


Editorial Team 

Editors-in-Chief 

Prof. Dr. Eduardo Hernandez Morales 

Departamento de computacao e matematica, Faculdade de Filosofia, Universidade de Sao Paulo, 

Brazil. 

Prof. Dr. Yong-Kui Chang 

School of Mathematics and Statistics, Xidian University, Xi’an 710071, P. R. China. 

Prof. Dr. Mostefa NADIR 

Department of Mathematics, Faculty of Mathematics and Informatics, University of Msila 28000 

ALGERIA. 

Associate Editors 

Prof.  Dr. M. Benchohra 

Departement de Mathematiques,  Universite de Sidi Bel Abbes, BP 89, 22000 Sidi Bel Abbes, Algerie. 

Prof.  Dr. Tomas Caraballo 

Departamento de Ecuaciones Diferenciales y Análisis Numérico, Facultad de Matemáticas, Universidad 

de Sevilla, C/Tarfia s/n, 41012 Sevilla, Spain. 

Prof. Dr. Sergei Trofimchuk 

Instituto de Matematicas, Universidad de Talca, Casilla 747, Talca, Chile. 

Prof.  Dr. Martin Bohner 

Missouri S&T, Rolla, MO, 65409, USA. 

Prof. Dr. Michal Feckan 

Departments of Mathematical Analysis and Numerical Mathematics, Comenius University, Mlynska 

dolina, 842 48 Bratislava, Slovakia. 

Prof. Dr. Zoubir Dahmani 

Laboratory of Pure and Applied Mathematics, LPAM, Faculty SEI, UMAB University of Mostaganem, 

Algeria. 

Prof. Dr. Bapurao C. Dhage 

Kasubai, Gurukul Colony, Ahmedpur- 413 515, Dist. Latur Maharashtra, India. 

Prof. Dr. Dumitru Baleanu 

Department of Mathematics, Faculty of Arts and Sciences, Cankaya University, 06530 Ankara: Turkey 

and Institute of Space Sciences, Magurele-Bucharest, Romania. 

Editorial Board Members 

Prof. Dr. J. Vasundhara Devi 

Department of Mathematics and GVP - Prof. V. Lakshmikantham Institute for Advanced Studies, 

GVP College of Engineering, Madhurawada, Visakhapatnam 530 048, India. 

 



Manil T. Mohan 

Department of Mathematics, Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, 

India. 

Prof. Dr. Alexander A. Katz 

Department of Mathematics & Computer Science, St. John's College of Liberal Arts and Sciences, St. 

John's University, 8000 Utopia Parkway, St. John's Hall 334-G, Queens, NY 11439. 

Prof. Dr. Ahmed M. A. El-Sayed 

Faculty of Science, Alexandria University, Alexandria, Egypt. 

Prof. Dr. G. M. N’Guerekata 

Department of Mathematics, Morgan State University, 1700 E. Cold Spring Lane, Baltimore, MD 21251, 

USA. 

Prof. Dr. Yong Ren 

Department of Mathematics, Anhui Normal University, Wuhu 241000 Anhui Province, China. 

Prof. Dr. Moharram Ali Khan 

Department of Mathematics, Faculty of Science and Arts, Khulais King Abdulaziz University, Jeddah, 

Kingdom of Saudi Arabia. 

Prof. Dr. Yusuf Pandir 

Department of Mathematics, Faculty of Arts and Science, Bozok University, 66100 Yozgat, Turkey. 

Dr. V. Kavitha 

Department of Mathematics, Karunya University, Coimbatore-641114, Tamil Nadu, India. 

Dr. OZGUR EGE 

Faculty of Science, Department of Mathematics, Ege University, Bornova, 35100 Izmir, Turkey. 

Dr. Vishnu Narayan Mishra 

Department of Mathematics, Indira Gandhi National Tribal University, Lalpur, Amarkantak, Anuppur, 

Madhya Pradesh 484 887, India. 

Dr. Michelle Pierri 

Departamento de computacao e matematica, Faculdade de Filosofia, Universidade de Sao Paulo, 

Brazil. 

Dr. Devendra Kumar 

Department of Mathematics, JECRC University, Jaipur-303905, Rajasthan, India. 

Publishing Editors 

Dr. M. Mallikaarjunan 

Department of Mathematics, School of Arts, Science and Humanities, SASTRA Deemed to be 

University, Thanjavur-613401, Tamil Nadu, India. 

Dr. Pratap Anbalagan 

School of Information and Control Engineering, Kunsan National University, Gunsan-si, Jeonbuk, The 

Republic of Korea. 



 

The Malaya Journal of Matematik is published quarterly in single volume annually and four 

issues constitute one volume appearing in the months of January, April, July and October.  

Subscription 

The subscription fee is as follows: 

USD 350.00 For USA and Canada 

Euro 190.00 For rest of the world 

Rs. 4000.00 In India. (For Indian Institutions in India only) 

Prices are inclusive of handling and postage; and issues will be delivered by Registered Air-Mail for 

subscribers outside India. 

Subscription Order 

Subscription orders should be sent along with payment by Cheque/ D.D. favoring "Malaya 

Journal of Matematik" payable at COIMBATORE at the following address: 

 

MKD Publishing House 

5, Venus Garden, Sappanimadai Road, Karunya Nagar (Post), 

Coimbatore- 641114, Tamil Nadu, India. 

Contact No. : +91-9585408402 

E-mail : info@mkdpress.com; editorinchief@malayajournal.org; publishingeditor@malayajournal.org 

Website : https://mkdpress.com/index.php/index/index 



Vol. 11 No. 02 (2023): Malaya Journal of Matematik (MJM) 

 

1. Existence of mild solutions of second-order impulsive differential equations in Banach spaces 

 

Adel Jawahdou              117-126 

 

2. On Berezin radius inequalities via Cauchy-Schwarz type inequalities 

 

Verda Gurdal, Hamdullah Basaran            127-141 

 

3. Permuting Tri-derivations in MV-algebras 

 

Damla Yılmaz, Bijan Davvaz, Hasret Yazarlı           142-150 

4. On I and I∗ -equal convergence in linear 2-normed spaces 

 

Amar Kumar Banerjee, Nesar Hossain           151-157 

5. On the rational difference equation    

 

Rimer ZURITA              158-166 

 

6. Common fixed point theorem for pair of quasi triangular α-orbital admissible mappings in 

complete metric space with application 

 

Rakesh Tiwari, Shashi Thakur            167-180 

 

7. Statistical extension some types of symmetrically continuity 

 

Pelda Evirgen, Mehmet Kucukaslan            181-199 

 

8. On nearly recurrent Riemannian manifolds 

 

B. PRASAD, R.P.S. YADAV             200-209 

 

9. Local isometry of the generalized helicoidal surfaces family in 4-space 

 

Erhan Güler, Yusuf Yaylı             210-218 

 

10. Initial coefficient estimates for subclasses of bi-univalent functions 

 

Mallikarjun Shrigan, P. N. Kamble            219-227 

 



11. Double domination number of the shadow (2,3)-distance graphs 

 

Aysun Aytaç, Ayşen Mutlu             228-238 

 



MALAYA JOURNAL OF MATEMATIK
Malaya J. Mat. 11(02)(2023), 117–126.
http://doi.org/10.26637/mjm1102/001

Existence of mild solutions of second-order impulsive differential
equations in Banach spaces

ADEL JAWAHDOU*1

1 Department of Mathematics, Bizerte Preparatory Engineering Institute, Tunisia.

Received 26 October 2022; Accepted 14 March 2023

Abstract. We discuss the existence of solutions for second-order impulsive differential equation with nonlocal conditions
in Banach spaces. Our approach is based on the generalization of Schauder fixed point principle that is Darbo fixed point
theorem. An example is also presented for illustration.
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1. Introduction

In the present paper we consider the abstract second-order nonlinear impulsive differential equation with non
local condition 

x′′(t) = Ax(t) + f(t, x(t), x′(t)), t ∈ J = [0, T ], t ̸= ti, i = 0, ..., p

x(0) = x0 + g(x), x′(0) = x1

△(x(ti)) = Ii(x(ti)), i = 0, ..., p

△(x′(ti)) = Di(x(ti), x
′(ti)), i = 0, ..., p.

(1.1)

Where A is a linear operator from a Banach space E into itself, △x(ti) = x(t+i ) − x(t−i ), △x′(ti) = x′(t+i ) −
x′(t−i ), 0 < t1 < t2 < ... < tp < T are the instants of impulse effect, f : [0, T ] × E × E → E, Ii : E → E,
Di : E × E → E, x0, x1 ∈ E and g(x) is a function with values in E to be specified later.
For the basic theory on impulsive differential equations in infinite dimensional spaces, the reader is referred to
the literature [2, 3]. The impulsive differential equations has become an important area of investigation by many
authors because of their applications. For more details, we refer the reader to [3, 11, 15]. In [4], Peng and
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Xiang discuss the existence of optimal controls for a Lagrange problem of systems governed by the second-order
nonlinear impulsive differential equations in infinite dimensional spaces:

x′′(t) = Ax(t) + f(t, x(t), x′(t)) +B(t), t ∈ J = [0, T ], t ̸= ti, i = 0, ..., p

x(0) = x0, x
′(0) = x1

△(x(ti)) = Ii(x(ti), x
′(ti)), i = 0, ..., p

△(x′(ti)) = Di(x(ti), x
′(ti)), i = 0, ..., p.

They apply a direct approach to derive the maximum principle for the problem at hand. The authors [6] considered
the existence of mild solutions for a class of abstract impulsive second-order neutral functional differential
equations. In [10], the authors studied the abstract second-order nonlinear impulsive differential equation with
nonlocal condition 

x′′(t) = Ax(t) + f(t, x(t), x′(t)), x(b1(t)), x(b2(t)), ...,

x(bm(t)), x′(b1(t)), ..., x
′(bm(t))) t ∈ J = [0, T ],

x(0) = x0, x
′(0) + g(x) = x1

△(x(ti)) = Ii(x(ti), ), i = 0, ...,m

△(x′(ti)) = Di(x(ti), x
′(ti)), i = 0, ...,m.

In the present work, the existence of a mild solution for problem (1.1) is obtained by the cosine family theory,
measure of non-compactness and the the well known Schauder fixed point principle. Its generalization, called
the Darbo fixed point theorem. It should be pointed out that the restrictive condition on the impulsive term is
removed. The work is organized as follows: In Section two, we recall some definitions and facts about the cosine
family and facts concerning the Kuratowski measures of noncompactness in the Banach space PC([0, T ], E). In
Section three, we give the existence of mild solutions to the problem (1.1). In Section four we present an example
to illustrate our main result.

2. Preliminaries

We begin by giving some notation. Let E be a Banach space with the norm ∥ · ∥. We use θ to present the zero
element in E. For any constant T > 0, denote J = [0, T ]. Let C(J,E) and be the Banach space of all continuous
functions from J into E endowed with the supremum-norm ∥x∥C = supt∈J ∥x(t)∥ for every x ∈ C(J,E).
From the associate literature, we consider the following space of piecewise continuous functions,

PC(J,E) =
{
u : J → E : x is continuous for t ̸= tk,

left continuous at t = tk and x(t+k ) exists for k = 1, 2, . . . ,m
}
.

It easy to see that PC(J,E) is a Banach space endowed with the PC-norm

∥x∥PC = max
{
sup
t∈J

∥x(t+)∥, sup
t∈J

∥x(t−)∥
}
, x ∈ PC(J,E),

where x(t+) and x(t−) represent respectively the right and left limits of x(t) at t ∈ J . Similarly, PC1 will be
the space of the functions x(·) ∈ PC such that x()̇ is continuously differentiable on J , ti, i = 1, 2, . . . , n and the
derivatives

x′
r(t) = lim

s→0

x(t+ s)− x(t+)

s
, x′

l(t) = lim
s→0

x(t+ s)− x(t−)

s

are continuous on [0, T [ and ]0, T ], respectively. Next, for x ∈ PC1, we represent, by x′(t), the left derivative at
t ∈]0, T ] and, by x′(0), the right derivative at zero. It is easy to see that PC1, provided with the norm

∥x∥PC1 := max{∥x∥PC , ∥x′∥PC}
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Mild solutions of second-order impulsive differential equations

is a Banach space. For each finite constant r > 0, let

Ωr = {u ∈ PC(J,E) : ∥u(t)∥ ≤ r, t ∈ J},

then Ωr is a bounded closed and convex set in PC(J,E).
Let L(E) be the Banach space of all linear and bounded operators on E. Since the semigroup T (t)(t ≥ 0)

generated by A is a C0-semigroup in E, denoting

M := sup
t∈J

∥T (t)∥L(E), (2.1)

then M ≥ 1 is a finite number.

Definition 2.1. A C0-semigroup T (t)(t ≥ 0) in E is said to be equicontinuous if T (t) is continuous by operator
norm for every t > 0.

Now we introduce some basic definitions and properties about Kuratowski measure of noncompactness that
will be used in the proof of our main results.

Definition 2.2. [1, 8] The Kuratowski measure of noncompactness α(·) defined on a bounded set S of Banach
space E is

α(S) := inf{δ > 0 : S = ∪m
i=1Si with diam(Si) ≤ δ for i = 1, 2, . . . ,m}.

The following properties about the Kuratowski measure of noncompactness are well known.

Lemma 2.3. [1, 8] Let E be a Banach space and S, U ⊂ E be bounded. The following properties are satisfied:

(i) α(S) = 0 if and only if S is compact, where S means the closure hull of S;

(ii) α(S) = α(S) = α(convS), where convS means the convex hull of S;

(iii) α(λS) = |λ|α(S) for any λ ∈ R;

(iv) S ⊂ U implies α(S) ≤ α(U);

(v) α(S ∪ U) = max{α(S), α(U)};

(vi) α(S + U) ≤ α(S) + α(U), where S + U = {x | x = y + z, y ∈ S, z ∈ U};

(vii) If the map Q : D(Q) ⊂ E → X is Lipschitz continuous with constant k, then α(Q(V )) ≤ kα(V ) for any
bounded subset V ⊂ D(Q), where X is another Banach space.

In this work, we denote by α(·), αc(·), αpc(·) and αpc1(·) the Kuratowski measure of noncompactness on the
bounded set of E, C(J,E), PC(J,E) and PC1(J,E), respectively.
In the following, let J0 = [0, t1], J1 = (t1, t2], ..., Jp−1 = (tp−1, tp] and Jp = (tp, 1], tp+1 = 1. For any
X ⊂ PC(J,E), we denote by X ′ = {x′ : x ∈ X} ⊂ PC(J,E) and by X(t) = {x(t) : x ∈ X} ⊂ E and by
X ′(t) = {x(t) : x ∈ X} ⊂ E for t ∈ J. To discuss the problem (1.1), we also need the following lemma [12].

Lemma 2.4. [12] If X ⊂ PC1(J,E) is bounded and the elements of X ′ are equicontinuous on each Jk, k =

0, 1, ..., p then

αpc1(X) = max{sup
t∈J

α(X(t)), sup
t∈J

α(X ′(t))} (2.2)

Obviously the following formulated theorem constitutes the well known Schauder fixed point principle. Its
generalization, called the Darbo fixed point theorem, is formulated below.
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Lemma 2.5. [8] Let Ω be a nonempty, bounded, closed and convex subset of a Banach space E and let T : Ω →
Ω be a continuous mapping. Assume that there exists a constant k ∈ [0, 1) such that µ(T (X)) = kµ(X) for any
nonempty subset X of Ω, where µ is a measure of noncompactness defined in E. Then T has a fixed point in the
set Ω.

Lemma 2.6. [5, 16] Let E be a Banach space, and let X ⊂ E be bounded. Then there exists a countable set
X0 ⊂ X , such that α(X) ≤ 2α(X0).

Lemma 2.7. [13] Let E be a Banach space, and let X = {un : n = 0, 1, ...} ⊂ PC([0, T ], E) be a bounded
and countable set for constants −∞ < 0 < T < +∞. Then α(X(t)) is Lebesgue integral on [0, T ], and

α
({∫ T

0

un(t)dt : n ∈ N
})

≤ 2{
∫ T

0

α(un(t))dt : n = 0, 1, ...}.

Lemma 2.8. [1] Let E be a Banach space, and let X ⊂ C([0, T ], E) be bounded and equicontinuous. Then
α(X(t)) is continuous on [0, T ], and

αc(X) = max
t∈[0,T ]

α(X(t)).

Next, we shall need the following definitions [25].

Definition 2.9. A one parameter family {C(t), t ∈ J} of bounded linear operators in the Banach space X is
called a strongly continuous cosine family if

(i) C(s+ t) + C(s− t) = 2C(s)C(t), for all s, t ∈ J ;

(ii) C(0) = I;

(iii) C(t)x is continuous in t on J , for each x ∈ X .

Define the associated sine family S(t), t ∈ J by

S(t)x :=

∫ t

0

C(s)xds, x ∈ X, t ∈ J

The infinitesimal generator of a strongly continuous cosine family {C(t), t ∈ J} is the operator A : X → X ,
defined by

Ax = lim
t→0

d2

dt2
C(t)x, x ∈ D(A),

where D(A) := {x ∈ X : C(t)x is twice continuously differentiable in t}.
Define E := {x ∈ X : C(t)x is twice continuously differentiable in t}. We assume

(HA) A is the infinitesimal generator of a strongly continuous cosine family {C(t), t ∈ J} of bounded linear
operators in the Banach space X .

To establish our main theorem, we need the following lemmas.

Lemma 2.10. Let (HA) hold. Then

(i) there exist constants M ≥ 1 and ω ≥ 0 such that ∥C(t)∥ ≤ Meω|t| and

∥S(b)− S(a)∥ ≤ M |
∫ a

b

eω|s|ds|, for a, b ∈ J ;

(ii) S(t)X ⊂ E and S(t)E ⊂ D(A), for t ∈ J;
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(iii) d
dtC(t)x = AS(t)x, for x ∈ E and t ∈ J;

(iv) d2

dt2C(t)x = AC(t)x, for x ∈ D(A) and t ∈ J .

Further we denote by∥C(t)∥ and ∥S(t)∥ the operators norm of C(t), S(t) for t ∈ [0, T ] in the Banach space
E, respectively. From assumption (HA) it follows that there is a constant M ≥ 1 such that

∥C(t)∥ ≤ M and ∥S(t)∥ ≤ M for t ∈ [0, T ].

Lemma 2.11. [25] Let (HA) hold and v : R → X be such that v is continuous and let q(t) =
∫ t

0
S(t−s)v(s)ds.

Then q is twice continuously differentiable and, for t ∈ I: q(t) ∈ D(A), q′(t) =
∫ t

0
C(t− s)v(s)ds and

q′′(t) =

∫ t

0

C(t− s)v′(s)ds+ C(t)v(0) = Aq(t) + v(t).

3. Main results

We first give the following hypotheses:

(HA) A is the infinitesimal generator of a strongly continuous cosine family {C(t), t ∈ I} of bounded linear
operators in the Banach space X .

(Hf ) (i) (t, x, y) 7→ f(t, x, y) satisfies the Carathéodory conditions, i.e. f(., x, y) is measurable for x, y ∈ E

and f(t, ., .) is continuous for a.e. t ∈ [0, T ]

(ii) There exist m ∈ L1([0, T ],R+) such that ∥f(t, x, y)∥ ≤ m(t)(∥x∥+ ∥y∥) for a.e. t ∈ [0, T ] and all
x ∈ E.

(iii) There exists a function l ∈ L1([0, T ],R+) such that for any bounded subset
B,D ⊂ E,α(f(t, B,D)) = l(t)max{α(B), α(D)} for a.e. t ∈ [0, T ].

(Hg) (i) g is continuous.

(ii) There is nonnegative constant q such that α(g(D)) ≤ qαpc1(D) for any bounded set
D ⊂ PC1([0, T ], E).

(H) (i) Ii and Di are continuous.

(ii) There exist nonnegative constants k1i and k2i such that α(Ii(B)) ≤ k1i α(B) and α(Di(B,D)) ≤
k2i max(α(B), α(D)) for any nonempty and bounded subset B,D ⊂ E and i = 1, ..., p.

(HR) There exists a number R > 0 such that

max(η1(R), η1(R)) ≤ R,

where,

η1(R) = M
[
∥x0∥+ ∥x1∥+ C1

]
+ 2MR sup

t∈[0,T ]

( ∫ t

0

m(s)ds
)
+Mp(C2 + C3)

and

η2(R) = M
[
∥A∥(∥x0∥+ C1) + ∥x1∥

]
+ 2MR sup

t∈[0,T ]

( ∫ t

0

m(s)ds
)
+Mp(∥A∥C2 + C3),
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where
C1 = sup

x∈Bpc1 (R)

g(∥x∥),

C2 = sup
x∈Bpc1 (R)

∥Ii(x(ti))∥

and
C3 = sup

x∈Bpc1 (R)

∥Di(x(ti), x
′(ti))∥.

Next, let us start by defining what we mean by a solution of the problem (1.1)(see [6]).

