u∗1,u
∗
2 and u∗3, using the

353



Wendpanga Alain TAPSOBA, Yacouba SIMPORE, Oumar TRAORE

Hamiltonian of the system. This Hamilton is given by

H = ω1T (t) +ω2Ts(t) +ω3TL(t) +ω4u
2
1 +ω5u

2
2 +ω6u

2
3

+ λ1

(
Λ+Λ2D +Λ4H +Λ5TS +Λ6P +Λ8T −

[
µ+Λ9

TS
A+ S

+Λ1
D +H
A+ S

+Λ3
TS

A+ S
+ (1−u1)Λ7

T + TS + TL
A+ S

]
S
)

+ λ2

((
Λ1S
A+ S

+
mI
A+ I

)
(D +H) +πH −

[
Λ2 +µ+ δ1

TS
A

+ (1−u1)ε1
T + TS + TL

A
+ (1−u2)ε2

TS + TL
A

+ (1−u3)ε3
TL
A

]
D

)
+ λ3

(
Λ3

TS
A+ S

S +n
D +H
A+ I

I −
[
π+µ+Λ4 + δ2

TS
A

+ (1−u1)ε4
T + TS + TL

A
+ (1−u2)ε5

TS + TL
A

+ (1−u3)ε6
TL
A

]
H

)
+ λ4

(
Λ9

TS
A+ S

S −
[
µ+ (n+m)

D +H
A+ I

+ (1−u2)e
TS + TL
A+ I

+ (1−u1)q
T + TS + TL

A+ I

]
I
)

+ λ5

(
[hT + aTS + l1TL]

D +H
A

−
[
µ+ η +Λ6 + (1−u3)l2

TL
A+ P

+ (1−u2)b
TS + TL
A+ P

+ (1−u1)k
T + TS + TL

A+ P

]
P
)

+ λ6

(
(1−u1)

[
Λ7

S
A+ S

+ q
I

A+ I
+ k

P
A+ P

+
ε1D + ε4H

A

]
(T + TS + TL)−

[
Λ8 +µ+ (D +H)

(
h
A

+
δ3
A

)
+ (1−u2)β1

TS + TL
A

+ (1−u3)β2
TL
A

]
T

)
+ λ7

(
(1−u2)

[
β1

T
A

+
ε2D + ε5H

A
+ e

I
A+ I

+ b
P

A+ P

]
(TS + TL)−

[
µ+Λ5 + (D +H)

( a
A

+
δ4
A

)
+ (1−u3)β3

TL
A

]
TS

)
+ λ8

(
(1−u3)

[
β2

T
A

+ β3
TS
A

+
ε3D + ε6H

A
+ l2

P
A+ P

]
TL −

[
µ+ (D +H)

(
l1
A

+
δ5
A

)]
TL

)

where, λi for i = 1,2,3, ...,8, represent the adjoint variables associated with the state variables of the model
(5.1)-(5.8).

Theorem 5.2. Let (u∗1,u
∗
2,u
∗
3) be a solution of the problem of minization (5.1)-(5.11). Then, the adjoint variables

are given by

λ̇1 = λ1µ+ (λ1 −λ6)
Λ7A (T + TS + TL) (1−u1)

(A+ S)2
+ (λ1 −λ2)

Λ1A (D +H)

(A+ S)2
+ (λ1 −λ3)

Λ3ATS

(A+ S)2

+ (λ1 −λ4)
Λ9ATS

(A+ S)2

λ̇2 = λ1µ+ (λ2 −λ1)Λ2 + (λ3 −λ1)
Λ3TSS

(A+ S)2
+ (λ4 −λ1)

Λ9TSS

(A+ S)2
+ (λ1 −λ2)

Λ1S (S + T + TS + TL)

(A+ S)2

+ (λ6 −λ1)
Λ7S (T + TS + TL) (1−u1)

(A+ S)2
+ (λ2 −λ6)

ε1 (A−D) (T + TS + TL) (1−u1)
A2

+ (λ6 −λ3)
ε4H (T + TS + TL) (1−u1)

A2 + (λ6 −λ4)
qI (T + TS + TL) (1−u1)

(A+ I)2

+ (λ6 −λ5)
kP (T + TS + TL) (1−u1)

(A+ P )2
+ (λ6 −λ5)

hT (T + TS + TL)
A2

+ (λ4 −λ2)
mI (I + T + TS + TL)

(A+ I)2
+ (λ4 −λ3)

nI (I + T + TS + TL)

(A+ I)2
+ (λ7 −λ4)

eI (TS + TL) (1−u2)

(A+ I)2

+ (λ7 −λ6)
β1T (TS + TL) (1−u2)

A2 + (λ2 −λ7)
ε2(A−D) (TS + TL) (1−u2)

A2

+ (λ7 −λ3)
ε5H (TS + TL) (1−u2)

A2 + (λ7 −λ5)
bP (TS + TL) (1−u2)

(A+ P )2
+ (λ7 −λ5)

aTS (T + TS + TL)
A2

+ (λ8 −λ7)
β3TSTL (1−u3)

A2 + (λ8 −λ6)
β2T TL (1−u3)

A2 + (λ8 −λ5)
l2P TL (1−u3)

(A+ P )2

+ (λ8 −λ5)
l1TL (T + TS + TL)

A2 + (λ8 −λ3)
ε6HTL (1−u3)

A2 + (λ2 −λ8)
ε3(A−D)TL (1−u3)

A2

+ δ1λ2
(A−D)TS

A2 − δ2λ3
HTS
A2 + δ3λ6

T (T + TS + TL)
A2 + δ4λ7

TS (T + TS + TL)
A2 + δ5λ8

TL (T + TS + TL)
A2
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λ̇3 = λ3µ+ (λ3 −λ2)π+ (λ3 −λ1)Λ4 + (λ1 −λ2)
Λ1S (S + T + TS + TL)

(A+ S)2
+ (λ3 −λ1)

Λ3STS

(A+ S)2

+ (λ4 −λ1)
Λ9STS

(A+ S)2
+ (λ6 −λ1)

Λ7S (T + TS + TL) (1−u1)

(A+ S)2
+ (λ4 −λ2)

mI (I + T + TS + TL)

(A+ I)2

+ (λ4 −λ3)
nI (I + T + TS + TL)

(A+ I)2
+ (λ7 −λ4)

eI (TS + TL) (1−u2)

(A+ I)2
+ (λ6 −λ4)

qI (T + TS + TL) (1−u1)

(A+ I)2

+ (λ8 −λ5)
l2P TL (1−u3)

(A+ P )2
+ (λ7 −λ5)

bP (TS + TL) (1−u2)

(A+ P )2
+ (λ6 −λ5)

kP (T + TS + TL) (1−u1)

(A+ P )2

+ (λ6 −λ2)
ε1D (T + TS + TL) (1−u1)

A2 + (λ7 −λ2)
ε2D (TS + TL) (1−u2)

A2 + (λ8 −λ2)
ε3DTL (1−u3)

A2

+ (λ3 −λ6)
ε4(A−H) (T + TS + TL) (1−u1)

A2 + (λ3 −λ7)
ε5(A−H) (TS + TL) (1−u2)

A2

+ (λ3 −λ8)
ε6(A−H)TL (1−u3)

A2 + (λ6 −λ5)
hT (T + TS + TL)

A2 + (λ6 −λ5)
aTS (T + TS + TL)

A2

+ (λ8 −λ5)
l1TL (T + TS + TL)

A2 + (λ7 −λ6)
β1T (TS + TL) (1−u2)

A2 + (λ8 −λ6)
β2T TL (1−u3)

A2

+ (λ8 −λ7)
β3TSTL (1−u3)

A2 − δ1λ2
DTS
A2 + δ2λ3

(A−H)TS
A2 + δ3λ6

T (T + TS + TL)
A2

+ δ4λ7
TS (T + TS + TL)

A2 + δ5λ8
TL (T + TS + TL)

A2

λ̇4 = λ4µ+ (λ4 −λ2)
mA(D +H)

(A+ I)2
+ (λ4 −λ3)

nA(D +H)

(A+ I)2
+ (λ4 −λ6)

qA (T + TS + TL) (1−u1)

(A+ I)2

+ (λ4 −λ7)
eA (TS + TL) (1−u2)

(A+ I)2

λ̇5 = λ5 (µ+ η) + (λ5 −λ1)Λ6 + (λ5 −λ8)
l2ATL (1−u3)

(A+ P )2
+ (λ5 −λ7)

bA (TS + TL) (1−u2)

(A+ P )2

+ (λ5 −λ6)
kA (T + TS + TL) (1−u1)

(A+ P )2

λ̇6 = −ω1 +λ6µ+ (λ6 −λ1)Λ8 + (λ2 −λ1)
Λ1S(D +H)

(A+ S)2
+ (λ3 −λ1)

Λ3STS

(A+ S)2
+ (λ4 −λ1)

Λ9STS

(A+ S)2

+ (λ1 −λ6)
Λ7S(S +D +H) (1−u1)

(A+ S)2
+ (λ2 −λ4)

mI(D +H)

(A+ I)2
+ (λ3 −λ4)

nI(D +H)

(A+ I)2

+ (λ7 −λ4)
eI (TS + TL) (1−u2)

(A+ I)2
+ (λ4 −λ6)

qI(I +D +H) (1−u1)

(A+ I)2
+ (λ8 −λ5)

l2P TL (1−u3)

(A+ P )2

+ (λ7 −λ5)
bP (TS + TL) (1−u2)

(A+ P )2
+ (λ5 −λ6)

kP (P +D +H) (1−u1)

(A+ P )2
+ (λ2 −λ6)

ε1D(D +H) (1−u1)
A2

+ (λ7 −λ2)
ε2D (TS + TL) (1−u2)

A2 + (λ8 −λ2)
ε3DTL (1−u3)

A2 + (λ3 −λ6)
ε4H(D +H) (1−u1)

A2

+ (λ7 −λ3)
ε5H (TS + TL) (1−u2)

A2 + (λ8 −λ3)
ε6HTL (1−u3)

A2 + (λ6 −λ5)
h(A− T )(D +H)

A2

+ (λ5 −λ7)
aTS (D +H)

A2 + (λ5 −λ8)
l1(D +H)TL

A2 + (λ6 −λ7)
β1(A− T ) (1−u2)

A2

+ (λ6 −λ8)
β2(A− T ) (1−u3)

A2 + (λ8 −λ7)
β3TSTL (1−u3)

A2 − δ1λ2
DTS
A2 − δ2λ3

HTS
A2

+ δ3λ6
(A− T ) (D +H)

A2 − δ4λ7
TS (D +H)

A2 − δ5λ8
TL (D +H)

A2
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λ̇7 = −ω2 +λ7µ+ (λ7 −λ1)Λ5 + (λ2 −λ1)
Λ1S(D +H)

(A+ S)2
+ (λ1 −λ3)

Λ3S (A+ S − TS )
(A+ S)2

+ (λ1 −λ4)
Λ9S (A+ S − TS )

(A+ S)2
+ (λ1 −λ6)

Λ7(S +D +H) (1−u1)
(A+ S)2

+ (λ2 −λ4)
mI(D +H)

(A+ I)2

+ (λ3 −λ4)
nI(D +H)
(A+ I)2

+ (λ4 −λ6)
qI(I +D +H) (1−u1)

(A+ I)2
+ (λ4 −λ7)

eI(I + T +D +H) (1−u2)
(A+ I)2

+ (λ8 −λ5)
l2P TL (1−u3)

(A+ P )2
+ (λ5 −λ6)

kP (P +D +H) (1−u1)
(A+ P )2

+ (λ5 −λ7)
bP (P + T +D +H) (1−u2)

(A+ P )2

+ (λ2 −λ6)
ε1D(D +H) (1−u1)

A2 + (λ2 −λ7)
ε2D(T +D +H) (1−u2)

A2 + (λ8 −λ2)
ε3DTL (1−u3)

A2

+ (λ3 −λ6)
ε4H(D +H) (1−u1)

A2 + (λ3 −λ7)
ε5H(T +D +H) (1−u2)

A2 + (λ8 −λ3)
ε6HTL (1−u3)

A2

+ (λ7 −λ5)
a (A− TS ) (D +H)

A2 + (λ5 −λ6)
hT (D +H)

A2 + (λ5 −λ8)
l1TL(D +H)

A2

+ (λ6 −λ7)
β1T (T +D +H) (1−u2)

A2 + (λ8 −λ6)
β2T TL (1−u3)

A2 + (λ7 −λ8)
β3TL (A− TS ) (1−u3)

A2

+ δ1λ2
D (A− TS )

A2 + δ2λ3
H (A− TS )

A2 − δ3λ6
T (D +H)

A2 + δ4λ7
(A− TS ) (D +H)

A2 − δ5λ8
TL(D +H)

A2

λ̇8 = −ω3 +λ8µ+ (λ2 −λ1)
Λ1S(D +H)

(A+ S)2
+ (λ3 −λ1)

Λ3STS
(A+ S)2

+ (λ4 −λ1)
Λ9STS
(A+ S)2

+ (λ1 −λ6)
Λ7(S +D +H) (1−u1)

(A+ S)2
+ (λ2 −λ4)

mI(D +H)
(A+ I)2

+ (λ3 −λ4)
nI(D +H)
(A+ I)2

+ (λ4 −λ6)
qI(I +D +H) (1−u1)

(A+ I)2
+ (λ4 −λ7)

eI(I + T +D +H) (1−u2)
(A+ I)2

+ (λ5 −λ8)
l2P (A+ P − TL) (1−u3)

(A+ P )2
+ (λ5 −λ7)

bP (P + T +D +H) (1−u2)
(A+ P )2

+ (λ5 −λ6)
kP (P +D +H) (1−u1)

(A+ P )2
+ (λ2 −λ6)

ε1D(D +H) (1−u1)
A2

+ (λ2 −λ7)
ε2D(T +D +H) (1−u2)

A2 + (λ2 −λ8)
ε3D (A− TL) (1−u3)

A2

+ (λ3 −λ6)
ε4H(D +H) (1−u1)

A2 + (λ3 −λ7)
ε5H(T +D +H) (1−u2)

A2

+ (λ3 −λ8)
ε6H (A− TL) (1−u3)

A2 + (λ8 −λ5)
l1 (A− TL) (D +H)

A2 + (λ5 −λ6)
hT (D +H)

A2

+ (λ5 −λ7)
aTS (D +H)

A2 + (λ6 −λ7)
β1T (T +D +H) (1−u2)

A2 + (λ6 −λ8)
β2T (A− TL) (1−u3)

A2

+ (λ7 −λ8)
β3TS (A− TL) (1−u3)

A2 − δ1λ2
DTS
A2 − δ2λ3

HTS
A2 − δ3λ6

T (D +H)
A2 − δ4λ7

TS (D +H)
A2

+ δ5λ8
(A− TL) (D +H)

A2

Further, the optimal control (u∗1,u
∗
2,u
∗
3) is

u∗1 = max
{
0,min

{
1;τ∗1

}}
u∗2 = max

{
0,min

{
1;τ∗2

}}
u∗3 = max

{
0,min

{
1;τ∗3

}}
where

τ∗1 =
1

2ω4

[
(λ6 −λ1)Λ7S

A+ S
+

(λ6 −λ2)ε1D
A

+
(λ6 −λ3)ε4H

A
+

(λ6 −λ4)qI
A+ I

+
(λ6 −λ5)kP

A+ P

]
(T + TS + TL)
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τ∗2 =
1

2ω5

[
(λ7 −λ2)ε2D

A
+

(λ7 −λ3)ε5H
A

+
(λ7 −λ4)eI

A+ I
+

(λ7 −λ5)bP
A+ P

+
(λ7 −λ6)β1T

A

]
(TS + TL)

τ∗3 =
1

2ω6

[
(λ8 −λ2)ε3D

A
+

(λ8 −λ3)ε6H
A

+
(λ8 −λ5) l2P

A+ P
+

(λ8 −λ6)β2T

A
+

(λ8 −λ7)β3TS
A

]
TL

Proof. Following [30] and [32], we determine the differential of the Hamiltonian with respect the system
variables and deduce the adjoint system

λ̇1 = −∂H
∂S

λ̇2 = −∂H
∂D

λ̇3 = −∂H
∂H

λ̇4 = −∂H
∂I

λ̇5 = −∂H
∂P

λ̇6 = −∂H
∂T

λ̇7 = − ∂H
∂TS

λ̇8 = − ∂H
∂TL

To obtain the optimal control formulation we solve the given equation by the Hamiltonian differential H with
respect to (u1,u2,u3). It follows that

u∗1 =


0 if τ∗1 ⩽ 0
τ∗1 if 0 < τ∗1 < 1 ,
1 if τ∗1 ⩾ 1

u∗2 =


0 if τ∗2 ⩽ 0
τ∗2 if 0 < τ∗2 < 1
1 if τ∗2 ⩾ 1

and

u∗3 =


0 if τ∗3 ⩽ 0
τ∗3 if 0 < τ∗3 < 1 .
1 if τ∗3 ⩾ 1

with

τ∗1 =
1

2ω4

[
(λ6 −λ1)Λ7S

A+ S
+

(λ6 −λ2)ε1D
A

+
(λ6 −λ3)ε4H

A
+

(λ6 −λ4)qI
A+ I

+
(λ6 −λ5)kP

A+ P

]
(T + TS + TL)

τ∗2 =
1

2ω5

[
(λ7 −λ2)ε2D

A
+

(λ7 −λ3)ε5H
A

+
(λ7 −λ4)eI

A+ I
+

(λ7 −λ5)bP
A+ P

+
(λ7 −λ6)β1T

A

]
(TS + TL)

τ∗3 =
1

2ω6

[
(λ8 −λ2)ε3D

A
+

(λ8 −λ3)ε6H
A

+
(λ8 −λ5) l2P

A+ P
+

(λ8 −λ6)β2T

A
+

(λ8 −λ7)β3TS
A

]
TL

■
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5.3. Numerical simulation of the optimal control problem

The aim of the control is to determine a cost-effective control strategy. To achieve this, we use numerical
simulations to study the impact of each control. In addition, we will carry out a comparative study of the impact
of each control in the fight against ideological terrorism. This study will enable us to highlight the impact of the
strategies linked to each control function, and thus to identify an effective counter-terrorism strategy at a lower
cost in terms of time, human and financial resources.

In order to observe the impact of the values taken by the control functions, we’ll use the same parameter
values as in the case R0 = 0.0268 < 1. Indeed, for R0 < 1, the terrorist ideology is already in extinction, and for
control values tending towards 1, we should be able to observe curves showing faster decay in the compartments
P , T , TS and TL. This will show that by acting on the factors represented by the three controls, the State can
significantly increase the effectiveness of the fight.

Figures Comments:

Figure 4: We assume that the government and its partners and the entire population, in a spirit of patriotism,
are working to defeat terrorism. This action is reflected in continuous awareness-raising actions, the
reinforcement and acquisition of increasingly efficient military equipment accompanied by solid and adapted
military training. As the figure shows, the implementation of a synergy of action based on the three control
functions makes it possible to defeat terrorism in all its forms in a relatively short time.

Figure 5: Among the infected classes P , T , Ts and TL, terrorists are the class that is most in contact with the
other compartments. Thus, by putting all the available means on the control u1, we see that the measures taken
in this direction reach all the other compartments. For u1 = 1, we assume that the entire population has fully
integrated the fact that no one should adhere to terrorist ideology. So the terrorist compartment will gradually
empty out, stabilizing at zero, and there will be no more opportunities for recruitment. Then, since terrorist
soldiers recruit mainly from the T class and leaders from the T and Ts classes, the extinction of the terrorist class
inexorably leads to the extinction of the Ts and TL classes.

Figure 6: The control u2 represents the ability of DSF and HDV to respond attack and carry out preventive
operations. So, for u2 = 1 DFS and HDV are the DFS and HDV are well trained, equipped and qualified for
combat. However, military equipment and training are designed only for the army. This can be seen in the
figure. In fact, the consequences of the control u2 are effective on soldier terrorists, but have no effect on other
compartments. The soldier terrorists will certainly be eradicated, but the terrorist ideology will remain through
the persistence of the T and TL compartments. The latter will always work to create the compartment of terrorist
soldiers. The struggle can go on forever, which means that terrorism cannot be defeated by military action alone.

Figure 7: Putting all resources into u3 control is probably the least effective control strategy. Leading
terrorists are eliminated, but all other classes remain intact, and the curves are confounded. Eliminating the
leaders will disorganize the fight and spread panic among the terrorists. However, the transition from soldier to
leader allows a renewal of the leader class. The change of leaders within terrorist groups can also, against all
odds, instill a new dynamic and reinvigorate the terrorists. It’s worth noting that new leaders, coming from the
soldier class of terrorists, because they have fought in combat, are more familiar with the context of the struggle
and may prove to be more competent. These new, potentially more effective leaders can reverse the trend of the
struggle and succeed in leading the terrorists to an undesirable victory for a country.

Figure 8: Joint actions on controls u1(t), u2(t) and u3(t) have a significant impact on the compartments
T , TS and TL that we aim to stabilize at 0. This is a further proof of the importance of synergy of action (numbers,
equipment, strategy and training) within the defense and ongoing awareness-raising campaigns.
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Figure 4: Comparative evolution of the different populations, setting : u1 = u2 = u3 = 0 and u1 = u2 = u3 = 1.
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Figure 5: Comparative evolution of the different populations, Setting : u1 = u2 = u3 = 0 and u1 = 1;u2 = u3 = 0.
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Figure 6: Comparative evolution of the different populations, Setting : u1 = u2 = u3 = 0 and u2 = 1;u1 = u3 = 0.
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Figure 7: Comparative evolution of the different populations, Setting : u1 = u2 = u3 = 0 and u3 = 1;u1 = u2 = 0.
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Figure 8: Comparative evolution of the different populations, Setting : u1 = u2 = u3 = 0 and u1 = 1;u2 = u3 = 0.5.
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6. Discussing

The analysis of the optimal control problem shows that it’s important that there be synergy of action in the
fight against terrorism. Indeed, each of the three axes of struggle that we have identified and controlled must
be considered and substantial resources must be injected into them. When all the three axes are stimulated
simultaneously, terrorism can be eradicated in a time of about 300 weeks, see figure 4. On the other hand,
when one of the axes is abandoned, after the same period of 300 weeks, there are still some individuals in
compartments T , TS and TL, see figures 5, 6 and 7. This will result in a longer time of struggle, during which
time uncontrolled events could change the course of the struggle. It should also be noted that the u1 control is the
most sensitive, see figure 5 where the evolution of the populations in compartments T , TS and TL is like in figure
4 where u1 = u2 = u3 = 1; this means that the government, in coordination with civil organizations and religious
institutions, is carrying out large-scale awareness-raising actions in order to rekindle the patriotic flame in the
hearts of the people. According to our model, such actions will reduce the number of individuals in compartment
T to zero. As a result, the compartments TS and TL will no longer be able to recruit and will be emptied; the
figure 8 is supporting this idea.

7. Conclusion

This paper present a mathematical modeling and control of the dynamics of terrorist ideologies. In particular,
the model takes into account the fact that military personnel, FDS and HDV, can be led to radicalize.
Subdividing the population in eight compartments we have constructed a deterministic model using contacts
process. The theoretical analysis of the model highlights the existence of a disease-free equilibrium that is
globally asymptotically stable. Consequently the spread of the terrorist ideologies can be effectively controlled
in the population, whatever the number of infectious people individuals initially introduced into the completely
susceptible population. This is how we have introduced tree (03) time-dependent control u1(t), u2(t) and u3(t)
with the aim of limiting or even eradicating the spreading of terrorist ideologies in the population.

Terrorism is a new challenge for our country. The fight has made progress, but the threat persists and has
diversified, according to the United Nation. It is up to each State, according to its realities, to find endogenous
and lasting solutions to effectively and definitively eradicate the terrorist hydra.
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1. Introduction

The pandemic of COVID-19 is an infectious disease caused by the virus Sars-CoV-2 and characterized by severe
acute respiratory syndrome. In late December 2019, the disease COVID-19 was first identified in China precisely
in city of Wuhan ([37]). This virus has caused several deaths in the world and deserves the attention of researchers.
In Burkina Faso, the first case is detected on March 9, 2020 ([28, 35]). Today, there is no effective treatment that
has been accepted. In response to this epidemic, the state has taken a number of measures to reduce the spread of
the virus. The best way to fight COVID-19 is to find ways to limit the spread of the virus in public spaces. The
whole world is now concerned with the transmission of the disease by trying out vaccines, treatments and barrier
measures in order to control the disease. In the literature, several mathematical models have been studied in order
to show the dynamics of the infectious disease (see the references [8, 22, 38, 39]). Wu et al. ([38]) developed
a susceptible exposed infectious recovered model (SEIR) to clarify the transmission dynamics and global spread
of disease. Tang et al. ([32]) proposed a compartmental deterministic model that would combine the clinical
development of the disease, the patient’s state of health and intervention measures. Researchers found that the
amount of control reproduction number may be as high as R0 = 6.47, and that the methods of intervention,
including contact followed by quarantine and isolation would effectively minimize COVID-19 cases ([9, 33]).
Several modeling studies have already been performed for the COVID-19 outbreak (see [20, 27, 31–33]). Recent
mathematical models with optimal control have been developed to study the COVID-19 pandemic. Hongzhi Lin
and Yongping Zhang are studying a COVID-19 model to determine the optimal deployment of cordon sanitaires
in terms of minimum queueing delay time with available health testing resources (see [14] ). Shou Chens and
Chen Xiao are studying a COVID-19 model to determine the associated credit risk contagion among financial
institutions (see [2]). According to the models and the epidemiological characteristics of COVID-19 ([5]), we
propose a SEIR type model to study the dynamics of this current pandemic (see [11, 20, 25, 29]). Our model is
described by differential equations system and gives a comprehensive mechanism for the dynamics of COVID-19
transmission. In this model, we take into consideration the control of contact (γ) between infectious individuals
and susceptible persons. We introduce into our model two controls which are vaccination of susceptible humans
denoted by u and treatment of infected humans designed by v.

The organization of this paper is as follow: In Section 2, we formulate the mathematical model for COVID-
19. In Section 3, we give Mathematical properties of the model (estimation of R0, parameters with biological
interpretation of model, positivity and boundedness of the solution). In Section 4, we establish the global stability
of disease free equilibrium (DFE). In Section 5, we give a numerical simulation in order to illustrate the theoretical
results. In Section 6, we give the optimal control problem and we derive the necessary condition for existence
optimal control and we present the resulting numerical simulation. Finally, in Section 7, we give the conclusion.

2. Mathematical model

In this section, we formulate the mathematical model. Considering the characteristics of the COVID-19
pandemic, we have the following compartments:

• S(t) Susceptible persons at time t.

• E(t) Exposed and infectious persons at time t.

• I(t) Infected and infectious persons at time t.

• Ir(t) Symptomatic infected and infectious persons at time t (the number of persons infected who are
reported and isolated at time t).

• Iu(t) Asymptomatic infected and infectious persons at time t (the number of persons who are infected but
do not have symptoms at time t).
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• Rr(t) Recovery of infected reported persons at time t.

• Ru(t) Recovery of infected unreported persons at time t.

The class of infected individuals I is subdivided into two classes infected reported persons (Ir) and infected
unreported persons (Iu) for the following reasons. Firstly COVID-19 patients do not test for COVID-19 because
the test is expensive in this country. As a result, infected people do not show signs of the disease. These infectious
persons move freely in the susceptible population and continue to infect them. They are the most vulnerable in
the infection of COVID-19 and spread the disease more. Each individual in this class called infected unreported
persons (Iu), heals alone and enters the class Ru. Secondly, those infected with COVID-19 who are tested positive
are detected, isolated then treated. They are less infectious. Each individual of this class infected reported persons
(Ir), heals by treatment and enters in the class Rr.

Therefore, we have the following transfer diagram:

S(t) E(t) I(t)

Ir(t)

Iu(t)

Rr(t)

Ru(t)

γ(t)
S

N
(I + Iu)

αE

β1I

β
2 I

ηIr

θIu

Figure 1: The transfer diagram.

According to the Figure 1 the corona virus mathematical model is



dS

dt
=

−γ(t)S(I + Iu)

N
,

dE

dt
=

γ(t)S(I + Iu)

N
− αE,

dI

dt
= αE − (β1 + β2)I,

dIr
dt

= β1I − ηIr,

dIu
dt

= β2I − θIu,

dRr

dt
= ηIr,

dRu

dt
= θIu.

(2.1)
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The initial conditions are:

S(0) = S0 > 0, E(0) = E0 ≥ 0, I(0) = I0 ≥ 0, Ir(0) = Ir0 ≥ 0, Iu(0) = Iu0 ≥ 0,

Ru(0) = Ru0 ≥ 0, Rr(0) = Rr0 ≥ 0.

The total population at time t is given by:

N(t) = S(t) + E(t) + I(t) +Rr(t) + Ir(t) + Iu(t) +Ru(t).

and the total population N0 = S0 + E0 + I0 + Ir0 + Iu0 +Rr0 +Ru0 at the initial time t0 = 0 is constant.
Parameters with biological interpretation of model (2.1)

• γ(t) : the contact rate of a person in state S at time t.

• α : the transition rate of a person in state E.

• β1 : the transition rate between E and Ir.

• β2 : the transition rate between E and Iu.

• θ : the transition rate of a person in state Iu to the state Ru.

• η : the transition rate of a person in state Ir to the state Rr.

3. Mathematical properties of the model

3.1. Estimation of R0

The disease free equilibrium (DFE) of the model (2.1) is
X0 = (S0, E0, I0, I0u, I

0
r , R

0
r , R

0
u) = (N0, 0, 0, 0, 0, 0, 0). We determine the basic reproduction number R0 by

applying Van Den Driesche and Watmougth method ([36]).

Proposition 3.1. The basic reproduction number of model (2.1) is defined by

R0 =
γ0(θ + β2)

θ(β1 + β2)
. (3.1)

Proof.

F =


γS(I + Iu)

N
0

0

0

 and V =


−αE

αE − βI

β1I − ηIR
β2I − θIu

 where β = β1 + β2. (3.2)

F is the new infection or contact function and V is the transition function.

F =

(
∂Fj

∂xi

)
with 1 ≤ i, j ≤ 4 and similarly V =

(
∂Vj

∂xi

)
with 1 ≤ i, j ≤ 4 and

X =


E

I

Ir
Iu

 .
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which gives

V =



−α 0 0 0

α −β 0 0

0 −β1 −η 0

0 β2 0 −θ


⇔ V −1 =



−1

α
0 0 0

−1

β

−1

β
0 0

−β1

βη

−β1

βη

−1

η
0

−β2

βθ

−β2

βθ
0

−1

θ


and

F =



0
γ0S

0

N0
0
γ0S

0

N0

0 0 0 0

0 0 0 0

0 0 0 0


V −1 is determined by V X = Y , then we express the coordinates of vector X as a function of Y .

−FV −1 =



γ0θS
0 + β2γ0S

0

θN0(β1 + β2)

γ0θS
0 + β2γ0S

0

θN0(β1 + β2)
0
γ0S

0

N0θ

0 0 0 0

0 0 0 0

0 0 0 0


this gives

ρ(−FV −1) =
γ0θS

0 + β2γ0S
0

θN0(β1 + β2)
= R0.

The basic reproduction number with γ0 constant is:

R0 =
γ0 (θ + β2)

θ(β1 + β2)
(3.3)

Therefore

Re(t) =
γ(t)S(t) (θ + β2)

Nθ(β1 + β2)

Re(t) is called the effective reproduction number at time t, it is defined as the number of cases that one infected
person generates during his infectious period at time t in the presence of barrier measures controlled by γ(t).
After taking the measures, the number of contacts decreases and γ(t) decreases as a function of time t. The
disease slows when Re(t) < 1. The basic reproduction number R0 is defined as the number of cases that one
infected person generates on average during his infectious period, in an uninfected population and without any
special control measures. This number does not change during the spread of the disease. Furthermore, γ(0) = γ0
and Re(0) = R0.
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3.2. Positivity and boundedness of the solution for the Model

In this subsection, we show the positivity of the solution of model (2.1), let pose

Ω =


(S(t), E(t), I(t), Ir(t), Iu(t), Rr(t), Ru(t)) ∈ R7

+;



S(0)

E(0)

I(0)

Ir(0)

Iu(0)

Rr(0)

Ru(0)


≥



0

0

0

0

0

0

0




In general, the following lemma is used to show the positivity of the solutions of time-delay system where τ

is the time-delay. In our model, the time-delay τ = 0, therefore if the initial conditions are positive the lemma
can be used. In the literature, the following lemma is used by T. Sarda et al. ([30]) and O. Harouna et al. (see
[23]) to show the positivity of the solutions of ordinary differential equations.

Lemma 3.2. ([12]) Let Ω ⊂ R × Cn an open and fi ∈ C(Ω,R), i = 1, ..., n, if fi|xi=0 ≥ 0 for (x1, ..., xn) =

Xt ∈ Cn
+0 then Cn

+0 =
{
ϕ = (ϕ1, ..., ϕn) : ϕ ∈ C([−τ ; 0],Rn

+)
}

is the invarious domain of the following equations:

dxi(t)

dt
= fi(t,Xt), t ≥ τ, i = 1, ..., n. (3.4)

Where Rn
+ = {(X1, ..., Xn) ∈ Rn : Xi ≥ 0; i = 1, ..., n}.

Proof. We consider the following equation

dxi(t)

dt
= fi(t,X(t)) +

1

m
, t ≥ τ, i = 1, ..., n, n,m ∈ N∗. (3.5)

Let xi(t) be the solution of (3.5) and xi(t) ≥ 0, t ∈ [l − t, l], with xi(l) > 0, i = 1, ..., n. If there is a τ > l,

Xτ /∈ Cn
+0, then there must be i and t0 such that xi(t0) = 0, Xit0 ≥ 0, t ∈ [l, t0]. This implies

dxi(t0)

dt
≤ 0. It

contradicts because
dxi(t0)

dt
= fi(t0, Xt0) +

1

m
> 0. So we can say that Cn

+0 is the invarious domain of (3.5).

Letting m −→ +∞ we get that Cn
+0 is the invarious domain of (3.4)

Proposition 3.3. The set Ω is positively invariant, moreover the system (2.1) has a unique solution in Ω.

Proof. We use the same technique as Harouna et al. ([23]) and Sardar et al. ([30]) to show the positivity of
the solutions of system (2.1). The system (2.1) can be rewrited as follow

dXi(t)

dt
= fi(t,X(t)), X(0) = X0 ≥ 0, i = 1, ..., 7,

where X(t) = (S,E, I, Ir, Iu, Rr, Ru).

We can note that
dS

dt

∣∣
(S=0) = 0 ≥ 0 ,

dE

dt
|(E=0) =

γ(t)S(I + Iu)

N
≥ 0,

dI

dt
|(I=0) = αE ≥ 0,

dIu
dt

|(Iu=0) = β2I ≥ 0,

dIr
dt

|(Ir=0) = β1I ≥ 0,
dRr

dt
|(Rr=0) = ηIr ≥ 0,
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dRu

dt
|(Ru=0) = θIu ≥ 0.

Then it follows from the Lemma 3.2 that Ω is an invariant set for the system (2.1).
For the second part of the proof, we use the same techniques as [34] to show the uniqueness of the system
solutions (2.1). Let’s now consider the following function

Ẏ (t) = g(t, Y (t)), where Y ∈ Ω (3.6)

and

g : R+ × R7 −→ R7, (3.7)

such as

g(t, Y (t)) =



−γ(t)S(t)(I(t) + Iu(t))

N

γ(t)S(t)(I(t) + Iu(t))

N
− αE(t)

αE(t)− (β1 + β2)I(t)

β1I(t)− ηIr(t)

β2I(t)− θIr(t)

ηIr(t)

θIu(t)



.

The function g(., .) is continuous and t 7→ g(t, .) is lipschitzian. By application of theorem.2.2.1 and
theorem.2.2.3 of Hale and Verduyn Lunel ([7]), the system (2.1) has a unique solution in Ω.

Proposition 3.4. The solution of system (2.1) is bounded in
Ω1 = {(S,E, I, Ir, Iu, Rr, Ru) ∈ Ω : S + E + I + Ir + Iu +Rr +Ru ≤ N0} .

Proof. N(t) = S(t) + E(t) + I(t) + Iu(t) + Ir(t) +Rr(t) +Ru(t), by using the system (2.1) we get

dN

dt
= 0⇐⇒ N is constant i.e ∀t ≥ 0, N(t) = N(0) = N0. Therefore, for any t ≥ 0 we obtain

0 ≤ S(t) ≤ N0; 0 ≤ E(t) ≤ N0; 0 ≤ I(t) ≤ N0; 0 ≤ Ir(t) ≤ N0;

0 ≤ Ru(t) ≤ N0; 0 ≤ Rr(t) ≤ N0.

Hence the system (2.1) is bounded in Ω1.

4. Global stability of disease-free equilibrium (DFE)

In this section, we prove the global stability of the disease free equilibrium (DFE) point.

Theorem 4.1. The DFE of the model (2.1) is globally asymptotically stable in Ω whenever R0 ≤ 1.

Proof. We use the Lyapunov function technique. Let consider the follow candidate Lyapunov function:

V = θ(E + I) + γ0Iu.
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By definition, V is positive because the parameters of model (2.1) are positive. V is zero at DFE (X0). We take
the function V derivated with respect to t.

V̇ = θ(Ė + İ) + γ0İu

= θ

[
γ(t)S

N
(I + Iu)− αE + αE − βI

]
+ γ0(β2I − θIu)

= θ
γ(t)S

N
(I + Iu)− θβI + γ0β2I − γ0θIu

= θ
γ(t)S

N
(I + Iu)− θβI + γ0β2I − θγ0Iu + β2γ(t)Iu − β2γ(t)Iu

= θ
γ(t)S

N
(I + Iu) + γ0β2(I + Iu)− βθI − θγ0Iu − γ0β2Iu

≤ (θγ0 + β2γ0)(I + Iu)− βθ(I + Iu) + [βθ − θγ0 − β2γ0]Iu

≤ [θγ0 + β2γ0](I + Iu)− βθ(I + Iu) + βθ

(
1− θγ0 + β2γ0

βθ

)
Iu

≤ (θγ0 + β2γ0 − βθ) (I + Iu) + βθ

(
1− θγ0 + β2γ0

βθ

)
Iu

≤ βθ

(
θγ0 + β2γ0

βθ
− 1

)
(I + Iu) + βθ (1−R0) Iu

≤ βθ (R0 − 1) (I + Iu) + βθ [1−R0] Iu

≤ βθ [(R0 − 1)I + (R0 − 1)Iu − (R0 − 1)Iu]

≤ βθ(R0 − 1)I.

Since all the parameters of the model (2.1) are non negative, it follows that V̇ ≤ 0 for R0 ≤ 1. Hence V is
Lyapunov function on Ω. Therefore, by using the Lasalle invariance principle ([12]), we have :
(E(t), I(t), Iu(t)) −→ (0, 0, 0) as t −→ +∞.
Since lim

t→+∞
supE(t) = 0, lim

t→+∞
supI(t) = 0, lim

t−→+∞
supIu(t) = 0. It follows that for sufficiently small

ϵ ≥ 0, there exist constant t1 ≥ 0, t2 ≥ 0 and t3 ≥ 0 such that
lim

t→+∞
supE(t) ≤ ϵ, for all t ≥ t1

lim
t→+∞

supI(t) ≤ ϵ, for all t ≥ t2 and lim
t→+∞

supIu(t) ≤ ϵ, for all t ≥ t3

Hence, it follows from the fifth equations of the model (2.1)
dIr
dt

≤ βϵ− ηIr. Therefore using comparison theorem

I∞r = lim
t→+∞

supIr(t) ≤
βϵ

η
−→ 0 as ϵ −→ 0. (4.1)

Similarity (by using lim
t→+∞

infIr(t) = 0)

Ir∞ = lim
t→+∞

infIr(t) = 0. (4.2)

It follows from the two relations (4.1) and (4.2) above
lim

t→+∞
Ir(t) = 0.

It can also be shown that
lim

t→+∞
Ru(t) = 0, lim

t→+∞
Rr(t) = 0, lim

t→+∞
S(t) = N0.

Therefore by combining all equations above, it follows that each solution of the model equation (2.1), with initial
conditions in Ω, approaches X0 as t → +∞ for R0 ≤ 1.
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5. Numerical simulation

In this section, we propose the numerical simulation of mathematical model (2.1). The following curves are
obtained by using scilab. Estimated values of the model (2.1) parameters and unknown initial conditions
(S0, E0, I0, Ir0, Iu0, Rr0, Ru0) = (8000, 198, 2, 2, 0, 0, 0) are provided by [5]. The parameters values are given
by the table 1.

Symbol Values of model (2.1) Source Values of model (6.1) source
α 0.1818 [5] 0.1818 [5]
γ0 0.19 [5] 0.19 [5]
θ 0.0714 fixed 1/14 [5]
η 0.823 [5] 1/14 [5]
β1 0.418 [5] 0.28 fixed
β2 0.415 [5] 0.31 fixed
µ 0.127 [5] 0.42 fixed
A1 8 fixed
A2 10 [1]

Table 1: The values of the parameters for the simulation of model (2.1) and (6.1)

After 14 days, strong government measures in the country, such as isolation, quarantine, and the wearing of
face mask, allowed the reduction of the transmission of new cases. For that we use an exponential decrease for
the transmission rate γ(t) given by ([5, 19])

γ(t) =


γ0, 0 < t < 14,

γ0 exp(−µ(t− 14)), t ≥ 14.

For the simulation of model (2.1), we use the ode method in scilab given by following algorithm. The
system (2.1) can be rewrited ẋ = f(t, x) where f(t, x) = fi(t, x), i=1,...,7 and x = (S,E, I, Ir, Iu, Rr, Ru).

Algorithm
function Xdot=f(t,X)
X1dot=f1(t,X)

X2dot=f2(t,X)

...
X7dot=f7(t,X)

endfunction
X=ode(X0, t0, f )
X0 is the initial conditions at t0 = 0, t = 0 : 0.1 : 900

375



Lassina Ouattara, Harouna Ouedraogo, Dramane Ouedraogo, Aboudramane Guiro

Figure 2: The variation of contact γ(t) and population dynamic

The γ(t) curve in the Figure 2 represents the variation of the contact : from 0 to 14 days, the infected remained
in constant contact with the susceptible individuals. After the 14 days, the measures taken by the government
permitted to reduce the contact between the infected and susceptible persons . In this case the contact function
decreases and is canceled after 65 days when all measures taken by the government are respected.

The curves describing the dynamics of the susceptible (S) and the exposed (E) in Figure 2 decrease and
stabilizes after 50 days. This decrease is due to the respect of the barrier measures taken by the government.

The curves describing the dynamics of infected individuals in Figure 2 show two phases. The increase of the
curves in the first phase is due to the fact that there were no measures before the 14 days. After the 14 days, the
measures that are taken allowed the reduction of the infected. If all the measures are respected then the disease
disappears after 40 days.

6. The optimal control problem

The best way to control the COVID-19 epidemic is to respect the barrier measures which are represented here
by γ(t). The implementation of these measures is very complicated in practice because there are unreported
infectious diseases. For this we need another alternative to control the disease. Furthermore, we first prove the
existence of the two optimal controls u∗, v∗ and we give their characterization.

6.1. Presentation of the problem

In this section we use the optimal control theory to analyze the behavior of the model (6.1). Our goal is
to maximize the number of persons who have survived the disease (recovered) and to minimize the infected
individuals during the course of an epidemic and the cost of this strategy. In the model (2.1), we introduce two
controls u; v which are defined as follow.
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• The function u(t) ∈ [0, 1] is the control corresponding to the vaccination ([26]). The rate at which
individuals gain immunity through vaccination is denoted by u(t) ∈ [0, 1] with t ∈ [0, tf ]. Because
asymptomatic infected may not be aware of their infection, we assume that susceptible and asymptomatic
infected are indistinguishable with respect to vaccination. Vaccinating asymptomatic infected individuals
has no effect, but still implies a cost. The ideal is to vaccinate the entire population in this case u = 1. In
reality this is not possible, so we try to vaccinate as many people. To find the maximum number of people
we take u = umax. umax represents the proportion of susceptible persons receiving serum of vaccine.

• The second control v(t) ∈ [0, 1] represents the treatment of patients over the interval [0; tf ]. The control
v that we consider here can therefore represent the treatment of symptomatic or the isolation of patients in
hospitals to avoid possible new contamination.

By inserting the controls u and v in the model (2.1), we obtain the following controlled equations:

dS

dt
=

−(1− u)γ(t)S(I + Iu)

N
,

dE

dt
=

(1− u)γ(t)S(I + Iu)

N
− αE,

dI

dt
= αE − (β1 + β2)I,

dIr
dt

= β1I − (η + v)Ir,

dIu
dt

= β2I − θIu,

dRr

dt
= (η + v)Ir,

dRu

dt
= θIu.

(6.1)

S(t0) = S0 > 0, E(t0) = E0 > 0, I(t0) = I0 > 0, Ir(t0) = Ir0 > 0, Iu(t0) = Iu0 > 0,

Ru(t0) = Ru0 > 0, R(t0) = Rr0 > 0.

Mathematically, for a fixed terminal time tf , we minimize the functional objective J on [0, tf ] .

J(u, v) =

∫ tf

0

(
Ir(t)−Rr(t) +

A1

2
u2(t) +

A2

2
v2(t)

)
dt. (6.2)

A1 > 0 is the weight which allows to regulate the control u and A2 > 0 the weight which allows to regulate the
control v.

6.2. Study of optimal control problem

In this section, we define the Hamiltonian associated with the control problem. Then, we characterize the
solutions of control problem (6.1) after proving their existence. Our work is to determine the optimal controls
(u∗, v∗) such as

J(u∗, v∗) = min {J(u, v) : (u, v) ∈ U × V } (6.3)
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U and V are the set of admissible controls defined by:

U =
{
u(t) ∈ R/ 0 ≤ u(t) ≤ umax < 1, t ∈ [0, tf ], u ∈ L2([0; tf ],R)

}
and

V =
{
v(t) ∈ R/ 0 ≤ v(t) ≤ 1; v ∈ L2([0; tf ],R)

}
.

Definition 6.1. (Hamiltonian of the minimization problem)
The Pontryagin’s maximum principle [21] converted (6.1) , (6.2) and (6.3) into problem of minimizing an
Hamiltonian, H , defined by:

H = Ir −Rr +
A1

2
u2(t) +

A2

2
v2(t) +

7∑
i=1

λifi.

Where fi are the right side of the differential equations state variable and λi, i = 1, ..., 7 are the adjoints
variables associated with their respective states.

Theorem 6.2. Consider the optimal control problem (6.1) subject to (6.2). Then there exists an optimal pair
of controls (u∗, v∗) and a corresponding optimal states (S∗, E∗, I∗, I∗u, I

∗
r , R

∗
rR

∗
u) that minimizes the objective

function J(u, v) over set of admissible controls U × V .

Proof. The existence of optimal control can be proved by using the results from ([13] see Theorem 2.1) and
Fleming’s results (Theorem III.4.1, [4]), we must verify the following conditions:

• the set of admissible controls is nonempty,

• the admissible sets U , V are convex and closed,

• the vector field of the state system is bounded by a linear function of control,

• the objective function is convex,

• there exists constants c1, c2 > 0 such as the integrand of the objective function be bounded by c1(|u|2 +
|v|2)

p
2 − c2.

(1) We verify these conditions, thanks to a result of Lukes et al. [24] which assures the existence of solutions
for the state system (6.1).

(2) The set U and V are convex and bounded by definition.

(3) The right-hand side of the state system (6.1) is bounded by a linear function in the state and control
variables.

(4) The integrand of the objective functional is

f0(x, u, v) = Ir −Rr +
A1

2
u2(t) +

A2

2
v2(t).

The hessian matrix of f0(X,u, v) is given by :

Mf0 =

(
A1 0

0 A2

)
,

spec(Mf0) = {A1, A2} ⊂ R∗
+.

So f0 is strictly convex over U × V .
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(5) We have,

f0(x, u, v) = Ir −Rr +
A1

2
u2(t) +

A2

2
v2(t)

≥ A1

2
u2(t) +

A2

2
v2(t)−Rr

≥ 1

2
min {A1, A2}

(
|u|2(t) + |v|2(t)

)k −Rr

≥ c1
(
|u|2(t) + |v|2(t)

)k − c2

where c1 =
1

2
min {A1, A2} > 0, c1 ≤ Rr ≤ c2 and k ≥ 1. Therefore the last assertion is verified.

6.3. Characterization of optimal control

In this section, we characterize the solutions of system (6.1).

Theorem 6.3. Given an optimal w∗ = (u∗, v∗) ∈ U × V and corresponding states
X∗ = (S∗, E∗, I∗, I∗u, I∗r , R∗

r R∗
u) of system (6.1), there exist adjoint functions satisfying the following system.

dλ1(t)

dt
=

(λ1(t)− λ2(t))γ(t)

N
(1− u(t))(I + Iu),

dλ2(t)

dt
= (λ2 − λ3)α,

dλ3(t)

dt
=

(λ1(t)− λ2(t))γ(t)S(t)

N
(1− u(t))(λ3 − λ4)β4 + (λ3 − λ5)β2,

dλ4(t)

dt
= −1 + λ4(β1 + β2)− λ6(η + v),

dλ5(t)

dt
=

(λ1(t)− λ2(t))γ(t)S(t)

N
(1− u(t)) + θ(λ5 − λ7),

dλ6(t)

dt
= 1,

dλ7(t)

dt
= 0

(6.4)

with the transversality conditions
λ1(t) = 0, λ2(t) = 0, λ3(t) = 0, λ4(t) = 0, λ5(t) = 0, λ6(t) = 0, λ7(t) = 0.
Let’s up N∗ = S∗ + E∗ + I∗ + I∗u + I∗r +R∗

u +R∗
r .

Furthermore, the optimal controls are characterized by:

u∗ = max

{
0,min

{
umax,

(
λ2(t)− λ1(t)

A1

)
γ(t)

S∗

N∗ (I
∗ + I∗u)

}}
,

v∗ = max

{
0,min

{
1,

(λ4(t)− λ6(t))

A2
I∗r

}}
.

(6.5)

Proof. The differential equations for the adjoints are standard results from Pontryagin’s Maximum Principle.
Let w∗ = (u∗, v∗) corresponding solution X∗ = (S∗, E∗, I∗, I∗R, I∗u, R∗

r R
∗
u) that minimizes J(u, v) over U×V .

By applying the Pontryagin’s maximum principle (see [21]) there exists adjoint functions,
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p(t) = (λ1(t), λ2(t), λ3(t), λ4(t), λ5(t), λ6(t), λ7(t)) (t ∈ [0, tf ]) verifying the following conditions:

dp(t)

dt
= −∂H

∂X
(6.6)

dX(t)

dt
=

∂H

∂p
(6.7)

∂H

∂u
= 0,

∂H

∂v
= 0. (6.8)

dp(t)

dt
= −∂H

∂X
⇐⇒



dλ1

dt
= −∂H

∂S
dλ2

dt
= −∂H

∂E
dλ3

dt
= −∂H

∂I
dλ4

dt
= −∂H

∂Ir
dλ5

dt
= −∂H

∂Iu
dλ6

dt
= − ∂H

∂Rr
dλ7

dt
= − ∂H

∂Ru
,

(6.9)

λi(tf ) = 0 (i = 1, ..., 7).

Therefore, the system (6.9) yields (6.4).
By applying the optimality conditions to the (6.8), we obtain:

∂H

∂u
|u∗ = 0, (6.10)

∂H

∂v
|v∗ = 0. (6.11)

⇒ On the set {0 ≤ u∗(t) ≤ umax} ,{0 ≤ v∗(t) ≤ 1}, we have:

the conditions (6.10) and (6.11) give:
λ1(t)γ(t)

S∗

N
(I∗ + I∗u)− λ2γ(t)

S∗

N
(I∗ + I∗u) +A1u

∗ = 0

−λ4I
∗
r + λ6I

∗
r +A2v

∗ = 0.

(6.12)

As −A1 < 0 and −A2 < 0, so (6.12) becomes:
0 ≥ (−λ2(t) + λ1(t)) γ(t)S

∗(I∗ + I∗u)

−N∗A1
,

0 ≥ −λ4I
∗
r + λ6I

∗
r

−A2
.

(6.13)

We obtain

u∗ = max

{
0,

(
λ2(t)− λ1(t)

A1

)
γ(t)

S∗

N∗ (I
∗ + I∗u)

}
,

v∗ = max

{
0,

(λ4(t)− λ6(t))

A2
I∗r

}
.

(6.14)
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⇒ {u∗(t) = umax} and {v∗(t) = 1}.
The equation (6.12) gives


−NA1umax ≥ (−λ2(t) + λ1(t)) γ(t)S

∗(I∗ + I∗u)

−A2 ≥ −λ4I
∗
r + λ6I

∗
r .

This gives,


umax ≤ (−λ2(t) + λ1(t)) γ(t)S

∗(I∗ + I∗u)

−N∗A1

1 ≤ −λ4I
∗
r + λ6I

∗
r

−A2

and thus

u∗ = min

{
umax,

(
λ2(t)− λ1(t)

A1

)
γ(t)

S∗

N∗ (I
∗ + I∗u)

}

v∗ = min

{
1,

(λ4(t)− λ6(t))

A2
I∗r

}
.

(6.15)

The systems (6.15) and (6.14) give the result :

u∗ = max

{
0,min

{
umax,

(
λ2(t)− λ1(t)

A1

)
γ(t)

S∗

N∗ (I
∗ + I∗u)

}}

u∗ = max

{
0,min

{
1,

(λ4(t)− λ6(t))

A2
I∗r

}}
.

6.4. Numerical simulation of the controlled model

Several modeling studies have already been performed for the simulation of optimal contol model like Liu et al.
([16–18]). Here, we present the numerical results of the system (6.1) by using python and the same method of
[1]. The boundary conditions of optimality system at times t0 = 0 and tf are separated. We put N0 = 200000

representing the number of the total population of a city in our country. We use the Euler method of step h=0.1
to solve the optimality system (6.1). We discretize the model in interval [t0, tf ] at time ti = t0 + ih (i= 0,1,...,n
), where h = 0.1 is the time step such that tn = tf = 90 days, t0 = 0. The value n=900 is the number of points
of the discretization. Our algorithm is inspired by [1, 3, 6, 10, 15] to approximate the solutions. A combination
of forward and backward difference, we obtain the following approximation:
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Si+1 − Si

h
= −(1− ui)γi

Si+1

N0
(Ii + Iiu)

Ei+1 − Ei

h
= (1− ui)γi

Si+1

N0
(Ii + Iiu)− αEi+1

Ii+1 − Ii
h

= αEi+1 − (β1 + β2)Ii+1

Ii+1
r − Iir

h
= β1Ii+1 − (η + vi)I

i+1
r

Ii+1
u − Iiu

h
= β2Ii+1 − θIi+1

u

Ri+1
r −Ri

r

h
= (η + vi)I

i+1
r .

Ri+1
u −Ri

u

h
= θIi+1

u .

By using a similar technique in [1], we approximate the time derivative of the adjoint variables by their first order
backward difference and we use the appropriate scheme as follows:

λn−i
1 − λn−i−1

1

h
=

(λn−i−1
1 − λn−i

2 )γi
N0

(1− ui)(Ii+1 + Ii+1
u )

λn−i−1
2 − λn−i

2

h
= α(λn−i−1

2 − λn−i
3 )

λn−i
3 − λn−i−1

3

h
=

(λn−i−1
1 − λn−i−1

2 )γi
N0

(1− ui)Si+1 + β1(λ
n−i−1
3 − λn−i

4 )

+ β2(λ
n−i−1
3 − λn−i

3 )− β1λ
n−i
4

λn−i
4 − λn−i−1

4

h
= λn−i−1

4 (η + vi)− λn−i
6 (η + vi)− 1

λn−i
5 − λn−i−1

5

h
=

(λn−i−1
1 − λn−i−1

2 )γiSi+1

N0
(1− ui) + θ(λn−i−1

5 − λn−i
7 )

λn−i
6 − λn−i−1

6

h
= 1

λn−i
7 − λn−i−1

7

h
= 0.

.

The algorithm describing the approximation method to give the optimal control is the following.
Algorithm2.
Step1.

S(0) = S0, E(0) = E0, I(0) = I0, Ir(0) = Ir0, Iu(0) = Iu0,

Ru(0) = Ru0, Rr(0) = Rr0, λi(tf ) = 0, (i = 1, ..., 7), u(0) = v(0) = 0.

Step2.
For i = 1, ..., n+ 1 do,

Si+1 =
N0Si

N0 + γih(1− ui)(Ii + Iiu)
, Ei+1 =

N0Ei + h(1− ui)γiSi+1(Ii + Iiu)

N0(1 + hα)

Ii+1 =
Ii + hαEi+1

1 + hβ1 + hβ2
, Ii+1

r =
Iir + hβ1Ii+1

1 + h(η + vi)
,
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Ii+1
u =

Iiu + β2hIi+1

1 + hθ
, Ri+1

r = Ri
r + h(η + vi)I

i+1
r .

λn−i−1
1 =

λn−i
1 N0 + hλn−i

2 (1− ui)(Ii+1 + Ii+1
u )

N0 + h(1− ui)(Ii+1 + Ii+1
u )γi

λn−i−1
2 =

λn−i
1 + hαλn−i

3

1 + hα

λn−i−1
3 =

λn−i
3 + h(λn−i−1

2 − λn−i−1
1 )γi(1− ui)Si+1 +N0hβ2λ

n−i
5 +N0hβ1λ

n−i
4

N0(1 + hβ1 + hβ2)

λn−i−1
4 =

λn−i
4 + h(η + vi)λ

n−i
6 + h

1 + hβ1 + hvi

λn−i−1
5 =

N0λ
n−i
5 + h(λn−i

2 − λn−i−1
1 )γi(1− ui)Si+1 + hN0θλ

n−i
7

N0 +N0hθ

λn−i−1
6 = h+ λn−i

6

λn−i−1
7 = λn−i

7

Mi+1 =

(
(λn−i−1

1 − λn−i−1
2 )

A1

)
γi
S∗
i+1

N0
(I∗i+1 + I∗(i+1)

u )

Zi+1 =
λn−i−1
4 − λn−i−1

6

A2
I∗(i+1)
r

ui+1 = max (0,min (umax,Mi+1))

vi+1 = max (0,min (1, Zi+1)) .

Step3.
For i =0,...,n, do
S∗(ti) = Si, E∗(ti) = Ei, I

∗(ti) = Ii, I∗r (ti) = Iir, I∗u(ti) = Iiu, R∗
r(ti) = Ri

r,
u∗(ti) = ui, v∗(ti) = vi. The curves in this simulation are obtained by python. Certain values of the simulation
are taken in [1, 5] and (S0, E0, I0, Ir0, Iu0, Rr0, Ru0) = (N0, 198, 2, 2, 0, 0, 0).