Definition 3.1. A function x ∈ PC1([0, T ], E) is said to be a mild solution of the problem (1.1) if x satisfies the
equation

x(t) = C(t)[x0 + g(x)] + S(t)x1 +

∫ t

0

S(t− s)f(s, x(s), x′(s))ds

+
∑

0<ti<t

C(t− ti)Ii(x(ti)) +
∑

0<ti<t

S(t− ti)Di(x(ti), x
′(ti)), t ∈ [0, T ]. (3.1)

Remark 3.2. Assumptions (Hf )(i), (Hg)(ii) and (H)(ii) imply that mappings f , g, Ii and Ii are bounded on
bounded subsets of PC1([0, T ], E) and E, respectively.

To simplify the writing and the calculation one poses

L̃ =

∫ T

0

l(s)ds, S1 =
∑

0<ti<t

k1i and S2 =
∑

0<ti<t

k2i

.

Theorem 3.3. Let E be a separable Banach space. Assume that the assumptions (HA), (Hf ), (Hg),(H) and
(HR) are satisfied. If

max{q + L̃+ S1 + S2; ∥A∥q + L̃+ ∥A∥S1 + S2} <
1

M
,

then for each x0 ∈ E, the equation (1.1) has at least one mild solution x in PC1(J,E).

Proof. Consider the operator Fx : PC1([0, T ], E) → PC1([0, T ], E) define by

(Fx)(t) = C(t)[x0 + g(x)] + S(t)x1 +

∫ t

0

S(t− s)f(s, x(s), x′(s))ds

+
∑

0<ti<t

C(t− ti)Ii(x(ti)) +
∑

0<ti<t

S(t− ti)Di(x(ti), x
′(ti)), t ∈ [0, T ]. (3.2)

It easy to see that (Fx) ∈ PC([0, T ], E) for x ∈ PC1([0, T ], E). Moreover,

(Fx)′(t) =
∂(Fx)

∂t
(t) = AS(t)[x0 + g(x)] + C(t)x1 +

∫ t

0

C(t− s)f(s, x(s), x′(s))ds

+
∑

0<ti<t

AS(t− ti)Ii(x(ti)) +
∑

0<ti<t

C(t− ti)Di(x(ti), x
′(ti)), t ∈ [0, T ]. (3.3)

Then, we get that (Fx)′ ∈ PC([0, T ], E) and therefore, Fx ∈ PC1([0, T ], E). So, F maps the Banach space
PC1([0, T ], E) into itself. Next, Let R be a positive number satisfying the inequality from assumption (HR). Taking an

122



Mild solutions of second-order impulsive differential equations

arbitrary function x ∈ Bpc1(R), we get

∥Fx(t)∥pc ≤ M
[
∥x0∥+ g(∥x∥)

]
+M∥x1∥+M

∫ t

0

m(s)(∥x(s)∥+ ∥x′(s)∥)ds

+ M
∑

0<ti<t

∥Ii(x(ti))∥+M
∑

0<ti<t

∥Di(x(ti), x
′(ti))∥

≤ M
[
∥x0∥+ sup

x∈B
pc1

(R)

g(∥x∥)
]
+M∥x1∥

+ 2M sup
t∈[0,T ]

( ∫ t

0

m(s)max{∥x(s)∥, ∥x′(s)∥}ds
)

+ M
∑

0<ti<t

sup
x∈B

pc1
(R)

∥Ii(x(ti))∥+M
∑

0<ti<t

sup
x∈B

pc1
(R)

∥Di(x(ti), x
′(ti))∥

≤ η1(R). (3.4)

Similarly,

∥(Fx)′(t)∥pc ≤ M∥A∥
[
∥x0∥+ g(∥x∥)

]
+M∥x1∥+M

∫ t

0

m(s)(∥x(s)∥+ ∥x′(s)∥)ds

+ M∥A∥
∑

0<ti<t

∥Ii(x(ti))∥+M
∑

0<ti<t

∥Di(x(ti), x
′(ti))∥

≤ M
[
∥x0∥+ sup

x∈B
pc1

(R)

g(∥x∥)
]
+M∥x1∥

+ 2M sup
t∈[0,T ]

( ∫ t

0

m(s)max{∥x(s)∥, ∥x′(s)∥}ds
)

+ M∥A∥
∑

0<ti<t

sup
x∈B

pc1
(R)

∥Ii(x(ti))∥+M∥
∑

0<ti<t

sup
x∈B

pc1
(R)

∥Di(x(ti), x
′(ti))∥

≤ η2(R), (3.5)

and thus,

∥(Fx)(t)∥pc1 = max
{
∥(Fx)(t)∥pc, ∥(Fx)′(t)∥pc

}
≤ max

{
η2(R), η2(R)

}
= η(R) ≤ R. (3.6)

The last inequality shows that (Fx) ∈ Bpc1(R) for x ∈ Bpc1(R), that is F (Bpc1(R)) ⊂ Bpc1(R). Now, we prove that
operator F is continuous in Bpc1(R). To do this, let us fix x ∈ Bpc1(R) and take an arbitrary sequence (xn) ∈ Bpc1(R)

such that xn → x in Bpc1(R). It also implies that the family {Fx x ∈ Bpc1(R)} is equibounded. Next, we shall show that
the family {Fx x ∈ Bpc1(R)} is equicontinuous on each interval of continuity Jk, k = 0, 1, ..., p. For this, let x ∈ Bpc1(R)

and 0 ≤ t1 < t2 ≤ T . Then we have

(Fx)′(t2)− (Fx)′(t1) = A[S(t2)− S(t1)][x0 + g(x)] + [C(t2)− C(t2)]x1

+

∫ t1

0

[C(t2 − s)− C(t2 − s)]f(s, x(s), x′(s))ds+

∫ t2

t1

C(t2 − s)f(s, x(s), x′(s))ds

+
∑

0<ti<t1

A[S(t2 − ti)− S(t1 − ti)]Ii(x(ti)) +
∑

t1<ti<t2

A[S(t2 − ti)]Ii(x(ti))

+
∑

0<ti<t1

[C(t2 − ti)− C(t1 − ti)]Di(x(ti), x
′(ti)) +

∑
t1<ti<t2

[C(t2 − ti)]Di(x(ti), x
′(ti).
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So,

∥(Fx)′(t2)− (Fx)′(t1)∥ ≤ ∥A∥∥S(t2)− S(t1)∥[∥x0∥+ ∥g(x)∥] + [∥C(t2)− C(t2)∥]∥x1∥

+

∫ t1

0

[∥C(t2 − s)− C(t2 − s)∥]∥f(s, x(s), x′(s))∥ds+
∫ t2

t1

∥C(t2 − s)∥∥f(s, x(s), x′(s))∥ds

+
∑

0<ti<t1

∥A∥[∥S(t2 − ti)− S(t1 − ti)∥]∥Ii(x(ti))∥+
∑

t1<ti<t2

∥A∥∥S(t2 − ti)∥∥Ii(x(ti))∥

+
∑

0<ti<t1

∥C(t2 − ti)− C(t1 − ti)∥∥Di(x(ti), x
′(ti))∥+

∑
t1<ti<t2

∥C(t2 − ti)∥∥Di(x(ti), x
′(ti)∥.

Then,

∥(Fx)′(t2)− (Fx)′(t1)∥ ≤ ∥A∥∥S(t2)− S(t1)∥[∥x0∥+ C1] + ∥C(t2)− C(t2)∥∥x1∥

+ R

∫ t1

0

[∥C(t2 − s)− C(t2 − s)∥]m(s)ds+MR

∫ t2

t1

m(s)ds

+ ∥A∥C2

∑
0<ti<t1

∥S(t2 − ti)− S(t1 − ti)∥+ ∥A∥MC2i(t1, t2)

+ C3

∑
0<ti<t1

∥C(t2 − ti)− C(t1 − ti)∥+Mi(t1, t2). (3.7)

where, i(t1, t2) is the number of instants of impulse effect in the interval [t1, t2). First, notice that the right-hand side of
inequality is independant of the choose of x ∈ Bpc1(R). Further, from the uniform continuity of C(t) and S(t) on J in the
operator norm, all norm in the right-hand side converge to 0 as t1 → t2. Finally i(t1, t2) is zero for t1, t2 both in one of the
intervals of continuity Jk, k = 0, 1, ..., p. This, prove that the family of functions {(Fx)′ : x ∈ Bpc1(R)} is equicontinuous
on each interval Jk, k = 0, 1, ..., p. In what follows, we will show that F is a strict set contraction from PC1(J,E) into
itself. Let Q be a bounded set of PC1(J,E). Then F (Q) ⊂ PC1(J,E) is bounded and by (3.7) the elements of (F (Q))′

are equicontinuous on each interval Jk, k = 0, 1, ..., p. Hence by lemma 2.4, we get

αpc1(FQ) = max{sup
t∈J

α((FQ)(t)), sup
t∈J

α((FQ)′(t))}. (3.8)

Firstly,

α((FQ)(t)) ≤ Mα(g(Q)) +M

∫ t

0

α(f(s,Q(s), Q′(s)))ds

+ M
∑

0<ti<t

α(Ii(Q(ti))) +M
∑

0<ti<t

α(Di(Q(ti), Q
′(ti))

≤ Mqαpc1(Q) +Mαpc1(Q)

∫ t

0

l(s)ds

+ M
∑

0<ti<t

k1
iα(Q(ti))) +Mαpc1(Q)

∑
0<ti<t

k2
i

≤ M(q + L̃+ S1 + S2)αpc1(Q). (3.9)

Similarly,

α((FQ)(t)) ≤ M(∥A∥q + L̃+ ∥A∥S1 + S2)αpc1(Q). (3.10)

Finally, inequalities (3.8), (3.9) and (3.10) imply that

αpc1((FQ)) ≤ MKαpc1(Q),

where K = max(∥A∥q + L̃+ ∥A∥S1 + S2, q + L̃+ S1 + S2)

By lemma 2.5 the theorem (3.3) is proved.
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4. Application

Consider the following impulse scalar second order differential equation with nonlocal conditions

x′′(t) = x(t) + arctan(t)

18+t2

[
x(t) + x′(t)

]
, t ∈ J = (0, 1]\{β1, β2, ..., β5}

x(0) = x0 +
1
9

3∑
j=1

2−jx(tj), x
′(0) = x1

△(x( 1
4
)) = 1

30
x( 1

4
), i = 0, ..., 5

△(x′( 1
4
)) = 1

100
(x( 1

4
) + x′( 1

4
)),

(4.1)

where 0 < β1 < β2 < ... < β5 < 1 and tj ∈ (0, 1], j = 1, 2, ..., p. Here E = R, C(t) = cosh(t), S(t) = sinh(t),
max
t∈[0,1]

cosh(t) = cosh(1) < 3. Since arcosh(3) = 1,7627, max
t∈[0,1]

sinh(t) = sinh(1) < 3, thus we can choose M = 3. It is

easy to see that f(t, x, y) = 1
1+t2

√
x2 + y2 satisfies to the inequality |f(t, x, y)| ≤ 1

18+t2
(|x| + |y|) for all t ∈ [0, 1] and

x, y ∈ R. Similarly, it is not difficult to show that

q =
1

9

3∑
j=1

(
1

2
)j , k1

i = 1
9

, k2
i = 1

9
and l(s) = π

2(18+s2)
. If we take R = 3 it is easy to see that when ∥x0∥ + ∥x1∥ < 13

30

and q + L + S1 + S2 < 1
3

. Then all conditions of theorem (3.3) are satisfied. Thus, our conclusion follows from the main
theorem.
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Abstract. A functional Hilbert space is the Hilbert space of complex-valued functions on some set Θ ⊆ C that the evaluation
functionals are continuous for each τ ∈ Θ on H. The Berezin transform S̃ and the Berezin radius of an operator S on the
functional Hilbert space (or reproducing kernel Hilbert space) over some set Θ with the reproducing kernel kτ are defined,
respectively, by

S̃(τ) =
〈
Sk̂τ , k̂τ

〉
, τ ∈ Θ and ber(S) := sup

τ∈Θ

∣∣∣S̃(τ)∣∣∣ .
Using this limited function S̃, we investigate several novel inequalities that include improvements to some Berezin radius
inequalities for operators working on the functional Hilbert space.

AMS Subject Classifications: 47A12, 26D15, 47A63.

Keywords: Berezin symbol, Berezin radius, Cauchy-Schwarz inequality, triangle inequality, reproducing kernel.
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1. Introduction

Let L (H) be the Banach algebra of all bounded linear operators defined on a complex Hilbert space (H, ⟨., .⟩).
Throughout the paper, we work on functional Hilbert space (FHS), which are complete inner product spaces
made up of complex-valued functions defined on a non-empty set Θ with bounded point evaluation. Recall that a
functional Hilbert space H = H (Θ) is a complex Hilbert space on a (nonempty) Θ, which has the property that
point evaluatians are continuons for each τ ∈ Θ there is an unique element kτ ∈ H such that f (τ) = ⟨f, kτ ⟩,
for all f ∈ H. The family {kτ : τ ∈ Θ} is called the reproducing kernel H. If {en}n≥0 is an orthonormal basis

for FHS, the reproducing kernel is showed by kτ =
∑∞

n=0 en (τ)en (z). For τ ∈ Θ, k̂τ = kτ

∥kτ∥H
is called the

normalized reproducing kernel.

Definition 1.1. (i) For S ∈ L (H), the function S̃ defined on Θ by

S̃ (τ) =
〈
Sk̂τ , k̂τ

〉
H

is the Berezin symbol (or Berezin transform) of S.

∗Corresponding author. Email address: verdagurdal@icloud.com (Verda GÜRDAL)

https://www.malayajournal.org/index.php/mjm/index ©2023 by the authors.
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(ii) The Berezin range of S (or Berezin set of S) is

Ber(S) := Range(S̃) =
{
S̃(τ) : τ ∈ Θ

}
.

(iii) The Berezin radius of S (or Berezin number of S) is

ber(S) := sup
{∣∣∣S̃(τ)∣∣∣ : τ ∈ Θ

}
.

The Berezin transform S̃ is a bounded real-analytic function on for each bounded operator S on H. The
Berezin transform S̃ frequently reflects the characteristics of the operator S. A key tool in operator theory is
the Berezin transform, which Berezin first described in [10]. This is because the Berezin transforms of many
significant operators include information on their fundamental characteristics. The Berezin range and Berezin
radius of the operator were defined by Karaev in [25].

Recall that the numerical range and numerical radius number of S ∈ L (H) are denoted respectively, by

W (S) = {⟨Su, u⟩ : u ∈ H and ∥u∥ = 1} and,

w (S) = sup {|⟨Su, u⟩| : u ∈ H and ∥u∥ = 1} .

The absolute value of positive operator is denoted by |S| = (S∗S)
1
2 . The numerical range has several intriguing

features. For example, it is usually assumed that an operator’s spectrum is confined in the closure of its numerical
range. For an illustration of how this and other numerical radius inequalities were addressed in those sources, we
urge the reader read [1, 14, 28, 29]. For S, T ∈ L(H) it is clear from the definition of the Berezin number and
the Berezin norm that the following properties hold:

(B1) ber(zS) = |z|ber(S) for all z ∈ C,
(B2) ber(S + T ) ≤ ber(S) + ber(T ),

(B3) ber(S) ≤ ∥S∥ber ,
(B4) ∥zS∥ber = |z| ∥S∥ber for all z ∈ C,
(B5) ∥S + T∥ber ≤ ∥S∥ber + ∥T∥ber .
It is clear from the definition that Ber(S) ⊆ W (S) and so

ber (S) ≤ w (S) ≤ ∥S∥ (1.1)

for any S ∈ L (H (Θ)) .

In [24], Huban et al. obtained the following result:

ber (S) ≤ 1

2

(
∥S∥ber +

∥∥S2
∥∥1/2
ber

)
. (1.2)

After that, in [22], and [9], respectively, the same authors proved for S ∈ L (H (Θ))

1

4

∥∥∥|S|2 + |S∗|2
∥∥∥
ber

≤ ber2 (S) ≤ 1

2

∥∥∥|S|2 + |S∗|2
∥∥∥
ber

(1.3)

where |S| = (S∗S)
1/2 is the acsolute value of S, and

ber2α (S) ≤ 1

2

∥∥∥|S|2α + |S∗|2α
∥∥∥
ber

(1.4)

where α ≥ 1.
Huban et al. demonstrated the following Berezin radius estimate for the product of two functional Hilbert

space operators

berα (T ∗S) ≤ 1

2

∥∥∥|S|2α + |T |2α
∥∥∥ , α ≥ 1, (1.5)
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in [22, Theorem 3.11].
On Bergman and Hardy spaces, the Berezin symbol (or transform) has been thoroughly investigated for

Hankel and Toeplitz operators. Several mathematical works have examined the Berezin symbol and Berezin
radius throughout the years; a few of them are [6, 7, 12, 19, 20, 25, 26, 32]. In order to functional Hilbert space
(reproducing kernel Hilbert space) operators, this study establishes numerous improvements of the
aforementioned Berezin radius inequalities. In specifically, it is demonstrated that

ber2 (S) ≤ 1

6

∥∥∥|S|2 + |S∗|2
∥∥∥
ber

+
1

3
ber (S) ∥|S|+ |S∗|∥ber (1.6)

for the arbitrary bounded linear operator S ∈ L (H (Θ)) . Furthermore covered are a few additional connected
issues. The related results are obtained in [4].

2. Known Lemmas

The following series of corollaries are necessary for us to succeed in our mission.
According to the Cauchy-Schwarz inequality,

|⟨u, v⟩| ≤ ∥u∥ ∥v∥ (2.1)

holds true for every vectors u and v in an inner product space.
Contrarily, the traditional Schwarz inequality for positive operators states that for any u, v ∈ H, if S ∈ L (H)

is a positive operators, then
|⟨Su, v⟩|2 ≤ ⟨Su, u⟩ ⟨Sv, v⟩ . (2.2)

A companion of Schwarz inequality (2.2) known as the Kato’s inequality or the so called mixed Cauchy
Schwarz inequality was first proposed by Kato [27] in 1952. It states:

|⟨Su, v⟩|2 ≤
〈
|S|2r u, u

〉〈
|S∗|2(1−r)

v, v
〉

, 0 ≤ r ≤ 1 (2.3)

for any operators S ∈ B (H) and any vectors u, v ∈ H.

|⟨Su, u⟩| ≤
√

⟨|S|u, u⟩ ⟨|S∗|u, u⟩. (2.4)

in particular is present.

|⟨Su, u⟩|2 ≤ 1

3
⟨|S|u, u⟩ ⟨|S∗|u, u⟩+ 2

3
|⟨Su, u⟩|

√
⟨|S|u, u⟩ ⟨|S∗|u, u⟩ (2.5)

≤ ⟨|S|u, u⟩ ⟨|S∗|u, u⟩

was proven to be the refinement of (2.4) in [30].
The following well-known lemmas will make it necessary to demonstrate our findings. The Power-Mean

(PM) inequality comes first.

Lemma 2.1. ([31]) According to the PM inequality,

xry1−r ≤ rx+ (1− r) y ≤ (rxα + (1− r) yα)
1
α (2.6)

holds for every 0 ≤ r ≤ 1, x, y ≥ 0 and α ≥ 1.

The McCarty inequality for positive operators is the following lemma.

Lemma 2.2. ([15]) If S ∈ L (H) is a positive operator and u ∈ H is an unit vector, then we have

⟨Su, u⟩α ≤ (≥) ⟨Sαu, u⟩ , α ≥ 1 (0 ≤ α ≤ 1) . (2.7)

129
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Lemma 2.3. ([5]) If S, T ∈ L (H) and f is a non-negative convex function on [0,∞), then we have∥∥∥∥f (S + T

2

)∥∥∥∥ ≤
∥∥∥∥f (S) + f (T )

2

∥∥∥∥ . (2.8)

Lemma 2.4. If u, v ∈ H and 0 ≤ ξ ≤ 1, then we have

|⟨u, v⟩|2 ≤ (1− ξ) |⟨u, v⟩| ∥u∥ ∥v∥+ ξ ∥u∥2 ∥v∥2 ≤ ∥u∥2 ∥v∥2 . (2.9)

Lemma 2.5. Let u, v ∈ H. Then

|⟨u, v⟩| ≤ (1− ξ)
√

|⟨u, v⟩| ∥u∥ ∥v∥+ ξ ∥u∥ ∥v∥ ≤ ∥u∥ ∥v∥ . (2.10)

The next finding expands and clarifies Kato’s inequality (2.3), which in turn expands and clarifies (2.5).

Lemma 2.6. ([4]) If S ∈ L (H (Θ)), 0 ≤ ξ, r ≤ 1 and α ≥ 1, then we have∣∣∣〈Sk̂τ , k̂υ〉∣∣∣2α ≤ ξ
〈
|S|2αr k̂τ , k̂τ

〉〈
|S∗|2α(1−r)

k̂υ, k̂υ

〉
+ (1− ξ)

∣∣∣〈Sk̂τ , k̂υ〉∣∣∣α√〈|S|2αr k̂τ , k̂τ〉〈|S∗|2α(1−r)
k̂υ, k̂υ

〉
(2.11)

≤
〈
|S|2αr k̂τ , k̂τ

〉〈
|S∗|2α(1−r)

k̂υ, k̂υ

〉
.