The curves of infected reported persons in the Figure 3 are obtained by simulating the symptomatic infectious
population. If left unchecked, the disease infection stabilizes within 120 days. But after application of control
u (vaccination) and taking the control of the barrier measures γ(t), the reported infected immediately decrease
and stabilize in I0. This is explained by the treatment of patients who are immediately isolated. The curves
describing the dynamics of recovered persons in Figure 3 show the evolution of individuals cured of the disease
by applying the reported individuals (Ir) the treatment (control v). The curves of unreported infectious persons
in the Figure 3 show the evolution of individuals unreported by applying in the susceptible individuals (S) the
vaccination (control u). After vaccination of susceptible, there is no effect of contact with unreported infected.

The curves of susceptible persons in the Figure 3 represent the dynamics of the susceptible population (S) for
different aspects of control. After operation of the measures, the vaccination u and treatment v, the populations
susceptible stabilizes.

The curves of exposed persons in the Figure 3 represent the dynamic of exposed population (E) for different
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Figure 3: Population dynamic with and without control

aspects of control. The orange curve is the evolution of exposed population in application of u (vaccination) and
v (treatment) controls. The blue curve is uncontrolled (u = 0 and v = 0).

The curves of unreported infectious persons in the Figure 3 represent the dynamics of the unreported infected
and infectious population for different aspects of control u (vaccination) and v (treatment). The blue curve
represents the evolution of the infected unreported population (Iu) with u and v control (u ̸= 0 and v ̸= 0). The
orange curve represents the evolution of infected people who have not been brought back without control (u = 0

and v = 0).
The curves of recovered persons in the Figure 3 represent the dynamics of the reported cured (Rr) population

for different aspects of controls. The blue curve is the evolution of cured reported in application of controls
(u ̸= 0 and v ̸= 0). The orange curve is without control (u = 0 and v = 0).

The curves of unreported persons in the Figure 3 represent the dynamics of the unreported cured (Ru)
population for different aspects of control u (vaccination) and v (treatment).

7. Conclusion

We have developed a model of the COVID-19 epidemic in China (see [20, 27, 31–33]). In this present study,
we consider a mathematical model of COVID-19 transmission that incorporates the exposed populations. In our
model, we also consider transmission variability between symptomatic and asymptomatic population with former
being a fast spreader of the disease. The basic reproduction number is calculated by applying the Van den Driesch
method [36]. We also construct the Lyapunov function to show the global stability of disease free equilibrium.
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Next, we consider model (2.1) with the controls u (vaccination) and v (treatment of infected). In this model, the
existence and uniqueness of the solution associated to the optimal controls are proven. The Hamiltonian function
is constructed converting (6.1) into problem of minimizing an Hamiltonian. The γ(t) function makes it possible
to control the contact between infected individuals and those susceptible at time t. It takes into account all the
measures taken by the government of a country. Finally a numerical simulation allows us to interpret the results
on the curves. The study shows that the most infectious individuals are the unreported infected.
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Abstract. In this paper we study the polynomial stability of a Rayleigh system with distributed delay in dynamic control.
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utt(x, t)− γuxxtt(x, t) + uxxxx(x, t) = 0 in ]0, 1[×(0,+∞)

u(0, t) = ux(0, t) = 0

uxx(1, t) + η(t) = 0,

uxxx(1, t)− γuxtt(1, t) = 0, ∀ t ∈ (0,+∞)

ηt(t)− uxt(1, t) + β1η(t) +

∫ τ2

τ1

β2(s)η(t− s)ds = 0, ∀ t ∈ (0,+∞)

u(·, 0) = u0, ut(·, 0) = u1 in ]0, 1[, η(0) = η0 ∈ C

η(−t) = f0(.,−t), ∀ t ∈ (0, τ2),

(1.1)

where η denotes the dynamical control,
∫ τ2

τ1

β2(s)η(t− s)ds is the time delay, β1 is a positive constants and the

initial data (u0, u1, f0) belong to a suitable space. The damping of the system is made via the indirect damping
mechanism.
Throughout this paper, we assume that β2 : [τ1; τ2] → R , β2 is in L+∞ and is a bounded function satisfying∫ τ2

τ1

β2(s)ds < β1. (1.2)

It should be that D. Mercier and al. studied in [9] the problem

utt(x, t)− γuxxtt(x, t) + uxxxx(x, t) = 0 in ]0, 1[×(0,+∞)

u(0, t) = ux(0, t) = 0

uxx(1, t) + η(t) = 0,

uxxx(1, t)− γuxtt(1, t) = 0 ∀ t ∈ (0,+∞)

ηt(t)− uxt(1, t) + βη(t) = 0 ∀ t ∈ (0,+∞)

u(·, 0) = u0, ut(·, 0) = u1 in ]0, 1[, η(0) = η0 ∈ C

(1.3)

where β is a positive constant and η the dynamical control.
A study in which they showed the polynomial decay of the solution of the system (1.3).

Then, the important and interesting case when the Rayleigh beam equation is damped by only one dynamical
boundary with distributed delay remaine open. The aim of this paper is to fill this gap by considering a clamped
Rayleigh beam equation subject to only one dynamical boundary feedback whith distributed delay (1.1).

The paper is organized as follows: In the second part we will establish the well posedness of problems (1.1)
using semi-group theory. In the sections 3 and 4 respectively we will establish the strong and polynomial stability
and finally in section 5 the absence of an exponential decay.
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2. Existence and uniqueness of solution

Here we study the well posedness for the problem (1.1) using the semigroup theory.
As we did in [11, 12] and [13] let’s

z(ρ, t, s) = η(t− sρ), ρ ∈ (0, 1), s ∈ (τ1, τ2), t > 0. (2.1)

Now the problem (1.1) is equivalent to

utt(x, t)− γuxxtt(x, t) + uxxxx(x, t) = 0 in ]0, 1[×(0,+∞)

szt(ρ, t) + zρ(ρ, t) = 0 in (0, 1)× (0,+∞)

u(0, t) = ux(0, t) = 0

uxx(1, t) + η(t) = 0,

uxxx(1, t)− γuxtt(1, t) = 0 ∀ t ∈ (0,+∞)

ηt(t)− uxt(1, t) + β1η(t) +

∫ τ2

τ1

β2(s)z(1, t, s)ds = 0 ∀ t ∈ (0,+∞)

u(·, 0) = u0, ut(·, 0) = u1 in ]0, 1[, η(0) = η0 ∈ C

z(ρ, 0, s) = f0(.,−ρτ) ∀ ρ ∈ (0, 1), s ∈ (τ1, τ2),

z(0, t, s) = η(t) ∀ t ∈ (0,+∞)

(2.2)

The well posedness of problem (1.1) follows from standard semigroup theory.

Now let

V =
{
u ∈ H1(0, 1), u(0) = 0

}
, ∥u∥2V =

∫ 1

0

(|u|2 + γ |ux|2)dx

W =
{
u ∈ H2(0, 1), u(0) = 0, ux(0) = 0

}
, ∥u∥2W =

∫ 1

0

|uxx|2 dx

and the energy space
H =W × V × C× L2

(
(0, 1)× (τ1, τ2)

)
with the inner product

〈
u

v

η

z

 ,


u∗

v∗

η∗

z∗


〉

H

=

∫ 1

0

uxxu∗xx dx+

∫ 1

0

(vv∗ + γvxv∗x) dx+ ηη∗ +

∫ 1

0

∫ τ2

τ1

sβ2(s)|z|2dsdρ.

Let u, η and z be smooth solutions of the system. Then multiplying the first equation of the system by Φ ∈W

and integrating by part on (0, 1) , we get∫ 1

0

uttΦ− γuxxttΦ dx+

∫ 1

0

uxxxxΦ dx = 0 (2.3)
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Setting

I = −
∫ 1

0

γuxxttΦ dx+

∫ 1

0

uxxxxΦ dx

We obtain that

I = γ

∫ 1

0

uttxΦx dx− γuttx(1)Φ(1) + γuttx(0)Φ(0) +

∫ 1

0

uxxΦxx dx

+ uxxx(1)Φ(1)− uxxx(0)Φ(0)− uxx(1)Φx(1) + uxx(0)Φx(0)

= γ

∫ 1

0

uttxΦx dx+

∫ 1

0

uxxΦxx dx+ ηΦx(1)

Now the relation 2.3 becomes∫ 1

0

uttΦdx+ γ

∫ 1

0

uttxΦx dx+

∫ 1

0

uxxΦxx dx+ ηΦx(1) = 0 (2.4)

Now we define the linear operators A ∈ L(W,W ′), B ∈ L(R, V ′), C ∈ L(V, V ′), by the following way

< Au,Φ >W ′×W=

∫ 1

0

uxxΦxxdx, ∀u,Φ ∈W

< Bη,Φ >W ′×W= ηΦx(1), ∀ η ∈ R,∀Φ ∈W

< Cu,Φ >V ′×V =

∫ 1

0

(uΦ+ γuxΦx)dx, ∀u,Φ ∈W

Then by means of the Lax-Milgram theorem, the operator A (resp. C) is the canonical isomorphism of W (resp.
V ) onto W ′ (resp. V ′). Then we can formulate the variational equation 2.4 as :

Cutt +Au+Bη = 0, in W ′.

If we assume that Ay +Bη ∈ V ′, then we obtain that :

utt + C−1(Au+Bη) = 0, in V

If we denote by

U =
(
u, ut, η, z

)T

,

one has

Ut = (ut, utt, ηt, zt)
T =

(
ut,−C−1(Au+Bη), uxt(1)− β1η −

∫ τ2

τ1

β2(s)z(1, t, s)ds,−s−1zρ

)T

.

Therefore problem (2.2) can be rewritten as:
Ut = AU

U(0) = (u0, u1, η0, f0(.,−ρs)T ,
(2.5)

where the operator A is defined by

A (u, v, η, z)
T
=

(
ut,−C−1(Au+Bη), uxt(1)− β1η −

∫ τ2

τ1

β2(s)z(1, t, s)ds,−s−1zρ

)T

,

with domain

D(A) =
{
(u, v, η, z)

T ∈ H, v ∈W,Au+Bη ∈ V ′ and z ∈ H1
(
(0, 1)× (τ1, τ2)

) ∣∣ z(0) = η
}
,

As in [19] let’s prove the following lemma.
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Lemma 2.1. Let (u, v, η, z)T ∈ H. Then (u, v, η, z)
T ∈ D(A) if and only if u ∈ W ∩ H3(0, 1), v ∈ W ,

z ∈ H1
(
(0, 1)× (τ1, τ2)

)
and z(0) = η such as

uxxx(1) + γ
[
C−1(Au+Bη)

]
x
(1) = 0;

uxx(1) + η = 0.

Proof. The sufficiency is obvious. Indeed let (u, v, η, z)T ∈ H.
Assume u ∈W ∩H3(0, 1), v ∈W , z ∈ H1

(
(0, 1)× (τ1, τ2)

)
and z(0) = η such as

uxxx(1) + γ
[
C−1(Au+Bη)

]
x
(1) = 0 and uxx(1) + η = 0.

We know

z ∈ H1
(
(0, 1)× (τ1, τ2)

)
and z(0) = η;

u ∈W ∩H3(0, 1) ⇒ u ∈W ;
As W ⊂ V , v ∈W ⇒ v ∈ V .
Moreover, if uxxx(1) + γ

[
C−1(Au + Bη)

]
x
(1) = 0, this implies that the equation is well posed and this

necessarily leads to
Au+Bη ∈ V ′.
So (u, v, η, z)

T ∈ D(A)

To prove the necessity, let (u, v, η, z)T ∈ D(A) and
A (u, v, η, z)

T
= (g, k, h, q)

T. Then we obtain

v = g ∈W

−C−1(Au+Bη) = k

vx(1)− β1η −
∫ τ2

τ1

β2(s)z(1, t, s)ds = h

−s−1zρ = q ∈ L2
(
(0, 1)× (τ1, τ2)

)
.

(2.6)

If the relation z(0) = η is obvious, we obtain from the first and last equations of the system (2.6) that
v ∈W , and then z ∈ H1

(
(0, 1)× (τ1, τ2)

)
.

Then since k ∈ V and C : V −→ V ′ is an isomorphism, so the equation (2.6)2 can be rewritten as

Au+Bη = −Ck in V ′ ⊂W ′

So for all ψ ∈W we have ∫ 1

0

uxxψxx dx+ ηψx(1) = −
∫ 1

0

(kψ + γkxψx)dx (2.7)

This means ∫ 1

0

uxxψxx dx+ ηψx(1) +

∫ 1

0

(kψ + γkxψx)dx = 0 (2.8)

On the one hand, let’s take ϕ ∈ C∞
0 (0, 1) and take ψ =

∫ x

0

ϕ(s)ds .

We know ψx = ϕ and ψxx = ϕx
By replacing in (2.8) we obtain∫ 1

0

uxxϕx dx+ ηϕ(1) +

∫ 1

0

[
k
(∫ x

0

ϕ(s)ds
)]
dx+

∫ 1

0

γkxϕdx = 0 (2.9)
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Since ϕ ∈ C∞
0 (0, 1) then ϕ(1) = 0, so we get

∫ 1

0

uxxϕx dx+

∫ 1

0

[
k
(∫ x

0

ϕ(s)ds
)]
dx+

∫ 1

0

γkxϕdx = 0 (2.10)

In integration by parts we have[
uxxϕ

]1
0
−
∫ 1

0

uxxxϕdx+
[( ∫ x

1

k(s)ds
)
.
(∫ x

0

ϕ(s)ds
)]1

0
−
∫ 1

0

(∫ x

1

k(s)ds
)
ϕ(x)dx

+

∫ 1

0

γkxϕdx = 0 (2.11)

But
[( ∫ x

1

k(s)ds
)
.
(∫ x

0

ϕ(s)ds
)]1

0
=

[
uxxϕ

]1
0
= 0

Consequently, the (2.11) equation can be rewritten

∫ 1

0

uxxxϕ(x) dx−
∫ 1

0

(∫ x

1

k(s)ds
)
ϕ(x)dx+

∫ 1

0

γkxϕ(x)dx = 0

By inverting the 1 and x terminals in
∫ x

1

k(s)ds we have

∫ 1

0

uxxxϕ(x) dx = −
∫ 1

0

[( ∫ 1

x

k(s)ds
)
dx+ γkx

]
ϕ(x)dx,∀ϕ ∈W

However

uxxx =

∫ 1

x

k(s)ds+ γkx pp in L
2(0, 1) (2.12)

This leads to u ∈ H3(0, 1) ∩W .
In particular, (2.12) allows us to write

uxxx(1)− γkx(1) = 0 (2.13)

while kx(1) = −
[
C−1(Au+Bη)

]
x
(1)

From which we finally obtain

uxxx(1) + γ
[
C−1(Au+Bη)

]
x
(1) = 0 (2.14)

On the other hand, for any ϕ ∈ V such that ϕ(1) = 1, let’s pose ψ =

∫ x

0

ϕ(s)ds.

Based on the previous calculations, we have

∫ 1

0

uxxϕx(x) dx+ η +

∫ 1

0

[ ∫ 1

x

k(s)ds+ γkx

]
ϕ(x)dx = 0 (2.15)

From (2.12) we have
∫ 1

x

k(s)ds+ γkx = uxxx

By replacing in (2.15) we obtain
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∫ 1

0

uxxϕx(x) dx+ η +

∫ 1

0

uxxxϕ(x)dx = 0

By integration by parts we have

uxx(1)ϕ(1)− uxx(0)ϕ(0)−
∫ 1

0

uxxxϕdx+ η +

∫ 1

0

uxxxϕ(x)dx = 0

This implies that

uxx(1)ϕ(1)− uxx(0)ϕ(0) + η = 0

Since ϕ(1) = 1 and ϕ(0) = 0, we finally obtain

uxx(1) + η = 0 (2.16)

The neccessity is also proved.
■

We can now state the following existence results.

Theorem 2.2.
Assume that (1.2) holds. Then for any datum U0 = (u0, u1, η0, f0) belongs to H, the problem (1.1) has one and
only one weak solution U = (u, ut, η, z) verifying:{

u ∈ C ([0,∞), V ) ∩ C1
(
[0,∞), L2(0, 1)

)
η ∈ C ([0,∞))

(2.17)

Moreover, if U0 = (u0, u1, η0, f0) belongs to D(A), then problem (1.1) has one and only one strong solution
U = (u, ut, η, z) which satisfies{

u ∈ C
(
[0,∞), H2(0, 1) ∩ V

)
∩ C1 ([0,∞), V ) ∩ C2

(
[0,∞), L2(0, 1)

)
η ∈ C1 ([0,∞)) .

(2.18)

Proof. We have

〈
A


u

v

η

z

 ,


u

v

η

z


〉

H

=

〈
v

−C−1(Au+Bη)

vx(1)− β1η −
∫ τ2

τ1

β2(s)z(1, t, s)ds

−s−1zρ

 ,


u

v

η

z


〉

H

= (v, u)W×W + (−C−1(Au+Bη), v)V×V

+
(
vx(1)− β1η −

∫ τ2

τ1

β2(s)z(1, t, s)ds
)
.η

−
∫ 1

0

∫ τ2

τ1

β2(s)z(ρ)zρ(ρ) ds dρ.

= < Av, u >W ′×W + < −(Au+Bη), v >V ′×V +vx(1)η

−
∫ τ2

τ1

β2(s)z(1, t, s)dsη − β1|η|2 −
∫ 1

0

∫ τ2

τ1

β2(s)z(ρ)zρ(ρ) ds dρ.
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Since (u, v, η, z)
T ∈ D(A), then Au+Bη ∈ V ′ and v ∈W then we have

< −(Au+Bη), v >V ′×V = < −(Au+Bη), v >W ′×W

= − < Au, v >W ′×W − < Bη, v >W ′×W

= − < Au, v >W ′×W −ηvx(1).

We can deduce

ℜ

〈
A


u

v

η

z

 ,


u

v

η

z


〉

H

= ℜ
(
< Av, u >W ′×W − < Au, v >W ′×W +vx(1)η − ηvx(1)

)

−ℜ
(∫ τ2

τ1

β2(s)z(1, t, s)ds)η

)
− 1

2

∫ τ2

τ1

β2(s)|z(1, t, s)|2ds

+
1

2

∫ τ2

τ1

β2(s)|z(0, t, s)|2ds− β1|η|2

= −ℜ
(∫ τ2

τ1

β2(s)z(1, t, s)ds)η

)
− 1

2

∫ τ2

τ1

β2(s)|z(1, t, s)|2ds

+
1

2

∫ τ2

τ1

β2(s)|z(0, t, s)|2ds− β1|η|2

≤ 1

2

∫ τ2

τ1

β2(s)|z(1, t, s)|2ds+
1

2

∫ τ2

τ1

β2(s)|η|2ds− β1|η|2

−1

2

∫ τ2

τ1

β2(s)|z(1, t, s)|2ds+
1

2

∫ τ2

τ1

β2(s)|z(0, t, s)|2ds

≤ 1

2

∫ τ2

τ1

β2(s)|η|2ds− β1|η|2 +
1

2

∫ τ2

τ1

β2(s)|η|2ds

≤
(
− β1 +

∫ τ2

τ1

β2(s)ds
)
|η|2

and

ℜ

〈
A


u

v

η

z

 ,


u

v

η

z


〉

H

≤
(
− β1 +

∫ τ2

τ1

β2(s)ds
)
|η|2

Now the relation (1.2) allows to conclude that

ℜ

〈
A


u

v

η

z

 ,


u

v

η

z


〉

H

≤ 0

which implies that the operator A is dissipative.
Let us prove that the operator λI −A is surjective for at least one λ > 0.
For (f, g, h, k)T ∈ H, we look for (u, v, η, z)T ∈ D(A) solution of

λu− v = f in ]0, 1[

λv + C−1(Au+Bη) = g in V ′

λη − vx(1) + β1η +

∫ τ2

τ1

β2(s)z(1, t, s)ds = h

λz + s−1zρ = k in ]0, 1[.

(2.19)
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Suppose that we have found u with the appropriate regularity. It means that we have also found η. Then
v = λu− f and we can determine z by solving the system{

s−1zρ + λz = k in ]0, 1[

z(0) = η.
(2.20)

We obtain

z(ρ) = ηe−λsρ + se−λsρ

∫ ρ

0

k(σ)eλsσ dσ.

In particular

z(1) = ηe−λs + τe−λs

∫ 1

0

k(σ)eλsσ dσ.

The function u verifies now 
λ2Cu+Au = C(g + λf)−Bη in V ′

u(0) = 0

ux(0) = 0

(2.21)

By using Lax-Milgram’s Lemma, the problem (2.21) admits a unique weak solution. Indeed multiplying the
first equation by v ∈ V and by integrating formally by parts we get

a(u, v) = F (v),∀ v ∈ V, (2.22)

where the bilinear and continuous form a is given by

a(u, v) =

∫ 1

0

(
λ2γuxvx + λ2uv + uxxvxx

)
dx ∀ u, v ∈ V,

while the linear form F is

F (v) =

∫ 1

0

(g + λf)v + γ(g + λf)xvx dx− ηvx(1), ∀ v ∈ V.

Since a is clearly strongly coercive on V and F is continuous on V , by Lax-Milgram’s Lemma, problem (2.21)
admits a unique solution u ∈ V . By taking test functions v ∈ D(0; 1), we recover the first identity of (2.21).
This guarantees that u belongs to H2(0, 1). Using now Green’s formula, we see that u satisfies the third identity
of (2.21).

Finally, we define η and v by setting

v = λu− f and η =

vx(1)−
∫ τ2

τ1

β2(s)z(1, t, s)ds+ h

β1 + λ

This shows that the operator A is m-dissipative on H and it generates a C0-semigroup of contractions in H, under
Lumer-Phillips theorem. So, we have found (u, v, η, z)T ∈ D(A) which verifies (2.21). The proof ends by using
the Hille-Yosida theorem. ■

3. Strong stability

The main results of this section reads as follows.

Theorem 3.1.
The C0-semigroup

(
etA

)
t≥0

is strongly stable on the energy space H, that is for any U0 ∈ H,

lim
t−→0

∥∥etAU0

∥∥
H = 0.

396



Polynomial stability of a Rayleigh system with distributed delay

Proof. We use the spectral decomposition theory of Sz-Nagy-Foias and Foguel [3, 6, 18]. According this theory,
since the resolvent of A is compact, it suffices to establish that A has no eigenvalue on the imaginary axis. For
our purpose, it is easy to prove that the resolvent of the operator A defined in (2.5) is compact. We are ready now
to achieve the proof of theorem 3.1 with the following lemma.

Lemma 3.2.
There is no eigenvalue of A on the imaginary axis, that is

iR ⊂ ρ(A).

Proof. By contradiction argument, we assume that there exists at least one iλ ∈ σ(A), λ ∈ R, λ ̸= 0 on the
imaginary axis. Let U = (u, v, η, z)T ∈ D(A) be the corresponding normalized eigenvector, that is verifying
∥U∥ = 1 and

A(u, v, η, z)T = iλ(u, v, η, z)T, (3.1)

which is equivalent to 
v − iλu = 0 in ]0, 1[

−C−1(Au+Bη)− iλv = 0 in V ′

vx(1)− β1η −
∫ τ2

τ1

β2(s)z(1, t, s)ds− iλη = 0

s−1zρ + iλz = 0 in ]0, 1[.

(3.2)

Recalling the dissipativity of A and setting

Λ1 = β −
∫ τ2

τ1

β2(s)ds (3.3)

in the proof of theorem 2.2, it follows that

0 = ℜe
〈
A(u, v, η, z)T, (u, v, η, z)T

〉
H ≤ −Λ |η|2 (3.4)

So we deduce that η = z = 0.

Now (3.2) becomes 
v − iλu = 0 in (0, 1)

C−1Au+ iλv = 0 in (0, 1)

vx(1, .) = 0.

(3.5)

From the first equation of (3.5) we deduce that
u(1) = 0

Setting v = iλu, it remains to find u ∈ V which verifies
Au− λ2Cu = 0 in (0, 1)

ux(1) = 0

u(1) = 0.

(3.6)

By Cauchy-Kowalevski theorem, there exists a nonempty neighbourhood O of 1 such that u = 0 in O ∩ (0, 1).
Then the unicity theorem of Holmgren (see [7]) allows to conclude that

u = 0, on (0, 1). (3.7)

We deduce that (u, v, η, z)T = (0, 0, 0, 0)
T which contradicts the fact that ∥U∥ = 1. We conclude that A has no

eigenvalue on the imaginary axis. ■

As the conditions of the spectral decomposition theory of Sz-Nagy-Foias and Foguel are full satisfied, the
proof of theorem 3.1 is thus completed. ■
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4. Polynomial stability

In this section, we shall analyze the rational decays rate in the form t−1 of the energy of system. For that purpose
we recall first the following result due to Borichev and Tomilov [4].

Lemma 4.1.
Let A be the generator of a C0-semigroup of bounded operators on a Hilbert space X such that iR ⊂ ρ (A).
Then we have the polynomial decay

∥∥etAU0

∥∥ ≤ C

t1/θ
∥U0∥ , t > 0,

if and only if

lim sup
|λ|→+∞

1

|λ|θ
∥∥∥(iλ−A)

−1
∥∥∥ <∞.

The main result of this section is the following theorem

Theorem 4.2.
The semigroup of system (1.1) decays polynomially as

∥∥etAU0

∥∥ ≤ C

t
∥U0∥ , ∀ U0 ∈ D(A), ∀ t > 0. (4.1)

Proof. It suffices to show following the results in [10, 20] and the above theorem, that for anyU = (u, v, η, z)
T ∈

D(A) and
F = (f, g, h, k)

T ∈ H, the solution of
(iλI −A)U = F (4.2)

verifies
∥U∥H ≤ Cλ∥F∥H; (4.3)

where λ > 0 and C > 0.

Problem (1.1) without delay is the following one

utt(x, t)− γuxxtt(x, t) + uxxxx(x, t) = 0 in ]0, 1[×(0,+∞)

u(0, t) = ux(0, t) = 0

uxx(1, t) + η(t) = 0,

uxxx(1, t)− γuxtt(1, t) = 0 ∀ t ∈ (0,+∞)

ηt(t)− uxt(1, t) + β1η(t) = 0 ∀ t ∈ (0,+∞)

u(·, 0) = u0, ut(·, 0) = u1 in ]0, 1[, η(0) = η0 ∈ C

η(t− τ) = f0(t− τ) ∀ t ∈ (0, τ),

which is well-posed in
H0 :=W × V × C (4.4)
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endowed with the norm

∥∥∥(u, v, η)T∥∥∥2
H0

:= ∥uxx∥2L2(0,1) + ∥v∥2L2(0,1) + γ ∥vx∥2L2(0,1) + |η|2. (4.5)

The generator of its semigroup is A0 defined by

A0 (u, v, η)
T
:=

(
v,−C−1(Au+Bη), vx(1)− β1η

)T
(4.6)

with domain

D(A0) =
{
(u, v, η)

T ∈ H, v ∈W,Au+Bη ∈ V ′
}
, (4.7)

Thanks to [9], the operator A0 generates a polynomial stable semigroup with optimal decay rate t−1. Therefore
the solution (u∗, v∗, η∗)

T of

(iλI −A0)

u∗v∗
η∗

 =

uv
η

 (4.8)

verifies

∥∥∥(u∗, v∗, η∗)T∥∥∥
H0

≤ C0λ
∥∥∥(u, v, η)T∥∥∥

H0

(4.9)

where C0 is a positive constant.

On the other hand the system (4.8) can be rewritten as


iλu∗ − v∗ = u

iλv∗ + C−1(Au∗ +Bη∗) = v

iλη∗ − v∗x(1) + β1η
∗ = η.