Proof. Let τ, υ ∈ Θ be an arbitrary. By using (2.7), we get

ξ
〈
|S|2αr k̂τ , k̂τ

〉〈
|S∗|2α(1−r)

k̂υ, k̂υ

〉
+ (1− ξ)

∣∣∣〈Sk̂τ , k̂υ〉∣∣∣α√〈|S|2αr k̂τ , k̂τ〉〈|S∗|2α(1−r)
k̂υ, k̂υ

〉
≥ ξ

〈
|S|2r k̂τ , k̂τ

〉α 〈
|S∗|2(1−r)

k̂υ, k̂υ

〉α
(2.12)

+ (1− ξ)
∣∣∣〈Sk̂τ , k̂υ〉∣∣∣α√〈|S|2r k̂τ , k̂τ〉α 〈|S∗|2(1−r)

k̂υ, k̂υ

〉α
= ξ

∣∣∣〈Sk̂τ , k̂υ〉∣∣∣2α + (1− ξ)
∣∣∣〈Sk̂τ , k̂υ〉∣∣∣α ∣∣∣〈Sk̂τ , k̂υ〉∣∣∣α

=
∣∣∣〈Sk̂τ , k̂υ〉∣∣∣2α

for every 0 ≤ ξ ≤ 1 and α ≥ 1. As opposed to that, we get

ξ
〈
|S|2αr k̂τ , k̂τ

〉〈
|S∗|2α(1−r)

k̂υ, k̂υ

〉
+ (1− ξ)

∣∣∣〈Sk̂τ , k̂υ〉∣∣∣α√〈|S|2αr k̂τ , k̂τ〉〈|S∗|2α(1−r)
k̂υ, k̂υ

〉
≤ ξ

〈
|S|2αr k̂τ , k̂τ

〉〈
|S∗|2α(1−r)

k̂υ, k̂υ

〉
+ (1− ξ)

√〈
|S|2αr k̂τ , k̂τ

〉〈
|S∗|2α(1−r)

k̂υ, k̂υ

〉√〈
|S|2αr k̂τ , k̂τ

〉〈
|S∗|2α(1−r)

k̂υ, k̂υ

〉
(2.13)

= ξ
〈
|S|2αr k̂τ , k̂τ

〉〈
|S∗|2α(1−r)

k̂υ, k̂υ

〉
+ (1− ξ)

〈
|S|2αr k̂τ , k̂τ

〉〈
|S∗|2α(1−r)

k̂υ, k̂υ

〉
=
〈
|S|2αr k̂τ , k̂τ

〉〈
|S∗|2α(1−r)

k̂υ, k̂υ

〉
.
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Combining (2.12) and (2.13), we deduce that∣∣∣〈Sk̂τ , k̂υ〉∣∣∣2α ≤ ξ
〈
|S|2αr k̂τ , k̂τ

〉〈
|S∗|2α(1−r)

k̂υ, k̂υ

〉
+ (1− ξ)

∣∣∣〈Sk̂τ , k̂υ〉∣∣∣α√〈|S|2αr k̂τ , k̂τ〉〈|S∗|2α(1−r)
k̂υ, k̂υ

〉
≤
〈
|S|2αr k̂τ , k̂τ

〉〈
|S∗|2α(1−r)

k̂υ, k̂υ

〉
.

■

3. Main Results

Now, our refined Berezin radius inequality could be presented like this:

Theorem 3.1. If X,Y ∈ L (H (Θ)), 0 ≤ ξ ≤ 1 and α ≥ 1, then we have

ber2α (Y ∗X) ≤ (1− ξ) berα (Y ∗X)
∥∥∥|X|2α + |Y |2α

∥∥∥
ber

+
1

2
ξ
∥∥∥|X|4α + |Y |4α

∥∥∥
ber

(3.1)

≤ 1

2

∥∥∥|X|4α + |Y |4α
∥∥∥
ber

.

Proof. Assume that k̂τ ∈ H is a normalized reproducing kernel. If we take u = Xk̂τ and v = Y k̂τ in the
inequality in (2.9), then we have∣∣∣〈Xk̂τ , Y k̂τ

〉∣∣∣2 ≤
∣∣∣〈Y ∗Xk̂τ , k̂τ

〉∣∣∣2
≤ (1− ξ)

∣∣∣〈Xk̂τ , Y k̂τ

〉∣∣∣ ∥∥∥Xk̂τ

∥∥∥∥∥∥Y k̂τ

∥∥∥+ ξ
∥∥∥Xk̂τ

∥∥∥2 ∥∥∥Y k̂τ

∥∥∥2
= (1− ξ)

∣∣∣〈Y ∗Xk̂τ , k̂τ

〉∣∣∣ 〈|X|2 k̂τ , k̂τ
〉 1

2
〈
|Y |2 k̂τ , k̂τ

〉 1
2

+ ξ
〈
|X|2 k̂τ , k̂τ

〉〈
|Y |2 k̂τ , k̂τ

〉
.

Employing the PM inequality (2.6), we get∣∣∣〈Y ∗Xk̂τ , k̂τ

〉∣∣∣2 ≤
(
(1− ξ)

∣∣∣〈Y ∗Xk̂τ , k̂τ

〉∣∣∣α 〈|X|2 k̂τ , k̂τ
〉α

2
〈
|Y |2 k̂τ , k̂τ

〉α
2

+ξ
〈
|X|2 k̂τ , k̂τ

〉α 〈
|Y |2 k̂τ , k̂τ

〉α) 1
α

,

which implies that∣∣∣〈Y ∗Xk̂τ , k̂τ

〉∣∣∣2α
≤ (1− ξ)

∣∣∣〈Y ∗Xk̂τ , k̂τ

〉∣∣∣α 〈|X|2 k̂τ , k̂τ
〉α

2
〈
|Y |2 k̂τ , k̂τ

〉α
2

+ ξ
〈
|X|2 k̂τ , k̂τ

〉α 〈
|Y |2 k̂τ , k̂τ

〉α
≤ (1− ξ)

∣∣∣〈Y ∗Xk̂τ , k̂τ

〉∣∣∣α 〈|X|2α k̂τ , k̂τ

〉 1
2
〈
|Y |2α k̂τ , k̂τ

〉 1
2

+ ξ
〈
|X|2α k̂τ , k̂τ

〉〈
|Y |2α k̂τ , k̂τ

〉
(by the inequality (2.7))
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≤ 1

2
(1− ξ)

∣∣∣〈Y ∗Xk̂τ , k̂τ

〉∣∣∣α (〈|X|2α k̂τ , k̂τ

〉
+
〈
|Y |2α k̂τ , k̂τ

〉)
+

1

2
ξ
(〈

|X|4α k̂τ , k̂τ

〉
+
〈
|Y |4α k̂τ , k̂τ

〉)
(by the inequality (2.6))

=
1

2
(1− ξ)

∣∣∣〈Y ∗Xk̂τ , k̂τ

〉∣∣∣α 〈(|X|2α + |Y |2α
)
k̂τ , k̂τ

〉
+

1

2
ξ
〈(

|X|4α + |Y |4α
)
k̂τ , k̂τ

〉
,

and

sup
τ∈Θ

∣∣∣〈Y ∗Xk̂τ , k̂τ

〉∣∣∣2α ≤ 1

2
(1− ξ) sup

τ∈Θ

{∣∣∣〈Y ∗Xk̂τ , k̂τ

〉∣∣∣α 〈(|X|2α + |Y |2α
)
k̂τ , k̂τ

〉}
+

1

2
ξ sup
τ∈Θ

〈(
|X|4α + |Y |4α

)
k̂τ , k̂τ

〉
.

Therefore, we have

ber2α (Y ∗X) ≤ (1− ξ) berα (Y ∗X)
∥∥∥|X|2α + |Y |2α

∥∥∥
ber

+
1

2
ξ
∥∥∥|X|4α + |Y |4α

∥∥∥
ber

.

The desired first inequality is therefore obtained in (3.1). Nonetheless, from the inequalities (1.5) and (2.8), we
get

ber2α (Y ∗X) ≤ 1

2
(1− ξ) berα (Y ∗X)

∥∥∥|X|2α + |Y |2α
∥∥∥
ber

+
1

2
ξ
∥∥∥|X|4α + |Y |4α

∥∥∥
ber

≤ 1

2
(1− ξ)

(
1

2

∥∥∥|X|2α + |Y |2α
∥∥∥
ber

)∥∥∥|X|2α + |Y |2α
∥∥∥
ber

+
1

2
ξ
∥∥∥|X|4α + |Y |4α

∥∥∥
ber

=
1

4
(1− ξ)

∥∥∥|X|2α + |Y |2α
∥∥∥2
ber

+
1

2
ξ
∥∥∥|X|4α + |Y |4α

∥∥∥
ber

≤ 1

4
(1− ξ)

∥∥∥∥∥∥
(
|X|2α + |Y |2α

2

)2
∥∥∥∥∥∥
ber

+
1

2
ξ
∥∥∥|X|4α + |Y |4α

∥∥∥
ber

≤ 1

4
(1− ξ)

∥∥∥∥∥∥∥

(
2 |X|2α

)2
+
(
2 |Y |2α

)2
2


∥∥∥∥∥∥∥
ber

+
1

2
ξ
∥∥∥|X|4α + |Y |4α

∥∥∥
ber

≤ 1

2

∥∥∥|X|4α + |Y |4α
∥∥∥
ber

,

which demonstrates the second inequality in (3.1). ■

The next outcome is much better than the inequalities (3.1).

Theorem 3.2. If X,Y ∈ L (H (Θ)), α ≥ 1 and ξ ∈ [0, 1], then we get

ber2r (Y ∗X) ≤ 1

4
ξ
∥∥∥|X|2α + |Y |2α

∥∥∥2
ber

+
1

2
(1− ξ) berα (X)

∥∥∥|X|2α + |Y |2α
∥∥∥
ber

(3.2)

≤ 1

2
ξ
∥∥∥|X|4α + |Y |4α

∥∥∥2
ber

+
1

2
(1− ξ) berα (X)

∥∥∥|X|2α + |Y |2α
∥∥∥
ber

≤ 1

2

∥∥∥|X|4α + |Y |4α
∥∥∥
ber

.
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Proof. Let τ ∈ Θ be an arbitrary. Then for all ξ ∈ [0, 1], we have

ber2α (Y ∗X) ≤ ξber2α (Y ∗X) + (1− ξ) ber2α (Y ∗X)

= ξber2α (Y ∗X) + (1− ξ) berα (Y ∗X) berα (Y ∗X)

≤ 1

4
ξ
∥∥∥|X|2α + |Y |2α

∥∥∥2 + 1

2
(1− ξ) berα (X)

∥∥∥|X|2α + |Y |2α
∥∥∥

(by the inequalities (1.5)),

which proves the first inequality in (3.2). From the inequalities (2.8),

ber2α (X) ≤ 1

4
ξ
∥∥∥|X|2α + |Y |2α

∥∥∥2
ber

+
1

2
(1− ξ) berα (X)

∥∥∥|X|2α + |Y |2α
∥∥∥
ber

=
1

4
ξ

∥∥∥∥∥∥∥

(
2 |X|2α

)
+
(
2 |Y |2α

)
2

2
∥∥∥∥∥∥∥
ber

+
1

2
(1− ξ) berα (X)

∥∥∥|X|2α + |Y |2α
∥∥∥
ber

≤ 1

4
ξ

∥∥∥∥∥∥∥
(
2 |X|2α

)2
+
(
2 |Y |2α

)2
2

∥∥∥∥∥∥∥
ber

+
1

2
(1− ξ) berα (X)

∥∥∥|X|2α + |Y |2α
∥∥∥
ber

=
1

2
ξ
∥∥∥|X|4α + |Y |4α

∥∥∥
ber

+
1

2
(1− ξ) berα (X)

∥∥∥|X|2α + |Y |2α
∥∥∥
ber

provides the second inequality in (3.2). The third disparity in comes as a result of (3.1). ■

By taking α = 1 and ξ = 1
3 in (3.2), the outcome is as follows.

Corollary 3.3. If X,Y ∈ L (H (Θ)) , then we have

ber2 (Y ∗X) ≤ 1

12

∥∥∥|X|2 + |Y |2
∥∥∥2
ber

+
1

3
ber (X)

∥∥∥|X|2 + |Y |2
∥∥∥
ber

≤ 1

6

∥∥∥|X|4 + |Y |4
∥∥∥2
ber

+
1

3
ber (X)

∥∥∥|X|2 + |Y |2
∥∥∥
ber

≤ 1

2

∥∥∥|X|4 + |Y |4
∥∥∥
ber

.

Theorem 3.4. If X,Y ∈ L (H (Θ)), 0 ≤ ξ ≤ 1 and α ≥ 1, then we have

berα (Y ∗X) ≤ 1√
2
(1− ξ) ber

α
2 (Y ∗X)

∥∥∥|X|2α + |Y |2α
∥∥∥ 1

2

ber
+

1

2
ξ
∥∥∥|X|2α + |Y |2α

∥∥∥
ber

≤ 1

2

∥∥∥|X|2α + |Y |2α
∥∥∥
ber

.

Proof. Assume that k̂τ ∈ H is a normalized reproducing kernel. We determine the desired inequality by entering
u = Xk̂τ and v = Y k̂τ in (2.10) and continuing as in the argument of Theorem 3.1. ■

Theorem 3.5. If X ∈ L (H (Θ)), 0 ≤ r, ξ ≤ 1 and ς ≥ 1, then we have

ber2ς (X) ≤ ξ
∥∥∥r |X|2ς + (1− r) |X∗|2ς

∥∥∥
ber

+
1

2
(1− ξ) berς (X)

∥∥∥|X|2rς + |X∗|2(1−r)ς
∥∥∥
ber

. (3.3)
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Proof. Assume.that τ ∈ Θ is an arbitrary. If we take τ = υ in the inequality (2.11), then we get∣∣∣〈Xk̂τ , k̂τ

〉∣∣∣2ς ≤ ξ
〈
|X|2ςr k̂τ , k̂τ

〉〈
|X∗|2ς(1−r)

k̂τ , k̂τ

〉
+ (1− ξ)

∣∣∣〈Xk̂τ , k̂τ

〉∣∣∣ς√〈|X|2ςr k̂τ , k̂τ
〉〈

|X∗|2ς(1−r)
k̂τ , k̂τ

〉
≤ ξ

〈
|X|2ς k̂τ , k̂τ

〉r 〈
|X∗|2ς k̂τ , k̂τ

〉(1−r)

(by the inequality (2.7))

+ (1− ξ)
∣∣∣〈Xk̂τ , k̂τ

〉∣∣∣ς .(1

2

〈
|X|2ςr k̂τ , k̂τ

〉
+
〈
|X∗|2ς(1−r)

k̂τ , k̂τ

〉)
(bythe inequality (2.7))

≤ ξ
[
r
〈
|X|2ς k̂τ , k̂τ

〉
+ (1− r)

〈
|X∗|2ς k̂τ , k̂τ

〉]
(by the inequality (2.6))

+
1

2
(1− ξ)

∣∣∣〈Xk̂τ , k̂τ

〉∣∣∣ς .(〈(|X|2ςr + |X∗|2ς(1−r)
)
k̂τ , k̂τ

〉)
≤ ξ

〈(
r |X|2ς + (1− r) |X∗|2ς

)
k̂τ , k̂τ

〉
+

1

2
(1− ξ)

∣∣∣〈Xk̂τ , k̂τ

〉∣∣∣ς .(〈(|X|2ςr + |X∗|2ς(1−r)
)
k̂τ , k̂τ

〉)
,

and

sup
τ∈Θ

∣∣∣〈Xk̂τ , k̂τ

〉∣∣∣2ς ≤ ξ sup
τ∈Θ

〈(
r |X|2ς + (1− r) |X∗|2ς

)
k̂τ , k̂τ

〉
+

1

2
(1− ξ) sup

τ∈Θ

∣∣∣〈Xk̂τ , k̂τ

〉∣∣∣ς 〈(|X|2ςr + |X∗|2ς(1−r)
)
k̂τ , k̂τ

〉
.

So, we obtain

ber2ς (X) ≤ ξ
∥∥∥r |X|2ς + (1− r) |X∗|2ς

∥∥∥
ber

+
1

2
(1− ξ) berς (X)

∥∥∥|X|2rς + |X∗|2(1−r)ς
∥∥∥
ber

which the required result. ■

In [24, Th. 3.3], it is proved that

ber2ς (X) ≤ 1

2

∥∥∥ξ |X|2ξς + (1− ξ) |X∗|2ς
∥∥∥
ber

, 0 < ξ < 1, ς ≥ 1. (3.4)

The next finding is stronger than the disparity (3.4).

Theorem 3.6. If X ∈ L (H (Θ)), 0 ≤ r, ξ ≤ 1 and ς ≥ 1, then we have

ber2ς (X) ≤ ξ
∥∥∥r |X|2ς + (1− r) |X∗|2ς

∥∥∥
ber

+ (1− ξ) berς (X)

√∥∥∥r |X|2ς + (1− r) |X∗|2ς
∥∥∥
ber

(3.5)

≤
∥∥∥r |X|2ς + (1− r) |X∗|2ς

∥∥∥
ber

.
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Proof. Assume.that τ ∈ Θ is an arbitrary. If we take τ = υ in the inequality (2.11), then we get∣∣∣〈Xk̂τ , k̂τ

〉∣∣∣2ς ≤ ξ
〈
|X|2ςr k̂τ , k̂τ

〉〈
|X∗|2ς(1−r)

k̂τ , k̂τ

〉
+ (1− ξ)

∣∣∣〈Xk̂τ , k̂τ

〉∣∣∣ς√〈|X|2ςr k̂τ , k̂τ
〉〈

|X∗|2ς(1−r)
k̂τ , k̂τ

〉
≤ ξ

〈
|X|2ς k̂τ , k̂τ

〉r 〈
|X∗|2ς k̂τ , k̂τ

〉(1−r)

(by the inequality (2.7))

+ (1− ξ)
∣∣∣〈Xk̂τ , k̂τ

〉∣∣∣ς .1
2

(〈
|X|2ςr k̂τ , k̂τ

〉
+
〈
|X∗|2ς(1−r)

k̂τ , k̂τ

〉)
≤ ξ

〈(
r |X|2ς + (1− r) |X∗|2ς

)
k̂τ , k̂τ

〉
+ (1− ξ)

∣∣∣〈Xk̂τ , k̂τ

〉∣∣∣ς√〈|X|2ςr k̂τ , k̂τ
〉〈

|X∗|2ς(1−r)
k̂τ , k̂τ

〉
(by the inequality (2.6))

and

sup
τ∈Θ

∣∣∣〈Xk̂τ , k̂τ

〉∣∣∣2ς ≤ ξ sup
τ∈Θ

〈(
r |X|2ς + (1− r) |X∗|2ς

)
k̂τ , k̂τ

〉
+ (1− ξ) sup

τ∈Θ

∣∣∣〈Xk̂τ , k̂τ

〉∣∣∣ς√〈|X|2ςr k̂τ , k̂τ
〉〈

|X∗|2ς(1−r)
k̂τ , k̂τ

〉
.

So, we deduce

ber2ς (X) ≤ ξ
∥∥∥r |X|2ς + (1− r) |X∗|2ς

∥∥∥
ber

+ (1− ξ) berς (X)

√∥∥∥|rX|2ς + (1− r) |X∗|2ς
∥∥∥
ber

.

Hence,

ber2ς (X) ≤ ξ
∥∥∥r |X|2ς + (1− r) |X∗|2ς

∥∥∥
ber

+ (1− ξ) berς (X)

√∥∥∥|rX|2ς + (1− r) |X∗|2ς
∥∥∥
ber

≤
∥∥∥r |X|2ς + (1− r) |X∗|2ς

∥∥∥
ber

(by the inequality (3.4))

allows us to deduce the second inequality from the first inequality, demonstrating the required result. ■

Theorem 3.7. If X ∈ L (H (Θ)), 0 ≤ r, ξ ≤ 1 and ς ≥ 1, then we have

berς (X) ≤ 1

2
ξ
∥∥∥|X|2ςr + |X∗|2ς(1−r)

∥∥∥
ber

+
1√
2
(1− ξ) ber

ς
2 (X)

∥∥∥|X|2ςr + |X∗|2ς(1−r)
∥∥∥1/2
ber

. (3.6)

Proof. Suppose that τ, υ ∈ Θ is an arbitrary. One may see from the inequality (2.12) and (2.13) that∣∣∣〈Xk̂τ , k̂υ

〉∣∣∣ς ≤ ξ
〈
|X|2ςr k̂τ , k̂τ

〉 1
2
〈
|X∗|2ς(1−r)

k̂υ, k̂υ

〉 1
2

(3.7)

+ (1− ξ)
∣∣∣〈Xk̂τ , k̂υ

〉∣∣∣ ς2 √〈|X|2ςr k̂τ , k̂τ
〉 1

2
〈
|X∗|2ς(1−r)

k̂υ, k̂υ

〉 1
2

≤
〈
|X|2ςr k̂τ , k̂τ

〉 1
2
〈
|X∗|2ς(1−r)

k̂υ, k̂υ

〉 1
2
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for every ς ≥ 1 and 0 ≤ r, ξ ≤ 1. Setting τ = υ in the above inequality, it follows that∣∣∣〈Xk̂τ , k̂τ

〉∣∣∣ς ≤ ξ
〈
|X|2ςr k̂τ , k̂τ

〉 1
2
〈
|X∗|2ς(1−r)

k̂τ , k̂τ

〉 1
2

+ (1− ξ)
∣∣∣〈Xk̂τ , k̂τ

〉∣∣∣ς/2√〈|X|2ςr k̂τ , k̂τ
〉 1

2
〈
|X∗|2ς(1−r)

k̂τ , k̂τ

〉1/2
≤ 1

2
ξ
(〈

|X|2ςr k̂τ , k̂τ
〉
+
〈
|X∗|2ς(1−r)

k̂τ , k̂τ

〉)
+

1√
2
(1− ξ)

∣∣∣〈Xk̂τ , k̂τ

〉∣∣∣ς/2√(〈|X|2ςr k̂τ , k̂τ
〉
+
〈
|X∗|2ς(1−r)

k̂τ , k̂τ

〉)
(by the inequality (2.6))

≤ 1

2
ξ
〈(

|X|2ςr + |X∗|2ς(1−r)
)
k̂τ , k̂τ

〉
+

1√
2
(1− ξ)

∣∣∣〈Xk̂τ , k̂τ

〉∣∣∣ς/2√〈(|X|2ςr + |X∗|2ς(1−r)
)
k̂τ , k̂τ

〉
which is equivalent to

berς (X) ≤ 1

2
ξ
∥∥∥|X|2ςr + |X∗|2ς(1−r)

∥∥∥
ber

+
1√
2
(1− ξ) ber

ς
2 (X)

∥∥∥|X|2ςr + |X∗|2ς(1−r)
∥∥∥1/2
ber

.

The evidence is now complete. ■

From [24, Th. 3.2], it is evident that

berς (X) ≤ 1

2

∥∥∥|X|2ξς + |X∗|2(1−ξ)ς
∥∥∥
ber

(3.8)

if X ∈ L (H (Θ)) , 0 < ξ < 1and ς ≥ 1.

The implication that follows demonstrates that our finding (3.6) is more powerful than the inequality (3.8).

Corollary 3.8. If X ∈ L (H (Θ)), 0 ≤ r, ξ ≤ 1 and ς ≥ 1, then we have

berς (X) ≤ 1

2
ξ
∥∥∥|X|2rς + |X∗|2(1−r)ς

∥∥∥
ber

+
1√
2
(1− ξ) ber

ς
2 (X)

∥∥∥|X|2rς + |X∗|2(1−r)ς
∥∥∥1/2
ber

≤ 1

2

∥∥∥|X|2rς + |X∗|2(1−r)ς
∥∥∥
ber

.

Proof. Assume that τ, υ ∈ Θ is an arbitrary. From (3.6), we get

berς (X) ≤ 1

2
ξ
∥∥∥|X|2rς + |X∗|2(1−r)ς

∥∥∥
ber

+
1√
2
(1− ξ) ber

ς
2 (X)

∥∥∥|X|2rς + |X∗|2(1−r)ς
∥∥∥1/2
ber

≤ 1

2
ξ
∥∥∥|X|2rς + |X∗|2(1−r)ς

∥∥∥
ber

+
1

2
(1− ξ)

∥∥∥|rX|2rς + |X∗|2(1−r)ς
∥∥∥
ber

(by the inequality (3.8))

=
1

2

∥∥∥|X|2rς + |X∗|2(1−r)ς
∥∥∥
ber

,

as required. ■
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Theorem 3.9. If X ∈ L (H (Θ)), 0 ≤ r, ξ ≤ 1 and ς ≥ 1, then we have

ber2ς (X) ≤ 1

2
(1− ξ) berς (X)

∥∥∥|X|2ςr + |X∗|2ς(1−r)
∥∥∥
ber

+
1

2
ξ
∥∥∥|X|4ςr + |X∗|4ς(1−r)

∥∥∥
ber

. (3.9)

Proof. Assume that k̂τ ∈ H is a normalized reproducing kernel. If we take τ = υ in the inequality (2.11), then
we get ∣∣∣〈Xk̂τ , k̂τ

〉∣∣∣2ς ≤ ξ
〈
|X|2ςr k̂τ , k̂τ

〉〈
|X∗|2ς(1−r)

k̂τ , k̂τ

〉
+ (1− ξ)

∣∣∣〈Xk̂τ , k̂τ

〉∣∣∣ς√〈|X|2ςr k̂τ , k̂τ
〉〈

|X∗|2ς(1−r)
k̂τ , k̂τ

〉
≤ 1

2
ξ

(〈
|X|2ςr k̂τ , k̂τ

〉2
+
〈
|X∗|2ς(1−r)

k̂τ , k̂τ

〉2)
(by the inequality (2.6))

+
1

2
(1− ξ)

∣∣∣〈Xk̂τ , k̂τ

〉∣∣∣ς .〈(|X|2ςr + |X∗|2ς(1−r)
)
k̂τ , k̂τ

〉
(by the inequality (2.6))

=
1

2
ξ
(〈

|X|4ςr k̂τ , k̂τ
〉
+
〈
|X∗|4ς(1−r)

k̂τ , k̂τ

〉)
(by the inequality (2.7))

+
1

2
(1− ξ)

∣∣∣〈Xk̂τ , k̂τ

〉∣∣∣ς .〈(|X|2ςr + |X∗|2ς(1−r)
)
k̂τ , k̂τ

〉
=

1

2
ξ
〈(

|X|4ςr + |X∗|4ς(1−r)
)
k̂τ , k̂τ

〉
+

1

2
(1− ξ)

∣∣∣〈Xk̂τ , k̂τ

〉∣∣∣ς 〈(|X|2ςr + |X∗|2ς(1−r)
)
k̂τ , k̂τ

〉
and

sup
τ∈Θ

∣∣∣X̃ (τ)
∣∣∣2ς ≤ 1

2
ξ sup
τ∈Θ

〈(
|X|4ςr + |X∗|4ς(1−r)

)
k̂τ , k̂τ

〉
+

1

2
(1− ξ) sup

τ∈Θ

∣∣∣X̃ (τ)
∣∣∣ς 〈(|X|2ςr + |X∗|2ς(1−r)

)
k̂τ , k̂τ

〉
.

Hence we get

ber2ς (X) ≤ 1

2
ξ
∥∥∥|X|4ςr + |X∗|4ς(1−r)

∥∥∥
ber

+
1

2
(1− ξ) berς (X)

∥∥∥|X|2ςr + |X∗|2ς(1−r)
∥∥∥
ber

,

and the proof is complete. ■

Corollary 3.10. If X ∈ L (H (Θ)), 0 ≤ r, ξ ≤ 1 and ς ≥ 1, then we have

ber2ς (X) ≤ 1

2
ξ
∥∥∥|X|4ςr + |X∗|4ς(1−r)

∥∥∥
ber

+
1

2
(1− ξ) berς (X)

∥∥∥|X|2ςr + |X∗|2ς(1−r)
∥∥∥
ber

(3.10)

≤ 1

2

∥∥∥|X|4ςr + |X∗|4ς(1−r)
∥∥∥
ber

.
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Proof. Assume that τ ∈ Θ is arbitrary. From (3.9), we get

ber2ς (X) ≤ 1

2
ξ
∥∥∥|X|4ςr + |X∗|4ς(1−r)

∥∥∥
ber

+
1

2
(1− ξ) berς (X)

∥∥∥|X|2ςr + |X∗|2ς(1−r)
∥∥∥
ber

≤ 1

2
ξ
∥∥∥|X|4ςr + |X∗|4ς(1−r)

∥∥∥
ber

+
1

4
(1− ξ)

∥∥∥|X|2ςr + |X∗|2ς(1−r)
∥∥∥2
ber

(by the inequality (3.8))

≤ 1

2
ξ
∥∥∥|X|4ςr + |X∗|4ς(1−r)

∥∥∥
ber

+
1

4
(1− ξ)

∥∥∥∥∥∥
(
2 |X|2ςr + 2 |X∗|2ς(1−r)

2

)2
∥∥∥∥∥∥
ber

≤ 1

2
ξ
∥∥∥|X|4ςr + |X∗|4ς(1−r)

∥∥∥
ber

+
1

8
(1− ξ)

∥∥∥∥(2 |X|2ςr
)2

+
(
2 |X∗|2ς(1−r)

)2∥∥∥∥
ber

(by the inequality (2.8))

≤ 1

2
ξ
∥∥∥|X|4ςr + |X∗|4ς(1−r)

∥∥∥
ber

+
1

2
(1− ξ)

∥∥∥|X|4ςr + |X∗|4ς(1−r)
∥∥∥
ber

≤ 1

2

∥∥∥|X|4ςr + |X∗|4ς(1−r)
∥∥∥
ber

.

We determine the desired disparity (3.10). ■

We utilize the inequalities (3.4) and (3.8) for every X ∈ B (H), 0 ≤ r, ξ ≤ 1 and ς ≥ 1. In fact, after
applying (2.8), we obtain

ber2ς (X) = ξber2ς (X) + (1− ξ) ber2ς (X)

= ξber2ς (X) + (1− ξ) berς (X) berς (X)

=
1

4
ξ
∥∥∥|X|2ςr + |X∗|2ς(1−r)

∥∥∥
ber

+
1

2
(1− ξ) berς (X)

∥∥∥|X|2ςr + |X∗|2ς(1−r)
∥∥∥
ber

,

which of course refines (3.9). In instance, we obtain

ber2 (X) ≤ 1

12
∥|X|+ |X∗|∥2ber +

1

3
ber (X) ∥|X|+ |X∗|∥ber

for ς = 1, r = 1
2 and ξ = 1

3 . It follows from Theorem 3.1 in [24] that if X ∈ L (H (Θ)) then we have

ber (X) ≤ 1

2
∥|X|+ |X∗|∥ber ≤

1

2

(
∥X∥ber +

∥∥X2
∥∥1/2
ber

)
. (3.11)

So, from (3.11), we can deduce the inequality

ber2 (X) ≤ 1

12
∥|X|+ |X∗|∥2ber +

1

3
ber (X) ∥|X|+ |X∗|∥ber

=
1

12
∥|X|+ |X∗|∥2ber +

1

3

(
1

2
∥|X|+ |X∗|∥ber

)
∥|X|+ |X∗|∥ber

=
1

12
∥|X|+ |X∗|∥2ber +

1

6
∥|X|+ |X∗|∥2ber

=
1

4
∥|X|+ |X∗|∥2ber ,
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which indeed refines (3.11). Thus, we have

ber2 (X) ≤ 1

12
∥|X|+ |X∗|∥2ber +

1

3
ber (X) ∥|X|+ |X∗|∥ber

=
1

12

∥∥∥∥∥
(
2 |X|+ 2 |X∗|

2

)2
∥∥∥∥∥
ber

+
1

3
ber (X) ∥|X|+ |X∗|∥ber

≤ 1

24

∥∥∥(2 |X|)2 + (2 |X∗|)2
∥∥∥
ber

+
1

3
ber (X) ∥|X|+ |X∗|∥ber

(by the inequality (2.8))

=
1

6
∥|X|+ |X∗|∥2ber +

1

3
ber (X) ∥|X|+ |X∗|∥ber ,

which the inequality in (1.6), as required.
We recommend [8, 16–19, 22–24] for more recent findings on Berezin radius inequalities for operators and

related findings.
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Hamdullah BAŞARAN and Verda GÜRDAL

[12] I. CHALENDAR, E. FRICAIN, M. GÜRDAL AND M.T. KARAEV, Compactness and Berezin symbols, Acta. Sci.
Math. (Szeged), 78 (2012), 315-329, https://doi.org/10.1007/BF03651352.

[13] S.S. DRAGOMIR, Power inequalities for the numerical radius of a product of two operators in Hilbert spaces,
Sarajevo J. Math., 5 (2009), 269-278.

[14] M. EL-HADDAD AND F. KITTANEH, Numerical radius inequalities for Hilbert space operators. II., Studia
Math., 182(2) (2007), 133-140, https://doi.org/10.4064/sm182-2-3.
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[17] M.T. GARAYEV, M. GÜRDAL AND A. OKUDAN, Hardy-Hilbert’s inequality and a power inequality for Berezin
numbers for operators, Math. Inequal. Appl., 19 (2016), 883-891, https://doi.org/10.7153/mia-19-64.
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Abstract. An MV-algebra is an algebraic structure with a binary operation ⊕, a unary operation ′ and the constant 0 satisfying
certain axioms. MV-algebras are the algebraic semantics of Lukasiewicz logic. This work includes a type of derivation
research on MV-algebras. Our aim is to introduce the concept of permuting tri-derivation on MV-algebras and to discuss
some results.
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1. Introduction

The concept of derivation has an important place in the research of the structure and properties of algebraic
systems. In prime rings, the notion of derivation was introduced by Posner [16]. In [17], Szasz applied the
derivation concept to lattices. Xin et al. developed derivation for a lattice and they offered some equivalent
conditions under which a derivation is isotone for lattices with a greatest element, modular lattices and distributive
lattices, in [18] and [19]. Later, different derivations and properties in lattices were examined, for example [5], [6].
In [15], Öztürk achieved some results by introducing the idea of permuting tri-derivations in rings. After, Öztürk
et al. studied the permuting tri-derivations in lattices [14]. Further, permuting skew 3-derivations, permuting
skew n-derivations in rings have studied and commutativity of a ring satisfying certain identities involving the
trace of permuting n-derivations (see [3], [9], [10]).

When dealing with information and uncertainty, non-classical logic is useful in terms of uncertain and fuzzy
information in computer science. MV-algebras as the algebraic counterpart of many-valued prepositional
calculus were proposed by Chang [7]. Classical two-valued logic makes it meaningful to study Boolean
algebras, and while every Boolean algebra is an MV-algebra, the reverse is not true. MV-algebras have many
applications as they are generalization of Boolean algebras. Also, MV-algebras are categorically equivalent to
some mathematical structures. For example, perfect MV-algebras categorically equivalent to abelian

∗Corresponding author. Email address: damla.yilmaz@erzurum.edu.tr (Damla Yılmaz)

https://www.malayajournal.org/index.php/mjm/index ©2023 by the authors.
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lattice-groups with strong unit and to bounded commutative BCK-algebras (see [12], [13]). In [1], Alshehri
presented the concept of derivation in MV-algebras and examined some properties of the derivation in
MV-algebras with the help of isotone derivations. Recently, several authors studied different derivations in
MV-algebras, for example [2], [11], [20].

In this paper, we introduce the notion of permuting tri-derivations in MV-algebras. This article is organized
as follows: In the next section, some results and basic concepts about MV-algebras are reminded. In section
3, permuting tri-derivation structure in MV-algebras is characterized and some results are obtained. Also, fixed
point set structure of isotone permutig tri-derivations is established.

2. Preliminaries

Definition 2.1. [7] Let us define ⊕ binary operation, ′ a unary operation on the set ∆ and 0 be a constant in ∆.
If the following axioms are satisfied, then we say (∆,⊕,′ , 0) is MV-algebra:

(i) (∆,⊕, 0) is a commutative monoid,
(ii) (δ

′
)
′
= δ,

(iii) 0
′ ⊕ δ = 0

′
,

(iv) (δ
′ ⊕ η)

′ ⊕ η = (η
′ ⊕ δ)

′ ⊕ δ for all δ, η ∈ ∆.
In the remainder of the article, we denote an MV-algebra (∆,⊕,′ , 0) by ∆.
Define the operations ⊙ and ⊖ and the constant 1 as follows: 1 = 0

′
, δ ⊙ η = (δ

′ ⊕ η
′
)
′
, δ ⊖ η = δ ⊙ η

′
. If

we define δ ≤ η if and only if δ
′ ⊕ η = 1, then ”≤” is a partial order which called the natural order of ∆. This

order determines a bounded distributive lattice structure. For the elements δ and η, the join δ ∨ η and the meet
δ ∧ η defined by: δ ∨ η = (δ⊙ η

′
)⊕ η = (δ⊖ η)⊕ η and δ ∧ η = δ⊙ (δ

′ ⊕ η) = δ⊖ (δ⊖ η) = (δ
′ ∨ η

′
)
′
. Also,

∆ is called linearly ordered, if the order relation ”≤” is total.

Example 2.2. [8] Let ∆ = [0, 1] be the real unit interval. For all δ, η ∈ ∆, if we define δ ⊕ η = min {1, δ + η},
δ ⊙ η = max {0, δ + η − 1} and δ

′
= 1 − δ, then (∆,⊕,′ , 0) is an MV-algebra. For each integer n ≥ 2, the

n-element set ∆n =
{
0, 1

n−1 , ...,
n−2
n−1 , 1

}
is a linearly ordered MV-algebra which called MV-chain.

Proposition 2.3. [4, 8] Suppose that ∆ is an MV-algebra and δ, η, σ ∈ ∆. Thus the followings hold:

(1) δ ⊕ δ
′
= 1, δ ⊙ δ

′
= 0, δ ⊕ 1 = 1,

(2) Provided that δ ⊕ η = 0, then δ = η = 0,
(3) Provided that δ ⊙ η = 1, then δ = η = 1,
(4) If δ ≤ η, then δ ⊕ σ ≤ η ⊕ σ and δ ⊙ σ ≤ η ⊙ σ,
(5) δ ⊙ η ≤ δ ∧ η ≤ δ, η ≤ δ ∨ η ≤ δ ⊕ η,
(6) δ ≤ η iff η

′ ≤ δ
′
,

(7) δ ⊕ η = η iff δ ⊙ η = δ,
(8) δ ⊙ (η ∨ σ) = (δ ⊙ η) ∨ (δ ⊙ σ),
(9) δ ⊕ (η ∧ σ) = (δ ⊕ η) ∧ (δ ⊕ σ),
(10) δ ⊕ η = η iff δ ∧ η

′
= 0,

(11) If δ ⊙ η = δ ⊙ σ and δ ⊕ η = δ ⊕ σ, then η = σ.
MV-algebras that do not satisfy idempotent conditions are generalizations of Boolean algebras. For any MV-

algebra ∆, if we define B(∆) = {δ ∈ ∆| δ ⊙ δ = δ} = {δ ∈ ∆| δ ⊕ δ = δ}, then (B(∆),⊕,′ , 0) is a largest
subalgebra of ∆, which is called Boolean center of ∆.

Theorem 2.4. [8] Let ∆ be an MV-algebra. Then for each element δ in ∆, the following conditions are
equivalent:
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(1) δ ∈ B(∆),
(2) δ ∨ δ

′
= 1,

(3) δ ∧ δ
′
= 0,

(4) δ ⊕ δ = δ,
(5) δ ⊙ δ = δ,
(6) δ ⊕ η = δ ∨ η for all η ∈ ∆,
(7) δ ⊙ η = δ ∧ η for all η ∈ ∆.

Theorem 2.5. [7] Assume that ∆ is an MV-algebra. Therefore, the following expressions are equivalent:

(i) δ ≤ η,
(ii) η ⊕ δ

′
= 1,

(iii) δ ⊙ η
′
= 0.

Definition 2.6. [7] Suppose ∆ be an MV-algebra and ∅ ≠ I ⊆ ∆. If the following situations are satisfied,

(1) 0 ∈ I ,
(2) Provided that δ, η ∈ I , then δ ⊕ η ∈ I ,
(3) Provided that η ∈ I , δ ∈ ∆ and δ ≤ η, then δ ∈ I

then I is called an ideal of ∆.

Proposition 2.7. [7] Assume that ∆ is a linearly ordered MV-algebra. Then δ⊕ η = δ⊕ σ and δ⊕ σ ̸= 1 imply
that η = σ.

Definition 2.8. [1] Assume that ∆ is an MV-algebra. A mapping D : ∆ → ∆ is called a derivation on ∆ if it
provides

D(δ1 ⊙ δ2) = (D(δ1)⊙ δ2)⊕ (δ1 ⊙D(δ2))

for all δ1, δ2 ∈ ∆.

3. Permuting tri-derivations on MV-algebras

We begin with the following definition.

Definition 3.1. Suppose that ∆ is an MV-algebra. A map Γ : ∆×∆×∆ → ∆ is called permuting if Γ(δ, η, σ) =
Γ(δ, σ, η) = Γ(η, δ, σ) = Γ(η, σ, δ) = Γ(σ, δ, η) = Γ(σ, η, δ) holds for all δ, η, σ ∈ ∆.

A mapping γ : ∆ → ∆ defined by γ(δ) = Γ(δ, δ, δ) is called the trace of Γ, where Γ : ∆×∆×∆ → ∆ is a
permuting mapping. In that follows, we often abbreviate γ(δ) to γδ.

Definition 3.2. Suppose that ∆ is an MV-algebra and Γ : ∆×∆×∆ → ∆ is a permuting mapping. If Γ satisfies
the following

Γ(δ ⊙ ρ, η, σ) = (Γ(δ, η, σ)⊙ ρ)⊕ (δ ⊙ Γ(ρ, η, σ))

for all δ, η, σ, ρ ∈ ∆, then Γ is called a permuting tri-derivation. Clearly, if Γ is a permuting tri-derivation on
∆, then the relations hold: for all δ, η, σ, ρ ∈ ∆,

Γ(δ, η ⊙ ρ, σ) = (Γ(δ, η, σ)⊙ ρ)⊕ (η ⊙ Γ(δ, ρ, σ))

and
Γ(δ, η, σ ⊙ ρ) = (Γ(δ, η, σ)⊙ ρ)⊕ (σ ⊙ Γ(δ, η, ρ)).