(4.10)
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Let α ∈ R, with the help of integrations by parts and using (4.10) we have

〈
(iλI −A)


u

v

η

z

 ,


u∗

v∗

η∗

αz


〉

H

=

〈
iλu− v

iλv + C−1(Au+Bη)

iλη − vx(1) + β1η +

∫ τ2

τ1

β2(s)z(1)ds

iλz + s−1zρ

 ,


u∗

v∗

η∗

αz


〉

H

=
(
iλu− v, u∗

)
W×W

+
(
iλv + C−1(Au+Bη), v∗

)
V×V

+
(
iλη − vx(1) + β1η +

∫ τ2

τ1

β2(s)z(1)ds
)
)η∗

+α

∫ 1

0

∫ τ2

τ1

sβ2(s)(iλz + s−1zρ)z ds dρ

=

∫ 1

0

(iλu− v)xx u
∗
xxdx+

∫ 1

0

(
iλv + C−1(Au+Bη)

)
v∗dx

+γ

∫ 1

0

(
iλv + C−1(Au+Bη)

)
x
v∗xdx

+

(
iλη − vx(1) + β1η +

∫ τ2

τ1

β2(s)z(1)ds

)
η∗ + iλα

∫ 1

0

∫ τ2

τ1

sβ2(s)zz ds dρ

+α

∫ 1

0

∫ τ2

τ1

β2(s)zρz ds dρ

= iλ

∫ 1

0

uxxu∗xxdx−
∫ 1

0

vxxu∗xxdx+ iλ

∫ 1

0

vv∗dx+ iλγ

∫ 1

0

vxv∗xdx

+

∫ 1

0

C−1(Au+Bη)v∗ + γC−1(Au+Bη)v∗dx

−
[
iλη∗ − v∗x(1) + β1η∗

]
η +

∫ τ2

τ1

β2(s)z(1)ds.η∗ − v∗x(1)η − vx(1)η∗ + 2β1ηη∗

+iλα

∫ 1

0

∫ τ2

τ1

sβ2(s)|z|2 ds dρ+ α

∫ 1

0

∫ τ2

τ1

β2(s)zρz ds dρ

+iλα

∫ 1

0

∫ τ2

τ1

sβ2(s)zz ds dρ+ α

∫ 1

0

∫ τ2

τ1

β2(s)zρz ds dρ

= iλ

∫ 1

0

uxxu∗xxdx−
∫ 1

0

vxxu∗xxdx+ iλ

∫ 1

0

vv∗dx+ iλγ

∫ 1

0

vxv∗xdx

−|η|2 +
∫ τ2

τ1

β2(s)z(1)dsη∗ − v∗x(1)η − vx(1)η∗ + 2β1ηη∗

+ < CC−1(Au+Bη), v∗ >V ′×V

+iλα

∫ 1

0

∫ τ2

τ1

sβ2(s)zz ds dρ+ α

∫ 1

0

∫ τ2

τ1

β2(s)zρz ds dρ

= iλ

∫ 1

0

uxxu∗xxdx−
∫ 1

0

vxxu∗xxdx+ iλ

∫ 1

0

vv∗dx+ iλγ

∫ 1

0

vxv∗xdx

−|η|2 +
∫ τ2

τ1

β2(s)z(1)dsη∗ − v∗x(1)η − vx(1)η∗ + 2β1ηη∗

+ < Au+Bη, v∗ >V ′×V

+iλα

∫ 1

0

∫ τ2

τ1

sβ2(s)zz ds dρ+ α

∫ 1

0

∫ τ2

τ1

β2(s)zρz ds dρ
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〈
(iλI −A)


u

v

η

z

 ,


u∗

v∗

η∗

αz


〉

H

= iλ

∫ 1

0

uxxu∗xxdx−
∫ 1

0

vxxu∗xxdx+ iλ

∫ 1

0

vv∗dx+ iλγ

∫ 1

0

vxv∗xdx

−|η|2 +
∫ τ2

τ1

β2(s)z(1)dsη∗ − v∗x(1)η − vx(1)η∗ + 2β1ηη∗

+ < Au, v∗ >V ′×V + < Bη, v∗ >V ′×V

+iλα

∫ 1

0

∫ τ2

τ1

sβ2(s)zz ds dρ+ α

∫ 1

0

∫ τ2

τ1

β2(s)zρz ds dρ

= iλ

∫ 1

0

uxxu∗xxdx−
∫ 1

0

vxxu∗xxdx+ iλ

∫ 1

0

vv∗dx+ iλγ

∫ 1

0

vxv∗xdx

−|η|2 +
∫ τ2

τ1

β2(s)z(1)dsη∗ − v∗x(1)η − vx(1)η∗ + 2β1ηη∗

+

∫ 1

0

uxxv∗xxdx+ ηv∗x(1)

+iλα

∫ 1

0

∫ τ2

τ1

sβ2(s)zz ds dρ+ α

∫ 1

0

∫ τ2

τ1

β2(s)zρz ds dρ

= −
∫ 1

0

uxx(iλu∗ − v∗)xxdx−
∫ 1

0

v(iλv∗) + γvx(iλv∗x)dx

−
∫ 1

0

vxxu∗xxdx− |η|2 +
∫ τ2

τ1

β2(s)z(1)dsη∗ − vx(1)η∗ + 2β1ηη∗

+iλα

∫ 1

0

∫ τ2

τ1

sβ2(s)zz ds dρ+ α

∫ 1

0

∫ τ2

τ1

β2(s)zρz ds dρ

= −
∫ 1

0

uxxuxxdx− < Cv, iλv∗ >V ′×V −< Au∗, v >V ′×V

−|η|2 + β2z(1)η∗ −< Bη∗, v >V ′×V + 2β1ηη∗

+iλα

∫ 1

0

∫ τ2

τ1

sβ2(s)zz ds dρ+ α

∫ 1

0

∫ τ2

τ1

β2(s)zρz ds dρ

= −∥uxx∥2L2(0,1) − (v, iλv∗)V×V − (C−1Au∗, v)V×V

−|η|2 +
∫ τ2

τ1

β2(s)z(1)dsη∗ − (C−1Bη∗, v)V×V + 2β1ηη∗

+iλα

∫ 1

0

∫ τ2

τ1

sβ2(s)zz ds dρ+ α

∫ 1

0

∫ τ2

τ1

β2(s)zρz ds dρ

= −∥uxx∥2L2(0,1) − (v, iλv∗)V×V − (v, C−1Au∗)V×V

−|η|2 +
∫ τ2

τ1

β2(s)z(1)dsη∗ − (v, C−1Bη∗)V×V + 2β1ηη∗

+iλα

∫ 1

0

∫ τ2

τ1

sβ2(s)zz ds dρ+ α

∫ 1

0

∫ τ2

τ1

β2(s)zρz ds dρ

= −∥uxx∥2L2(0,1) −
(
v, C−1(Au∗ +Bη∗) + iλv∗

)
V×V

− |η|2

+

∫ τ2

τ1

β2(s)z(1)dsη∗ + 2β1ηη∗

+iλα

∫ 1

0

∫ τ2

τ1

sβ2(s)zz ds dρ+ α

∫ 1

0

∫ τ2

τ1

β2(s)zρz ds dρ
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〈
(iλI −A)


u

v

η

z

 ,


u∗

v∗

η∗

αz


〉

H

= −∥uxx∥2L2(0,1) − (v, v)V×V − |η|2 +
∫ τ2

τ1

β2(s)z(1)dsη∗ + 2β1ηη∗

+iλα

∫ 1

0

∫ τ2

τ1

sβ2(s)zz ds dρ+ α

∫ 1

0

∫ τ2

τ1

β2(s)zρz ds dρ

= −∥uxx∥2L2(0,1) − ∥v∥2L2(0,1) − γ∥vx∥2L2(0,1) − |η|2

+2β1ηη∗ +

∫ τ2

τ1

β2(s)z(1)dsη∗

+iλα

∫ 1

0

∫ τ2

τ1

sβ2(s)zz ds dρ+ α

∫ 1

0

∫ τ2

τ1

β2(s)zρz ds dρ

= −∥(u, v, η)∥2H0
+ 2β1ηη∗ +

∫ τ2

τ1

β2(s)z(1)ds.η∗

+iλα

∫ 1

0

∫ τ2

τ1

sβ2(s)zz ds dρ+ α

∫ 1

0

∫ τ2

τ1

β2(s)zρz ds dρ

So

∥∥∥(u, v, η)T∥∥∥2
H0

= ℜ

〈
F,


u∗

v∗

η∗

αz


〉

H

+ ℜ
(
2β1ηη∗

)
+ ℜ

(∫ τ2

τ1

β2(s)z(1)dsη∗
)

+ℜ
(
α

∫ 1

0

∫ τ2

τ1

β2(s)zρz ds dρ
)

(4.11)

Take α =
−1

ε
with ε > 0.Then (4.11) becomes

∥∥∥(u, v, η)T∥∥∥2
H0

= ℜ

〈
F,


u∗

v∗

η∗
−1
ε z


〉

H

+ ℜ
(
2β1ηη∗

)
+ ℜ

(∫ τ2

τ1

β2(s)z(1)dsη∗
)

−ℜ
(1
ε

∫ 1

0

∫ τ2

τ1

β2(s)zρz ds dρ
)

(4.12)

We have by Young’s inegality

ℜ
(
2β1ηη∗

)
≤ 2β1|η|.|η∗|

≤ β2
1

ε
|η|2 + ε|η∗|2 (4.13)

Then by Fubbini
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−ℜ
(1
ε

∫ 1

0

∫ τ2

τ1

β2(s)zρz ds dρ
)
= −ℜ

( 1

2ε

∫ τ2

τ1

β2(s)
[
|z|2

]1
0
ds
)

= − 1

2ε

∫ τ2

τ1

β2(s)|z(1)|2 ds+
1

2ε

∫ τ2

τ1

β2(s)|z(0)|2 ds

= − 1

2ε

∫ τ2

τ1

β2(s)|z(1)|2 ds+
1

2ε

∫ τ2

τ1

β2(s) ds.|η|2 (4.14)

Moreover, by the Cauchy-Schwarz inequality

ℜ

〈
F,


u∗

v∗

η∗

αz


〉

H

≤ ∥F∥H.∥(u∗, v∗, η∗)T∥H0
+

1

ε
∥F∥H.∥0, 0, 0, z)T∥H

≤ ∥F∥H.∥(u∗, v∗, η∗)T∥H0 +
1

ε
∥F∥H.∥u, v, η, z)T∥H

≤ C0λ∥F∥H.∥(u, v, η)T∥H0 +
1

ε
∥F∥H.∥U∥H (4.15)

Finally, Young’s inequality gives us

ℜ
(∫ τ2

τ1

β2(s)z(1)dsη∗
)
≤ 1

2ε

∫ τ2

τ1

β2(s)|z(1)|2ds+
ε

2

∫ τ2

τ1

β2(s)ds.|η∗|2 (4.16)

Summing (4.13),(4.14),(4.15) and (4.16) we have

∥∥∥(u, v, η)T∥∥∥2
H0

≤ β2
1

ε
|η|2 + ε|η∗|2 − 1

2ε

∫ τ2

τ1

β2(s)|z(1)|2 ds+
1

2ε

∫ τ2

τ1

β2(s) ds.|η|2

+ C0λ∥F∥H.∥(u, v, η)T∥H0 +
1

ε
∥F∥H.∥U∥H +

1

2ε

∫ τ2

τ1

β2(s)|z(1)|2ds

+
ε

2

∫ τ2

τ1

β2(s)ds|η∗|2

≤
(β2

1

ε
+

1

2ε

∫ τ2

τ1

β2(s) ds
)
|η|2 + ε

(
1 +

1

2

∫ τ2

τ1

β2(s)ds
)
|η∗|2

+
(
C0λ+

1

ε

)
∥F∥H.∥U∥H (4.17)

Using the fact that A is dissipative and Cauchy-Schwarz inequality we have(
β1 −

∫ τ2

τ1

β2(s)ds
)
|η|2 ≤ ℜ⟨(iλI −A)U,U⟩H ≤ ∥F∥H.∥U∥H (4.18)

This leads to

|η|2 ≤ 1

β1 −
∫ τ2

τ1

β2(s)ds

∥F∥H.∥U∥H (4.19)
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Note also that (4.9) and the dissipativity of A0 give

β1|η∗|2 ≤ ℜ
〈
(iλI −A0) (u

∗, v∗, η∗)T, (u∗, v∗, η∗)T
〉
H0

(4.20)

≤ ∥(u, v, η)T∥H0
.∥(u∗, v∗, η∗)T∥H0

(4.21)

≤ C0λ∥(u, v, η)T∥2H0
(4.22)

This means that

|η∗|2 ≤ C0λ

β1
∥(u, v, η)T∥2H0

(4.23)

In other words

|η∗|2 ≤ C0λ

β1
∥U∥2H (4.24)

Using (4.19) and (4.24) in (4.17) we get∥∥∥(u, v, η)T∥∥∥2
H0

≤ C1∥F∥H.∥U∥H + ελC2∥U∥2H +
(
C0λ+

1

ε

)
∥F∥H.∥U∥H (4.25)

where C1 and C2 are constants that do not depend on λ defined by

C1 =

β2
1

ε
+

1

2ε

∫ τ2

τ1

β2(s) ds

β1 −
∫ τ2

τ1

β2(s)ds

and

C2 =

C0

(
1 +

1

2

∫ τ2

τ1

β2(s)ds
)

β1

Let ε =
1

2C2λ
, so C2λε =

1

2
.Hence (4.25) becomes

∥∥∥(u, v, η)T∥∥∥2
H0

≤
(
C1 + C3λ

)
∥F∥H.∥U∥H +

1

2
∥U∥2H (4.26)

with C3 = C0 + 2C2.

If we add
∫ 1

0

∫ τ2

τ1

sβ2(s)|z|2dsdρ member by member we have

1

2
∥U∥2H ≤

(
C1 + C3λ

)
∥F∥H.∥U∥H +

∫ 1

0

∫ τ2

τ1

sβ2(s)|z|2dsdρ (4.27)

Now we need a better estimate for ∫ 1

0

∫ τ2

τ1

sβ2(s)|z|2dsdρ

From (4.2) we get {
s−1zρ + iλz = k in ]0, 1[

z(0) = η.
(4.28)
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We obtain

z(ρ) = ηe−iλsρ + s

∫ ρ

0

k(σ)eiλ(σ−ρ) dσ.

By the triangular inequality we have

|z(ρ)| ≤ |η|+ s

∫ ρ

0

|k(σ)| dσ.

This implies that

|z(ρ)|2 ≤ |η|2 + 2|η|s
∫ ρ

0

|k(σ)| dσ + s2
(∫ ρ

0

|k(σ)| dσ
)2

. (4.29)

On the one hand, using Cauchy-Schwarz inequality, we have(∫ ρ

0

|k(σ)| dσ
)2

≤
(∫ ρ

0

|k(σ)|2 dσ
)(∫ ρ

0

dσ
)
≤

∫ ρ

0

|k(σ)|2 dσ. (4.30)

On the other hand, Young’s inequality gives us

2s|η|s
∫ ρ

0

|k(σ)| dσ ≤ |η|2 + s2
(∫ ρ

0

|k(σ)| dσ
)2

≤ |η|2 + s2
∫ ρ

0

|k(σ)|2 dσ (4.31)

Using (4.30) and (4.31) in (4.29) we get

|z(ρ)|2 ≤ 2|η|2 + 2s2
∫ ρ

0

|k(σ)|2 dσ. (4.32)

Let’s now integrate (4.32) on (0, 1)× (τ1, τ2). We have

∫ 1

0

∫ τ2

τ1

sβ2(s)|z(ρ)|2dsdρ ≤ 2

∫ 1

0

∫ τ2

τ1

sβ2(s)|η|2dsdρ+ 2

∫ 1

0

∫ τ2

τ1

β2(s)s
3

∫ ρ

0

|k(σ)|2 dσdsdρ

≤ 2

∫ 1

0

dρ.

∫ τ2

τ1

sβ2(s)ds|η|2 + 2

∫ τ2

τ1

β2(s)s
3

∫ 1

0

|k(σ)|2dsdρ

≤ 2τ2

∫ τ2

τ1

β2(s)ds|η|2 + 2τ22

∫ 1

0

∫ τ2

τ1

β2(s)s|k(ρ, s)|2dsdρ

≤ 2τ2β1|η|2 + 2τ22

∫ 1

0

∫ τ2

τ1

β2(s)s|k(ρ, s)|2dsdρ. (4.33)

Using (4.19) and the definition of the norm in H we deduce from (4.33) that

∫ 1

0

∫ τ2

τ1

sβ2(s)|z(ρ)|2dsdρ ≤ C4∥F∥H.∥U∥H + 2τ22 ∥F∥2H. (4.34)

with
C4 =

2τ2β1

β1 −
∫ τ2

τ1

β2(s)ds

Combining (4.27) and (4.34) we get

∥U∥2H ≤ 2
(
C1 + C3λ+ C4

)
∥F∥H.∥U∥H + 4τ22 ∥F∥2H (4.35)
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Taking ambda to be sufficiently large, we obtain

∥U∥2H ≤ C3λ∥F∥H.∥U∥H + 4τ22 ∥F∥2H (4.36)

≤ C
(
λ∥F∥H.∥U∥H + ∥F∥2H

)
(4.37)

where C ≥ max
{
C3, 4τ

2
2

}
Hence the result

∥U∥H ≤ Cλ∥F∥H. (4.38)

Therefore lim supλ→+∞
1

λ

∥∥∥(iλ−A)
−1

∥∥∥ < ∞, whence the semi-group decreases polynomially according to

the rate t−1.
■

5. Exponential unstability

In this section, we show that the semigroup generated by the operator A is not exponentially stable. For that we
use the frequency domain approach (see Huang [8] and Pruss [5]), namely the below result.

Lemma 5.1. A contraction semigroup on a Hilbert space is exponentially stable if and only if

iR = {iλ, λ ∈ R} ⊂ ρ (A) (5.1)

and

sup
|λ|→∞

∥ (iλI −A)
−1 ∥ < +∞. (5.2)

ρ(A) denotes the resolvent set of the operator A.

We state on the following result that constitutes the main of this section

Theorem 5.2. The system (2.2) is not exponentially stable on the H energy space.

Proof. Following the lemma (5.1), we prove that the condition (5.2) is not satisfied satisfied in the sense that
there are sequences (λn), (Un) and (Fn) such that

(iλn −A)Un = Fn; (5.3)

∥Fn∥H = O(1); (5.4)

lim
n→+∞

∥Un∥H = +∞. (5.5)

Note that this technique was used in [15], [2], [16], [17] and in several other articles
Let Un = (un, vn, ηn, zn)T et Fn = (f1n, f2n, f3n, f4n)T

Assuming that (5.3) is verified, we have
iλnu

n − vn = f1n

iλnv
n + C−1(Aun +Bηn) = f2n

iλnη
n − vnx (1) + β1η

n +

∫ τ2

τ1

β2(s)z
n(1, t, s)ds = f3n

iλnz
n + s−1znρ = f4n.

(5.6)
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We are looking for a particular solution defined for f1n = f3n = f4n = 0 and f2n(x) = e
1√
γ x − e

−1√
γ x solution

of the differential equation −γfxx + f = 0.

The system becomes 
vn = iλnu

n

−λ2nCun +Aun +Bηn = Cf2n

iλnη
n − iλnu

n
x(1) + β1η

n +

∫ τ2

τ1

β2(s)z
n(1, t, s)ds = 0

iλnz
n + s−1znρ = 0.

(5.7)

Using the definition of the operators A, B and C, we obtain for any Φ ∈ W the following variational
formulation ∫ 1

0

unxxΦxx dx− λ2n

∫ 1

0

unΦ+ γunxΦx dx+ ηnΦx(1) =

∫ 1

0

f2nΦ+ γf2nx Φxdx (5.8)

Integration by parts gives[
unxxΦx

]1
0
−
[
unxxxΦ

]1
0
+

∫ 1

0

unxxxxΦ dx− λ2n

∫ 1

0

unΦdx− λ2nγ
[
unxΦ

]1
0

+λ2nγ

∫ 1

0

unxxΦdx+ ηnΦx(1) =

∫ 1

0

f2nΦdx+ γ
[
f2nx Φ

]1
0
− γ

∫ 1

0

f2nxxΦdx (5.9)

This leads to

unxx(1)Φx(1)− unxx(0)Φx(0)− unxxx(1)Φ(1) + unxxx(0)Φ(0) +

∫ 1

0

unxxxxΦ dx− λ2n

∫ 1

0

unΦdx

−λ2nγunx(1)Φ(1) + λ2nγu
n
x(0)Φ(0) + λ2nγ

∫ 1

0

unxxΦdx+ ηnΦx(1)

=

∫ 1

0

[
− γf2nxx + f2n

]
Φdx+ γf2nx (1)Φ(1)− γf2nx (0)Φ(0)

(5.10)

Since Φ(0) = Φx(0) = 0 and −γf2nxx + f2n = 0 , (5.10) can be written as∫ 1

0

[
unxxxx + λ2nu

n
xx − λ2nγu

n
]
Φ dx+

[
unxx(1) + ηn

]
Φx(1)−

[
unxxx(1) + λ2nγu

n
x(1) + γf2nx (1)

]
Φ(1) = 0(5.11)

This is equivalent to the system
unxxxx + λ2nu

n
xx − λ2nγu

n = 0;

unxx(1) + ηn = 0;

unxxx(1) + λ2nγu
n
x(1) + γf2nx (1) = 0;

un(0) = unx(0) = 0.

(5.12)

Let’s now try to express ηn as a function of un. To do this, we’ll solve the equation of the (5.7) system, which is

iλnz
n + s−1znρ = 0 (5.13)

The solution of (5.13) is of the form
zn(ρ, s) = Ce−iλnsρ (5.14)
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Now zn(0) = ηn(t) so C := ηn(t).
Thus (5.14) is written as

zn(ρ, s) = ηn(t)e−iλnsρ (5.15)

When we derive this solution with respect to t and with respect to ρ we obtain the equation

ηnt − iλnη
n = 0 (5.16)

After integration, we also obtain that (5.16) has the solution
ηn = keiλnt, with k ∈ C.
Since ηn(0) = ηn0 we obtain k = ηn0 , from which ηn = ηn0 e

iλnt.
Replacing ηn by ηn0 e

iλnt in (5.15) gives us

z(ρ) = ηn0 e
iλn(t−sρ).

In particular
zn(1) = ηn0 e

iλn(t−s) = ηne−iλns.

From the third equation of (5.7) we finally obtain by replacing zn(1) by ηne−iλns

ηn =
iλnu

n
x(1)

iλn + β1 +

∫ τ2

τ1

β2(s)e
−iλnsds

(5.17)

The (5.12) system thus becomes

unxxxx + λ2nu
n
xx − λ2nγu

n = 0;

unxx(1) +
iλn

iλn + β1 +

∫ τ2

τ1

β2(s)e
−iλnsds

unx(1) = 0;

unxxx(1) + λ2nγu
n
x(1) + γf2nx (1) = 0;

un(0) = unx(0) = 0.

(5.18)

For the rest of the proof, let’s assume, as in article [9]

λn =
nπ
√
γ
+

π

2
√
γ
+ o(1) (5.19)

In other words
λn =

nπ
√
γ
+

π

2
√
γ
+ l(n) with lim

n→+∞
l(n) = 0 (5.20)

It is clear that from a certain rank n ≥ n0, n0 very large

iλn

iλn + β1 +

∫ τ2

τ1

β2(s)e
−iλnsds

≈ 1

and

unxxx(1) + λ2nγu
n
x(1) + γf2nx (1) = unxxx(1) + λ2nγu

n
x(1) + 2

√
γch(

1
√
γ
)

≈ unxxx(1) + λ2nγu
n
x(1).
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We therefore conclude that when λn −→ +∞ the system (5.18) is equivalent to the system

unxxxx + λ2nu
n
xx − λ2nγu

n = 0;

unxx(1) + unx(1) = 0;

unxxx(1) + λ2nγu
n
x(1) = 0;

un(0) = unx(0) = 0.

(5.21)

On the one hand, Serge Nicaise and associates have shown in [9] that (5.21) admits a solution verifying

∥un∥W ∼ n2 et ∥un∥V ∼ n when n −→ +∞

This gives us (5.5).

lim
n→+∞

∥Un∥H = +∞.

On the other hand, according to the choice of Fn we have

∥Fn∥2H =

∫ 1

0

[
f2n(x)

]2
+ γ

[
f2nx (x)

]2
dx

=

∫ 1

0

[
e

1√
γ x − e

−1√
γ x

]2
+

[
e

1√
γ x

+ e
−1√

γ x
]2
dx

=

∫ 1

0

[
e

2√
γ x − 2 + e

−2√
γ x

]
+
[
e

2√
γ x

+ 2 + e
−2√

γ x
]2
dx

=
[√γ

2
e

2√
γ x − 2x−

√
γ

2
e

−2√
γ x

]1
0
+

[√γ
2
e

2√
γ x

+ 2x−
√
γ

2
e

−2√
γ x

]1
0

=
[√γ

2
e

2√
γ − 2−

√
γ

2
e

−2√
γ

]
+

[√γ
2
e

2√
γ + 2−

√
γ

2
e

−2√
γ

]
−
[√γ

2
−

√
γ

2

]
−
[√γ

2
−

√
γ

2

]
=

√
γ
(e 2√

γ − e
−2√

γ

2

)
− 2 +

√
γ
(e 2√

γ − e
−2√

γ

2

)
+ 2

= 2.sh
( 2
√
γ

)
This means that

∥Fn∥H = O(1) (5.22)

Finally, we’ve found sequences (λn), (Un) and (Fn) satisfying (5.3)−(5.5). Consequently, the proof of Theorem
(5.2) is complete. ■

Conclusion

In this paper we have studied a Rayleigh-type problem with a distributed delay. We used the tools of functional
analysis and semi-group theory to obtain the existence, uniqueness and polynomial decay. However, we have
established that this polynomial decay is the best in the sense that it is impossible to have an exponential decay.
In the future, we’d like to continue our study by replacing the distributed delay with a variable delay.
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1. Introduction

In this paper we are concerned by the following porous thermoelastic system with distributed delay time
ρ1 utt = µuxx + b φx − β θx − γ1 ut −

τ2∫
τ1

γ2 (σ)ut (x, t− σ) dσ in (0, π)× (0,∞)

J φtt = αφxx − b ux − ξ φ+ δ θ − τ φt in (0, π)× (0,∞)

c θt = −qx − β uxt − δ φt in (0, π)× (0,∞)

(1.1)
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Porous thermoelastic

with the boundary conditions and the initial data
u (0, t) = u (π, t) = φx (0, t) = φx (π, t) = θx (0, t) = θx (π, t) = 0 , t > 0

u (x, 0) = u0 (x) , φ (x, 0) = φ0 (x) , θ (x, 0) = θ0 (x) , x ∈ (0, π)

ut (x, 0) = u1 (x) , φt (x, 0) = φ1 (x) , x ∈ (0, π)

ut (x,−t) = f0 (x, t) , x ∈ (0, π) , t ∈ (0, τ2)

(1.2)

where u = u (x, t) is the transversal displacement, φ = φ (x, t) is the volume fraction, θ = θ (x, t) is the
temperature variation from an equilibrium reference value and q = q (x, t) is the heat flux. The coefficients
ρ1, J, c, µ, α, b, ξ, τ, γ1 are positive constitutive constants such that

µ ξ > b2 (1.3)

The coefficient β and δ are the coupling constants that are different from zero but their signs does not matter in

the analysis. The term

τ2∫
τ1

γ2 (σ)ut (x, t− σ) dσ is a distributed delay that acting only on the porous equation

and γ2 : [τ1, τ2] → R is a bounded function, where τ1 and τ2 are two real numbers satisfying 0 ≤ τ1 < τ2. The
initial data u0, u1, φ0, φ1, θ0, f0 belongs to the suitable functional space.
In order to determine system (1.1)-(1.2), an additional equation relating q and θ must be used.

Over the years, many scientists and researchers have come up with theories about thermoelasticity. In the
classical model of heat diffusion or what is known as the classical theory of thermoelasticity, heat flow obeys
Fourier’s law of thermal conductivity, which states that heat flow is proportional to a temperature gradient. The
thermal conductivity equation is given by Fourier’s law as

q = −κθx (1.4)

where κ > 0 represents the coefficient of thermal conductivity of the material.
In the last three decades much has been written on the analysis of the longtime behavior of porous

thermoelastic systems. Casas and Quintanilla [3] proved the exponential decay of the solution of the following
system 

ρ utt = µuxx + b φx − β θx in (0, π)× (0,∞)

J φtt = αφxx − b ux − ξ φ+ δ θ − τ φt in (0, π)× (0,∞)

c θt = κ θxx − β uxt − δ φt in (0, π)× (0,∞)

In [24, 30] Quintanilla and co-authors showed the slow decay for the solution of the above system when the
frictional damping is removed (τ = 0) or replaced by a viscoelastic damping. Moreover, in [30] they established
a polynomial rate of decay provided that δ (β b− δ µ) > 0.

Closely to the porous thermoelastic systems, Muñoz Rivera and Racke [31] studied the Timoshenko type
system 

ρ1 φtt = k(φx + ψ)x
ρ1 ψtt = b ψxx − k (φx + ψ) + γ θx
c θt = κ θxx − γ ψtx

with different boundary conditions, where ψ represents the rotation angle of the filament, they proved that the
solution of the system is exponentially stable in the case of the wave speeds are equal.

It should be noted that Fourier’s thermal conductivity equation is an equation of parabolic type, which leads to
the physical contradiction of the infinite speed of heat diffusion, in other words any thermal disturbance at a point
will instantly transfer to other parts of the body. To overcome this paradox, other theories of thermoelasticity
have emerged.
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Green and Naghdi [14, 15] proposed a way to eliminate the paradox of infinite velocities, they used an analogy
between the concepts and equations of purely thermal theories and purely mechanical theories and came up with
three types of constitutive equations for heat flow in a fixed solid cohesive material classified as type I , type II
and type III , where Type I leads to the usual thermal conductivity according to Fourier’s law. In type II and
type III theories, the constitutive equations for the heat flux are given by

q = −f1 ψx , q = −f1 ψx − f2 θx (1.5)

respectively, where

ψ = θ0 (x) +

t∫
0

θ (x, τ) dτ

is the thermal displacement and f1 , f2 are positive constants.
In the framework of Green and Naghdi theory, Quintanilla and co-workers [21, 29] considered the following

porous thermoelastic system
ρ1 utt = µuxx + γ ϕx − β ψtx

J ϕtt = b ϕxx +m ψxx − ξϕ+ dψt − γ ux − τ ϕt
aψtt = k ψxx +m ϕxx − dψt − β utx + k∗ θxx

where (x, t) ∈ (0, π) × (0,∞) with coefficient satisfy µ ξ > γ2 and b k > m2.Precisely. Leseduarte et al [21]
examined the type II case (k∗ = 0) with (τ ̸= 0) and Miranville and Quintanilla [29] considered the type III
case (k∗ ̸= 0) with (τ = 0) . Both have proven that the solution is exponentially stable.

In [11, 19, 25, 27, 28] the authors were considered Timoshenko systems with thermoelastic dissipation of
type III , the exponential stability was obtained provided that the wave speeds associated to the hyperbolic part
of the system are equal. Otherwise, the solution decays polynomially.

In [22] Lord and Shulman propose a second theory to overcome the paradox of infinite velocity due to
Fourier’s law, They suggest to replace Fourier’s law with the following Cattaneo’s law of heat conduction

τ0 qt + q + κ θx = 0 (1.6)

where τ0 is a positive constant represents the time lag in the response of the heat flux to the temperature gradient
and is referred to as the thermal relaxation time.

In accordance with this theory, a hyperbolic system was obtained, and as a result, the heat spreads with a
finite speed and a new component of the wave speed appears. The heat is transferred by the process of wave
propagation rather than the usual diffusion, and this process is known as the second sound, making the first sound
the usual sound.