Example 3.3. Let ∆ = {0, δ, η, 1}. Consider the tables given below:
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⊕ 0 δ η 1

0 0 δ η 1

δ δ δ 1 1

η η 1 η 1

1 1 1 1 1

′ 0 δ η 1

1 η δ 0

Then (∆,⊕,′ , 0) is an MV- algebra. Define a mapping Γ : ∆ × ∆ × ∆ → ∆ by

Γ (x1, x2, x3) =

{
δ, x1, x2, x3 ∈ {1, δ}
0, otherwise

.

It appears that Γ is a permuting tri-derivation on ∆.

Proposition 3.4. Suppose that ∆ is an MV-algebra, Γ is a permuting tri-derivation on ∆ and γ is the trace of Γ.
For all δ ∈ ∆, we have

(1) γ0 = 0,
(2) γδ ⊙ δ

′
= δ ⊙ γδ

′
= 0,

(3) γδ = γδ ⊕ (δ ⊙ Γ(δ, δ, 1)),
(4) γδ ≤ δ,
(5) If I is an ideal of ∆, then γ(I) ⊆ I .

Proof. (1) We can write

γ0 = Γ(0, 0, 0) = Γ(0⊙ 0, 0, 0)

= (Γ(0, 0, 0)⊙ 0)⊕ (0⊙ Γ(0, 0, 0))

= 0⊕ 0 = 0.

(2) For all δ ∈ ∆,

Γ(δ, δ, 0) = Γ(δ, δ, 0⊙ 0)

= (Γ(δ, δ, 0)⊙ 0)⊕ (0⊙ Γ(δ, δ, 0))

= 0⊕ 0 = 0.

Then, we get

0 = Γ(δ, δ, 0) = Γ(δ, δ, δ ⊙ δ
′
)

= (Γ(δ, δ, δ)⊙ δ
′
)⊕ (δ ⊙ Γ(δ, δ, δ

′
)).

By the property (2) of Proposition 2.3, γδ ⊙ δ
′
= 0 and δ ⊙ Γ(δ, δ, δ

′
) = 0. We can see that δ ⊙ γδ

′
= 0 for all

δ ∈ ∆, similarly.
(3) For all δ ∈ ∆,

γδ = Γ(δ, δ, δ) = Γ(δ, δ, δ ⊙ 1)

= (Γ(δ, δ, δ)⊙ 1)⊕ (δ ⊙ Γ(δ, δ, 1))

= γδ ⊕ (δ ⊙ Γ(δ, δ, 1)).

(4) For all δ ∈ ∆,
1 = 0

′
= (γδ ⊙ δ

′
)
′
= [((γδ)

′
⊕ (δ

′
)
′
)
′
]
′
= (γδ)

′
⊕ δ.

Then, by Theorem 2.5, we have γδ ≤ δ for all δ ∈ ∆.
(5) If η ∈ γ(I), then η = γ(δ) for some δ ∈ I . From (4), we have γ(δ) ≤ δ. Since I is an ideal of ∆, we get

η ∈ I and so γ(I) ⊆ I . ■
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Remark 3.5. We have δ ⊙ Γ(δ, δ, δ
′
) = 0 for all δ ∈ ∆. Thus, Γ(δ, δ, δ

′
) ≤ δ

′
and δ ≤ (Γ(δ, δ, δ

′
))

′
. For all

δ, η, σ ∈ ∆,
0 = Γ(δ ⊙ δ

′
, η, σ) = (Γ(δ, η, σ)⊙ δ

′
)⊕ (δ ⊙ Γ(δ

′
, η, σ))

and hence Γ(δ, η, σ) ≤ δ and Γ(δ
′
, η, σ) ≤ δ

′
.

Proposition 3.6. Let ∆ be an MV-algebra, Γ be a permuting tri-derivation on ∆ and γ be the trace of Γ. For
δ, η ∈ ∆, if δ ≤ η then

(1) γ(δ ⊙ η
′
) = 0,

(2) γη
′ ≤ δ

′
,

(3) γδ ⊙ γη
′
= 0.

Proof. (1) We assume δ ≤ η for δ, η ∈ ∆. By the property (4) of Proposition 2.3, we have δ ⊙ η
′ ≤ η ⊙ η

′
= 0.

Then, δ ⊙ η
′
= 0 and so γ(δ ⊙ η

′
) = 0, since γ0 = 0.

(2) We have δ ⊙ γη
′ ≤ η ⊙ γη

′ ≤ η ⊙ η
′
= 0 since δ ≤ η. From here we obtain that δ ⊙ γη

′
= 0 and

γη
′ ≤ δ

′
.

(3) We have γδ ≤ η since δ ≤ η. Hence γδ ⊙ γη
′ ≤ η ⊙ γη

′ ≤ η ⊙ η
′
= 0 and so γδ ⊙ γη

′
= 0. ■

Proposition 3.7. Suppoese that ∆ is an MV-algebra, Γ is a permuting tri-derivation on ∆ and γ is the trace of
Γ. Then,

(1) γδ ⊙ γδ
′
= 0,

(2) γδ
′
= (γδ)

′
iff γ is the identity on ∆.

Proof. (1) From Proposition 3.6(3), γδ ⊙ γη
′
= 0. Taking η by δ, we have γδ ⊙ γδ

′
= 0.

(2) Since δ ⊙ γδ
′
= 0, we get δ ⊙ (γδ)

′
= 0. Then, γδ ≤ δ and δ ≤ γδ i.e., γδ = δ. Thus, γ is identity on

∆. Conversely, if γ is identity on ∆, then γδ
′
= (γδ)

′
, ∀δ ∈ ∆. ■

Definition 3.8. Suppose that ∆ is an MV-algebra and Γ is a permuting tri-derivation on ∆. If δ ≤ ρ implies
Γ(δ, η, σ) ≤ Γ(ρ, η, σ) for all δ, η, σ, ρ ∈ ∆, then Γ is called an isotone. If γ is the trace of Γ and Γ is an isotone,
then δ ≤ η implies γδ ≤ γη for all δ, η ∈ ∆.

Example 3.9. Let ∆ = {0, δ1, δ2, δ3, δ4, 1}. Consider the following tables:

⊕ 0 δ1 δ2 δ3 δ4 1

0 0 δ1 δ2 δ3 δ4 1

δ1 δ1 δ3 δ4 δ3 1 1

δ2 δ2 δ4 δ2 1 δ4 1

δ3 δ3 δ3 1 δ3 1 1

δ4 δ4 1 δ4 1 1 1

1 1 1 1 1 1 1

′ 0 δ1 δ2 δ3 δ4 1

1 δ4 δ3 δ2 δ1 0

Then (∆,⊕,′ , 0) is an MV-algebra. Let us define a map Γ : ∆ × ∆ × ∆ → ∆ by

Γ (x1, x2, x3) =

{
δ2, x1, x2, x3 ∈ {δ2, δ4, 1}
0, otherwise

. We can see that Γ is an isotone permuting tri-derivation on ∆.

Example 3.10. Consider ∆4 =
{
0, 1

3 ,
2
3 , 1

}
as in Example 2.2 and define Γ : ∆4 × ∆4 × ∆4 → ∆4 by

Γ (x1, x2, x3) =

{
1
3 , (x1, x2, x3) ∈

{
( 23 ,

2
3 ,

2
3 )
}

0, otherwise
.

Then Γ is a permuting tri-derivation on ∆4, but Γ is not isotone, because Γ( 23 ,
2
3 ,

2
3 ) ≰ Γ(1, 2

3 ,
2
3 ).
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Proposition 3.11. Suppose that ∆ is an MV-algebra, Γ is a permuting tri-derivation on ∆ and γ is the trace of
Γ. If γδ

′
= γδ for all δ ∈ ∆, then the followings hold:

(1) γ1 = 0,
(2) γδ ⊙ γδ = 0,
(3) Provided that Γ is an isotone on ∆, then γ = 0.

Proof. (1) Replacing δ by 0 in hypothesis, we have γ1 = 0.
(2) For all δ ∈ ∆, γδ ⊙ γδ = γδ ⊙ γδ

′
= 0, by Proposition 3.7.

(3) Suppose that Γ is an isotone on ∆. For δ ∈ ∆, since γδ ≤ γ1 = 0, we have γδ = 0 and so γ = 0. ■

Proposition 3.12. Suppose that ∆ is an MV-algebra, Γ is a permuting tri-derivation on ∆ and γ is the trace of
Γ and δ ∈ B(∆). Then the followings hold:

(1) If δ ≤ Γ(1, η, σ) for all η, σ ∈ ∆, then Γ(δ, η, σ) = δ,
(2) δ ∧ Γ(δ, δ, 1) ∧ (γδ)

′
= 0,

(3) If δ ≤ Γ(δ, δ, 1), then γδ = δ.

Proof. (1) We have

Γ(δ, η, σ) = Γ(δ ⊙ 1, η, σ)

= (Γ(δ, η, σ)⊙ 1)⊕ (δ ⊙ Γ(1, η, σ))

= Γ(δ, η, σ)⊕ δ = δ.

(2) Since γδ = γδ ⊕ (δ ⊙ Γ(δ, δ, 1)), it follows that (δ ⊙ Γ(δ, δ, 1)) ∧ (γδ)
′
= 0. Then, by Theorem 2.4, we

obtain δ ∧ Γ(δ, δ, 1) ∧ (γδ)
′
= 0.

(3) Let δ ≤ Γ(δ, δ, 1). Then, we get δ ⊙ (γδ)
′
= 0 by (2). Thus, δ ≤ γδ ≤ δ and so γδ = δ. ■

Theorem 3.13. Suppose that ∆ is an MV-algebra. We define a map by Γ(δ, η, σ) = δ⊙η⊙σ for all δ, η, σ ∈ ∆.
Then Γ is a permuting tri-derivation on B(∆).

Proof. We have
Γ(δ ⊙ ρ, η, σ) = (δ ⊙ ρ)⊙ η ⊙ σ

for all δ, η, σ, ρ ∈ B(∆). Moreover,

(Γ(δ, η, σ)⊙ ρ)⊕ (δ ⊙ Γ(ρ, η, σ)) = ((δ ⊙ η ⊙ σ)⊙ ρ)⊕ (δ ⊙ (ρ⊙ η ⊙ σ))

= (δ ⊙ ρ)⊙ η ⊙ σ.

Thus, Γ is a permuting tri-derivation on B(∆). ■

Definition 3.14. Suppose that ∆ is an MV-algebra, Γ is a permuting mapping on ∆. If Γ(δ ⊕ ρ, η, σ) =

Γ(δ, η, σ)⊕ Γ(ρ, η, σ) for all δ, η, σ, ρ ∈ ∆, then Γ is said to be tri-additive mapping.

Theorem 3.15. Suppose that ∆ is an MV-algebra, Γ is a tri-additive mapping on ∆ and γ is the trace of Γ. Thus,
γ(B(∆)) ⊆ B(∆).

Proof. Let δ ∈ γ(B(∆)). Then, δ = γ(η) for some η ∈ B(∆). Hence, δ ⊕ δ = γη ⊕ γη = Γ(η ⊕ η, η, η) =

γη = δ. Therefore, δ ∈ B(∆) i.e., γ(B(∆)) ⊆ B(∆). ■

Theorem 3.16. Suppose that ∆ is a linearly ordered MV-algebra, Γ is a tri-additive permuting tri-derivation on
∆ and γ is the trace of Γ. Then γ = 0 or γ1 = 1.
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Proof. For all δ ∈ ∆, we have δ ⊕ δ
′
= 1 and δ ⊕ 1 = 1. Thus,

γ1 = Γ(1, 1, 1) = Γ(δ ⊕ δ
′
, 1, 1) = Γ(δ, 1, 1)⊕ Γ(δ

′
, 1, 1)

and
γ1 = Γ(1, 1, 1) = Γ(δ ⊕ 1, 1, 1) = Γ(δ, 1, 1)⊕ γ1.

If γ1 ̸= 1, then we have γ1 = Γ(δ
′
, 1, 1) by Proposition 2.7. Replacing δ by 1, we have γ1 = 0. For all δ ∈ ∆,

0 = γ1 = Γ(δ, 1, 1)⊕ γ1 = Γ(δ, 1, 1)

and

Γ(δ, 1, 1) = Γ(δ, 1, δ ⊕ 1) = Γ(δ, 1, δ) = Γ(δ, δ ⊕ 1, δ)

= γδ ⊕ Γ(δ, 1, δ) = γδ.

Therefore, γδ = 0 for all δ ∈ ∆. In this case, we have γ = 0. ■

Proposition 3.17. Suppose that ∆ is an MV-algebra, Γ is a tri-additive permuting tri-derivation on ∆. Then,

(1) Γ is an isotone,
(2) If γ is trace of Γ, then γδ = δ ⊙ Γ(δ, δ, 1) for all δ ∈ B(∆).

Proof. (1) Let δ ≤ ρ. Then,

Γ(ρ, η, σ) = Γ(ρ ∨ δ, η, σ) = Γ((ρ⊙ δ
′
)⊕ δ, η, σ)

= Γ(ρ⊙ δ
′
, η, σ)⊕ Γ(δ, η, σ) ≥ Γ(δ, η, σ)

for all δ, η, σ, ρ ∈ ∆.
(2) Since Γ is an isotone, we have γδ ≤ Γ(δ, δ, 1). Thus

δ ⊙ γδ ≤ δ ⊙ Γ(δ, δ, 1) ≤ γδ ⊕ (δ ⊙ Γ(δ, δ, 1)) = γδ.

Also, δ ∈ B(∆) implies that δ ⊙ γδ = δ ∧ γδ = γδ. Hence γδ = δ ⊙ Γ(δ, δ, 1). ■

Remark 3.18. Suppose that ∆ is an MV-algebra, Γ is a tri-additive permuting tri-derivation on ∆ and γ is the
trace of Γ. If γδ = 0 for all δ ∈ ∆, then Γ(δ, δ, η) = 0 for all η ∈ ∆. Indeed, we have

0 = γδ = Γ(δ, δ, δ) = γδ ⊕ Γ(1, δ, δ) = Γ(1, δ, δ)

and so
0 = Γ(1, δ, δ) = Γ(η ⊕ 1, δ, δ) = Γ(η, δ, δ).

Theorem 3.19. Suppose that ∆ is an MV-algebra, Γ is a tri-additive permuting tri-derivation on ∆ and γ is the
trace of Γ. Then,

ker γ = γ−1(0) = {δ ∈ ∆| γδ = 0}

is an ideal of ∆.

Proof. We have γ0 = 0, by Proposition 3.4(1). This yields that 0 ∈ γ−1(0). Assume that δ, η ∈ γ−1(0). Then,

γ(δ ⊕ η) = Γ(δ ⊕ η, δ ⊕ η, δ ⊕ η)

= γδ ⊕ Γ(δ, δ, η)⊕ Γ(δ, η, δ)⊕ Γ(δ, η, η)

⊕ Γ(η, δ, δ)⊕ Γ(η, δ, η)⊕ Γ(η, η, δ)⊕ γη.

Using Remark 3.8, γ(δ⊕ η) = 0 which ensures that δ⊕ η ∈ γ−1(0). Suppose δ ∈ γ−1(0) and η ≤ δ. Since
Γ is an isotone, we get γη ≤ γδ = 0. Thus γη = 0 and so η ∈ γ−1(0). ■
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Now, we discuss the structures and some properties of fixed points set of isotone permuting tri-derivations.
Let Γ be an isotone permuting tri-derivation on ∆. We denote by Fixγ(∆) the set of all fixed points of ∆ for γ.
That is,

Fixγ(∆) = {δ ∈ ∆| γδ = δ} .

Theorem 3.20. Suppose that ∆ is an MV-algebra and Γ is a tri-additive permuting tri-derivation on ∆ and γ is
the trace of Γ. Then,

(1) γδ = γ1⊙ δ for any δ ∈ Fixγ(∆),
(2) γ2(δ) = γ(δ) for any δ ∈ Fixγ(∆); where γ2(δ) = γ(γ(δ)),
(3) Fixγ(∆) = γ(Fixγ(∆)).

Proof. (1) We have γδ = δ. Thus, γ1⊙ γδ = γ1 ∧ γδ = γδ implies that γδ = γ1⊙ δ for all δ ∈ Fixγ(∆).
(2) If δ is a fixed point of γ, then γ(δ) = δ, so γ(γ(δ)) = γ(δ) = δ.
(3) If δ ∈ Fixγ(∆), then δ ∈ γ(Fixγ(∆)). If δ ∈ γ(Fixγ(∆)), then for some η ∈ Fixγ(∆), δ = γη = η.

Thus, we have δ ∈ Fixγ(∆). Therefore, Fixγ(∆) = γ(Fixγ(∆)). ■

Example 3.21. In Example 2.2, considering ∆3 =
{
0, 1

2 , 1
}

and defining Γ : ∆3 × ∆3 × ∆3 → ∆3 by

Γ (x1, x2, x3) =

{
1
2 , x1 = x2 = x3 = 1

2

0, otherwise
. One can check that Γ is a permuting tri-derivation on ∆3 and

Fixγ(∆3) =
{
0, 1

2

}
. Since 1

2 ⊕ 1
2 = 1 /∈ Fixγ(∆3). Then, we have Fixγ(∆3) is not an ideal of ∆3.

As can be seen from the example above, we encounter the following open problem:
For any ideal I of a MV-algebra ∆, whether there is a permuting tri-derivation Γ such that Fixγ(∆3) = I .

4. Conclusion

The concept of derivation was presented by Posner in 1957. In the following years, many mathematicians
used derivations to examine the properties of algebraic structures. In their studies, on different derivations,
the conditions for the ring to be commutative are examined. Some characterizations of algebraic structures are
determined by the trace of permuting tri-additive mappings. With the help of the trace of permuting tri-derivation,
the commutativity conditions of rings and how the elements are ordered in some structures such as lattices are
investigated. The derivation type used in this article was put forward by Öztürk in rings. In this study, we
obtained some results by presenting permuting tri-derivations on MV-algebras. The first aim of this study is
to give the notion of permuting tri-derivation on this algebraic structure. Then some features provided by this
derivation are listed. Fixed set structure has been investigated for such derivations by defining isotone permuting
tri-derivations. After this study, permuting tri-f-derivations and permuting tri-(f, g)-derivations can be studied
on MV-algebras. Also, since MV-algebras are BL-algebras that provide double negation property, permuting
tri-derivation structure can be examined in BL-algebras.

applicable.
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1. Introduction

The idea of usual convergence of a real sequence was extended to statistical convergence independently by
Fast [11] and Steinhaus [21] in the year 1951. Lot of developments were made on this notion of convergence after
the pioneering works of Šalát [22] and Fridy [12]. After long fifty years, the concept of statistical convergence
was extended to the idea of I-convergence depending on the structure of ideals I of N, the set of natural numbers,
by Kostyrko et al. [17]. Throughout the paper N and R denote the set of all positive integers and the set
of all real numbers respectively. I ⊂ 2N is said to be an ideal of N if A,B ∈ I implies A ∪ B ∈ I and
B ∈ I whenever B ⊂ A ∈ I. I is called an admissible ideal of N if {x} ∈ I for each x ∈ N. I ⊂ 2N

is called non-trivial ideal if I ≠ {ϕ} and N /∈ I. If I is a non-trivial proper ideal of N then the family of sets
F(I) = {M ⊂ N : ∃A ∈ I : M = N\A} is a filter on N, called the filter associated with the ideal I. Indeed, the
concept of I- convergence of real sequences is a generalization of statistical convergence which is based on the
structure of the ideal I of subsets of N. I-convergence of real sequences coincides with the ordinary convergence
if I is the ideal of all finite subsets of N and with the statistical convergence if I is the ideal of N of natural density
zero. In [17] the concept of I∗-convergence was also introduced. Last few years several works on I-convergence
and its related areas were carried out in different directions in different spaces viz. metric spaces, normed linear
spaces, probabilistic metric spaces, S-metric spaces, linear 2-normed spaces, cone metric spaces, topological
spaces etc. (see [3, 4, 6, 18] and many more references therein). Ordinary convergence always implies statistical
convergence and when I is admissible ideal, I∗-convergence implies I-convergence. But the reverse implication

∗Corresponding author. Email address: akbanerjee@math.buruniv.ac.in; akbanerjee1971@gmail.com (Amar Kumar Banerjee)
nesarhossain24@gmail.com (Nesar Hossain)
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does not hold in general. But when I satisfies the condition (AP ), I-convergence implies I∗-convergence. A
remarkable observation is that a statistically convergent sequence and I and I∗-convergent sequence need not
even be bounded.

Recently some significant investigations have been done on sequences of real valued functions by using
the idea of statistical and I-convergence [8, 10, 15, 19]. The interesting notion of equal convergence was
introduced by Császár and Laczkovich [7] for sequences of real valued functions (also known as quasinormal
convergence [2]). It is known that equal convergence is weaker than uniform convergence and stronger than
pointwise converegence for the sequences of real valued functions. A detailed investigation was carried out by
Császár and Laczkovich in [7] on such type of convergence. In [9, 10, 13] the concept of equal convergence of
sequences of real functions was generalized to the ideas of I and I∗-equal convergence using ideals of N and the
relationship between them were investigated. I-equal convergence is weaker than I-uniform convergence and
stronger than I-pointwise convergence [10].

The notion of linear 2-normed spaces was initially introduced by Gähler [14] and since then the concept has
been studied by many authors. In [24] some significant investigations on I-uniform and I-pointwise convergence
have been studied in this space.

2. Preliminaries

Throughout the paper I ⊂ 2N will stand for an admissible ideal. Now we recall some basic definitions and
notations.

A sequence {xn}n∈N of real numbers is said to be I-convergent to x ∈ R if for each ε > 0 the set A(ε) =

{n ∈ N : |xn − x| ≥ ε} ∈ I. The sequence {xn}n∈N of real numbers is said to be I∗-convergent to x ∈ R
if there exists a set M = {m1 < m2 < · · · < mk < · · · } ∈ F(I) such that x is the limit of the subsequence
{xmk

}k∈N [17].
Let f, fn be real valued functions defined on a non empty set X . The sequence {fn}n∈N is said to be equally

convergent ([7]) to f if there exists a sequence {εn}n∈N of positive reals with limn→∞ εn = 0 such that for every
x ∈ X there is m = m(x) ∈ N with |fn(x)− f(x)| < εn for n ≥ m. In this case we write fn

e−→ f .
Now we see the key ideas of I-uniform convergent [5] and I and I∗-equal convergent [10] sequences of real

valued functions which will be needed for generalizations into linear 2-normed spaces.
A sequence {fn}n∈N is said to be I-uniformly convergent to f if for each ε > 0 there exists a set B ∈ I such

that for all n ∈ Bc and for all x ∈ X , |fn(x)− f(x)| < ε. In this case we write fn
I−u−−−→ f . f is called I-equal

limit of the sequence {fn}n∈N if there exists a sequence {εn}n∈N of positive reals with I- limn→∞ εn = 0 such
that for any x ∈ X , the set {n ∈ N : |fn(x)− f(x)| ≥ εn} ∈ I. In this case we write fn

I−e−−−→ f . The sequence
{fn}n∈N is said to be I∗-equal convergent to f if there exists a set M = {m1 < m2 < · · · < mk · · · } ∈ F(I)
such that f is the equal limit of the subsequence {fmk

}k∈N. In this case we write fn
I∗−e−−−→ f .

Now we recall the following two important notions which are basically equivalent to each other (due to
Lemma 3.9. and Definition 3.10. in [20]). Let I ⊂ 2N be an admissible ideal. I is called P -ideal if for every
sequence of mutually disjoint sets {A1, A2, · · · } belonging to I there exists a sequence {B1, B2, · · · } of sets
belonging to I such that Aj△Bj is finite for j ∈ N and B =

⋃
j∈N Bj ∈ I. This notion is also called condition

(AP ) while in [20] it is denoted as AP (I, F in). An ideal I is a P -ideal if for any sets A1, A2, · · · belonging to
I there exists a set A ∈ I such that An \A is finite for n ∈ N.

Now we state some results from [16] for the sequences of real numbers.

Theorem 2.1. Suppose that {xn}n∈N is a sequence of real numbers and I is an admissible ideal in N. If
I∗- limn→∞ xn = ξ then I- limn→∞ xn = ξ.

Theorem 2.2. I- limn→∞ xn = ξ implies I∗- limn→∞ xn = ξ if and only if I satisfies the condition (AP ).

We will now recall the definition of linear 2-normed spaces which will play very important role throughout
the paper.
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Definition 2.3. ([14]) Let X be a real vector space of dimension d, where 2 ≤ d < ∞. A 2-norm on X is a
function ∥., .∥ : X ×X → R which satisfies the following conditions:
(C1) ∥x, y∥ = 0 if and only if x and y are linearly dependent in X;
(C2) ∥x, y∥ = ∥y, x∥ for all x, y in X;
(C3) ∥αx, y∥ = |α| ∥x, y∥ for all α in R and for all x, y in X;
(C4) ∥x+ y, z∥ ≤ ∥x, z∥+ ∥y, z∥ for all x, y, z in X .

The pair (X, ∥., .∥) is called a linear 2-normed space. A simple example ([24]) of a linear 2-normed space is
(R2, ∥., .∥) where the equipped 2-norm is given by ∥x, y∥ = |x1y2 − x2y1|, x = (x1, x2), y = (y1, y2) ∈ R2.

Let X be a 2-normed space of dimension d, 2 ≤ d < ∞. A sequence {xn}n∈N in X is said to be convergent
([1]) to ξ ∈ X if limn→∞ ∥xn − ξ, z∥ = 0, for every z ∈ X . In such a case ξ is called limit of {xn}n∈N.
The sequence {xn}n∈N in X is said to be I-convergent ([23]) to ξ ∈ X if for each ε > 0 and z ∈ X , the set
A(ε) = {n ∈ N : ∥xn − ξ, z∥ ≥ ε} ∈ I. The number ξ is called I- limit of {xn}n∈N.

3. Main Results

In this paper we study the concepts of I and I∗-equal convergence of sequences of functions and investigate
relationship between them in linear 2-normed spaces. Throughout the paper we propose X as a non empty set
and Y as a linear 2-normed space having dimension d with 2 ≤ d < ∞.

Definition 3.1. Let f, fn : X → Y, n ∈ N. The sequence {fn}n∈N is said to be equally convergent to f if
there exists a sequence {εn}n∈N of positive reals with limn→∞ εn = 0 such that for every x ∈ X there is
m = m(x) ∈ N with ∥fn(x)− f(x), z∥ < εn for n ≥ m and for every z ∈ Y . In this case we write fn

e−→ f .

Definition 3.2. Let f, fn : X → Y, n ∈ N. The sequence {fn}n∈N is said to be I-uniformly convergent to f if
for any ε > 0 there exists a set A ∈ I such that for all n ∈ Ac and for all x ∈ X, z ∈ Y , ∥fn(x)− f(x), z∥ < ε.

In this case we write fn
I−u−−−→ f .

Definition 3.3. Let f, fn : X → Y, n ∈ N. Then the the sequence {fn}n∈N is said to be I-equal convergent to
f if there exists a sequence {εn}n∈N of positive reals with I- limn→∞ εn = 0 such that for any x ∈ X and for
any z ∈ Y , the set {n ∈ N : ∥fn(x)− f(x), z∥ ≥ εn} ∈ I. In this case f is called I-equal limit of the sequence

{fn}n∈N and we write fn
I−e−−−→ f .

Example 3.4. Let I be a non trivial proper admissible ideal. Let X = R2 and Y = {(a, 0) : a ∈ R}. Define
fn(x1, x2) = ( 1

n+1 , 0) and f(x1, x2) = (0, 0) for all (x1, x2) ∈ R2. Suppose εn = 1
n . Then I- limn→∞ εn = 0.

Here we use the 2-norm on R2 by ∥x, y∥ = |x1y2 − x2y1|, x = (x1, x2), y = (y1, y2) ∈ R2. Now we consider
the set A = {n ∈ N : ∥fn(x1, x2)− f(x1, x2), z∥ ≥ εn} for all z = (y1, y2) ∈ Y . Then A = {n ∈ N :∥∥∥( 1

n+1 , 0)− (0, 0), (y1, y2)
∥∥∥ ≥ 1

n} = {n ∈ N : y2

n+1 ≥ 1
n} = {n ∈ N : 0 ≥ 1

n} = ϕ ∈ I, since y2 = 0.

Therefore fn
I−e−−−→ f .

Now we investigate some arithmetical properties of I-equal convergent sequences of functions.

Theorem 3.5. Let f, fn : X → Y, n ∈ N. If fn
I−e−−−→ f then f is unique.

Proof. If possible let f and g be two distinct I-equal limit of {fn}n∈N. Then there are two sequences {εn}n∈N
and {γn}n∈N of positive reals with I- limn→∞ εn = 0 and I- limn→∞ γn = 0 and for any x ∈ X and for
any z ∈ Y , the sets K1 = {n ∈ N : ∥fn(x)− f(x), z∥ ≥ εn}, K2 = {n ∈ N : ∥fn(x)− g(x), z∥ ≥
γn} ∈ I. Therefore Kc

1 = {n ∈ N : ∥fn(x)− f(x), z∥ < εn}, Kc
2 = {n ∈ N : ∥fn(x)− g(x), z∥ <

γn} ∈ F(I). Let z ∈ Y be linearly independent with f(x) − g(x). Put ε = 1
2 ∥f(x)− g(x), z∥ > 0. As

I- limn→∞ εn = 0 and I- limn→∞ γn = 0, the sets Kc
3 = {n ∈ N : εn < ε}, Kc

4 = {n ∈ N : γn <
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ε} ∈ F(I). As ϕ /∈ F(I), Kc
1 ∩ Kc

2 ∩ Kc
3 ∩ Kc

4 ̸= ϕ. Then there exists m ∈ N such that m ∈ Kc
1 ∩

Kc
2 ∩ Kc

3 ∩ Kc
4 . Then ∥fm(x)− f(x), z∥ < εm, ∥fm(x)− g(x), z∥ < γm, εm < ε and γm < ε. Now

∥f(x)− g(x), z∥ = ∥f(x)− fm(x) + fm(x)− g(x), z∥ ≤ ∥fm(x)− f(x), z∥ + ∥fm(x)− g(x), z∥ < εm +

γm < ε+ ε = 1
2 ∥f(x)− g(x), z∥+ 1

2 ∥f(x)− g(x), z∥ = ∥f(x)− g(x), z∥ , which is absurd. Hence I-equal
limit f of the sequence {fn}n∈N must be unique if it exists. ■

Theorem 3.6. Let f, fn : X → Y and g, gn : X → Y , n ∈ N. If fn
I−e−−−→ f and gn

I−e−−−→ g, fn+gn
I−e−−−→ f+g.

Proof. Since fn
I−e−−−→ f and gn

I−e−−−→ g, there exist sequences {ξn}n∈N and {ρn}n∈N of positive reals with
I- limn→∞ ξn = 0 and I- limn→∞ ρn = 0 such that for x ∈ X and z ∈ Y , we have
A1 = {n ∈ N : ∥fn(x)− f(x), z∥ ≥ ξn}, A2 = {n ∈ N : ∥gn(x)− g(x), z∥ ≥ ρn} ∈ I. So
Ac

1 = {n ∈ N : ∥fn(x)− f(x), z∥ < ξn}, Ac
2 = {n ∈ N : ∥gn(x)− g(x), z∥ < ρn} ∈ F(I). As ϕ /∈ F(I),

Ac
1 ∩Ac

2 ̸= ϕ.
Now let n ∈ Ac

1 ∩ Ac
2 and consider the set Ac

3 = {n ∈ N : ∥fn(x) + gn(x)− {f(x) + g(x)}, z∥ <

ξn + ρn}. As ∥fn(x) + gn(x)− {f(x) + g(x)}, z∥ ≤ ∥fn(x)− f(x), z∥ + ∥gn(x)− g(x), z∥ < ξn + ρn,
therefore n ∈ Ac

3 i.e. Ac
1 ∩ Ac

2 ⊂ Ac
3. So A3 ⊂ A1 ∪ A2. Since A1 ∪ A2 ∈ I, A3 ∈ I. i.e. {n ∈ N :

∥fn(x) + gn(x)− {f(x) + g(x)}, z∥ ≥ ξn + ρn} ∈ I. As I- limn→∞ ξn + ρn = 0, fn + gn
I−e−−−→ f + g. This

proves the theorem. ■

Theorem 3.7. Let f, fn : X → Y, n ∈ N. Let a(̸= 0) ∈ R. If fn
I−e−−−→ f , afn

I−e−−−→ af .

Proof. Since fn
I−e−−−→ f , there is a sequence {βn}n∈N of positive reals with I- limn→∞ βn = 0 such that for x ∈

X, z ∈ Y , the set B1 = {n ∈ N : ∥fn(x)− f(x), z∥ ≥ βn

|a|} ∈ I. Put B2 = {n ∈ N : ∥afn(x)− af(x), z∥ ≥
βn}. As, ∥afn(x)− af(x), z∥ ≥ βn ⇒ ∥fn(x)− f(x), z∥ ≥ βn

|a| . Therefore B2 ⊂ B1. So B2 ∈ I. This proves
the result. ■

In [10] it has been proved for real valued functions that I-uniform convergence implies I-equal convergence.
Now we investigate it in linear 2-normed spaces which will be needed in the sequel. First we give an important
lemma which has been stated as remark in [24].

Lemma 3.8. (cf.[24]) Let f, fn : X → Y , n ∈ N. If {fn}n∈N is I-uniformly convergent to f then
{supx∈X ∥fn(x)− f(x), z∥}n∈N is I-convergent to zero for all z ∈ Y .

Proof. First we assume that {fn}n∈N is I-uniformly convergent to f . Then for any ε > 0 there exists M ∈ I
such that for all n ∈ M c and for x ∈ X , z ∈ Y , ∥fn(x)− f(x), z∥ < ε

2 . This implies

sup
x∈X

∥fn(x)− f(x), z∥ ≤ ε

2
< ε.

So the set {n ∈ N : | supx∈X ∥fn(x)− f(x), z∥ − 0| ≥ ε} ⊂ M ∈ I, for all z ∈ Y . Therefore
{supx∈X ∥fn(x)− f(x), z∥}n∈N is I-convergent to zero for all z ∈ Y . ■

Theorem 3.9. Let f, fn : X → Y, n ∈ N. fn
I−u−−−→ f implies fn

I−e−−−→ f .

Proof. Since the sequence {fn}n∈N is I-uniformly convergent to f in Y , due to the Lemma 3.8 the sequence
{un}n∈N is I-convergent to zero where un = supx∈X ∥fn(x)− f(x), z∥, for all z ∈ Y . Let ε > 0 be given.

Then the set B = {n ∈ N : un ≥ ε} ∈ I. Define ξn =

{
1
n , if n ∈ B

un + 1
n , if n /∈ B

. We show {ξn}n∈N is I-

convergent to zero. For, let ε1 > 0, we have {n : ξn ≥ ε1} = {n ∈ B : ξn ≥ ε1} ∪ {n ∈ Bc : ξn ≥ ε1} = {n :
1
n ≥ ε1} ∪ {n : un + 1

n ≥ ε1} = M1 ∪M2. Clearly M1 is finite. If n ∈ M2 then n ∈ Bc. So un < ε. Now
un + 1

n ≥ ε1 if 1
n ≥ ε1 −un i.e. if 1

n ≥ ε1 − ε which is for finite number values of n. Therefore M2 is finite. As
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I is admissible, M1 ∪M2 ∈ I. Hence I- limn→∞ ξn = 0. Now, for all z ∈ Y , we have ∥fn(x)− f(x), z∥ ≤
supx∈X ∥fn(x)− f(x), z∥ < supx∈X ∥fn(x)− f(x), z∥ + 1

n = un + 1
n = ξn if n ∈ Bc where B ∈ I.

Therefore {n ∈ N : ∥fn(x)− f(x), z∥ ≥ ξn} ∈ I. As I- limn→∞ ξn = 0, fn
I−e−−→ f . Hence the theorem

follows. ■

Now we intend to proceed with the notion of I∗-equal convergence in linear 2-normed spaces.

Definition 3.10. Let f, fn : X → Y, n ∈ N. The sequence {fn}n∈N is said to be I∗-equal convergent to f if
there exists a set M = {m1 < m2 < · · · < mk · · · } ∈ F(I) and a sequence {εk}k∈M of positive reals with
limk→∞ εk = 0 such that for every x ∈ X , there is a number p ∈ N and for every z ∈ Y , ∥fmk

(x)− f(x), z∥ <

εk for all k ≥ p. In this case we write fn
I∗−e−−−→ f .

We proceed to investigate the relationship between I-equal and I∗-equal convergence in linear 2-normed
spaces.

Theorem 3.11. Let f, fn : X → Y, n ∈ N. If fn
I∗−e−−−→ f then fn

I−e−−−→ f .

Proof. We assume fn
I∗−e−−−→ f . Then there exist a set M = {m1 < m2 < · · · < mk · · · } ∈ F(I) and a

sequence {εk}k∈M of positive reals with limk→∞ εk = 0 such that for every x ∈ X , there is a number p ∈ N
and for every z ∈ Y , ∥fmk

(x)− f(x), z∥ < εk for k > p. Then clearly ∥fn(x)− f(x), z∥ ≥ εn holds for
n ∈ (N\M)∪{m1,m2, · · · ,mp}. This implies {n : ∥fn(x)− f(x), z∥ ≥ εn} ⊂ (N\M)∪{m1,m2, · · · ,mp}.

Since I is admissible, {n : ∥fn(x)− f(x), z∥ ≥ εn} ∈ I. Hence fn
I−e−−−→ f . ■

Remark 3.12. The converse of the above theorem may not hold in general as shown by the following example.

Example 3.13. Consider a decomposition N =
⋃∞

i=1 Di such that each Di is infinite and Di ∩ Dj = ϕ for
i ̸= j. Let I be the class of all subsets of N which intersects only a finite number of D

′

is. Then I is a non-trivial
admissible ideal. Let f, fn : X → Y, n ∈ N such that {fn}n∈N is uniformly convergent to f and fn ̸= f for
any n ∈ N. Then for each ε > 0 there exists p ∈ N such that for all x ∈ X, z ∈ Y , ∥fn(x)− f(x), z∥ < ε

for all n > p. Define a sequence {gn}n∈N by gn = fj if n ∈ Dj . Then for all x ∈ X, z ∈ Y the set
{n ∈ N : ∥gn(x)− f(x), z∥ ≥ ε} ⊂ D1 ∪D2 ∪ · · · ∪Dp. Therefore {n ∈ N : ∥gn(x)− f(x), z∥ ≥ ε} ∈ I.

Hence gn
I−u−−−→ f . By the Theorem 3.9, gn

I−e−−−→ f .

Now we shall show that {gn}n∈N is not I∗-equal convergent in Y . If possible let gn
I∗−e−−−→ f . Now, by

definition, if H ∈ I, then there is a p ∈ N such that H ⊂ D1 ∪ D2 ∪ · · · ∪ Dp. Then DP+1 ⊂ N \ H and
so we have gmk

= fp+1 for infinitely many of k
′
s. Let z ∈ Y be linearly independent with fp+1 − f(x). Now

we have limn→∞ ∥gmk
(x)− f(x), z∥ = ∥fp+1(x)− f(x), z∥ ̸= 0. Which shows that {gn}n∈N is not I∗-equal

convergent in Y .

Now we see, if X and Y are countable and I satisfies the condition (AP ) then the converse of the Theorem

3.11 also holds. In the next theorem we investigate whether the two concepts fn
I−e−−−→ f and fn

I∗−e−−−→ f coincide
in linear 2-normed spaces when I is a P -ideal.

Theorem 3.14. Let f, fn : X → Y, n ∈ N and let X and Y be countable sets. Then fn
I−e−−−→ f implies

fn
I∗−e−−−→ f whenever I is a P -ideal.

Proof. From the given condition there exists a sequence {σn}n∈N of positive reals with I- limn→∞ σn = 0 and
for every z ∈ Y and for each x ∈ X , there is a set B = B(x, z) ∈ F(I), ∥fn(x)− f(x), z∥ < σn for all
n ∈ B. Now by Theorem 2.2, I∗- limn→∞ σn = 0. So we will get a set H ∈ F(I) for which {σn}n∈H is
convergent to zero. Since X and Y are countable sets, so X × Y is countable. So let us enumerate X × Y by
{(xi, zi) : xi ∈ X, zi ∈ Y, i = 1, 2, . . .}. So for each element (xi, zi) ∈ X × Y , there is a set Bi = B(xi, zi) ∈
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F(I), we have ∥fn(xi)− f(xi), zi∥ < σn for all n ∈ Bi. I-being a P -ideal, there is a set A ∈ F(I) such that
A \ Bi is finite for all i. So for every z ∈ Y and for all n ∈ A ∩H except for finite number of values, we have

∥fn(x)− f(x), z∥ < σn. Therefore fn
I∗−e−−−→ f . Hence the theorem follows. ■

Theorem 3.15. Let f, fn : X → Y, n ∈ N. Suppose that fn
I−e−−−→ f implies fn

I∗−e−−−→ f . Then I satisfies the
condition (AP ).