Fernandez Sare and Racke [12] considered a Timoshenko system coupled with the heat equation modeled by
Cattaneo’s law, they prove that the solution of the system losses the exponential stability in the case of equal wave
speeds.

By introducing a new stability number χ0 that links all the wave speeds (three), Santos et al [35] refined the
results found in [12] and demonstrated the exponential stability of the solution in the case of χ0 = 0 where

χ0 =

(
τ − κ ρ1

ρ3

)(
ρ2 −

b ρ1
κ

)
− τ δ2 ρ1

κ ρ3

In the setting of hyperbolic type porous thermoelastic systems, Han and Xu [17] considered the non uniform
porous system with second sound thermoelasticity

ρ (x)utt = [µ (x)ux (x)]x + [b (x)ϕ (x)]x − [β (x) θ (x)]x
J (x)ϕtt = [α (x)ϕx (x)]x − b (x)ux (x)− ξ (x)ϕ (x) +m (x) θ (x)− τ (x)ϕt (x)

c (x) θt (x) = −qx (x)− β (x)utx (x)−m (x)ϕt (x)

qt (x) + δq (x) + ηθx (x) = 0

(1.7)
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where ρ, µ, J, α, b, ξ and τ are positive function in [0, 1] and µ (x) ξ (x) > (b (x))
2 for any x ∈ [0, 1] ,

they have used the spectral method and proved that the solution decays exponentialy. Messaoudi and Fareh [26]
studied the uniform case of (1.7). they used the multiplier method and established an exponential stability result.
Fareh and Messaoudi [9] examined the solution of the following system

ρ utt − µuxx + b ϕx = 0

J ϕtt − αϕxx + b ux + ξ ϕ+ β θ = 0

c θt + qx + β ϕtx + δ θ = 0

τ0 qt + q + κ θx = 0

in the case when µ ξ = b2. They introduce the stability number

χ = β2 −
(
c αµ

ρ
− κα

τ0

)(
J

α
− ρ

µ

)
and showed that the solution is exponentially stable if and only if χ = 0 .

It is important to note that the second sound and type III theories cannot adequately explain the memory
effect that predominates in specific materials, especially at low temperatures. As a result, a more general
fundamental assumption about heat flow to thermal memory is required. In [16] Gurtin and Pipkin prosed that
heat flux depends on the integrated history of the weighted temperature gradient against a relaxation function
called the heat flux kernel. They developed a general nonlinear theory in which thermal disturbances propagate
with a finite speed. According to this theory, the linear constitutive equation for q is given as follows

q = −
t∫

−∞

k (t− s) θx (x, s) ds (1.8)

where k (s) is the heat conductivity relaxation kernal. The presence of the convolution term (1.8) renders the
porous system coupled with the heat equation into a fully hyperbolic system, this allows the heat to propagate
with finite speed and admits to describe the memory effect of heat conduction. We note that many different
constitutive models arise from different choices for k (s), in particular, if we take k (s) = κ δ (s), where δ is the
Dirac mass weighted at 0, then (1.8) reduced to the Fourier’s law (1.4), and if we choose

k (s) =
κ

τ0
e−

s
τ0 , τ0 > 0

we obtained Cattaneo’s law (1.6). So (1.8) is a generalized from Fourier’s and Cattaneo’s law.
In [6] Dell’Oro an Pata extended the result of [35] to the following system

ρ1 φtt − κ(φx + ψ)x = 0

ρ2 ψtt − b ψxx + κ (φx + ψ) + δ θx = 0

ρ3 θt −
1

β

∞∫
0

k (s) θxx (t− s) ds+ δ ψtx = 0

they introduce hte stability number

χk =

(
ρ1
ρ3 κ

− β

k (0)

)(ρ1
κ

− ρ2
b

)
− β

k (0)

ρ1 δ
2

ρ3 κ b

and proved in the case of χk = 0 that the solution of the system is exponentially stable. For other models with
Gurtin-Pipkin composition, we refer the readers to [2, 4, 5, 8, 10, 18, 33].
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In the present paper we consider the porous thermoelastic system (1.1)-(1.2) coupled with the heat equation
via the constitutive equation (1.8) and establish an exponential stability result without any restriction on the
coefficients. We note that our work is an extension of the results obtained in [7].

The rest of this article is organized as follows: In section 2, we introduce some transformations and state the
assumptions needed in our work. In section 3, we use the semigroupe method to prove the well-posedness of
problem. Finally, in section 4, we state and prove our stability results. We use c0 throughout this paper to denote
a geniric positive constant.

2. Preliminaries

We note that the presence of the convolution term in the constitutive equation for q renders the family operators
mapping the initial value (u0, u1, φ0, φ1, θ0, f0) into the solution (u, φ, θ) not match the semigroup
properties. This is due to the fact that the solution value of θ at time t depends on the whole function up to time
t. In order to overcome this difficulty we introduce the new variables

θt (x, s) = θ (x, t− s) , s ≥ 0 (2.1)

and

η (x, s) = ηt (x, s) =

s∫
0

θt (x, λ) dλ , s ≥ 0 (2.2)

which denote the past history and the summed past history of θ up to t, respectively.
Clearly, ηt (x, s) satisfies the following conditions

ηx (0, s) = ηx (π, s) = 0 , s ≥ 0 , t > 0

η0 (x, s) = η0 (x, s) , x ∈ (0, π) , s ≥ 0

η (x, 0) = lim
s→0

ηt (x, s) = 0 , x ∈ (0, π) , t > 0

and it’s easy to prove that

ηt (x, s) = θ − ηs (x, s) in (0, π)× (0,∞)× (0,∞) (2.3)

Moreover, we assume that lim
s→∞

k (s) = 0 then a simple computations give us

q = −
t∫

−∞

k (t− s) θx (x, s) ds =

∞∫
0

k′ (s) ηtx (x, s) ds

setting κ (s) = −k′ (s), system (1.1)-(1.2) and equation (2.2) become

ρ1 utt = µuxx + b φx − β θx − γ1 ut −
τ2∫

τ1

γ2 (σ)ut (x, t− σ) dσ in (0, π)× (0,∞)

J φtt = αφxx − b ux − ξ φ+ δ θ − τ φt in (0, π)× (0,∞)

c θt =

∞∫
0

κ (s) ηtxx (x, s) ds− β uxt − δ φt in (0, π)× (0,∞)

ηt (x, s) = θ − ηs (x, s) in (0, π)× (0,∞)× (0,∞)

(2.4)
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with the boundary conditions and the initial data

u (0, t) = u (π, t) = φx (0, t) = φx (π, t) = θx (0, t) = θx (π, t) = 0 , t > 0

ηx (0, s) = ηx (π, s) = 0 , s ≥ 0 , t > 0

u (x, 0) = u0 (x) , φ (x, 0) = φ0 (x) , θ (x, 0) = θ0 (x) , x ∈ (0, π)

ut (x, 0) = u1 (x) , φt (x, 0) = φ1 (x) , x ∈ (0, π)

η0 (x, s) = η0 (x, s) , x ∈ (0, π) , s ≥ 0

η (x, 0) = 0 , x ∈ (0, π) , t > 0

ut (x,−t) = f0 (x, t) , x ∈ (0, π) , t ∈ (0, τ2)

(2.5)

Conserning the memory kernel κ, we assume the following set of hypotheses:
(H1) : κ ∈ C (IR+) ∩ L1 (IR+)

(H2) : κ (s) ≥ 0 , κ′ (s) ≤ 0 , ∀s ≥ 0

(H3) : κ (0) > 0

(H4) :

∞∫
0

κ (s) ds = κ0 = k (0)

(H5) :

∞∫
0

s κ (s) ds = 1

(H6) : ∃r > 0 ; κ′ (s) ≤ −r κ (s) , ∀s ≥ 0

(H7) : lim
s→∞

κ (s) = 0

concerning the weight of the delay, we only assume that

τ2∫
τ1

|γ2 (σ)| dσ < γ1 (2.6)

In view of the boundary conditions, our system can have solutions (uniform in the variable x), which do not
decay. In other words, it is known that for the problem determined by (2.4)-(2.5) we can always take solutions
where φ and θ are constant, for this reason, we impose that

π∫
0

φ0 (x) dx =

π∫
0

φ1 (x) dx =

π∫
0

θ0 (x) dx = 0 (2.7)

It is worth noting that condition (2.7) is imposed to guarantee that the solution decays. Thus, if we want to avoid
this behavior we need to impose condition (2.7). In addition as in [1], to be able to use Poincaré’s inequality for
φ and θ we perform the following transformation

From (2.4)2 and (2.4)3 respectively we have
J

π∫
0

φtt dx+ τ

π∫
0

φt dx+ ξ

π∫
0

φ dx− δ

π∫
0

θ dx = 0

c

π∫
0

θt dx+ δ

π∫
0

φt dx = 0

(2.8)

If we take ψ (t) =

π∫
0

φ dx and ϑ (t) =

π∫
0

θ dx , we observe that ψ (0) =

π∫
0

φ0 dx , ψ′ (0) =

π∫
0

φ1 dx and
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ϑ (0) =

π∫
0

θ0 dx . Moreover, (ψ, ϑ) is a solution of the following initial value system



J ψ′′ + τ ψ′ + ξ ψ − δ ϑ = 0 , ∀t ≥ 0

c ϑ′ + δ ψ′ = 0 , ∀t ≥ 0

ψ (0) =

π∫
0

φ0 dx = 0

ψ′ (0) =

π∫
0

φ1 dx = 0

ϑ (0) =

π∫
0

θ0 dx = 0

The solution of system is ψ (t) = ϑ (t) = 0 , ∀t ≥ 0

Consequently
π∫

0

φ (x, t) dx =

π∫
0

θ (x, t) dx = 0 , ∀t ≥ 0

Further more, from (2.2) we get

π∫
0

η (x, s) dx = 0 , ∀t ≥ 0 , ∀s ≥ 0

3. Well-posedness

In this section, we give the existence and uniqueness of solutions for the system (2.4)-(2.5) using semigroup
theory.

First, we introduce as in [32], new dependent variable

z (x, ρ, σ, t) = ut (x, t− ρ σ) in (0, π)× (0, 1)× (τ1, τ2)× (0,∞) (3.1)

A simple differentiation shows that z satisfies

σ zt (x, ρ, σ, t) + zρ (x, ρ, σ, t) = 0 in (0, π)× (0, 1)× (τ1, τ2)× (0,∞) (3.2)

Hence problem (2.4) takes the form:

ρ1 utt = µuxx + b φx − β θx − γ1 ut −
τ2∫

τ1

γ2 (σ) z (x, 1, σ, t) dσ in (0, π)× (0,∞)

J φtt = αφxx − b ux − ξ φ+ δ θ − τ φt in (0, π)× (0,∞)

c θt =

∞∫
0

κ (s) ηtxx (x, s) ds− β uxt − δ φt in (0, π)× (0,∞)

σ zt = −zρ in (0, π)× (0, 1)× (τ1, τ2)× (0,∞)

ηt (x, s) = θ − ηs (x, s) in (0, π)× (0,∞)× (0,∞)

(3.3)
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with the boundary and the initial data

u (0, t) = u (π, t) = φx (0, t) = φx (π, t) = θx (0, t) = θx (π, t) = 0 , t > 0

ηx (0, s) = ηx (π, s) = 0 , s ≥ 0 , t > 0

u (x, 0) = u0 (x) , φ (x, 0) = φ0 (x) , θ (x, 0) = θ0 (x) , x ∈ (0, π)

ut (x, 0) = u1 (x) , φt (x, 0) = φ1 (x) , x ∈ (0, π)

η0 (x, s) = η0 (x, s) , x ∈ (0, π) , s ≥ 0

η (x, 0) = 0 , x ∈ (0, π) , t > 0

z (x, ρ, σ, 0) = f0 (x, ρ σ) in (0, π)× (0, 1)× (0, τ2)

(3.4)

Second, we introduce the vector function U = (u, v, φ, ϕ, θ, z, η)T , with v = ut, and ϕ = φt.
We consider the following Hilbert spaces:

L2
∗ (0, π) =

w ∈ L2 (0, π) ,

π∫
0

w (x) dx = 0

 ,

H1
∗ (0, π) = H1 (0, π) ∩ L2

∗ (0, π) ,

H2
∗ (0, π) =

{
w ∈ H2 (0, π) ; wx (0) = wx (π) = 0

}
Furthermore, we introduce the weight Hilbert spaces

M1 = L2
κ

(
(0,∞) ;H1

∗ (0, π)
)
=

w : R+ → H1
∗ (0, π) ;

∞∫
0

κ (s) ∥wx (s)∥22 ds <∞


and

H = H1
κ

(
(0,∞) , H1

∗ (0, π)
)
= {η / η, ηs ∈ M1}

We define the enegy space by

H =H1
0 (0, π)× L2 (0, π)×H1

∗ (0, π)× L2
∗ (0, π)×H1

∗ (0, π)

× L2 ((0, π)× (0, 1)× (τ1, τ2))×M1

Then H, along with the inner product〈
U, Ũ

〉
H
= ρ1

∫ π

0

vṽdx+ J

∫ π

0

ϕϕ̃dx+ c

∫ π

0

θθ̃dx+ α

∫ π

0

φxφ̃xdx

+
µ

2

π∫
0

(
ux +

b

µ
φ

)(
ũx +

b

µ
φ̃

)
dx+

1

2

(
µ− b2

ξ

) π∫
0

ux ũx dx

+
ξ

2

π∫
0

(
φ+

b

ξ
ux

)(
φ̃+

b

ξ
ũx

)
dx+

1

2

(
ξ − b2

µ

) π∫
0

φ φ̃ dx

+

π∫
0

1∫
0

τ2∫
τ1

σ |γ2 (σ)| z z̃ dσ dρ dx+

∞∫
0

κ (s)

π∫
0

ηx η̃x dx ds (3.5)

is a Hilbert space for any U = (u, v, φ, ϕ, θ, z, η)T ∈ H and U = (ũ, ṽ, φ̃, ϕ̃, θ̃, z̃, η̃)T ∈ H.
The system (3.3)-(3.4) can be rewritten as follows: dU (t)

dt
= A U (t) , t > 0,

U (x, 0) = U0 (x) = (u0, u1, φ0, φ1, θ0, f0, η0)
T ,
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where the operator A : D (A) ⊂ H → H is defined by

AU =



v

µ

ρ1
uxx +

b

ρ1
φx − β

ρ1
θx − γ1

ρ1
v − 1

ρ1

τ2∫
τ1

γ2 (σ) z (x, 1, σ, t) dσ

ϕ

α

J
φxx − b

J
ux − ξ

J
φ+

δ

J
θ − τ

J
ϕ

1

c

∞∫
0

κ (s) nxx (x, s) ds−
β

c
vx − δ

c
ϕ

− 1

σ
zρ

θ − ηs



.

The domain of A is given by

D (A) =
{
U ∈ H/ u ∈ H2 (0, π) ∩H1

0 (0, π) ; φ , θ ∈ H2
∗ (0, π) ∩H1

∗ (0, π) ;

v ∈ H1
0 (0, π) ; ϕ ∈ H1

∗ (0, π) ; z , zρ ∈ L2 ((0, π)× (0, 1)× (τ1, τ2)) ;

η ∈ H ;

∞∫
0

κ (s) nxx (x, s) ds ∈ L2 (0, π) ; η (x, 0) = 0} .

Now we have the following existence and uniqueness result

Theorem 3.1. Let U0 ∈ H and assume that (1.3) holds. Then, there exists a unique solution U ∈ C (R+,H) for
problem (3.3)-(3.4). Moreover, if U0 ∈ D (A) , then

U ∈ C (R+, D (A)) ∩ C1 (R+,H) .

Proof. We use the semi-group approach. So we prove that A is a maximal dissipative operator.
First, we prove that A is dissipative. Let U ∈ D (A) , then we have

⟨AU,U⟩H = −γ1

π∫
0

v2 dx− τ

π∫
0

ϕ2 dx+

π∫
0

∞∫
0

κ (s) ηs ηxx ds dx

−
π∫

0

v

τ2∫
τ1

γ2 (σ) z (x, 1, σ, t) dσ dx−
π∫

0

1∫
0

τ2∫
τ1

|γ2 (σ)| zρ z dσ dρ dx (3.6)

Using integration by parts and the fact that z (x, 0, t) = v (x, t) , the last term in the right-hand side of (3.6) gives

−
π∫

0

1∫
0

τ2∫
τ1

|γ (σ)| zρ z dσ dρ dx =− 1

2

π∫
0

τ2∫
τ1

|γ (σ)| z2 (x, 1, σ, t) dσ dx

+
1

2

 τ2∫
τ1

|γ (σ)| dσ

 π∫
0

v2 dx
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Also, using Young’s inequality we get

−
π∫

0

v

τ2∫
τ1

γ (σ) z (x, 1, σ, t) dσ dx

≤ 1

2

 τ2∫
τ1

|γ (σ)| dσ

 π∫
0

v2 dx+
1

2

π∫
0

τ2∫
τ1

|γ (σ)| z2 (x, 1, σ, t) dσ dx

Furthermore, using integation by part and bringing in mind (H7) we have

π∫
0

∞∫
0

κ (s) ηs ηxx ds dx =
1

2

∞∫
0

κ′ (s)

π∫
0

n2x dx ds

Consequently, using (H2) ,(3.6) and (2.6) yields

⟨AU,U⟩H ≤−

γ1 − τ2∫
τ1

|γ2 (σ)| dσ

 π∫
0

v2 dx

+
1

2

∞∫
0

κ′ (s)

π∫
0

n2x dx ds− τ

π∫
0

ϕ2 dx ≤ 0

Therefore, the operator A is dissipative. Next, we prove that the operator λ I − A is surjective. For any F =

(f1, f2, f3, f4, f5, f6, f7)
T ∈ H , we prove that there exists a unique U ∈ D (A) such that

(λ I −A)U = F (3.7)

The problem (3.7) , leads to solve the following system

λu− v = f1 ∈ H1
0 (0, π)

(λ ρ1 + γ1) v − µ uxx − b φx + β θx +

τ2∫
τ1

γ2 (σ) z (x, 1, σ, t) dσ

= ρ1 f2 ∈ L2 (0, π)

λφ− ϕ = f3 ∈ H1
∗ (0, π)

(λJ + τ) ϕ− α φxx + b ux + ξ φ− δ θ = J f4 ∈ L2
∗ (0, π)

λ c θ −
∞∫
0

κ (s) ηxx (x, s) ds+ β vx + δ ϕ = c f5 ∈ H1
∗ (0, π)

λσ z + zρ = σ f6 ∈ L2 ((0, π)× (0, 1)× (0,∞))

λ η − θ + ηs = f7 ∈ M1

(3.8)

Suppose u and φ are given with the appropriate regularity. Then, the first and the third equations in (3.8) yield

v = λu− f1 ∈ H1
0 (0, π) (3.9)

and
ϕ = λφ− f3 ∈ H1

∗ (0, π) (3.10)
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respectively.
The sixth equation in (3.8) together with (3.9) and the fact that z (x, 0) = v (x, t) gives

z (x, ρ, σ, t) = λu (x, t) e−λσ ρ − f1 e
−λσ ρ + σ e−λσ ρ

ρ∫
0

eλσ y f6 (x, y, σ, t) dy (3.11)

The last equation in (3.8) under the condition η (0) = 0 gives

η (x, s) =
1

λ
θ (x, t)

(
1− e−λ s

)
+

s∫
0

eλ(w−s)f7 (w) dw (3.12)

Using integration by parts, it can easily be shown that the second, fourth and fifth equations in (3.8) satify the
following:

(λ ρ1 + γ1)

π∫
0

v ũ dx+ µ

π∫
0

ux ũx dx+ b

π∫
0

φ ũx dx− β

π∫
0

θ ũx dx

+

π∫
0

ũ

τ2∫
τ1

γ (σ) z (x, 1, σ, t) dσ dx = ρ1

π∫
0

f2 ũ dx

(λJ + τ)

π∫
0

ϕ φ̃ dx+ α

π∫
0

φx φ̃x dx+ b

π∫
0

ux φ̃ dx+ ξ

π∫
0

φ φ̃ dx− δ

π∫
0

θ φ̃ dx

= J

π∫
0

f4 φ̃ dx

c

π∫
0

θ θ̃ dx+
1

λ

π∫
0

θ̃x

∞∫
0

κ (s) ηx ds dx+
β

λ

π∫
0

vx θ̃ dx+
δ

λ

π∫
0

ϕ θ̃ dx =
c

λ

π∫
0

f5 θ̃ dx

(3.13)

Furthermore, by using (3.9)-(3.12) , we have the following corresponding weak formulation for the second,
fourth and fifth equation in (3.8):
Finding (u, φ, θ) ∈ H1

0 (0, π) × H1
∗ (0, π) × H1

∗ (0, π) such that for all
(
ũ, φ̃, θ̃

)
∈ H1

0 (0, π) × H1
∗ (0, π) ×

H1
∗ (0, π) the following holds:

B
(
(u, φ, θ) ;

(
ũ, φ̃, θ̃

))
= l

(
ũ, φ̃, θ̃

)
(3.14)

where B :
[
H1

0 (0, π)×H1
∗ (0, π)×H1

∗ (0, π)
]2 → R is the bilinear form defined by

B
(
(u, φ, θ) ;

(
ũ, φ̃, θ̃

))
= µ0

π∫
0

u ũ dx+ µ

π∫
0

ux ũx dx+ µ1

π∫
0

φ φ̃ dx+ α

π∫
0

φx φ̃x dx

+ c

π∫
0

θ θ̃ dx+ cκ

π∫
0

θx θ̃x dx+ b

π∫
0

(φ ũx + ux φ̃) dx

+ β

π∫
0

(
uxθ̃ − θ ũx

)
dx+ δ

π∫
0

(
φ θ̃ − θ φ̃

)
dx
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and l : H1
0 (0, π)×H1

∗ (0, π)×H1
∗ (0, π) → R is the linear form given by

l
(
ũ, φ̃, θ̃

)
=

π∫
0

g1 ũ dx+

π∫
0

g2 φ̃ dx+

π∫
0

g3 θ̃ dx+

π∫
0

g4 θ̃x dx.

where

µ0 = λ2ρ1 + λγ1 + λ

τ2∫
τ1

γ2 (σ) e
−λσdσ > 0

µ1 = λ2J + ξ + λ τ > 0

cκ =
1

λ2

∞∫
0

κ (s)
(
1− e−λ s

)
ds > 0

g1 =
µ0

λ
f1 + ρ1f2 −

τ2∫
τ1

σ γ2 (σ) e
−λσ

1∫
0

eλσ yf6 (x, y, σ, t) dy dσ ∈ L2 (0, π)

g2 = (λJ + τ) f3 + J f4 ∈ L2 (0, π)

g3 =
β

λ
f1x +

δ

λ
f3 +

c

λ
f5 ∈ L2 (0, π)

g4 = − 1

λ

∞∫
0

κ (s)

s∫
0

eλ(w−s)f7x (w) dw ds ∈ L2 (0, π)

Now, for V = H1
0 (0, π)×H1

∗ (0, π)×H1
∗ (0, π) equipped with the norm

∥(u, φ, θ)∥2V = ∥u∥22 + ∥ux∥22 + ∥φ∥22 + ∥φx∥22 + ∥θ∥22 + ∥θx∥22

we have

|B ((u, φ, θ) ; (u, φ, θ))| = µ0

π∫
0

u2 dx+ µ

π∫
0

u2x dx+ µ1

π∫
0

φ2 dx+ α

π∫
0

φ2
x dx

+ c

π∫
0

θ2 dx+ cκ

π∫
0

θ2x dx+ 2b

π∫
0

ux φdx

On the other hand , we can write

µu2x + µ1 φ
2 + 2b ux φ =

1

2

[
µ

(
ux +

b

µ
φ

)2

+ µ1

(
φ+

b

µ1
ux

)2
]

+
1

2

[(
µ− b2

µ1

)
u2x +

(
µ1 −

b2

µ

)
φ2

]
then, using (1.3) we deduce that

µu2x + µ1 φ
2 + 2b ux φ ≥ 1

2

[(
µ− b2

µ1

)
u2x +

(
µ1 −

b2

µ

)
φ2

]
consiquently

|B ((u, φ, θ) ; (u, φ, θ))| ≥M ∥(u, φ, θ)∥2V
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where M = min
{

1
2

(
µ− b2

µ1

)
; 1

2

(
µ1 − b2

µ

)
; α ; c ; µ0 ; cκ

}
. Thus, B is coercive. Moreover, we can

easily see that B and l are bounded. Consequently, by Lax-Milgram Lemmam we conclude that there exists a
unique (u, φ, θ) ∈ V which satisfies (3.14).

Substituting u in (3.9) and (3.11), respectively, we obtain

v ∈ H1
0 (0, π) , z ∈ L2 ((0, π)× (0, 1)× (τ1, τ2))

and z in (3.8)6 we find zρ ∈ L2 ((0, π)× (0, 1)× (τ1, τ2))

then, inserting φ in (3.10) and we get
ϕ ∈ H1

∗ (0, π)

Similarly, inserting θ in (3.12) and bearing in mind (3.8) 7, we obtain

η ∈ H , η (x, 0) = 0

Moreover, if we take
(
φ̃, θ̃

)
≡ (0, 0) ∈ H1

∗ (0, π)×H1
∗ (0, π) , then (3.14) reduces to

µ

π∫
0

ux ũx dx+ b

π∫
0

φ ũx dx− β

π∫
0

θ ũx dx = −
π∫

0

( −g1 + µ0 u) ũ dx , ∀ũ ∈ H1
0 (0, π)

That is

µuxx = −g1 + µ0 u− b φx + β θx , in L2 (0, π)

which implies
u ∈ H2 (0, π) ∩H1

0 (0, π)

Then, we choose
(
ũ, θ̃

)
≡ (0, 0) ∈ H1

0 (0, π)×H1
∗ (0, π) , then (3.14) become

α

π∫
0

φx φ̃x dx = −
π∫

0

(µ1 φ+ b ux − δ θ − g2) φ̃ dx , ∀φ̃ ∈ H1
∗ (0, π) (3.15)

Here, we can not use the regularity theorem, because φ̃ ∈ H1
∗ (0, π) . So, we take ψ ∈ H1

0 (0, π) and we set

φ̃ (x) = ψ (x)−
π∫

0

ψ (x) dx

It’s clear that φ̃ ∈ H1
∗ (0, π) . Then, a substitution in (3.15) leads to

α

π∫
0

φx ψx dx = −
π∫

0

r ψ dx , ∀ψ ∈ H1
0 (0, π)

where,
r = µ1 φ+ b ux − δ θ − g2

That is
αφxx = µ1 φ+ b ux − δ θ − g2 , inL2 (0, π) (3.16)

which implies
φ ∈ H2 (0, π)
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On the other hand, from (3.15) and using integration by parts we get

α [φx φ̃]
π
0 − α

π∫
0

φxx φ̃ dx+

π∫
0

(µ1 φ+ b ux − δ θ − g2) φ̃ dx = 0 , ∀φ̃ ∈ H1
∗ (0, π)

and from (3.16) we obtain

φx (π) φ (π)− φx (0) φ (0) = 0

Since φ̃ ∈ H1
∗ (0, π) is arbitrary then,

φx (π) = φx (0) = 0

Consequently

φ ∈ H2
∗ (0, π) ∩H1

∗ (0, π)

Similary if we take (ũ, φ̃) ≡ (0, 0) ∈ H1
0 (0, π)×H1

∗ (0, π), we find

θ ∈ H2
∗ (0, π) ∩H1

∗ (0, π)

Finally, from (3.8)5 we get
∞∫
0

κ (s) ηxx (x, s) ds ∈ L2 (0, π)

Hence, there exists a unique U ∈ D (A) such that (3.7) is satisfied. Consequently, the operator A is maximal.
With this , we conclude that A is a maximal dissipative operator. Consequently, A is the infinitesimal generator
of a linear contraction C0-semigroup on H. Therefore, the well-posedness result follows from the Hille-Yosida
theorem. ( see [34] ) ■

4. Exponential decay

In this section, we state and prove technical lemmas needed for the proof of our stability result.