Proof. Let f, fn : X → Y, n ∈ N such that {fn}n∈N is uniformly convergent to f and fn ̸= f for any n ∈ N.
Then for each ε > 0 there exists p ∈ N such that for all x ∈ X, z ∈ Y , ∥fn(x)− f(x), z∥ < ε for all n > p.
Suppose {M1,M2, · · · } be a class of mutually disjoint non empty sets from I. Define a sequence {hn}n∈N by

hn =

{
fj , if n ∈ Mj

f, if n ∈ N \
⋃

j Mj

. First of all we shall show that hn
I−u−−−→ f . Let ε > 0 be given. Observe that the

set M = M1 ∪M2 ∪ . . . ∪Mp ∈ I and for all x ∈ X, z ∈ Y , we have ∥hn(x)− f(x), z∥ < ε for all n ∈ M c.

i.e. {n ∈ N : ∥hn(x)− f(x), z∥ ≥ ε} ⊂ M1 ∪M2 ∪ · · · ∪Mp ∈ I. Therefore hn
I−u−−−→ f . By the Theorem 3.9

we have hn
I−e−−−→ f . So by the given condition hn

I∗−e−−−→ f . Therefore there is a set B ∈ I such that

H = N \B = {a1 < a2 < · · · < ak < · · · } ∈ F(I) and hak

e−→ f. (3.1)

Put Bj = Mj ∩ B (j = 1, 2, · · · ). So {B1, B2, · · · } is a class of sets belonging to I. Now
⋃∞

j=1 Bj =⋃∞
j=1(Mj ∩B) = (B ∩ {

⋃∞
j=1 Mj} ⊂ B. Since B ∈ I it follows

⋃∞
j=1 Bj ∈ I. Now from the equation 3.1 we

see that the set Mj has a finite number of elements common with the set N \ B. So Mj△Bj ⊂ Mj ∩ (N \ B).
Therefore Mj△Bj is finite. Therefore I satisfies the condition AP . ■
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[8] A. CASERTA, G. DI MAIO AND L.D. KOČINAC, Statistical convergence in function spaces, Abstr. Appl. Anal.,
Art. ID 420419 (2011), 11 pp, https://doi.org/10.1155/2011/420419.

[9] P. DAS, S. DUTTA, On some types of convergence of sequences of functions in ideal context, Filomat, 27
(1) (2013), 157–164, https://doi.org/10.2298/FIL1301157D.

[10] P. DAS, S. DUTTA AND S.K. PAL, On I and I∗-equal convergence and an Egoroff-type theorem, Mat. Vesnik,
66 (2) (2014), 165–177.

[11] H. FAST, Sur la convergence statistique, Colloq. Math., 2 (3-4) (1951), 241–244,
https://doi.org/10.4064/cm-2-3-4-241-244.

[12] J.A. FRIDY, On statistical convergence, Analysis, 5 (4) (1985), 301–313,
https://doi.org/10.1524/anly.1985.5.4.301.
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Abstract. This work studies an explicit and a constructive solution for the difference equation

xn+1 =
xn · (axn−k + axn−k+1)

bxn−k+1 + cxn−k
, n = 0, 1, . . . ,

where a ≥ 0, a > 0, b > 0, c > 0 and k ≥ 1 is an integer, with initial conditions x−k, x−k+1, . . . , x−1, x0. We also will
determine the global behavior of this solution. For the case when a = 0, the method presented here gives us the particular
solution obtained by Gümüş and Abo-Zeid that establishes an inductive type of proof.
AMS Subject Classifications: Primary: 39A20.
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1. Introduction

The study of rational difference equations currently represents a fruitful area of study that attracts many
mathematical researchers. Many difference equations have been successfully used for modeling real
phenomena [3, 5, 7].

In 2019 Abo-Zeid [1] published a study on the global behavior of the difference equation

xn+1 =
axnxn−1

±bxn−1 + cxn−2
, n = 0, 1, . . . ,

where a, b, c are positive real numbers, and obtained its general solution. Similarly, Abo-Zeid [2] also studied the
solutions to

xn+1 =
xnxn−2

axn−2 + bxn−3
, n = 0, 1 . . . ,

∗Corresponding author. Email address: rzuritao@fcpn.edu.bo (Rimer ZURITA)
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for a, b positive constants. Motivated by these results, in 2020 Gümüş and Abo-Zeid [4] found an explicit solution
and studied the global behavior of the equation

xn+1 =
axnxn−k+1

bxn−k+1 + cxn−k
, n = 0, 1 . . . ,

where a, b, c are positive constants and k ≥ 1 is an integer.
In this work we will generalize the result found by Gümüş and Abo-Zeid by explicitly solving

xn+1 =
xn · (axn−k + axn−k+1)

(bxn−k+1 + cxn−k)
, n = 0, 1, . . . , (1.1)

where a ≥ 0, a > 0, b > 0, c > 0 and k ≥ 1 is an integer, with the initial conditions x−k, x−k+1, . . . , x−1, x0.

2. Preliminaries

The Riccati difference equation is defined by

RnRn−1 +A(n)Rn +B(n)Rn−1 = C(n). (2.1)

Following the ideas found in the book by Mickens [6, Chapter 6 ], we make the change of variable

Rn =
Qn −B(n)Qn+1

Qn+1
,

which transforms (2.1) into a linear second order equation of the form

(A(n)B(n) + C(n))Qn+1 + (B(n− 1)−A(n))Qn −Qn−1 = 0.

In order to solve (1.1), the first step is to transform it into a Riccati equation. Indeed, (1.1) is equivalent to

bxn+1xn−k+1 + cxn+1xn−k = axnxn−k + axnxn−k+1,

or

b
xn+1

xn
· xn−k+1

xn−k
+ c

xn+1

xn
= a+ a

xn−k+1

xn−k
.

Upon applying the change of variable
yn =

xn+1

xn
, (2.2)

we have
ynyn−k +

c

b
yn − a

b
yn−k =

a

b
. (2.3)

We can see here that the solution for yn depends exclusively on what happens to yn−k (that is, k steps before).
Therefore, we can solve the Riccati equation

zmzm−1 +
c

b
zm − a

b
zm−1 =

a

b
, (2.4)

with initial condition z−1 := y−k+i, where y−k+i =
x−k+i+1

x−k+i
for some i = 0, 1, . . . , k − 1 fixed (z−1 depends

on i). It is evident that the solutions to (2.3) and (2.4) are related by

zm = ymk+i. (2.5)
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By making the change of variable

zm =
wm + (a/b)wm+1

wm+1
,

equation (2.4) transforms into the homogeneous linear second order equation with constant coefficients

(ab− ac)wm+1 − (a+ c)bwm − b2wm−1 = 0.

The roots of the characteristic polynomial associated to this last equation are given by

r2,1 :=
(a+ c)b± b

√
(a− c)2 + 4ab

2(ab− ac)
. (2.6)

Hence, the general solution of (2.4) is given by

zm =
(C1r

m
1 + C2r

m
2 ) + (a/b)(C1r

m+1
1 + C2r

m+1
2 )

C1r
m+1
1 + C2r

m+1
2

.

Making the change of variable Ci := C2/C1, this becomes

zm =
(1 + a

b r1)(
r1
r2
)m + Ci(1 +

a
b r2)

r1(
r1
r2
)m + Cir2

. (2.7)

With the initial condition z−1, we obtain

Ci = −r2
r1

· (b+ ar1 − br1z−1)

(b+ ar2 − br2z−1)
. (2.8)

Therefore, by means of recursive backward application of the changes of variable previously done, we obtain the
explicit solution to (1.1), as shown in Theorem 3.1 below.

Remark 2.1. In the particular case when a = 0, we get r1 = − b
c and r2 = − b

a , and thus we have

zm =
1

b
a−c + C · ( ca )m

,

with C = c
a

(
a−c−bz−1

(a−c)z−1

)
. By recursive backward application of the changes of variables previously done, we get

ymk+i =
a− c(

a−c−bz−1

z−1

)
( ca )

m+1 + b
,

which implies that

xmk+i+1 = xmk+i ·

(
a− c

a−c−by−k+i

y−k+i
( ca )

m+1 + b

)
,

from which we can deduce the Gümüş and Abo-Zeid result in [4].

3. Solution to equation (1.1)

Since the case a = 0 was already solved by Gümüs and Abo-Zeid [4], we can focus on the case a ̸= 0 and
normalize this coefficient to obtain

xn+1 =
xn · (xn−k + axn−k+1)

bxn−k+1 + cxn−k
, n = 0, 1, . . . (3.1)
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We also can assume that b ̸= ac. Indeed, if b = ac, then (3.1) reduces to

xn+1 =
xn

c
,

which represents a simple case.
Observe that under these conditions, the roots r1, r2 in (2.6) are equal to

r2,1 =
(a+ c)b± b

√
(a− c)2 + 4b

2(b− ac)
. (3.2)

Moreover, since
∣∣(a+ c)−

√
(a− c)2 + 4b

∣∣ < ∣∣(a+ c) +
√
(a− c)2 + 4b

∣∣, these roots satisfy∣∣∣∣r1r2
∣∣∣∣ < 1.

We also note that r1 ̸= 0, r2 ̸= 0.
In order for the solution of (3.1) to be well defined, it is necessary to assume that the initial conditions

x−k, x−k+1, . . . , x−1, x0 satisfy the following conditions:

(H) :



1) x−k, . . . , x−1 are non-zero.

2) b+ ar2 ̸= br2

(
x−k+i+1

x−k+i

)
, for every i = 0, 1, . . . , k − 1, where r2

is defined as in (3.2), and b ̸= ac.

3)
(

r1
r2

)j+1

̸= −Ci for every integer j ≥ 0 and for every i = 0, 1, . . . , k − 1,

where Ci is defined as in (2.8), and z−1 = x−k+i+1

x−k+i
.

Theorem 3.1. Consider the difference equation

xn+1 =
xn · (xn−k + axn−k+1)

bxn−k+1 + cxn−k
,

with a, b, c > 0 such that b ̸= ac, and initial conditions x−k, x−k+1, . . . , x−1, x0 satisfying (H). Let r1 and r2 be
defined as in (3.2). Let us define the functions

βi(j) =
(1 + a

b r1)(
r1
r2
)j + Ci(1 +

a
b r2)

r1(
r1
r2
)j + Cir2

, (3.3)

with Ci as in (2.8). Then the solution to this equation is given by

xmk = x0

m−1∏
j=0

k−1∏
i=0

βi(j)

xmk+1 = β0(m) · xmk

xmk+2 = β0(m)β1(m) · xmk

...

xmk+(k−1) = β0(m) · · ·βk−2(m) · xmk.

for m = 0, 1, 2, 3, . . .

Proof. From (2.5) and (2.7), we obtain

ymk+i =
(1 + a

b r1)(
r1
r2
)m + Ci(1 +

a
b r2)

r1(
r1
r2
)m + Cir2

.
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Since we defined yn = xn+1

xn
in (2.2), then

xmk+i+1 = xmk+i ·

(
(1 + a

b r1)(
r1
r2
)m + Ci(1 +

a
b r2)

r1(
r1
r2
)m + Cir2

)
.

By applying this equality recursively for all non-negative integers m and k, and for i = 0, 1, 2, 3, . . . , k − 1, we
immediately obtain the Theorem’s result. ■

4. Asymptotic behavior of the solution to equation (3.1)

For the analysis of the global behavior of (3.1), let us consider the following additional conditions:

(H1) :

{
b+ ar1 ̸= br1

(
x−k+i+1

x−k+i

)
for every i = 0, 1, . . . , k − 1, where r1

is defined as in (3.2), and b ̸= ac.

(H2) :

{
Ci ̸=

(1+ a
b r1)

(1+ a
b r2)

(
r1
r2

)j
for all i and for all j ≥ 0.

We can see that r2, as given in (3.2) with b ̸= ac, satisfies

1

r2
+

a

b
=

2(b− ac)

b((a+ c) +
√

(a− c)2 + 4b)
+

a

b

=

√
(a− c)2 + 4b− (a+ c)

2b
+

a

b
=

√
(a− c)2 + 4b+ (a− c)

2b
.

We also see that 1
r2

+ a
b > 0. Moreover,

1

r2
+

a

b
< 1 ⇔

√
(a− c)2 + 4b < 2b− (a− c) ⇔ 2b− (a− c) > 0 and

(2b− (a− c))2 > (a− c)2 + 4b ⇔ 2b− (a− c) > 0 and b− (a− c) > 1

⇔ b− (a− c) > 0.

From this, and in the same manner for the remaining cases, we have

a) 1
r2

+ a
b < 1 ⇐⇒ b− (a− c) > 1.

b) 1
r2

+ a
b > 1 ⇐⇒ b− (a− c) < 1.

c) 1
r2

+ a
b = 1 ⇐⇒ b− (a− c) = 1.

Theorem 4.1. Let {xn}∞n=−k be the solution to (3.1) such that the initial conditions x−k, . . . , x0 satisfy (H) and
(H1). Then,

1. If b− (a− c) > 1, then {xn}∞n=−k converges to 0.

2. If b− (a− c) < 1 and the initial conditions satisfy (H2) as well, then {xn}∞n=−k is unbounded.

3. If b− (a− c) = 1, then {xn}∞n=−k converges to a finite limit.

Proof. From conditions, we have Ci ̸= 0 for all i. On the other hand, since |r1/r2| < 1, it follows for all i that
βi(j) → 1

r2
+ a

b if j → ∞, where βi(j) is as defined in (3.3).
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1. If b− (a− c) > 1, then 1
r2

+ a
b < 1. Hence, there exist 0 < ε < 1 and j0 ∈ N such that |βi(j)| < ε for all

j ≥ j0 and for all i. Then, for large enough values of m, we have

|xmk| = |x0|

∣∣∣∣∣
j0−1∏
j=0

k−1∏
i=0

βi(j)

∣∣∣∣∣
∣∣∣∣∣
m−1∏
j=j0

k−1∏
i=0

βi(j)

∣∣∣∣∣
< |x0|

∣∣∣∣∣
j0−1∏
j=0

k−1∏
i=0

βi(j)

∣∣∣∣∣ · εk(m−j0).

We conclude that as m tends to infinity, then xkm converges to 0. Moreover, for i ∈ {1, 2, . . . , k − 1}, we
have

xmk+i = xmk ·

∣∣∣∣∣
i−1∏
l=0

βl(m)

∣∣∣∣∣.
Therefore, {xn}∞n=−k tends to 0.

2. If b − (a − c) < 1, then 1
r2

+ a
b > 1. Hence, there exist 1 < ε1 < 1

r2
+ a

b and j1 ∈ N such that
βi(j) > ε1 > 1 for all j ≥ j1 and for all i. Moreover, by condition (H2), we have βi(j) ̸= 0 for all i and
for all j. Then, for large enough values of m, we have

|xmk| = |x0|

∣∣∣∣∣
j1−1∏
j=0

k−1∏
i=0

βi(j)

∣∣∣∣∣
∣∣∣∣∣
m−1∏
j=j1

k−1∏
i=0

βi(j)

∣∣∣∣∣
> |x0|

∣∣∣ j1−1∏
j=0

k−1∏
i=0

βi(j)
∣∣∣ · εk(m−j1)

1 .

We conclude that |xkm| → ∞ when m → ∞. Moreover, for i ∈ {1, 2, . . . , k − 1}, we have

xmk+i = xmk ·
i−1∏
l=0

βl(m).

Therefore, the solution set {xn}∞n=−k is unbounded.

3. If b− (a− c) = 1, then 1
r2

+ a
b = 1. Hence, there exists j2 ∈ N such that βi(j) > 0 for j ≥ j2 and for all

i. Then, we have

xkm = x0

(
j2−1∏
j=0

k−1∏
i=0

βi(j)

)(
m−1∏
j=j2

k−1∏
i=0

βi(j)

)

= x0

(
j2−1∏
j=0

k−1∏
i=0

βi(j)

)
exp

(
m−1∑
j=j2

k−1∑
i=0

ln(βi(j))

)
.
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Let us define

aj :=

k−1∑
i=0

ln(βi(j)) =

k−1∑
i=0

ln

1 + 1
Cir2

(
1 + a

b r1
) (

r1
r2

)j
1 + r1

Cir2

(
r1
r2

)j


=

k−1∑
i=0

(
ln

(
1 +

1

Cir2
(1 +

a

b
r1)(

r1
r2

)j
)
− ln

(
1 +

r1

Cir2
(
r1
r2

)j
))

=

k−1∑
i=0

((
1

Cir2

(
1 +

a

b
r1

)(r1
r2

)j

+O
(
(r1/r2)

2j
))

−

(
r1

Cir2

(
r1
r2

)j

+O
(
(r1/r2)

2j
)))

=
k−1∑
i=0

(
1

Cir2

(
1 +

a− b

b
r1

)(
r1
r2

)j

+O((r1/r2)
2j)

)

=
1

r2

(
1 +

a− b

b
r1

)(k−1∑
i=0

1

Ci

)
·
(
r1
r2

)j

+O
(
(r1/r2)

2j
)
.

Then, we have

lim
j→∞

∣∣∣aj+1

aj

∣∣∣ = ∣∣∣r1
r2

∣∣∣ < 1.

By D’Alembert’s ratio test, the series
∑∞

j=j2

∑k−1
i=0 ln(βi(j)) converges. Hence, there exists v ∈ R such

that
lim

m→∞
xkm = v.

In the same way, for i ∈ {1, . . . , k − 1}, we have

xmk+i = xmk ·
i−1∏
l=0

βl(m) → v when m → ∞.

Therefore, the solution set {xn}∞n=−k converges to a finite limit.

■

5. Numerical Results

Numerical simulations performed with MATLAB for the three cases stated in Theorem 4.1 are shown in the
following examples.

Example 1. Consider the equation

xn+1 =
xn(xn−4 + 7.3xn−3)

3.5xn−3 + 5.8xn−4
.

In this case we have a = 7.3, b = 3.5, c = 5.8 and k = 4. Also, we can see that b − a + c > 1. Table 1
shows convergence to zero.
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On the rational difference equation xn+1 = xn·(axn−k+axn−k+1)
bxn−k+1+cxn−k

Table 1: Numerical results for Example 1.

n xn n xn

−4 2.1 10 −0.083543908285124

−3 1 20 0.012701017754877

−2 8.5 50 0.003594428250519

−1 −3.3 100 2.862071648505816× 10−8

0 −1.7 200 1.691446180919758× 10−18

1 −1.019132653061225 500 3.491237927069944× 10−49

2 −1.807491245443325 999 3.185169006739856× 10−100

Example 2 Consider the equation

xn+1 =
xn(xn−3 + 0.8xn−2)

0.2xn−2 + 0.1xn−3
.

In this case, we have a = 0.8, b = 0.2, c = 0.1, k = 3. Also, we can see that b− a+ c < 1. Table 2 shows
the solution set is unbounded.

Table 2: Numerical results for Example 2.

n xn n xn

−3 2.8 5 3.976943951329059× 103

−2 7.5 10 7.870828852071307× 106

−1 1.3 20 3.259245595490367× 1013

0 0.7 50 2.322461318837964× 1033

1 3.460674157303371 100 2.844463544208173× 1066

2 29.261541884525528 150 3.483792297723871× 1099

3 2.015795107600647× 102 200 4.266818183833936× 10132

Example 3 Consider the equation

xn+1 =
xn(xn−5 + 1.5xn−4)

1.7xn−4 + 0.8xn−5
.

In this case we have a = 1.5, b = 1.7, c = 0.8, k = 5. Also, we can see that b− a+ c = 1. Table 3 shows
convergence to a finite limit approximately equal to 2.804367096028192.

Table 3: Numerical results for Example 3.

n xn n xn

−5 3.1 2 2.824563238832514

−4 2.1 20 2.804362901181129

−3 1.8 50 2.804367096027094

−2 6.5 100 2.804367096028192

−1 3.3 200 2.804367096028192

0 2.7 500 2.804367096028192

1 2.789256198347107 999 2.804367096028192
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6. Conclusion

In Theorem 3.1 we found an explicit solution for equation (1.1) when a ≥ 0, a > 0, b > 0, c > 0, and
k ≥ 1 is an integer. The idea behind the construction of such a solution was to transform the given equation
into a Riccati difference equation, which can be easily transformed into a linear difference equation with constant
coefficients.

Similarly, in Theorem 4.1 we obtained results concerning the asymptotic behaviour of the solutions to (1.1).
We determined that solutions can be convergent or divergent, depending on whether the value of b − a + c is
greater than, less than or equal to 1, when a = 1. We also performed some numerical experiments in order to
verify such behaviours for different values of a, b, c and k.

The author considers that similar techniques can be used to obtain explicit solutions, or at least results about
the global behavious of such solutions, for the case when a, a, b and/or c are negatives, or when these coefficients
are linear on n. The author conjectures that the first case could give rise to periodical solutions, while the second
case can be dealt with by converting the resulting Riccati equation into a Cauchy-Euler equation.
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Abstract. The purpose of this paper is to construct a common fixed point theorem for pair of quasi triangular α-orbital
admissible with an interpolative (φ,ψ)- Banach-Kannan-Chatterjea type Z-contraction mappings with reference to simulation
function in complete metric space. We adopt an example to validate our main result. Our result extends the result of M. S.
Khan et al. [15]. As an application, we provide the existence of a solution for a nonlinear Fredholm integral equations.
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1. Introduction

The Banach contraction principle is pivotal tools in fixed point theory. Many inventors expanded and
generalized the Banach contraction principle to many orientations [3, 5, 24, 27, 28]. Samet et al. [25] found the
conception of α− ψ contraction type mapping and take advantage of their new concept to established and found
several fixed point theorems. Several inventors used the concept of α-admissible mapping to established new
results in many spaces [10, 21, 22, 26, 30]. In 2014, Popescu [20] found the two new concept α-orbital
admissible and triangular α-orbital admissible and gave the result each α-admissible mapping is an α-orbital
admissible mapping and each triangular α-admissible mapping is an triangular α-orbital admissible mapping.
Many inventors gave the fixed point and common fixed point result for α-orbital admissible mapping
[1, 7, 9, 18, 19]. In 2015, Khojasteh et al.[17] found the notion of simulation function. In the same year, Argoubi
et al. [6] clarified the conception of simulation function. Many inventors found the fixed point and common
fixed point result for simulation function in discrete spaces [2, 4, 11, 12, 14, 23, 29].
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2. Preliminaries

We recall some useful definitions that will be needed in the sequel.