Lemma 4.1. Let (u, φ, θ, z, η) be a solution of (3.3) - (3.4) . Then, the energy functional E (t), defined by

E (t) =
1

2

π∫
0

(
ρ1 u

2
t + J φ2

t + c θ2 + µu2x + αφ2
x + ξ φ2 + 2b φux

)
dx

+
1

2

π∫
0

1∫
0

τ2∫
τ1

σ |γ2 (σ)| z2 (x, ρ, σ, t) dσ dρ dx+
1

2

∞∫
0

κ (s)

π∫
0

η2x (x, s) dx ds (4.1)

satisfies

E′ (t) ≤ −

γ1 − τ2∫
τ1

|γ2 (σ)| dσ

 π∫
0

u2t dx+
1

2

∞∫
0

κ′ (s)

π∫
0

η2x (x, s) dx ds− τ

π∫
0

φ2
t dx (4.2)

Proof. Multiplying (3.3)1 , (3.3)2 , (3.3)3 by ut , φt , θ respectively, integrating over (0, π), and Multiplying(3.3)4
by |γ2 (σ)| z , integrating over (0, π)× (0, 1)× (τ1, τ2) then,using integration by part and taking into account
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the boundary conditions and summing them up, we obtain

d

2 dt


π∫

0

(
ρ1 u

2
t + J φ2

t + c θ2 + µu2x + αφ2
x + ξ φ2 + 2b φux

)
dx

+

π∫
0

1∫
0

τ2∫
τ1

σ |γ2 (σ)| z2 (x, ρ, σ, t) dσ dρ dx


= −γ1

π∫
0

u2t dx− τ

π∫
0

φ2
t dx−

π∫
0

ut

τ2∫
τ1

γ2 (σ) z (x, 1, σ, t) dσ dx

+

π∫
0

θ

∞∫
0

κ (s) ηxx (x, s) ds dx−
π∫

0

1∫
0

τ2∫
τ1

|γ2 (σ)| zρ z (x, ρ, σ, t) dσ dρ dx

Using (3.3)5, we obtain

d

2 dt


π∫

0

(
ρ1 u

2
t + J φ2

t + c θ2 + µu2x + αφ2
x + ξ φ2 + 2b φux

)
dx

+

π∫
0

1∫
0

τ2∫
τ1

σ |γ2 (σ)| z2 (x, ρ, σ, t) dσ dρ dx


= −

π∫
0

ut

τ2∫
τ1

γ2 (σ) z (x, 1, σ, t) dσ dx− τ

π∫
0

φ2
t dx− γ1

π∫
0

u2t dx (4.3)

−
π∫

0

1∫
0

τ2∫
τ1

|γ2 (σ)| zρ z (x, ρ, σ, t) dσ dρ dx

+

π∫
0

∞∫
0

κ (s) ηt ηxx (x, s) ds dx+

π∫
0

∞∫
0

κ (s) ηs ηxx (x, s) ds dx (4.4)

integrating by part the last two terms of (4.4) we get

E (t) =
1

2

π∫
0

(
ρ1 u

2
t + J φ2

t + c θ2 + µu2x + αφ2
x + ξ φ2 + 2b φux

)
dx

+
1

2

π∫
0

1∫
0

τ2∫
τ1

σ |γ2 (σ)| z2 (x, ρ, σ, t) dσ dρ dx+
1

2

∞∫
0

κ (s)

π∫
0

η2x (x, s) dx ds (4.5)

and

E′ (t) = −
π∫

0

ut

τ2∫
τ1

γ2 (σ) z (x, 1, σ, t) dσ dx−
π∫

0

1∫
0

τ2∫
τ1

|γ2 (σ)| zρ z (x, ρ, σ, t) dσ dρ dx

− γ1

π∫
0

u2t dx− τ

π∫
0

φ2
t dx− 1

2

∞∫
0

κ (s)
∂

∂s

π∫
0

η2x (x, s) dx ds (4.6)
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On the other hand we have z (x, 0, σ, t) = ut (x, t), then

−
π∫

0

1∫
0

τ2∫
τ1

|γ2 (σ)| zρ z (x, ρ, σ, t) dσ dρ dx

= −1

2

π∫
0

τ2∫
τ1

|γ2 (σ)| z2 (x, 1, σ, t) dσ dx+
1

2

 τ2∫
τ1

|γ2 (σ)| dσ

 π∫
0

u2t dx (4.7)

using integration by part and bringing in mind (H7) we find

− 1

2

∞∫
0

κ (s)
∂

∂s

π∫
0

η2x (x, s) dx ds

= −1

2
lim
s→b

κ (s) π∫
0

η2x (x, s) dx

b=∞

b=0

+
1

2

∞∫
0

κ′ (s)

π∫
0

η2x (x, s) dx ds

=
1

2

∞∫
0

κ′ (s)

π∫
0

η2x (x, s) dx ds (4.8)

Then, using Young’s inequality on the first term in (4.6) we have

−
π∫

0

ut

τ2∫
τ1

γ2 (σ) z (x, 1, σ, t) dσ dx ≤ 1

2

 τ2∫
τ1

|γ2 (σ)| dσ

 π∫
0

u2t dx

+
1

2

π∫
0

τ2∫
τ1

|γ2 (σ)| z2 (x, 1, σ, t) dσ dx (4.9)

Inserting (4.7) , (4.8) and (4.9) in (4.6), we get (4.2) ■

Remark 4.2. The energy function E (t) defined in (4.1) is nonnegative. In fact,

µu2x + ξ φ2 + 2b ux φ =
1

2

[
µ

(
ux +

b

µ
φ

)2

+ ξ

(
φ+

b

ξ
ux

)2
]

+
1

2

[(
µ− b2

ξ

)
u2x +

(
ξ − b2

µ

)
φ2

]
from (1.3) we deduce that

µu2x + ξ φ2 + 2b ux φ ≥ 1

2

[(
µ− b2

ξ

)
u2x +

(
ξ − b2

µ

)
φ2

]
consequently

E (t) >
1

2

π∫
0

(
ρ1 u

2
t + J φ2

t + c θ2 +
1

2

(
µ− b2

ξ

)
u2x + αφ2

x +
1

2

(
ξ − b2

µ

)
φ2

)
dx

+
1

2

π∫
0

1∫
0

τ2∫
τ1

σ |γ2 (σ)| z2 (x, ρ, σ, t) dσ dρ dx+
1

2

∞∫
0

κ (s)

π∫
0

η2x (x, s) dx ds

then E (t) is nonnegative.
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Remark 4.3. From (H2) we conclude that the energy functionalE (t) is decreasing and bounded above byE (0)

Lemma 4.4. Let (u, φ, θ, z, η) be a solution of (3.3) - (3.4). Then, the functional

I1(t) = ρ1

∫ π

0

utudx+
γ1
2

π∫
0

u2dx , t ≥ 0,

satisfies

I1
′ (t) ≤− µ

2

π∫
0

u2x dx+ ρ1

π∫
0

u2t dx+ c0

π∫
0

(
φ2 + θ2

)
dx

+ c0

π∫
0

τ2∫
τ1

|γ2 (σ)| z2 (x, 1, σ, t) dσ dx (4.10)

Proof. By differentiating I1(t), using (3.3)1 and integrating by parts together with the boundary conditions, we
obtain

I1
′ (t) = −µ

π∫
0

u2x dx− b

π∫
0

φux dx+ β

π∫
0

θ ux dx+ ρ1

π∫
0

u2t dx

−
π∫

0

u

τ2∫
τ1

γ2 (σ) z (x, 1, σ, t) dσ dx (4.11)

Young’s , Poincaré and Cauchy Schwarz inequalities lead to

−b
π∫

0

φux dx ≤ µ

6

π∫
0

u2x dx+
3 b2

2µ

π∫
0

φ2dx (4.12)

β

π∫
0

φux dx ≤ µ

6

π∫
0

u2x dx+
3β2

2µ

π∫
0

θ2dx (4.13)

and

−
π∫

0

u

τ2∫
τ1

γ2 (σ) z (x, 1, σ, t) dσ dx

≤ µ

6

π∫
0

u2x dx+
3

2µ

 τ2∫
τ1

|γ2 (σ)| dσ

 π∫
0

τ2∫
τ1

|γ2 (σ)| z2 (x, 1, σ, t) dσ dx (4.14)

Substituting (4.12) , (4.13) and (4.14) in (4.11), we get (4.10). ■

Lemma 4.5. Let (u, φ, θ, z, η) be a solution of (3.3) - (3.4). Then, the functional

I2 (t) = J

π∫
0

φφt dx+
τ

2

π∫
0

φ2dx+
b ρ1
µ

π∫
0

φ

x∫
0

ut (y) dy dx , t ≥ 0,
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satisfies

I2
′ (t) ≤ −α

π∫
0

φ2
xdx− χ

4

π∫
0

φ2dx+ c0

π∫
0

(
u2t + φ2

t + θ2
)
dx (4.15)

+ c0

π∫
0

τ2∫
τ1

|γ2 (σ)| z2 (x, 1, σ, t) dσ dx (4.16)

where χ = ξ − b2

µ

Proof. By differentiating I2(t), using (3.3)2 and integrating by parts together with the boundary conditions, we
obtain

I2
′ (t) = −α

π∫
0

φ2
xdx− χ

π∫
0

φ2dx+ J

π∫
0

φ2
tdx+

(
δ − b β

µ

) π∫
0

φθ dx

+
b ρ1
µ

π∫
0

φt

x∫
0

ut (y) dy dx− b γ1
µ

π∫
0

φ

x∫
0

ut (y) dy dx

− b

µ

π∫
0

φ

x∫
0

τ2∫
τ1

γ2 (σ) z (y, 1, σ, t) dσ dy dx (4.17)

Using Young’s and Cauchy Schwarz inequalities, we get

δ − b β

µ

π∫
0

φθ dx ≤ χ

4

π∫
0

φ2dx+
1

χ

(
δ − b β

µ

)2
π∫

0

θ2dx (4.18)

b ρ1
µ

π∫
0

φt

x∫
0

ut (y) dy dx ≤ b ρ1
2µ

π∫
0

φ2
tdx+

b ρ1 π
2

2µ

π∫
0

u2tdx (4.19)

−b γ1
µ

π∫
0

φ

x∫
0

ut (y) dy dx ≤ χ

4

π∫
0

φ2dx+
1

χ

(
b γ1 π

µ

)2
π∫

0

u2tdx (4.20)

and

− b

µ

π∫
0

φ

x∫
0

τ2∫
τ1

γ2 (σ) z (y, 1, σ, t) dσ dy dx

≤ χ

4

π∫
0

φ2dx+
1

χ

(
b π

µ

)2
 τ2∫

τ1

|γ2 (σ)| dσ

 π∫
0

τ2∫
τ1

|γ2 (σ)| z2 (x, 1, σ, t) dσ dx (4.21)

Inserting (4.18)-(4.21) in (4.17), we obtain (4.16). ■

Lemma 4.6. Let (u, φ, θ, z, η) be a solution of (3.3) - (3.4). Then, the functional

I3 (t) = −c ρ1

π∫
0

θ

x∫
0

ut (y) dy dx , t ≥ 0,
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satisfies, for any ε1 > 0, the following estimate

I3
′ (t) ≤ −ρ1 |β|

2

π∫
0

u2t dx+ ε1

π∫
0

(
u2x + φ2

)
dx+ c0

(
1 +

1

ε1

) π∫
0

θ2 dx

+
ρ1 κ0
|β|

∞∫
0

κ (s)

π∫
0

η2x dx ds+ π2ε1

 τ2∫
τ1

|γ2 (σ)| dσ

 π∫
0

τ2∫
τ1

|γ2 (σ)| z2 (x, 1, σ, t) dσ dx (4.22)

Proof. Differentiating the functional I3(t) using (3.3)1, (3.3)3 and integrating by parts together with the boundary
conditions,, we obtain

I3
′ (t) = −ρ1 β

π∫
0

u2t dx− µ c

π∫
0

θ ux dx− b c

π∫
0

θ φ dx+ β c

π∫
0

θ2 dx− c γ1

π∫
0

ut θ dx

+ c

π∫
0

θ

x∫
0

τ2∫
τ1

γ2 (σ) z (y, 1, σ, t) dσ dy dx+ ρ1

π∫
0

ut

∞∫
0

κ (s) ηx (x, s) ds dx (4.23)

Using Young’s and Cauchy Schwarz inequalities,

−µ c
π∫

0

θ ux dx ≤ ε1

π∫
0

u2x dx+
µ2c2

4ε1

π∫
0

θ2 dx (4.24)

−b c
π∫

0

θ φ dx ≤ ε1

π∫
0

φ2 dx+
b2c2

4ε1

π∫
0

θ2 dx (4.25)

π∫
0

θ

x∫
0

τ2∫
τ1

γ2 (σ) z (y, 1, σ, t) dσ dy dx

≤ c2

4ε1

π∫
0

θ2 dx+ π2ε1

 τ2∫
τ1

|γ2 (σ)| dσ

 π∫
0

τ2∫
τ1

|γ2 (σ)| z2 (x, 1, σ, t) dσ dx (4.26)

ρ1

π∫
0

ut

∞∫
0

κ (s) ηx (x, s) ds dx ≤ ρ1 |β|
4

π∫
0

u2t dx+
ρ1 κ0
|β|

∞∫
0

κ (s)

π∫
0

η2x dx ds (4.27)

−c γ1

π∫
0

ut θ dx ≤ |β| ρ1
4

π∫
0

u2tdx+
(c γ1)

2

|β| ρ1

π∫
0

θ2dx (4.28)

Substituting (4.24)-(4.28) in (4.23), we get (4.22). ■

Lemma 4.7. Let (u, φ, θ, z, η) be a solution of (3.3) - (3.4). Then, the functional

I4 (t) = − c

κ0

π∫
0

θ

∞∫
0

κ (s) η (x, s) ds dx , t ≥ 0,
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satisfies, for any ε2, ε3 > 0, the following estimate

I4
′ (t) ≤ − c

2

π∫
0

θ2 dx+ ε2

π∫
0

φ2
t dx+ ε3

π∫
0

u2t dx− c k (0)

2κ20

∞∫
0

κ′ (s)

π∫
0

η2x dx ds

+ c0

(
1 +

1

ε2
+

1

ε3

) ∞∫
0

κ (s)

π∫
0

η2x dx ds (4.29)

Proof. By differentiating I4(t), using (3.3)3, (3.3)5 and integrating by parts together with the boundary
conditions,, we obtain

I4
′ (t) = −c

π∫
0

θ2 dx+
c

κ0

π∫
0

θ

∞∫
0

κ (s) ηs (x, s) ds dx+
1

κ0

π∫
0

 ∞∫
0

κ (s) ηx (x, s) ds

2

dx

− β

κ0

π∫
0

ut

∞∫
0

κ (s) ηx (x, s) ds dx+
δ

κ0

π∫
0

φt

∞∫
0

κ (s) η (x, s) ds dx (4.30)

Young’s , Poincaré and Cauchy Schwarz inequalities lead to

δ

κ0

π∫
0

φt

∞∫
0

κ (s) η (x, s) ds dx ≤ ε2

π∫
0

φ2
t dx+

δ2

4ε2 κ0

∞∫
0

κ (s)

π∫
0

η2x dx ds (4.31)

− β

κ0

π∫
0

ut

∞∫
0

κ (s) ηx (x, s) ds dx ≤ ε3

π∫
0

u2t dx+
β2

4ε3 κ0

∞∫
0

κ (s)

π∫
0

η2x dx ds (4.32)

1

κ0

π∫
0

 ∞∫
0

κ (s) ηx (x, s) ds

2

dx ≤
∞∫
0

κ (s)

π∫
0

η2x dx ds (4.33)

and
c

κ0

π∫
0

θ

∞∫
0

κ (s) ηs (x, s) ds dx ≤ c

2

π∫
0

θ2 dx− c k (0)

2κ20

∞∫
0

κ′ (s)

π∫
0

η2x dx ds (4.34)

Estimate (4.29) follows by substituting (4.31)-(4.34) into (4.30). ■

Lemma 4.8. Let (u, φ, θ, z, η) be a solution of (3.3) - (3.4). Then, the functional

I5 (t) =

π∫
0

1∫
0

τ2∫
τ1

σ e−σ ρ |γ2 (σ)| z2 (x, ρ, σ, t) dσ dρ dx t ≥ 0

satisfies the estimate

I5
′ (t) ≤ −m1

π∫
0

τ2∫
τ1

|γ2 (σ)| z2 (x, 1, σ, t) dσ dx+ γ1

1∫
0

u2t dx

−m1

π∫
0

1∫
0

τ2∫
τ1

σ |γ2 (σ)| z2 (x, ρ, σ, t) dσ dρ dx t ≥ 0 (4.35)
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Proof. By differentiating I5(t), using (3.3)4, integrating by parts and using the fact that z (x, 0, σ, t) = ut (x, t)

gives, we obtain

I5
′ (t) = −

π∫
0

τ2∫
τ1

e−σ |γ (σ)| z2 (x, 1, σ, t) dσ dx+

 τ2∫
τ1

|γ (σ)| dσ

 π∫
0

u2t dx

−
π∫

0

1∫
0

τ2∫
τ1

σ e−σ ρ |γ (σ)| z2 (x, ρ, σ, t) dσ dρ dx

using the fact that e−σ ≤ e−σ ρ ≤ 1 we get for all ρ ∈ [0, 1]

I5
′ (t) ≤ −

π∫
0

τ2∫
τ1

e−σ |γ (σ)| z2 (x, 1, σ, t) dσ dx+

 τ2∫
τ1

|γ (σ)| dσ

 π∫
0

u2t dx

−
π∫

0

1∫
0

τ2∫
τ1

σ e−σ |γ (σ)| z2 (x, ρ, σ, t) dσ dρ dx

Since −e−σ is an increasing function, we have −e−σ ≤ −e−τ2 for all σ ∈ [τ1, τ2] . Finally , setting m1 = e−τ2

and bringing in mind (2.6) we get (4.35) ■

Now, we define the Lyapunov functional L(t) by

L(t) = N E (t) + I1 (t) +N1I2 (t) +
2

|β| ρ1
I3 (t) +N2I4 (t) +N3I5 (t) (4.36)

where N, N1, N2, N3 are positive constants.

Lemma 4.9. Let (u, φ, θ, z, η) be a solution of (3.3) - (3.4). Then, there exist two positive constants λ1 and λ2
such that the Lyapunov functional (4.36) satisfies

λ1E (t) ≤ L(t) ≤ λ2E (t) , ∀t ≥ 0, (4.37)

and

L′(t) ≤ −ς1E(t) + ς2

∞∫
0

κ (s) ∥ηx∥2ds ; ς1 , ς2 > 0. (4.38)

Proof. From (4.36), we have

|L(t)−NE (t)| ≤ ρ1

∫ π

0

|utu| dx+
γ1
2

π∫
0

u2dx+N1J

π∫
0

|φtφ| dx+N1
τ

2

π∫
0

φ2dx

N1
b ρ1
µ

π∫
0

φ

x∫
0

ut (y) dy dx+
2c

|β|

π∫
0

∣∣∣∣∣∣θ
x∫

0

ut (y) dy

∣∣∣∣∣∣ dx
+
N2 c

κ0

π∫
0

∣∣∣∣∣∣θ
∞∫
0

κ (s) η (x, s) ds

∣∣∣∣∣∣ dx
+N3

π∫
0

1∫
0

τ2∫
τ1

σe−σρ |γ (σ)| z2 (x, ρ, σ, t) dσ dρ dx
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By using the Young’s, Poincaré and Cauchy-Schwarz inequalities, we obtain

|L(t)−NE (t)| ≤ ςE (t) , ς > 0,

which yields
(N − ς)E (t) ≤ L (t) ≤ (N + ς)E (t) ,

by choosing N (depending on N1, N2, and N3) sufficiently large we obtain (4.37).

Now, By differentiating L (t), exploiting (4.2), (4.10), (4.16), (4.22), (4.29), (4.35) and setting ε1 =
µρ1 |β|

8
,

ε2 =
1

N2
, ε3 =

ρ1
N2

, we get

L′ (t) ≤ −

γ1 − τ2∫
τ1

|γ2 (σ)| dσ

N + 1

− 2ρ1 − c0N1 − γ1N3

 π∫
0

u2tdx

− (N τ − c0N1 − 1)

π∫
0

φ2
tdx−

(
N1χ

4
− c0 −

µ

4

) π∫
0

φ2dx− µ

4

π∫
0

u2xdx

−
(
cN2

2
− c0 − c0N1 −

2c0
ρ1 |β|

(
1 +

8

µρ1 |β|

)) π∫
0

θ2dx− αN1

π∫
0

φ2
xdx

−m1N3

π∫
0

1∫
0

τ2∫
τ1

σ |γ2 (σ)| z2 (x, ρ, σ, t) dσ dρ dx

−

m1N3 − c0 − c0N1 −
µπ2

4

τ2∫
τ1

|γ2 (σ)| dσ

 π∫
0

τ2∫
τ1

|γ2 (σ)| z2 (x, 1, σ, t) dσ dx

+

(
N

2
− c k (0)

2κ20
N2

) ∞∫
0

κ′ (s) ∥ηx∥2ds

+

(
2κ0
β2

+ c0N2

(
1 +N2 +

N2

ρ1

)) ∞∫
0

κ (s) ∥ηx∥2ds (4.39)

Now, we select our parameters appropriately as follows:
First, we choose N1 large enough so that

α1 =
N1χ

4
− c0 −

µ

4
> 0.

Next, we select N2 large enough so that

α2 =
cN2

2
− c0 − c0N1 −

2c0
ρ1 |β|

(
1 +

8

µρ1 |β|

)
> 0.

We take N3 large such that

m1N3 − c0 − c0N1 −
µπ2

4

τ2∫
τ1

|γ2 (σ)| dσ > 0

Finally, we choose N large enough so that (4.37) remains valid, further

α3 = N τ − c0N1 − 1 > 0 ,
N

2
− c k (0)

2κ20
N2 > 0
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and

α4 =

γ1 − τ2∫
τ1

|γ2 (σ)| dσ

N + 1

− 2ρ1 − c0N1 − γ1N3 > 0.

Let α5 = µ
4 , α6 = αN1 , α7 = m1N3 , α8 = 2κ0

β2 + c0N2

(
1 +N2 +

N2

ρ1

)
Ultimately, (4.39) turns out to be

L′ (t) ≤ −ω

 π∫
0

(
u2t + φ2

t + θ2 + u2x + φ2
x + φ2

)
dx


− ω

π∫
0

1∫
0

τ2∫
τ1

σ |γ2 (σ)| z2 (x, ρ, σ, t) dσ dρ dx+ α8

∞∫
0

κ (s) ∥ηx∥2ds

Meanwhile, by revisiting the energy functional (4.1) and utilizing Young’s inequality we find (4.38) ■

Now, we can state and prove the following stability result

Theorem 4.10. Assume that (1.3) holds and κ satisfies (H1) - (H7). Then system (3.3)-(3.4) is exponentially
stable. In other words there exist two positive constants υ1 and υ2 such that

E (t) ≤ υ2 e
−υ1 t , ∀t ≥ 0 (4.40)

Proof. Multiplying (4.1) by r, using (H6), we end up with

Y ′ (t) ≤ −r ς1E (t) , ∀t ≥ 0 (4.41)

whereY (t) = rL (t) + 2ς2E (t).Using(4.37),it’s readily follows,for some a0, b0 > 0

a0E (t) ≤ Y (t) ≤ b0E (t) , ∀t ≥ 0 (4.42)

Consequently, inequality (4.41) becomes

Y ′ (t) ≤ − υ1Y (t) , ∀t ≥ 0 (4.43)

where υ1 =
r ς1
b0

. A simple integration of (4.43) over (0, t) induces

Y (t) ≤ Y (0) e− υ1 t , ∀t ≥ 0 (4.44)

Accordingly, by merging (4.42) and (4.44), we get (4.40). which leads to the conclusion of our stability result. ■
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Contents

1 Introduction 437

2 Preliminaries 438

3 Main results 440

1. Introduction

The Hermite-Hadamard integral inequality, which may be expressed as follows: for every convex function S on
the finite interval [k, l], we have

S
(
k+l
2

)
≤ 1

l−k

l∫
k

S(x)dx ≤ S(k)+S(l)
2 (1.1)

is one of the most well-known mathematical inequalities for convex functions. (1.1) holds in the opposite way if
the function S is concave (see [15]).

Dragomir determined the bidimentionnal analogue of (1.1) provided by in [3].

S
(
k+l
2 , u+v

2

)
≤ 1

2

 1
l−k

l∫
k

S(x, u+v
2 )dx+ 1

v−u

v∫
u

S(k+l
2 , y)dy


≤ 1

(l−k)(v−u)

l∫
k

v∫
u

S(x, y)dydx

∗Corresponding author. Email address: badrimeftah@yahoo.fr (B. Meftah)
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≤ 1
4

 1
l−k

l∫
k

S(x, u)dx+ 1
l−k

l∫
k

S(x, v)dx

+ 1
v−u

v∫
u

S(k, y)dy + 1
v−u

v∫
u

S(l, y)dy


≤S(k, u) + S(k, v) + S(l, u) + S(l, v)

4
. (1.2)

Numerous scholars have been drawn to the inequalities (1.2), and numerous generalizations, improvements,
expansions, and modifications of (1.1) have been documented in the literature (see [1, 2, 4, 6, 7, 14, 16− 20] and
the references therein).

The following results was provided by Sarikaya [16].

Theorem 1.1. Let S : ∆ → R partially differentiable map on ∆ = [k, l]×[u, v] ⊂ R2. If
∣∣∣ ∂2S
∂s∂t

∣∣∣ is a co-ordinated
convex function on ∆, then we have∣∣∣S(k,u)+S(k,v)+S(l,u)+S(l,v)

4 + Γ(α+1)Γ(β+1)

4(l−k)α(v−u)β

(
Jα,β
k+,u+S (l, v) + Jα,β

k+,v−S (l, u)

+ Jα,β
l−,u+S (k, v) + Jα,β

l−,v−S (k, u)
)
− A

∣∣∣
≤ (l−k)(v−u)

4(α+1)(β+1)

(∣∣∣ ∂2S
∂s∂t (k, u)

∣∣∣+ ∣∣∣ ∂2S
∂s∂t (k, v)

∣∣∣+ ∣∣∣ ∂2S
∂s∂t (l, u)

∣∣∣+ ∣∣∣ ∂2S
∂s∂t (l, v)

∣∣∣) ,
where

A = Γ(β+1)

4(v−u)β

(
Jβ
u+S (k, v) + Jβ

u+S (l, v) + Jβ
v−S (k, u) + Jβ

v−S (l, u)
)

+ Γ(α+1)
4(l−k)α (Jα

k+S (l, c) + Jα
k+S (l, v) + Jα

l−S (k, c) + Jα
l−S (k, v)) . (1.3)

Theorem 1.2. Under the assumptions of Theorem 1.1. If
∣∣∣ ∂2S
∂s∂t

∣∣∣q is a co-ordinated convex function on ∆, then
we have ∣∣∣S(k,u)+S(k,v)+S(l,u)+S(l,v)

4 + Γ(α+1)Γ(β+1)

4(l−k)α(v−u)β

(
Jα,β
k+,u+S (l, v) + Jα,β

k+,v−S (l, u)

+ Jα,β
l−,u+S (k, v) + Jα,β

l−,v−S (k, u)
)
− A

∣∣∣
≤ (l−k)(v−u)

((αp+1)(βp+1))
1
p

( ∣∣∣ ∂2S
∂s∂t (k,u)

∣∣∣q+∣∣∣ ∂2S
∂s∂t (k,v)

∣∣∣q+∣∣∣ ∂2S
∂s∂t (l,u)

∣∣∣q+∣∣∣ ∂2S
∂s∂t (l,v)

∣∣∣q
4

) 1
q

,

where q > 1 with 1
p + 1

q = 1 and A is as in (1.3).

The aim of this work is to establish some integral inequalities of the Hermite-Hadamard type via convexity
on co-ordinates by using fractional integral operators. The obtained results are based on a new integral equality.

2. Preliminaries

Here, we revisit few definitions. We also assume throughout that ∆ ⊂ R2 with ∆ := [k, l] × [u, v] where k < l

and u < v.
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Definition 2.1. [6] Convexity on the co-ordinates on ∆ is the property of a function S : ∆ → R that holds when
the inequality

S (gx+ (1− g) ξ, λy + (1− λ) j) ≤gλS(x, y) + g (1− λ)S(x, j)
+ (1− g)λS(ξ, y) + (1− g) (1− λ)S(ξ, j)

remains true for any (x, y), (x, j), (ξ, y), (ξ, j) ∈ ∆ and g, λ ∈ [0, 1].

Definition 2.2. [5] The Riemann-Liouville integrals Jα
k+S and Jα

l−S of order α are defined by:

Jα
k+S(ξ) =

1

Γ (α)

ξ∫
k

(ξ − t)
α−1 S(t)dt, ξ > k,

Jα
l−S(ξ) =

1

Γ (α)

l∫
ξ

(t− ξ)
α−1 S(t)dt, l > ξ,

respectively, where α > 0, k ≥ 0,S ∈ L1[k, l] and Γ(α) =
∞∫
0

e−ttα−1dt, is the gamma function and J0
k+S(ξ) =

J0
l−S(ξ) = S(ξ).

Definition 2.3. [5] The Riemann-Liouville integrals Jα,β
k+,u+ , Jα,β

k+,v− , Jα,β
l−,u+ , and Jα,β

l−,v−of order α, β > 0 with
k, u ≥ 0, k < l and u < v are defined by

Jα,β
k+,u+S (l, v) = 1

Γ(α)Γ(β)

l∫
k

v∫
u

(l − ξ)
α−1

(v − y)
β−1 S (ξ, y) dydξ, (2.1)

Jα,β
k+,v−S (l, u) = 1

Γ(α)Γ(β)

l∫
k

v∫
u

(l − ξ)
α−1

(y − u)
β−1 S (ξ, y) dydξ (2.2)

Jα,β
l−,u+S (k, v) = 1

Γ(α)Γ(β)

l∫
k

v∫
u

(ξ − k)
α−1

(v − y)
β−1 S (ξ, y) dydξ, (2.3)

Jα,β
l−,v−S (k, u) = 1

Γ(α)Γ(β)

l∫
k

v∫
u

(ξ − k)
α−1

(y − u)
β−1 S (ξ, y) dydξ, (2.4)

where S ∈ L1(∆),Γ is the gamma function, and

J0,0
k+,u+S (l, v) = J0,0

k+,v−S (l, u) = J0,0
l−,u+S (k, v) = J0,0

l−,v−S (k, u) = S (ξ, y) .

Definition 2.4. [16] The Riemann-Liouville integrals Jα
l−S (k, u), Jα

k+S (l, u), Jβ
v−S (k, u) and Jα

u+S (k, v) of
order α, β > 0 with k, u ≥ 0, k < l and u < v, are defined by

Jα
l−S (k, u) = 1

Γ(α)

l∫
k

(ξ − k)
α−1 S (ξ, u) dξ, (2.5)

Jα
k+S (l, u) = 1

Γ(α)

l∫
k

(l − ξ)
α−1 S (ξ, u) dξ, (2.6)
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Jβ
v−S (k, u) = 1

Γ(β)

v∫
c

(y − u)
β−1 S (k, y) dy, (2.7)

Jα
u+S (k, v) = 1

Γ(β)

v∫
u

(v − y)
β−1 S (k, y) dy, (2.8)

where S ∈ L1(∆) and Γ represents the gamma function.

3. Main results

Lemma 3.1. Assume that S : ∆ → R be a partially differentiable map. If ∂2S
∂χ1∂χ2

∈ L (∆), then we have

S
(
k+l
2 , u+v

2

)
− S(k,u+v

2 )+S( k+l
2 ,u)+S(l,u+v

2 )+S( k+l
2 ,v)

2 + A− Γ(α+1)Γ(β+1)

4(l−k)α(v−u)β

×
(
Jα,β
k+,u+S (l, v) + Jα,β

l−,u+S (k, v) + Jα,β
k+,v−S (l, u) + Jα,β

l−,v−S (k, u)
)

= (l−k)(v−u)
4

 1∫
0

1∫
0

KH ∂2S
∂χ1∂χ2

(χ1k + (1− χ1) l, χ2u+ (1− χ2) v) d𭟋dχ2

−
1∫
0

1∫
0

((1− χ1)
α − χα

1 )
(
(1− χ2)

β − χβ
2

)
× ∂2S

∂χ1∂χ2
(χ1k + (1− χ1) l, χ2u+ (1− χ2) v) dχ1dλ, (3.1)

where

K =

{{
1 if 0 ≤ χ1 < 1

2 ,

−1 if 1
2 ≤ χ1 < 1,

(3.2)

H =

{{
1 if 0 ≤ χ2 < 1

2 ,

−1 if 1
2 ≤ χ2 < 1,

(3.3)

A = Γ(β+1)

4(v−u)β

(
Jβ
u+S (k, v) + Jβ

u+S (l, v) + Jβ
v−S (k, u) + Jβ

v−S (l, u)
)

+ Γ(α+1)
4(l−k)α (Jα

k+S (l, u) + Jα
k+S (l, v) + Jα

l−S (k, u) + Jα
l−S (k, v)) . (3.4)

Proof. Let
I = (l−k)(v−u)

4 (I1 − I2) , (3.5)

where

I1 =

1∫
0

1∫
0

KH ∂2S
∂χ1∂χ2

(χ1k + (1− χ1) l, χ2u+ (1− χ2) v) dχ1dχ2,

I2 =

1∫
0

1∫
0

((1− χ1)
α − χα

1 )
(
(1− χ2)

β − χβ
2

)
∂2S

∂χ1∂χ2
(χ1k + (1− χ1) l, χ2u+ (1− χ2) v) dχ1dχ2.

Clearly, we have

I1 =

1
2∫
0

1
2∫
0

∂2S
∂χ1∂χ2

(χ1k + (1− χ1) l, χ2u+ (1− χ2) v) dχ1dχ2
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−

1
2∫
0

1∫
1
2

∂2S
∂χ1∂χ2

(χ1k + (1− χ1) l, χ2u+ (1− χ2) v) dχ1dχ2

−
1∫
1
2

1
2∫
0

∂2S
∂χ1∂χ2

(χ1k + (1− χ1) l, χ2u+ (1− χ2) v) dχ1dχ2

+

1∫
1
2

1∫
1
2

∂2S
∂χ1∂χ2

(χ1k + (1− χ1) l, χ2u+ (1− χ2) v) dχ1dχ2

= 1
(l−k)(v−u)

((
S
(
k+l
2 , u+v

2

)
− S

(
l, u+v

2

)
− S

(
k+l
2 , v

)
+ S (l, v)

)
− S

(
k, u+v

2

)
+ S

(
k+l
2 , u+v

2

)
+ S (k, v)− S

(
k+l
2 , v

)
− S

(
k+l
2 , u

)
+ S (l, u) + S

(
k+l
2 , u+v

2

)
− S

(
l, u+v

2

)
+ S (k, u)− S

(
k+l
2 , u

)
− S

(
k, u+v

2

)
+ S

(
k+l
2 , u+v

2

))
= 4

(l−k)(v−u)

((
S
(
k+l
2 , u+v

2

))
+ S(l,v)+S(k,v)+S(l,u)+S(k,u)

4

− S(k,u+v
2 )+S( k+l

2 ,u)+S(l,u+v
2 )+S( k+l

2 ,v)
2

)
. (3.6)

Using the integration by parts, I2 gives

I2 =

1∫
0

(
(1− χ2)

β − χβ
2

)
(3.7)

×

 1∫
0

((1− χ1)
α − χα

1 )
∂2S

∂χ1∂χ2
(χ1k + (1− χ1) l, χ2u+ (1− χ2) v) dχ1

 dχ2

= 1
(l−k)(v−u) (S (k, u) + S (k, v) + S (l, u) + S (l, v))

− β
(l−k)(v−u)

 1∫
0

(1− χ2)
β−1 S (k, χ2u+ (1− χ2) v) dχ2

+

1∫
0

χβ−1
2 S (k, χ2u+ (1− χ2) v) dχ2 +

1∫
0

χβ−1
2 S (l, χ2u+ (1− χ2) v) dχ2

+

1∫
0

(1− χ2)
β−1 S (l, χ2u+ (1− χ2) v) dχ2


− α

(l−k)(v−u)

 1∫
0

(1− χ1)
α−1 S (χ1k + (1− χ1) l, u) dχ1

+

1∫
0

χα−1
1 S (χ1k + (1− χ1) l, u) dχ1 +

1∫
0

χα−1
1 S (χ1k + (1− χ1) l, v) dχ1

+

1∫
0

(1− χ1)
α−1 S (χ1k + (1− χ1) l, v) dχ1
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+ αβ
(l−k)(v−u)

 1∫
0

1∫
0

χα−1
1 χβ−1

2 S (χ1k + (1− χ1) l, χ2u+ (1− χ2) v) dχ2dχ1

+

1∫
0

1∫
0

(1− χ1)
α−1

χβ−1
2 S (χ1k + (1− χ1) l, χ2u+ (1− χ2) v) dχ2dχ1

+

1∫
0

1∫
0

χα−1
1 (1− χ2)

β−1 S (χ1k + (1− χ1) l, χ2u+ (1− χ2) v) dχ2dχ1

+

1∫
0

1∫
0

(1− χ1)
α−1

(1− χ2)
β−1 S (χ1k + (1− χ1) l, χ2u+ (1− χ2) v) dχ2dχ1

 .

Combining (3.5)-(3.7) and making a changes ξ = χ1k + (1− χ1) l and y = χ2u+ (1− χ2) v, we get

I =S
(
k+l
2 , u+b

2

)
− S(k,u+v

2 )+S( k+l
2 ,u)+S(l,u+v

2 )+S( k+l
2 ,v)

2

+ β

4(v−u)β

 v∫
u

(y − u)
β−1 S (k, y) dy +

v∫
u

(y − u)
β−1 S (l, y) dy

+

v∫
u

(v − y)
β−1 S (k, y) dy +

v∫
u

(v − y)
β−1 S (l, y) dy

 (3.8)

+ α
4(l−k)α

 l∫
k

(ξ − k)
α−1 S (ξ, u) dξ +

l∫
k

(ξ − k)
α−1 S (ξ, v) dξ

+

l∫
k

(l − ξ)
α−1 S (ξ, u) dx+

l∫
k

(l − ξ)
α−1 S (ξ, v) dξ


− αβ

4(l−k)α(v−u)β

 l∫
k

v∫
u

(l − ξ)
α−1

(v − y)
β−1 S (ξ, y) dydξ

+

l∫
k

v∫
u

(ξ − k)
α−1

(v − y)
β−1 S (ξ, y) dydξ

+

l∫
k

v∫
u

(l − ξ)
α−1

(y − u)
β−1 S (ξ, y) dydξ

+

l∫
k

v∫
u

(ξ − k)
α−1

(y − u)
β−1 S (ξ, y) dydξ

 . (3.9)

The proof is thus finished. ■

In what follows, we note

Λ (k, l, u, v,S)

=S
(
k+l
2 , u+v

2

)
− S(k,u+v

2 )+S( k+l
2 ,u)+S(l,u+v

2 )+S( k+l
2 ,v)

2 + A− Γ(α+1)Γ(β+1)

4(l−k)α(v−u)β
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×
(
Jα,β
k+,u+S (l, v) + Jα,β

l−,u+S (k, v) + Jα,β
k+,v−S (l, u) + Jα,β

l−,v−S (k, u)
)
,

where A is given by (3.4).

Theorem 3.2. For a partial differentiable map S : ∆ → R whose
∣∣∣ ∂2S
∂χ1∂χ2

∣∣∣ is co-ordinated convex, we have

|Λ (k, l, u, v,S)| ≤ (l−k)(v−u)
4

(
1
4 + 1

(α+1)(β+1)

)
(3.10)

×
(∣∣∣ ∂2S

∂χ1∂χ2
(k, u)

∣∣∣+ ∣∣∣ ∂2S
∂χ1∂χ2

(k, v)
∣∣∣+ ∣∣∣ ∂2S

∂χ1∂χ2
(l, u)

∣∣∣+ ∣∣∣ ∂2S
∂χ1∂χ2

(l, v)
∣∣∣) .

Proof. Using the absolute value on both sides of (3.1), we get

|Λ (k, l, u, v,S)|

≤ (l−k)(v−u)
4

 1∫
0

1∫
0

∣∣∣ ∂2S
∂χ1∂χ2

(χ1k + (1− χ1) l, χ2u+ (1− χ2) v)
∣∣∣ dχ1dχ2

+

1∫
0

1∫
0

(1− χ1)
α
(1− χ2)

β
∣∣∣ ∂2S
∂χ1∂χ2

(χ1k + (1− χ1) l, χ2u+ (1− χ2) v)
∣∣∣ dχ1dχ2

+

1∫
0

1∫
0

χα
1 (1− χ2)

β
∣∣∣ ∂2S
∂χ1∂χ2

(χ1k + (1− χ1) l, χ2u+ (1− χ2) v)
∣∣∣ dχ1dχ2

+

1∫
0

1∫
0

(1− χ1)
α
χβ
2

∣∣∣ ∂2S
∂χ1∂χ2

(χ1k + (1− χ1) l, χ2u+ (1− χ2) v)
∣∣∣ dχ1dχ2

+

1∫
0

1∫
0

χα
1χ

β
2

∣∣∣ ∂2S
∂χ1∂χ2

(χ1k + (1− χ1) l, χ2u+ (1− χ2) v)
∣∣∣ dχ1dχ2. (3.11)

Since
∣∣∣ ∂2S
∂χ1∂χ2

∣∣∣ is co-ordinated convex, (3.11) gives

|Λ (k, l, u, v,S)|

≤ (l−k)(v−u)
4

 1∫
0

1∫
0

(
χ1χ2

∣∣∣ ∂2S
∂χ1∂χ2

(k, u)
∣∣∣+ χ1 (1− χ2)

∣∣∣ ∂2S
∂χ1∂χ2

(k, v)
∣∣∣

+ (1− χ1)χ2

∣∣∣ ∂2S
∂χ1∂χ2

(l, u)
∣∣∣+ (1− χ1) (1− χ2)

∣∣∣ ∂2S
∂χ1∂χ2

(l, v)
∣∣∣) dχ1dχ2

+

1∫
0

1∫
0

(1− χ1)
α
(1− χ2)

β
(
χ1χ2

∣∣∣ ∂2S
∂χ1∂χ2

(k, u)
∣∣∣+ χ1 (1− χ2)

∣∣∣ ∂2S
∂χ1∂χ2

(k, v)
∣∣∣

+ (1− χ1)χ2

∣∣∣ ∂2S
∂χ1∂χ2

(l, u)
∣∣∣+ (1− χ1) (1− χ2)

∣∣∣ ∂2S
∂χ1∂χ2

(l, v)
∣∣∣) dχ1dχ2

+

1∫
0

1∫
0

χα
1 (1− χ2)

β
(
χ1χ2

∣∣∣ ∂2S
∂χ1∂χ2

(k, u)
∣∣∣+ χ1 (1− χ2)

∣∣∣ ∂2S
∂χ1∂χ2

(k, v)
∣∣∣

+ (1− χ1)χ2

∣∣∣ ∂2S
∂χ1∂χ2

(l, u)
∣∣∣+ (1− χ1) (1− χ2)

∣∣∣ ∂2S
∂χ1∂χ2

(l, v)
∣∣∣) dχ1dχ2
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+

1∫
0

1∫
0

(1− χ1)
α
χβ
2

(
χ1χ2

∣∣∣ ∂2S
∂χ1∂χ2

(k, u)
∣∣∣+ χ1 (1− χ2)

∣∣∣ ∂2S
∂χ1∂χ2

(k, v)
∣∣∣

+ (1− χ1)χ2

∣∣∣ ∂2S
∂χ1∂χ2

(l, u)
∣∣∣+ (1− χ1) (1− χ2)

∣∣∣ ∂2S
∂χ1∂χ2

(l, v)
∣∣∣) dχ1dχ2

+

1∫
0

1∫
0

χα
1χ

β
2

(
χ1χ2

∣∣∣ ∂2S
∂χ1∂χ2

(k, u)
∣∣∣+ χ1 (1− χ2)

∣∣∣ ∂2S
∂χ1∂χ2

(k, v)
∣∣∣

+ (1− χ1)χ2

∣∣∣ ∂2S
∂χ1∂χ2

(l, u)
∣∣∣+ (1− χ1) (1− χ2)

∣∣∣ ∂2S
∂χ1∂χ2

(l, v)
∣∣∣) dχ1dχ2

)
= (l−k)(v−u)

4

(
1
4 + 1

(α+1)(β+1)

)
×
(∣∣∣ ∂2S

∂χ1∂χ2
(k, u)

∣∣∣+ ∣∣∣ ∂2S
∂χ1∂χ2

(k, v)
∣∣∣+ ∣∣∣ ∂2S

∂χ1∂χ2
(l, u)

∣∣∣+ ∣∣∣ ∂2S
∂χ1∂χ2

(l, v)
∣∣∣) ,

which is the desired outcome. ■

Theorem 3.3. Suppose that all the assumptions of Theorem 3.2 hold. If
∣∣∣ ∂2S
∂χ1∂χ2

∣∣∣q is co-ordinated convex
function, then we have

|Λ (k, l, u, v,S)|

≤ (l−k)(v−u)

4
1+ 1

p

(( ∣∣∣ ∂2S
∂χ1∂χ2

(k,u)
∣∣∣q+3

∣∣∣ ∂2S
∂χ1∂χ2

(k,v)
∣∣∣q+3

∣∣∣ ∂2S
∂χ1∂χ2

(l,u)
∣∣∣q+9

∣∣∣ ∂2S
∂χ1∂χ2

(l,v)
∣∣∣q

64

) 1
q

+

(
3
∣∣∣ ∂2S
∂χ1∂χ2

(k,u)
∣∣∣q+∣∣∣ ∂2S

∂χ1∂χ2
(k,v)

∣∣∣q+9
∣∣∣ ∂2S
∂χ1∂χ2

(l,u)
∣∣∣q+3

∣∣∣ ∂2S
∂χ1∂χ2

(l,v)
∣∣∣q

64

) 1
q

+

(
3
∣∣∣ ∂2S
∂χ1∂χ2

(k,u)
∣∣∣q+9

∣∣∣ ∂2S
∂χ1∂χ2

(k,v)
∣∣∣q+∣∣∣ ∂2S

∂χ1∂χ2
(l,u)

∣∣∣q+3
∣∣∣ ∂2S
∂χ1∂χ2

(l,v)
∣∣∣q

64

) 1
q

+

(
9
∣∣∣ ∂2S
∂χ1∂χ2

(k,u)
∣∣∣q+3

∣∣∣ ∂2S
∂χ1∂χ2

(k,v)
∣∣∣q+3

∣∣∣ ∂2S
∂χ1∂χ2

(l,u)
∣∣∣q+∣∣∣ ∂2S

∂χ1∂χ2
(l,v)

∣∣∣q
64

) 1
q

+

(
4
1+ 1

p

(αp+1)
1
p (βp+1)

1
p

)( ∣∣∣ ∂2S
∂χ1∂χ2

(k,u)
∣∣∣q+∣∣∣ ∂2S

∂χ1∂χ2
(k,v)

∣∣∣q+∣∣∣ ∂2S
∂χ1∂χ2

(l,u)
∣∣∣q+∣∣∣ ∂2S

∂χ1∂χ2
(l,v)

∣∣∣q
4

) 1
q

)
,

where q > 1 with 1
p + 1

q = 1 and A is given by (3.4).

Proof. Using the absolute value on both sides of (3.1) and then applying Hölder’s inequality, it yields

|Λ (k, l, u, v,S)|

≤ (l−k)(v−u)
4




1
2∫
0

1
2∫
0

dχ1dχ2


1
p

×


1
2∫
0

1
2∫
0

∣∣∣ ∂2S
∂χ1∂χ2

(χ1k + (1− χ1) l, χ2u+ (1− χ2) v)
∣∣∣q dχ1dχ2


1
q

+


1
2∫
0

1∫
1
2

dχ1dχ2


1
p


1
2∫
0

1∫
1
2

∣∣∣ ∂2S
∂χ1∂χ2

(χ1k + (1− χ1) l, χ2u+ (1− χ2) v)
∣∣∣q dχ1dχ2


1
q
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+

 1∫
1
2

1
2∫
0

dχ1dχ2


1
p
 1∫

1
2

1
2∫
0

∣∣∣ ∂2S
∂χ1∂χ2

(χ1k + (1− χ1) l, χ2u+ (1− χ2) v)
∣∣∣q dχ1dχ2


1
q

+

 1∫
1
2

1∫
1
2

dχ1dχ2


1
p
 1∫

1
2

1∫
1
2

∣∣∣ ∂2S
∂χ1∂χ2

(χ1k + (1− χ1) l, χ2u+ (1− χ2) v)
∣∣∣q dχ1dχ2


1
q

+


 1∫

0

1∫
0

dχ1dχ2


1
p

+

 1∫
0

1∫
0

(1− χ1)
αp

(1− χ2)
βp

dχ1dχ2


1
p

+

 1∫
0

1∫
0

χαp
1 (1− χ2)

βp
dχ1dχ2


1
p

+

 1∫
0

1∫
0

(1− χ1)
αp

χβp
2 dχ1dχ2


1
p

+

 1∫
0

1∫
0

χαp
1 χβp

2 dχ1dχ2


1
p


×

 1∫
0

1∫
0

∣∣∣ ∂2S
∂χ1∂χ2

(χ1k + (1− χ1) l, χ2u+ (1− χ2) v)
∣∣∣q dχ1dχ2


1
q



= (l−k)(v−u)

4
1+ 1

p




1
2∫
0

1
2∫
0

∣∣∣ ∂2S
∂χ1∂χ2

(χ1k + (1− χ1) l, χ2u+ (1− χ2) v)
∣∣∣q dχ1dχ2


1
q

+


1
2∫
0

1∫
1
2

∣∣∣ ∂2S
∂χ1∂χ2

(χ1k + (1− χ1) l, χ2u+ (1− χ2) v)
∣∣∣q dχ1dχ2


1
q

+

 1∫
1
2

1
2∫
0

∣∣∣ ∂2S
∂χ1∂χ2

(χ1k + (1− χ1) l, χ2u+ (1− χ2) v)
∣∣∣q dχ1dχ2


1
q

+

 1∫
1
2

1∫
1
2

∣∣∣ ∂2S
∂χ1∂χ2

(χ1k + (1− χ1) l, χ2u+ (1− χ2) v)
∣∣∣q dχ1dχ2


1
q

+

(
4
1+ 1

p

(αp+1)
1
p (βp+1)

1
p

)

×

 1∫
0

1∫
0

∣∣∣ ∂2S
∂χ1∂χ2

(χ1k + (1− χ1) l, χ2u+ (1− χ2) v)
∣∣∣q dχ1dχ2


1
q

 . (3.12)

Now, using the convexity of
∣∣∣ ∂2S
∂χ1∂χ2

∣∣∣q , (3.12) gives

|Λ (k, l, u, v,S)|
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≤ (l−k)(v−u)

4
1+ 1

p


1
2∫
0

1
2∫
0

(
χ1χ2

∣∣∣ ∂2S
∂χ1∂χ2

(k, u)
∣∣∣q + χ1 (1− χ2)

∣∣∣ ∂2S
∂χ1∂χ2

(k, v)
∣∣∣q

+ (1− χ1)χ2

∣∣∣ ∂2S
∂χ1∂χ2

(l, u)
∣∣∣q + (1− χ1) (1− χ2)

∣∣∣ ∂2S
∂χ1∂χ2

(l, v)
∣∣∣q) dχ1dχ2

) 1
q

+


1
2∫
0

1∫
1
2

(
χ1χ2

∣∣∣ ∂2S
∂χ1∂χ2

(k, u)
∣∣∣q + χ1 (1− χ2)

∣∣∣ ∂2S
∂χ1∂χ2

(k, v)
∣∣∣q

+ (1− χ1)χ2

∣∣∣ ∂2S
∂χ1∂χ2

(l, u)
∣∣∣q + (1− χ1) (1− χ2)

∣∣∣ ∂2S
∂χ1∂χ2

(l, v)
∣∣∣q) dχ1dχ2

) 1
q

+

 1∫
1
2

1
2∫
0

(
χ1χ2

∣∣∣ ∂2S
∂χ1∂χ2

(k, u)
∣∣∣q + χ1 (1− χ2)

∣∣∣ ∂2S
∂χ1∂χ2

(k, v)
∣∣∣q
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The proof is over. ■
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Abstract. The purpose of this work is to present the idea of β-γ-separated sets, examine their characteristics in topological
spaces and then define the notation for β-γ-connected and β-γ-disconnectedness. In addition, the study of topological qualities
that involves for β-γ-connected spaces via β-γ-separated sets. An analysis is conducted on the properties of β-γ-connected
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1. Introduction

One of the most significant, practical and basic notations in general topology and other high level mathematical
discipline now a days is connectedness. The notation of connectedness is fruitful in computing, topology,
algebraic topology and advanced calculus. Many researchers across the globe have investigated properties of
connectedness ([2], [3], [4], [5], [6]) and obtained new and interesting results.

The idea of β-open set in topological spaces was first proposed by M.E. Abd El-Monsef, S.N. El-Deeb and
R.A. Mahmoud in 1983. Their proof was that the set of all β-open sets in (X, τ) is finer topology on X then τ .
The researchers worked on two related topologies that were tested on the same underlying structure to determine
if they share the same topological properties. The basic properties of β-connectedness were obtained by Jafari
and Noiri [7] in 2003. Several other forms of connectedness can be introduced and studied using it. Tahiliani [8]
discussed and studied the characterisations of β-γ-open sets in topological spaces in 2011. This work presents
and investigates an additional kind of connectivity that is defined on β-open sets in (X, τ) via operations. Their
behavior under is β(γ,δ)-continuous,as well as their attributes are discussed in this study.

The procedures γ and δ are defined on the set of all β-open sets of topological spaces (X, τ) and (Y, σ)

correspondingly during the conversion.For any subset A of X , Cl(A) and Int(A) stands for the closure and
interior of A, respectively, for any subset A of X .

∗Corresponding author. Email addresses: sanjaytahiliani@yahoo.com (Sanjay Tahiliani)
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2. Preliminaries

Here we lay down the groundwork by defining key terms and showing key findings:
The condition that A ⊆ Cl(Int(Cl(A))) merely indicates that subset A of topological space X is β-open [1].

A β-open sets counterpart is a β-closed set, and βO(X) [1] is the collection of all β-open sets. β Cl(A) [2] is
the symbol for intersection of all β-closed sets that include A, while β Int(A)) [2] is the symbol for union of all
β-open sets that contain A.

The condition V ∈ V γ satisfied for each V ∈ βO(X) in an operation γ : βO(X) → P (X).The function
V id = V for each set V ∈ βO(X) is called the identity operation on βO(X).

As γ and δ are always defined on the family of β-open sets in space, We always mean them as operations.
From [8], we retrieve the following definitions and findings:

Definition 2.1. (i): If there exists a β-open set U of X that contains x and Uγ ⊆ A, then for any point x ∈ A, a
subset A of X is termed as of β-γ-open set. The β-γ-closed is counterpart of β-γ-open set. The set symbolized
by βO(X)γ includes all β-γ-open sets of (X, τ).

(ii): βγ Cl(A) notation represents β-γ-closure of A, which is the intersection of all β-γ-closed sets set containing
A. The βγ Int(A) notation represents β-γ-interior of A, which is the union of all β-γ-open set included in A.
The β-γ-boundary of a set A is represented by βγBd(A) and is defined by (βγ Cl(A)− βγ Int(A)).

(iii): If, for every element x in X and each β-δ-open set V that contains f(x), there exists a β-γ-open set U such
that x ∈ U and f(U) ⊆ V , then we say that f : (X, τ) → (Y, σ) is β(γ,δ)-continuous.

(iv): For any β-γ-closed set A of (X, τ), the set f(A) is β-δ-closed in (Y, σ) we say that mapping f : (X, τ) →
(Y, σ) is said to be β(γ,δ)-closed.

(v): For any β-γ-open set A of (X, τ), the set f(A) is β-δ-open in (Y, σ) we say that mapping f : (X, τ) → (Y, σ)

is said to be β(γ,δ)-open.

Theorem 2.2. Suppose X be a subset of a topological space and A is a subset of it. Then

(i) x ∈ βγ Cl(A) if and only if every βγ-open set U containing x has non empty intersection with A.

(ii) βγ Cl(X −A) = X − βγ Int(A).

3. β-γ-connected spaces

Definition 3.1. (i): If (β Cl(A) ∩ B) ∪ (A ∩ (β Cl(B)) = ∅, then the subsets A and B of a topological space
(X, τ) are said to be β-separated.

(ii): The term “β-γ-separated” is used to describe a pair of subsets A and B of a topological space (X, τ), where

(βγ Cl(A) ∩B) ∪ (A ∩ (βγ Cl(B)) = ∅.

Remark 3.2. Each two β-γ-separated sets are always disjoint, since A∩B ⊆ A∩ βγ Cl(B) = ∅. The converse
may not hold in general.

Example 3.3. The set X = {a, b, c}, and τ = {∅, X, {a}, {b}, {a, b}} are defined as follows: Aγ = A if b ∈ A,
Aγ = Cl(A) if b /∈ A, then {a, b} and {c} are disjoint subsets of X which are not β-γ-separated.

Given that β Cl(A) ⊆ βγ Cl(A), for all subsets A of X , it follows that every β-γ-separated set is β-separated.
The preceding example, however suggests that reverse may not be true. Both {a} and {b, c} are β-separated in
this case,but they are not β-γ-separated.

Theorem 3.4. The following claims hold if A and B are two non empty subsets of space X
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(1) If A and B are β-γ-separated and A1 ⊆ A and B1 ⊆ B, then A1 and B1 are also β-γ-separated.

(2) If A and B are disjoint and are both β-γ-closed (both β-γ-open), then A and B are β-γ-separated.

(3) If A and B are both β-γ-closed (both β-γ-open) then H = A ∩ (X − B) and G = B ∩ (X − A) are
β-γ-separated.

Proof. 1. Since A1 ⊆ A implies βγ Cl(A1) ⊆ βγ Cl(A) for every pair of A and A1, βγ Cl(A) ∩ B = ∅ and
βγ Cl(B) ∩A = ∅ implies βγ Cl(A1) ∩B1 = ∅ and βγ Cl(B1) ∩A1 = ∅. Hence A1 and B1 are β-γ-separated.

2. The equations A = βγ Cl(A) and B = βγ Cl(B) hold if A and B are both β-γ-closed. Hence because
A ∩ B = ∅, it follows that βγ Cl(A) ∩ B = ∅ and βγ Cl(B) ∩ A = ∅, A and B are β-γ-separated. In other
words, the complement of disjoint β-γ-open sets A and B are also β-γ-closed sets. Specifically X-A and X-B
are β-γ-separated. If A and B are disjoint and are both, then their complements are disjoint and β-γ-closed.
Furthermore, A ⊆ βγ Cl(A) ⊆ βγ Cl(X −B) = X −B and B ⊆ βγ Cl(B) ⊆ X −A. Hence by given part (1),
A and B are β-γ-separated.

3. Since A and B are β-γ-open, it follows that X −A and X −B are β-γ-closed. Also, H ⊆ X −B means that
βγ Cl(H) ⊆ βγ Cl(X − B). Then because βγ Cl(H) ∩ B = ∅ and it follows that βγ Cl(H) ∩G = ∅. Similarly
if H ∩ βγ Cl(G) = ∅. i.e. H and G are β-γ-separated. (X −A) and (X −B) are β-γ-open if and only if A and
B are β-γ-closed. Consequently, H and G are β-γ-separated. ■

Theorem 3.5. If there is a set U and set V in βO(X)γ such that A ⊆ U , B ⊆ V and A∩V = ∅ and B∩U = ∅,
then the subsets A and B of a space X are β-γ-separated and conversely.

Proof. We have βγ Cl(A) ∩ B = ∅ and βγ Cl(B) ∩ A = ∅ as A and B are β-γ-separated sets. Therefore the
sets V = X − βγ Cl(A) and U = X − βγ Cl(B) are β-γ-open, such that A ⊆ U , B ⊆ V with A ∩ V = ∅ and
B∩U = ∅. On the other hand, if U and V exists in βO(X)γ such that A ⊆ U , B ⊆ V , A∩V = ∅ and B∩U = ∅,
then X − V and X − U are β-γ-closed and βγ Cl(A) ⊆ X − V ⊆ X − B and βγ Cl(B) ⊆ X − U ⊆ X − A

respectively. Hence βγ Cl(A) ∩B = ∅ and βγ Cl(B) ∩A = ∅ were determined. ■

Theorem 3.6. In any topological space (X, τ), the following statements are equivalent:

(1) ∅ and X are the only sets which are both β-γ-open and β-γ-closed in X .

(2) X is not the union of two disjoint non empty β-γ-open sets.

(3) X is not the union of two disjoint non empty β-γ-closed sets.

(4) X is not the union of non empty β-γ-separated sets.

Proof. (1)⇒(2): It is assumed that (2) is not true. Given that A and B are disjoint, non empty and are β-γ-open
so let X = A ∪ B. So X − A = B is a nonempty set which is proper β-γ-open. It follows that (1) is not true,
since A is non empty proper β-γ-open and β-γ-closed in X .

(2)⇒(3): Clear.

(3)⇒(4): If (4) is false, then X = A∪B, where A and B are nonempty and β-γ-separated sets. Then βγ Cl(B)∩
A = ∅ implies βγ Cl(B) ⊆ B and hence B is β-γ-closed. Similarly A is also β-γ-closed. i.e. (3) is false.

(4)⇒(1). Assuming that (1) is not true, assume that there is a non empty proper subset A of X , that is both
β-γ-open and β-γ-closed. If A and B are β-γ-separated and X = A ∪B, then (4) is not true since. B = X −A

is non empty, β-γ-open and β-γ-closed. ■
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Definition 3.7. The condition that a subset C of a space X is β-γ-disconnected is that C = A ∪ B, where A

and B are non empty β-γ-separated or that C is β-γ-connected if there exists no non empty β-γ-separated sets
A and B of X such that C = A ∪B.
A pair of sets A and B is referred to as a β-γ-disconnection of C if C is β-γ-disconnected.

In Example 3.3, X is β-γ-disconnected, since {c} and {a, b} are β-γ-separated sets and hence there union
is X .

Example 3.8. (i) Assume X is a set comprising {a, b, c} and τ = {θ,X, {a}, {b}, {a, b}, {a, c}}. Let γ be an
operation on βO(X) such that Aγ = A if c ∈ A and Aγ = Cl(A) if c /∈ A. Then X is β-γ-disconnected.

(ii) Assume X is a set comprising {a, b, c} and τ = {θ,X, {a}, {c}, {a, c}}. Let γ be an operation on βO(X)

such that Aγ = A if b ∈ A, Aγ = X , if b /∈ A. So X is β-γ-connected, because there is no non empty pair
A, B of non empty β-γ-separated subsets of X such that X = A ∪B.

Remark 3.9. (1) Every indiscrete space is β-γ-connected.

(2) Every discrete space with more than one point is βid-disconnected.

(3) A space X is β-γ-connected if any of the conditions (1) to (4) in Theorem 3.6 holds.

(4) A space X is β-γ-disconnected if X = A ∪B, satisfies any one of the following statements:

(i) A and B are disjoint, non-empty and β-γ-open sets.

(ii) A and B are disjoint, non-empty and β-γ-closed sets.

(iii) A and B are disjoint, non-empty and β-γ-separated sets.

Theorem 3.10. If there is non empty proper subset A of X which is both β-γ-open and β-γ-closed in X , then
we say that space X is β-γ-disconnected.

Proof. Follows from above remarks. ■

Theorem 3.11. Every non empty proper subset of X must have a non-empty β-γ-boundary for a space X to be
β-γ-connected.

Proof. Let A be nonempty proper subset of X with βγ Bd(A) = ∅. Then βγ Cl(A) = βγ Int(A) ∪ βγ Bd(A)

implies βγ Cl(A) = βγ Int(A). Because A is both β-γ-open and β-γ-closed and βγ Int(A) ⊆ A is nonempty
proper subset of X , by Theorem 3.10, X is β-γ-disconnected, which is a contradictory. Due to this, A has a
non-empty β-γ-boundary. On the other hand, let X be β-γ-disconnected. Next, by Theorem 3.10, X contain
a valid subset A that is non empty proper subset and is both β-γ-open and β-γ-closed. i.e. βγ Cl(A) = A,
βγ Cl(X − A) = X − A and βγ Cl(A) ∩ βγ Cl(X − A) = ∅. So A has empty β-γ-boundary, which is again a
contradiction. Hence X is β-γ-connected. ■

Lemma 3.12. Suppose M and N are β-γ-separated subsets of X . If C ⊆ M ∪N and C is β-γ-connected, then
C ⊆ M or C ⊆ N .

Proof. Since C ∩ M ⊆ M and C ∩ N ⊆ N then C ∩ M and C ∩ N are β-γ-separated sets. Also C =

C ∩ (M ∪ N) = (C ∩ M) ∪ (C ∩ N). Since C is β-γ-connected, so (C ∩ M) and (C ∩ N) cannot form a
β-γ-disconnection of C. Therefore, either C ∩M = ∅, so C ⊆ N or C ∩M = ∅ so C ⊆ M . ■

Theorem 3.13. Suppose C and Ci (i ∈ I) are β-γ-connected but not β-γ-separated subsets of X , then S =

C ∪ Ci is β-γ-connected for each i.
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Proof. Where M and N are β-γ-separated, then C ∪Ci is equal to S = M ∪N if S is β-γ-disconnected. Either
C ⊆ M or C ⊆ N and Ci ⊆ M or Ci ⊆ N are required by Lemma 3.12. Assume C ⊆ M without sacrificing
generality. A contradiction would occur if for some i, Ci ⊆ N , and C and Ci would be β-γ-separated. Therefore
every Ci ⊆ M . Therefore N = ∅. i.e. M and N are not β-γ-disconnected in S. ■

Corollary 3.14. Assume that, Ci is β-γ-connected subset of X for every i ∈ I , and if Ci, share a point, then
Ci ∪ {Ci : i ∈ I} is β-γ-connected.

Proof. With I = ∅, the set ∪Ci = ∅ is obviously β-γ-connected for all i in I . In Theorem 3.13, choose i0 ∈ I

and Ci0 be the central set C. If I is not equal to ∅. It is not true that Ci ∩ Ci0 equal to ∅ for every i ∈ I . So Ci

and Ci0 are not β-γ-separated. The β-γ-connectedness of ∪{Ci : i ∈ I} is shown by Theorem 3.13. ■

Corollary 3.15. Suppose that for all x, y ∈ X , there exists a β-γ-connected set Cxy ⊆ X with x, y ∈ Cxy . Then
X is β-γ-connected.

Proof. Obviously X = ∅ is β-γ-connected. By hypothesis, there exists a β-γ-connected set Cay that contains
both a and y for any y ∈ X where X ̸= ∅, and let a ∈ X be a fixed element. The β-γ-connection of X =

∪{Cay : y ∈ X} is established by Corollary 3.14. ■

Corollary 3.16. Let C be a β-γ-connected subset of X and A ⊆ X . If C ⊆ A ⊆ βγ Cl(C), then A is also
β-γ-connected.

Proof. If a ∈ βγ Cl(C) is true for all a ∈ A, then {a} ∩ βγ Cl(C) is not equal to ∅. C and {a} are not β-γ-
separated. Thus, A = C ∪ ∪{{a} : a ∈ A} is β-γ-connected by Theorem 3.13. ■

Remark 3.17. In particular, the β-γ-closure of a β-γ-connected set is β-γ-connected.

Corollary 3.18. If for every β-δ-open set V of Y , f−1(V ) is β-γ-open in X , then function f : X → Y is
β(γ,δ)-continuous.

Proof. Assume that V be β-δ-open in Y . Then Y − V is a set in Y that is β-δ-closed. Following the reasoning
in ([8, Theorem 16(ii)]), the set f−1(Y − V ) is β-γ-closed set in X . The reason for this is because f−1(V ) is
β-γ-open set in X , since f−1(Y − V ) = X − f−1(V ).

On the other side, consider x ∈ X and V as a β-δ-open subset of Y that contains f(x). Then x ∈ f−1(V ).
Given x and f(f−1(V )) ⊆ V . It may be inferred that f−1(V ) is β-γ-open in X . Hence f is β(γ,δ)-continuous.

■

Theorem 3.19. If f : (X, τ) → (Y, σ) is onto β(γ,δ)-continuous function and X is β-γ-connected, then Y is
β-δ-connected.

Proof. Y is β-δ-disconnected if and only if A and B give a β-δ-disconnection of Y . A and B are both β-δ-
open sets according to Remark 3.9. Both f−1(A) and f−1(B) are both non empty β-γ-open set in X because
f is β(γ,δ)-continuous, according to Corollary 3.18. Now, for function f , f−1(A) ∩ f−1(B) = f−1(A ∩ B) =

f−1(∅) = ∅ and f−1(A)∪f−1(B) = f−1(A∪B) = f−1(Y ) = X . Remark 3.9 states that f−1(A) and f−1(B)

are two β-γ-disconnections of X . Then Y is β-δ-disconnected is contradicted by this. ■

Theorem 3.20. Let f : (X, τ) → (Y, σ) be an injective function. Then the following are equivalent:

(i) f is β(γ,δ)-continuous.

(ii) f−1(V ) ⊆ βγ Int(f
−1(V )) for every subset β-γ-open set V of Y .

(iii) f(βγ Cl(A)) ⊆ βδ Cl(f(A)) for every subset A of X .

(iv) βγ Cl(f
−1(B)) ⊆ f−1(βδ Cl(B)) for every subset B of Y .
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(v) f−1(βδ Int(B)) ⊆ βγ Int(f
−1(B)) for every subset B of Y .

Proof. (i)⇒(ii): Let x ∈ f−1(V ), where V is a β-δ-open subset of Y . Then f(x) ∈ V . Since f is β(γ,δ)-
continuous, there exists β-γ-open set U of X containing x such that f(U) ⊆ V and so U ⊆ f−1(V ), this implies
that x ∈ βγ Int(f

−1(V )). Thus f−1(V ) ⊆ βγ Int(f
−1(V )) for every β-δ-open subset V of Y .

(ii)⇒(iii): Let A be any subset of X and f(x) /∈ βδ Cl(f(A)), then by Theorem 2.2(i), there exists a β-γ-
open set V of Y containing f(x) such that V ∩ f(A) = ∅ and hence f−1(V ) ∩ A = ∅. Also f(x) ∈ V

implies x ∈ f−1(V ), which implies x ∈ βγ Int(f
−1(V )). Hence, there exists a β-γ-open set U of X containing

x such that U ⊆ f−1(V ). Then U ∩ A = ∅ and so x /∈ βγ Cl(A) and hence f(x) /∈ (βγ Cl(A)). Thus
f(βγ Cl(A)) ⊆ βδ Cl(f(A)).

(iii)⇒(iv): Let B be any subset of Y . Since f(f−1(B)) ⊆ B, so we have βδ Cl(f(f
−1(B)) ⊆ βδ Cl(B). Also

f−1(B) ⊆ X . Then by (iii), we have f(βγ Cl(f
−1(B)) ⊆ (βδ Cl f(f

−1(B)) ⊆ βδ Cl(B). Thus
βγ Cl(f

−1(B)) ⊆ f−1(βδ Cl(B)).

(iv)⇒(v): Let B be any subset of Y and x ∈ f−1(βδ Int(B)). Then by Theorem 2.2(ii),
x /∈ X − f−1(βγ Int(B)) = f−1(βγ Cl(Y − B). By (iv), x /∈ (βγ Cl(f

−1(Y − B)) = X − (βγ Int(f
−1(B))

and hence x ∈ βγ Int f
−1(B). Thus f−1(βδ Int(B)) ⊆ βγ Int(f

−1(B)).

(v)⇒(i): Let x ∈ X and V be any β-δ-open set of Y containing f(x). Since V ∩ (Y − V ) = ∅, we have
f(x) /∈ βγ Cl(Y − V ) = Y − βγ Int(V )) and hence f(x) /∈ βγ Cl(Y − B) = Y − βγ Int(V ) and so f(x) ∈
βγ Int(f

−1(V )), which implies that x ∈ f−1(βδ Int(v)). By (v), we obtain that x ∈ βγ(Int f
−1(V )). This

means that there exists a β-γ-open set U of X containing x such that U ⊆ f−1(V ) and so f(U) ⊆ V . This
shows that f is β(γ,δ)-continuous. ■

Corollary 3.21. Let f : X → Y be a β(γ,δ)-continuous and injective function. If K is β-γ-connected in X , then
f(K) is β-δ-connected in Y .

Proof. Suppose that f(K) is β-δ-disconnected in Y . Then there exists two β-δ-separated sets P and Q of Y
such that f(K) = P ∪ Q. Let A = K ∩ f−1(P ) and B = K ∩ f−1(Q). Since f(K) ∩ P is not empty, so
is K ∩ f−1(P ). Hence A and B are non empty. Now A ∪ B = (K ∩ f−1(P )) ∪ (K ∩ f−1(Q)) = K ∩
(f−1(P ) ∪ f−1(Q)) = K ∩ (f−1(P ∪ Q)) = K ∩ (f−1(f(K)) = K. Since f is β(γ,δ)-continuous, then
by Theorem 3.20, βγ Cl(f

−1(Q)) ⊆ f−1(βδ Cl(Q)) and this together with B ⊆ f−1(Q), implies βδ Cl(B) ⊆
f−1(βγ Cl(Q)). Since P∩βγ Cl(Q) = ∅, A∩βγ Cl(B) ⊆ A∩f−1(βγ Cl(Q)) ⊆ f−1(P )∩f−1(βγ Cl(Q)) = ∅.
i.e. A ∩ βγ Cl(B) = ∅. Similarly B ∩ βγ Cl(A) = ∅. Thus A and B are β-γ-separated, therefore K is a β-γ-
disconnected, a contradiction. Hence f(K) is β-δ-connected. ■

Theorem 3.22. A space X is β-γ-disconnected if and only if there exists an β(γ,id)-continuous function from X
onto discrete space {0, 1}.

Proof. Suppose that X is β-γ-disconnected. Then, there exists disjoint β-γ-open sets G1 and G2 of X such that
X = G1 ∪G2. Define a function f : X → {0, 1} as follows:

f(x) =

{
0 if x ∈ G1,

1 if x ∈ G2.

Now,the only βid-open sets in {0, 1} are ∅, {0}, {1}, {0, 1}. So, f−1(∅) = ∅, f−1({0}) = G1, f−1({1}) =
G2 and f−1({0, 1}) = X , which are β-γ-open sets in X . Thus by Corollary 3.18, f is β(γ,id)-continuous function
from X onto discrete space {0, 1}. Conversely, let the hypothesis holds and if possible suppose that X is β-γ-
connected. Therefore by Theorem 3.19, {0, 1} is βid-connected which is a contradiction by Remark 3.9. So X

must be β-γ-disconnected. ■
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Theorem 3.23. A space X is β-γ-connected if and only if every β(γ,id)-continuous function from space X to the
discrete space {0, 1} is constant.

Proof. Consider X be β-γ-connected and consider any β(γ,id)-continuous function f : X → {0, 1}. Since
the space {0, 1} is discrete, we may say that {y} is both βid-open and βid-closed in space {0, 1}. If we let
y ∈ f(X) ⊆ {0, 1}, then {y} ⊆ {0, 1}. For any y in Y , f−1({y}) is both β-γ-open and β-γ-closed in X

according to Corollary 3.18 and ([8, Theorem 16(ii)]) since f is β(γ,id)-continuous function. We may deduce
that f(x) = y for every x ∈ X because y ∈ f(X), so x is a function of f−1({y}). Therefore f−1({y}) does
not include empty set. If f−1({y}) is not equal to X , then f−1({y}) is a non empty subset of X which is both
β-γ-open and β-γ-closed in X . So there is a contradiction as, X is β-γ-connected. By Theorem 3.10. Therefore
if f−1({y}) = X , then f(X) = {y}. This indicates that f is constant since for each x ∈ X , f(x) = y. ■

Definition 3.24. A set C is called maximal β-γ-connected set if it is β-γ-connected and if D is β-γ-connected
such that C ⊆ D ⊆ X , then C = D. A maximal β-γ-connected subset C of a space X is called a β-γ-component
of X , if X itself β-γ-connected, then X is only β-γ-component of X .

Theorem 3.25. For β-γ-component of X containing x, for each x ∈ X , there is exactly one β-γ-component of
X containing x.

Proof. For any x ∈ X , let Cx = ∪{A : x ∈ A ⊆ X and A is β-γ-connected}. Then {x} ∈ Cx, since Cx

is union of β-γ-connected sets each containing x, is β-γ-connected by Corollary 3.14. If Cx ⊆ D and D is
β-γ-connected, then D was one of the sets A in the collection whose union defined Cx. So D ⊆ Cx and therefore
Cx = D. Therefore Cx is a β-γ-component of X containing x. ■

Corollary 3.26. Two β-γ-components either are disjoint or coincide.

Proof. Let Cx and Cy be two β-γ-components and Cx not equal to Cy . If they are not disjoint, let p ∈ Cx ∩Cy .
Then by Corollary 3.14, Cx∪Cy would be a β-γ-connected set strictly larger then Cx. Therefore Cx∩Cy = ∅. ■

Theorem 3.27. Each β-γ-connected subset of X is contained in exactly one β-γ-component of X .

Proof. Let A be a β-γ-connected subset of X which is not in exactly one β-γ-component of X . Suppose that
C1 and C2 are β-γ-component of X such that, A ⊆ C1 and A ⊆ C2. Since C1 and C2 are not disjoint and by
Corollary 3.14, C1 ∪ C2 is another β-γ-connected subset which contain C1 and C2, a contradiction to the fact
that C1 and C2, are β-γ-components. This proves that A is contained in exactly one β-γ-component of X . ■

Theorem 3.28. A β-γ-component is a non empty β-γ-connected subset of X that is both β-γ-open and β-γ-
closed.

Proof. Assume that A be a β-γ-connected subset of X which is both β-γ-open and β-γ-closed. A is included
in precisely one β-γ-component C of X , according to Theorem 3.27. It is contradictory because if A is proper
subset of C, then equation C = (C∩A)∪ (C∩ (X−A)) results in a β-γ-disconnection of C. Thus, A = C. ■

Theorem 3.29. Every β-γ-component of X is β-γ-closed.

Proof. Assume that C be a β-γ-component of X . according to Remark 3.17, βγ Cl(C) is a β-γ-connected which
appropriately includes the β-γ-component C of X . C is therefore β-γ-closed as C = βγ Cl(C). ■

Definition 3.30. For every point x ∈ X and every β-γ-open set U containing x, there exists a β-γ-open β-γ-
connected set V such that x ∈ V ⊆ U , we say that X is said to be β-γ-locally connected at x.

Theorem 3.31. Let f : X → Y be a β(γ,δ)-continuous, β(γ,δ)-open and bijective. If X is β-γ-locally connected,
then Y is β-δ-locally connected.
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Proof. By y ∈ Y , find an element x ∈ X such that y is equal to f(x). Let U be a β-δ-open set of Y that contains
y. According to Corollary 3.18, f−1(U) is β-γ-open in X containing x, because f is β(γ,δ)-continuous. There is
a β-γ-open β-γ-connected set V that contains x such that x ∈ V ⊆ f−1(U) because X is β-γ-locally connected.
This means that f(x) ∈ f(V ) ⊆ f(f−1(U)) = U or y ∈ f(V ) ⊆ U . The reason for f(V ) is also β-δ-open
because f is β(γ,δ)-open. In addition according to Corollary 3.21, f(V ) is β-δ-connected. This establishes that
Y is β-δ-locally connected. ■

4. Concluding Remarks and Acknowledgements

Our research in this study focused on β-γ-connected and β-γ-locally connected spaces and we also presented the
concept of β-γ-separated sets. There is much scope of further work based on operational approach and variants
of open sets. The authors would like to express their profound gratitude to the referees who helped us to enhance
the paper quality and the findings.
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Abstract. In this paper, a type of Riemannian manifold, namely generalized pseudo conformally symmetric manifold is
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1. Introduction

The geometry of a space mainly depends on the curvature of the space. One of the most important geometric
properties of a space is symmetry. Cartan began the study of local symmetry of Riemannian spaces and studied
elaborately ([2], [3]). According to him, a Riemannian manifold is said to be locally symmetric if ∇R = 0.
During the last sixty years, the notion of locally symmetric manifolds has been generalized by many authors in a
weaker sense. They have weakened in different directions with several defining conditions by giving some
curvature restrictions. Various weaker symmetries are studied as generalizations or extensions of Cartan’s
notion, such as recurrent manifolds by Walker [18], semi-symmetric manifolds by Szabó ([17]),
pseudosymmetric manifolds in the sense of Deszcz [7], pseudosymmetric manifolds in the sense of Chaki [4],
generalized pseudosymmetric manifolds by Chaki [6], weakly symmetric manifolds by Selberg [11] and weakly
symmetric manifolds by Támassy and Binh [16].
According to Chaki, a Riemannian manifold is said to be pseudo symmetric if

(∇XR)(Y, Z, U, V ) = 2α(X)R(Y, Z, U, V ) (1.1)

+ α(Y )R(X,Z,U, V ) + α(Z)R(Y,X,U, V )

+ α(U)R(Y,Z,X, V ) + α(V )R(Y,Z, U,X)

where and α is a 1-form, X,Y, Z, U, V ∈ χ(M).
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Pseudo symmetric manifolds are studied by many authors ([5] , [6], [12]). Ishii [8], introduced the notion
of conharmonic transformation under which a harmonic function transforms into a harmonic function. C, the
conharmonic curvature tensor of type (0,4) on an (Mn, g) is defined as follows

C = R− 1

n− 2
g ∧ S, (1.2)

which remains invariant under conharmonic transformation where R and S are the Riemannian curvature and
Ricci curvature tensor respectively. g ∧ S is the Kulkarni-Nomizu product [14].

In [13], Shaikh and Hui showed that the conharmonic curvature tensor satisfies the symmetric and skew-
symmetric properties of the Riemannian curvature tensor as well as cyclic ones. They also studied it ellaborately
[15]. The conharmonic curvature tensor has many applications in the theory of general relativity.
The conformal curvature tensor of type(0,4) is defined by

Cijkl = Rijkl −
1

n− 2
(gjkril − gikrjl + gilrjk − gjlrik) +

s

(n− 1)(n− 2)
(gilgjk − gikgjl) (1.3)

It should be noted that the conformal curvature tensor Cijkl remains invariant under conformal transformation.
In 2021, Ali, Khan and Vasiulla [1] introduced generalized pseudo symmetric manifold and studied various

properties. Also in 2017, Kim introduced pseudo semiconformally symmetric manifolds [10] and studied various
properties. According to him, a Riemannian manifold (Mn, g) is said to be pseudo semiconformally symmetric
if

Pijkl;m = 2AmPijkl +AiPmjkl +AjPimkl +AkPijml +AlPijkm, (1.4)

where P is the semiconformal curvature tensor [9]and A is a non zero 1-form.
Motivating by the above studies in this paper, I would like to introduce generalized pseudo conformally symmetric
manifold, which is defined by

(∇XC)(Y, Z, U, V ) = 2α(X)C(Y,Z, U, V ) (1.5)

+ β(Y )C(X,Z,U, V ) + γ(Z)C(Y,X,U, V )

+ δ(U)C(Y, Z,X, V ) + η(V )C(Y, Z, U,X)

where and α, β, γ, δ, η are 1-forms.
In terms of local coordinates

Cijkl;m = 2αmCijkl + βiCmjkl + γjCimkl + δkCijml + ηlCijkm (1.6)

2. Generalized pseudo conformally symmetric manifolds

Definition 2.1. The conformal curvature tensor is said to be harmonic if the divergence of the curvature tensor
Ci

jkl of type (1,3) vanishes, i.e.,

Ch
jkl;h = 0. (2.1)

By virtue of second Bianchhi Identity we have

Rh
jkl;h = rjk;l − rjl;k. (2.2)

And then

rkl;k =
1

2
s; l. (2.3)
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We have

Ch
jkl;h = [(rjk;l − rjl;k)−

1

2(n− 2)
(gjks;l − gjls;k)]. (2.4)

Multiplying (2.4) by gjk and using the condition (??) we get

0 =
s;l

n− 2
. (2.5)

Which on siplification gives s;l = 0, that is the scalar curvature is constant. Hence we have the following:

Theorem 2.2. If the confrmal curvature tensor of a generalized pseudo confrmally symmetric Riemannian
manifold is harmonic, then the scalar curvature of the space is constant.

Let the confrmal curvature tensor of a generalized pseudo confrmally symmetric Riemannian manifold is
harmonic. Then we have

0 = 2αmCm
jkl + βmCmjkl + γjC

m
mkl + δkC

m
mjl + ηlC

m
jkm. (2.6)

Multiplying the above equation by gjk we have

s

n− 2
[2αl + βl − δl + nηl] = 0. (2.7)

If the scalar curvature does not vanishes, then we have

2αl + βl − δl + nηl = 0. (2.8)

Thus we can state the following:

Theorem 2.3. Let the confrmal curvature tensor of a generalized pseudo confrmally symmetric Riemannian
manifold is harmonic. If 2α+ β − δ + nη ̸= 0, then the scalar curvature of the space vanishes.

If the space is pseudo confrmally symmetric Riemannian manifold then α = β = γ = δ = η = A then we
have:

Corollary 2.4. If the confrmal curvature tensor of a pseudo confrmally symmetric Riemannian manifold is
harmonic, then the scalar curvature of the space vanishes.

Definition 2.5. A Riemannian manifold (Mn, g) is said to be recurrent if its curvature tensor Rijkl of type (0,4)
satisfies the condition

Rijkl;m = BmRijkl (2.9)

where the 1-form B is non zero.

Multiplying the equation (2.9) by gil and then multiplying by gjk we get

rjk;m = Bmrjk (2.10)

and then

s;m = Bms (2.11)

Using (2.10), (2.11) and (2.1) we get

gilgjkCijkl;m = − n

n− 2
Bms. (2.12)

459



A. Patra

From (1.6)

gilgjkCijkl;m = − s

n− 2
[2nαm + βm + γm + δm + ηm]. (2.13)

If [a+ (n− 2)b] ̸= 0, then from the above two equations we get

Bm =
2nαm + βm + γm + δm + ηm

n
(2.14)

Thus we can state that:

Theorem 2.6. If a generalized pseudo conformally symmetric Riemannian manifold is recurrent, then the 1-forms
B, α, β, γ, δ, η satisfy the relation B = 2nα+β+γ+δ+η

n .

If a generalized pseudo conformally symmetric Riemannian manifold is pseudo semiconformally symmetric
then α = β = γ = δ = η. Then we can state that :

Corollary 2.7. If a pseudo conformally symmetric Riemannian manifold is recurrent, then the 1-forms B and α

are related by B = 2(n+2)
n α.

From the Ricci identity and a parallel vector field V , it follows that

0 = V t
;jk − V t

;kj = V mRt
mjk. (2.15)

Taking covariant derevative of the above equation we get

V mRt
mjk;l = 0. (2.16)

Multiplying by gti we get

V mRimjk;l = 0 (2.17)

Using second Bianchi identity we obtain

V mRjkli;m = 0. (2.18)

Multiplying by gji and then multiplying by gkl we have

V mrkli;m = 0 (2.19)

V ms;m = 0. (2.20)

Using the above equations it follows that

V mCijkl;m = 0. (2.21)

Or,

[2αmCijkl + βiCmjkl + γjCimkl + δkCijml + ηlCijkm]V m = 0. (2.22)

Or,

[
2nαm + βm + γm + δm + ηm

n
]V m = 0. (2.23)

Which leads the following:
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Theorem 2.8. If a generalized pseudo conformally symmetric manifold (Mn, g) admits a parallel vector field
V , then either s=0 or [ 2nαm+βm+γm+δm+ηm

n ]V m = 0.

Let a generalized pseudo conformally symmetric manifold is pseudo semiconformally symmetric then α =

β = γ = δ = η. Then we can state that:

Corollary 2.9. If a pseudo conformally symmetric manifold (Mn, g) admits a parallel vector field V and [a +

(n− 2)b] ̸= 0, then either s=0 or αmV m = 0.

and then Multiplying (1.6) by gil and then multiplying the relation thus obtained by gjk, we obtain

−(
s;m
n− 2

)n = −(
s

n− 2
)[2nαm + βm + γm + δm + ηm]. (2.24)

Since [a+ (n− 2)] ̸= 0, we have

s;m =
[2nαm + βm + γm + δm + ηm]

n
s. (2.25)

Taking covariant derivative of (2.25), we get

s;mt =
[2nαm;t + βm;t + γm;t + δm;t + ηm;t]

n
s (2.26)

+
[2nαm + βm + γm + δm + ηm)s;t]

n
.

Or,

s;mt =
[2nαm;t + βm;t + γm;t + δm;t + ηm;t]

n
s (2.27)

+
[(2nαm + βm + γm + δm + ηm)(2nαt + βt + γt + δt + ηt)]s

n
.

Therefore from the above relation we can write

0 = s;mt − s;tm =
s

n
[2n(αm;t − αt;m) + (βm;t − βt;m) (2.28)

+ (γm;t − γt;m) + (δm;t − δt;m) + (ηm;t − ηt;m)].

Thus we can state that:

Theorem 2.10. Let the scalar curvature of a generalized pseudo conformally symmetric manifold does not
vanish. Then if four 1-forms are closed then all the 1-forms are closed.

If the manifold pseudo conformally symmetric manifold then, α = β = γ = δ = η = A. Then we have from
(2.28)

0 = s;mt − s;tm =
2n+ 4

n
s[Am;t −At;m]. (2.29)

If s ̸= 0 then

Am;t −At;m = 0. (2.30)

Thus we have the following

Corollary 2.11. If the scalar curvature of a generalized pseudo conformally symmetric manifold does not vanish,
then the 1-form A is closed.
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3. Conclusions

I have studied a new space namely generalized pseudo conformally symmetric manifold. Some geometric
properties of such spaces are obtained. we have studied the harmonic nature of conformal curvature tensor.
In future, different properties of these spaces can be obtained by imposing differnt restriction on the Ricci tensor
of such spaces.
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