Definition 2.1. [25] Let Q : Y → Y be a mapping and α : Y × Y → [0,∞) be a function. Then Q is
α-admissible if α(u, v) ≥ 1 implies α(Qu,Qv) ≥ 1.

Definition 2.2. [13] Let Q : Y → Y be a function and α : Y × Y → [0,∞) be a function. Then Q is said to be
triangular α-admissible if Q fulfills the following conditions:

1. Q is α-admissible,

2. if α(u,w) ≥ 1 and α(w, v) ≥ 1 implies α(u, v) ≥ 1.

Qawagneh et al. [22] introduced the notion of triangular α-admissible for set of self mappings on Y .

Definition 2.3. [22] Let H,Q : Y → Y be two mappings and α : Y × Y → [0,∞) be a function such that the
following conditions hold:

1. if α(u, v) ≥ 1 then α(Hu,Qv) ≥ 1 and α(QHu,HQv) ≥ 1;

2. if α(u,w) ≥ 1 and α(w, v) ≥ 1 implies α(u, v) ≥ 1.

Then we say that the pair (H,Q) is triangular α-admissible.

Definition 2.4. [20] Let Q : Y → Y be a mapping and α : Y × Y → [0,∞) be a function. Then Q is said to be
α-orbital admissible if α(u,Qu) ≥ 1 implies α(Qu,Q2u) ≥ 1.

Definition 2.5. [20] Let Q : Y → Y be a mapping and α : Y × Y → [0,∞) be a function. Then Q is said to be
triangular α-orbital admissible if Q satisfies the following conditions:

1. if Q is α-orbital admissible,

2. if α(u, v) ≥ 1 and α(v,Qv) ≥ 1 implies α(u,Qv) ≥ 1.

Definition 2.6. [19] Let H,Q : Y → Y be two mappings and αs : Y × Y → [0,∞) be a function such that the
following condition hold:

1. if αs(u,Qu) ≥ s2 and αs(u,Hu) ≥ s2 then αs(Qu,HQu) ≥ s2 and αs(Hu,QHu) ≥ s2.

Then the set (H,Q) is αs-orbital admissible.

Definition 2.7. [19] Let H,Q : Y → Y be two mappings and αs : Y × Y → [0,∞) be a function such that the
following conditions hold:

1. the self mappings H,Q are αs-orbital admissible,

2. if αs(u, v) ≥ s2, αs(v,Hv) ≥ s2 and αs(v,Qv) ≥ s2 implies αs(u,Hv) ≥ s2 and αs(u,Qv) ≥ s2.

Then the set (H,Q) is triangular αs-orbital admissible.

M. S. Khan et al. [15] introduced the concept of quasi triangular α-orbital admissible mappings as follows:

Definition 2.8. [15] Let Q : Y → Y be a mapping and α : Y × Y → [0,∞) be a function. Then Q is said to be
quasi triangular α-orbital admissible if Q satisfies the following conditions:

1. if Q is α-orbital admissible,

2. if α(u, v) ≥ 1 implies α(u,Qv) ≥ 1.
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Definition 2.9. [17] A mapping ζ : [0,∞)× [0,∞) → R is called a simulation function, if it fulfils the following
conditions:

1. ζ(0, 0) = 0;

2. ζ(v, u) < u− v for all u, v > 0;

3. if {vn}, {un} are sequences in (0,∞) such that limn→+∞ vn = limn→+∞ un > 0, then
limn→+∞ sup ζ(vn, un) < 0.

The set of all simulation functions is denoted by Z .

Definition 2.10. [17] Let (Y, d) be a metric space and Q : Y → Y be mapping. if there exists ζ ∈ Z such that

ζ(d(Qu,Qv), d(u, v)) ≥ 0.

for all u, v ∈ Y . Then Q is called Z-contraction with respect to ζ.

Definition 2.11. [16] A continuous function φ : [0,∞) → [0,∞) is called an altering distance if it is non-
decreasing and φ(l) = 0 if and only if l = 0.

Definition 2.12. [8] A function ψ : [0,∞) → [0,∞) is called comparison function if it is monotonically
increasing and ψn(l) → 0 as n→ ∞ for all l > 0.

M. S. Khan et al.[15] gave (φ,ψ)-type Z-contraction with respect to simulation function ζ using an
interpolative (φ,ψ) approach in the setting of metric spaces as follows:

Definition 2.13. [15] A mapping Q : Y → Y is called an interpolative (φ,ψ)-Banach-Kannan-Chatterjea type
Z-contraction with respect to ζ if there exists α : Y × Y → R, ζ ∈ Z, φ ∈ Φ, ψ ∈ Ψ, θ1, θ2 ∈ (0, 1) such that
φ(t) > ψ(t), for t > 0, ψ > 0 and θ1 + θ2 < 1 fulfilling the inequality

ζ(α(u, v)φ(d(Qu,Qv)), ψ(B(u, v))) ≥ 0 for all u, v ∈ Y,

where

B(u, v) = [d(u, v)]θ1 .[
1

2
(d(u,Qu) + d(v,Qv))]θ2 .[

1

2
(d(u,Qv) + d(v,Qu))]1−θ1−θ2

In this paper, we construct a common fixed point theorem for set of quasi triangular α-orbital admissible
mappings which form an interpolative (φ,ψ)-Banach-Kannan-Chatterjea type Z-contraction with reference to
simulation function in complete metric space.

3. Main Result

In this section, we introduced the conception of quasi triangular α-orbital admissible mapping for set of self
mappings H and Q on Y and discuss (φ,ψ)-type Z-contraction with reference to simulation function.

Definition 3.1. Let H,Q : Y → Y be two mappings and α : Y × Y → [0,∞) be a function such that the
following conditions hold.

1. if α(u,Qu) ≥ 1 and α(u,Hu) ≥ 1 then α(Qu,HQu) ≥ 1 and α(Hu,QHu) ≥ 1;

2. if α(u, v) ≥ 1 implies α(u,Qv) ≥ 1 and α(u,Hv) ≥ 1 .

Then the pair (H,Q) is called quasi triangular α-orbital admissible.
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In the following example shows that the mapping (H,Q) is quasi triangular α-orbital admissible but it is not
a triangular α-admissible.

Example 3.2. Let Y = {0, 1, 2} with usual metric d(u, v) = |u − v|. Let H : Y → Y , Q : Y → Y and
α : Y × Y → R be mappings defined by

HY =

(
0 1 2

1 0 0

)
, QY =

(
0 1 2

1 0 2

)
, α(u, v) =

{
1, if (u, v) ∈ A,
0, otherwise

where, A = {(0, 0), (0, 1), (1, 0), (1, 1), (1, 2)}. Since (0, 1), (1, 0) ∈ A, then we have
α(0, Q0) = α(Q0, HQ0) = α(1, 0) = 1, α(0, H0) = α(H0, QH0) = α(1, 0) = 1 and
α(1, Q1) = α(Q1, HQ1) = α(0, 1) = 1, α(1, H1) = α(H1, QH1) = α(0, 1) = 1. Then (H,Q) is α-orbital
admissible mappings. Further, we have

α(0, 1) = α(0, Q1) = α(0, 0) = 1 and α(0, 1) = α(0, H1) = α(0, 0) = 1,
α(1, 0) = α(1, Q0) = α(1, 1) = 1 and α(1, 0) = α(1, H0) = α(1, 1) = 1

α(1, 2) = α(1, Q2) = α(1, 2) = 1 and α(1, 2) = α(1, H2) = α(1, 0) = 1.

Hence, (H,Q) is quasi triangular α-orbital admissible mappings. Since α(u, v) = α(1, 2) = 1,
α(v,Qv) = α(2, Q2) = α(2, 2) = 0 and α(v,Hv) = α(2, H2) = α(2, 0) = 0 but
α(1, 2) = α(1, Q2) = α(1, 2) = 1 and α(1, 2) = α(1, H2) = α(1, 0) = 1. This shows that the condition
α(v,Qv) and α(v,Hv) for triangular α-orbital admissible are not necessity for quasi triangular α-orbital
admissible. On the other hand, we have α(1, 2) = 1, α(H1, Q2) = α(0, 2) = 0 and
α(QH1, HQ2) = α(1, 0) = 1 as (0, 2)∄Y , so (H,Q) is not α-admissible mapping. Further, we have
α(0, 1) = α(1, 2) = 1, but α(0, 2) = 0, so (H,Q) is not triangular α-admissible mapping.

Lemma 3.3. Let H,Q : Y → Y be two mappings and α : Y × Y → [0,∞) such that the set (H,Q) is quasi
triangular α-orbital admissible. Assume that there exists u0 ∈ Y in this manner α(u0, Hu0) ≥ 1. Define a
sequence {un} in Y by Hu2n = u2n+1 and Qu2n+1 = u2n+2. Then α(un, um) ≥ 1 for all m,n ∈ N ∪ {0}
with n < m.

Proof. Since α(u0, Hu0) = α(u0, u1) ≥ 1 and H,Q are α-orbital admissible self mappings,

α(u0, Hu0) ≥ 1 implies

α(Hu0, QHu0) = α(u1, Qu1) = α(u1, u2) ≥ 1

and α(u1, Qu1) ≥ 1 implies

α(Qu1, HQu1) = α(u2, Hu2) = α(u2, u3) ≥ 1

also α(u2, Hu2) ≥ 1 implies

α(Hu2, QHu2) = α(u3, Qu3) = α(u3, u4) ≥ 1

Applying the above argument repeatedly, we obtain α(un, un+1) ≥ 1 for all n ∈ N∪ {0}. Since (H,Q) is quasi
triangular α-orbital admissible mapping and α(un, un+1) ≥ 1 for all n ∈ N∪{0}, then we get α(un, Qun+1) =

α(un, un+2) ≥ 1 and α(un, Hun+1) = α(un, un+2) ≥ 1. By continuing the process, we get that α(un, um) ≥ 1

for all m,n ∈ N ∪ {0} with n < m.

Definition 3.4. The mappings H,Q : Y → Y are called an interpolative (φ,ψ)-Banach-Kannan-Chatterjea
type Z-contraction with respect to ζ if there exists α : Y × Y → R, ζ ∈ Z, φ ∈ Φ, ψ ∈ Ψ, θ1, θ2, θ3 ∈ (0, 1) in
this manner φ(t) > ψ(t), for t > 0, ψ > 0 and θ1 + θ2 + θ3 < 1 fulfilling the inequality

ζ(α(u, v)φ(d(Hu,Qv)), ψ(B(u, v))) ≥ 0 for all u, v ∈ Y, (3.1)
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where

B(u, v) = [d(u, v)]θ1 .[
1

2
(d(u,Hu) + d(v,Qv))]θ2 .[

1

2
(d(u,Qv) + d(v,Qu))]θ3 .

[
1

2
(d(u,Hv) + d(v,Hu))]1−θ1−θ2−θ3

Now, we state and prove our main results as follows:

Theorem 3.5. Let H and Q be self mappings on a metric space (Y, d) which is complete. Suppose that (H,Q)

is a quasi triangular α-orbital admissible and forms an interpolative (φ,ψ)-Banach-Kannan-Chatterjea type
Z-contraction with respect to ζ. If there exists u0 ∈ Y such that α(u0, Hu0) ≥ 1 and H and Q are continuous,
then the mappings H and Q have a unique common fixed point.

Proof. Let u0 ∈ Y be such that α(u0, Hu0) ≥ 1. Define a sequence {un} in Y such that u2n+1 = Hu2n and
u2n+2 = Qu2n+1 for all n ∈ N. If un0 = un0+1 for some n0 ∈ N, then it is very easy to show that H and Q
have a common fixed point. Hereof, uniquitously the proof we shall assume that un ̸= un+1 and hence we have
d(un, un+1) > 0 for all n ∈ N. Now, since the pair (H,Q) is α-orbital admissible, then

α(u0, Hu0) ≥ 1 implies

α(Hu0, QHu0) = α(u1, Qu1) = α(u1, u2) ≥ 1

and α(u1, Qu1) ≥ 1 implies

α(Qu1, HQu1) = α(u2, Hu2) = α(u2, u3) ≥ 1

also α(u2, Hu2) ≥ 1 implies

α(Hu2, QHu2) = α(u3, Qu3) = α(u3, u4) ≥ 1

Applying the above argument repeatedly, we get α(un, un+1) ≥ 1 for all n ∈ N∪{0}. By the definition of quasi
triangular α-admissibility, we can find that for any n,m ∈ N with m > n, we have α(un, um) ≥ 1.

Suppose u2n ̸= u2n+1 for all n ∈ N, by Lemma 3.3, we have α(u2n, u2n+1) ≥ 1, for all n ∈ N. From (3.1),
we obtain

0 ≤ ζ
(
α(u2n, u2n+1)φ(d(Hu2n, Qu2n+1)), ψ(B(u2n, u2n+1))

)
= ζ

(
α(u2n, u2n+1)φ(d(u2n+1, u2n+2)), ψ(B(u2n, u2n+1))

)
(3.2)

< ψ(B(u2n, u2n+1))− α(u2n, u2n+1)φ(d(u2n+1, u2n+2))

where

B(u2n, u2n+1) = [d(u2n, u2n+1)]
θ1 .[

1

2
(d(u2n, Hu2n) + d(u2n+1, Qu2n+1))]

θ2 .[
1

2
(d(u2n, Qu2n+1)

+ d(u2n+1, Qu2n))]
θ3 .[

1

2
(d(u2n, Hu2n+1) + d(u2n+1, Hu2n))]

1−θ1−θ2−θ3

= [d(u2n, u2n+1)]
θ1 .[

1

2
(d(u2n, u2n+1) + d(u2n+1, u2n+2))]

θ2

.[
1

2
(d(u2n, u2n+2)]

1−θ1−θ2 (3.3)
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Consequently, we arrive

φ(d(u2n+1, u2n+2)) ≤ α(u2n, u2n+1)φ(d(u2n+1, u2n+2))

< ψ(B(u2n, u2n+1))

= ψ
(
[d(u2n, u2n+1)]

θ1 .[
1

2
(d(u2n, u2n+1) + d(u2n+1, u2n+2))]

θ2 .

[
1

2
(d(u2n, u2n+2)]

1−θ1−θ2
)

≤ ψ
(
[d(u2n, u2n+1)]

θ1 .[
1

2
(d(u2n, u2n+1) + d(u2n+1, u2n+2))]

1−θ1). (3.4)

Suppose d(u2n, u2n+1) < d(u2n+1, u2n+2), for n ≥ 1, then from (3.4), we obtain

φ(d(u2n+1, u2n+2)) ≤ ψ(d(u2n+1, u2n+2)) < φ(d(u2n+1, u2n+2)).

This is a contradiction. Accordingly, we obtain

d(u2n+1, u2n+2) ≤ d(u2n, u2n+1), for all n ≥ 1.

Identically, we can show that d(u2n, u2n+1) ≤ d(u2n−1, u2n). So, we conclude that d(un, un+1) ≤ d(un−1, un).
Hence d(un, un+1) is a monotonic decreasing sequence of positive real numbers. So, there exists l ≥ 0 such that
limn→+∞ d(un, un+1) = l. Now, we show that l = 0. We claim that l > 0. Now, we have

0 ≤ ζ
(
α(un−1, un)φ(d(un, un+1)), ψ(B(un−1, un))

)
< ψ(B(un−1, un))− α(un−1, un)φ(d(un, un+1)). (3.5)

Consequently, we obtain

φ(d(un, un+1) ≤ α(un−1, un)φ(d(un, un+1)) ≤ ψ(B(un−1, un))

≤ φ(B(un−1, un))

≤ φ(d(un−1, un)) (3.6)

Letting limit as n→ +∞ in (3.6), we get

limn→+∞α(un−1, un)φ(d(un, un+1)) = limn→+∞ψ(B(un−1, un)) = φ(l). (3.7)

Setting sn = α(un−1, un)φ(d(un, un+1)), tn = ψ(B(un−1, un)) in (3.5), then by definition of simulation
function

0 ≤ limn→+∞supζ(α(un−1, un)φ(d(un, un+1)), ψ(B(un−1, un))) < 0.

Which is a contradiction and thus we have limn→+∞ d(un, un+1) = 0. Now, we show that {un} is a Cauchy
sequence. Suppose not, there exists ϵ > 0 for which we can find two sequences mk and nk, for all k ≥ 1 with
umk

> unk
≥ k such that d(unk

, umk
) ≥ ϵ. Further, we assume that mk is the smallest number greater than nk,

then d(unk
, umk−1

) < ϵ.

By triangular inequality, we get

ϵ ≤ d(unk
, umk

) ≤ d(unk
, umk−1

) + d(umk−1
, umk

) < ϵ+ d(umk−1
, umk

).

Taking limit as k → +∞, we obtain

lim
k→+∞

d(unk
, umk

) = ϵ. (3.8)
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Again by triangular inequality, we obtain

d(unk
, umk

) ≤ d(unk
, unk+1

) + d(unk+1
, umk+1

) + d(umk+1
, umk

).

Also we obtain
d(unk+1

, umk+1
) ≤ d(unk+1

, unk
) + d(unk

, umk
) + d(umk

, umk+1
).

By using the above two inequalities and taking limit as k → +∞ with (3.8), we get

lim
k→+∞

d(unk+1
, umk+1

) = ϵ. (3.9)

Furthermore, we obtain

d(unk
, umk

) ≤ d(unk
, unk+1

) + d(unk+1
, umk

) ≤ d(unk
, umk

) + 2d(umk
, umk+1

).

Taking limit as k → +∞, we obtain

lim
k→+∞

d(unk+1
, umk

) = ϵ. (3.10)

Similarly, we get

d(unk
, umk

) ≤ d(unk
, umk+1

) + d(umk+1
, umk

) ≤ d(unk
, umk

) + 2d(umk
, umk+1

).

Taking limit as k → +∞, we get

lim
k→+∞

d(unk
, umk+1

) = ϵ. (3.11)

Since (H,Q) is quasi triangular α-orbital admissible, by lemma 3.3, we get B(unk
, umk

) ≥ 1, for all numbers
mk, nk such that mk > nk, where k ≥ 1. From (3.1), we get

0 ≤ ζ
(
α(unk

, umk
)φ(d(Hunk

, Qumk
), ψ(B(unk

, umk
))
)

= ζ
(
α(unk

, umk
)φ(d(unk+1

, umk+1
), ψ(B(unk

, umk
))
)

< ψ(B(unk
, umk

))− α(unk
, umk

)φ(d(unk+1
, umk+1

).

Consequently,

φ(d(unk+1
, umk+1

) ≤ α(unk
, umk

)φ(d(unk+1
, umk+1

)

≤ ψ(B(unk
, umk

)) < φ(B(unk
, umk

)),

where

B(unk
, umk

) = [d(unk
, umk

)]θ1 .[
1

2
(d(unk

, Hunk
) + d(umk

, Qumk
))]θ2 .[

1

2
(d(unk

, Qumk
)

+ d(umk
, Qunk

))]θ3 .[
1

2
(d(unk

, Humk
) + d(umk

, Hunk
))]1−θ1−θ2−θ3

Taking limit as k → +∞ together with (3.8), (3.9), (3.10) and (3.11), we get

0 ≤ φ(ϵ) < φ(0) = 0 ⇒ φ(ϵ) = 0 if and only if ϵ = 0.

Which is a contradiction and hence {un} is a Cauchy sequence in Y . Since Y is complete, there exists
w ∈ Y such that limn→∞ un = w. Since H and Q are continuous, we find that
Hw = limn→∞Hun = limn→∞ un+1 = w and Qw = limn→∞Qun = limn→∞ un+1 = w. Therefore w is
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the common fixed point of H and Q.

To demonstrate the uniqueness of the common fixed point, we suppose that w∗ is another common fixed point
of H and Q and α(w,w∗) ≥ 1. Assume that w ̸= w∗. From (3.1), we get

ζ(α(w,w∗)φ(d(Hw,Qw∗)), ψ(B(w,w∗))) ≥ 0

ζ(α(w,w∗)φ(d(w,w∗)), ψ(B(w,w∗))) ≥ 0

ψ(B(w,w∗))− α(w,w∗)φ(d(w,w∗)) ≥ 0

−α(w,w∗)φ(d(w,w∗)) ≥ 0.

Which is contradiction and therefore the mappings H and Q have a unique common fixed point.

Remark 3.6. For H = Q in Theorem 3.5, we get the following result of M. S. Khan et al.[15]

Corollary 3.7. Let Q be a self mapping on a metric space (Y, d) which is complete. Suppose that Q is
quasi triangular α-orbital admissible and forms an interpolative (φ,ψ)-Banach-Kannan-Chatterjea type Z-
contraction with respect to ζ. If there exists u0 ∈ Y such that α(u0, Qu0) ≥ 1 and Q is continuous, then Q has
a unique fixed point.

Remark 3.8. Setting ζ(u, v) = ψ(v)− u for all u, v > 0 in Theorem 3.5, we get the following result.

Corollary 3.9. Let H,Q : Y → Y be self mappings on a metric space (Y, d) which is complete. If there exists
α : Y ×Y → R, φ ∈ Φ, ψ ∈ Ψ, θ1, θ2, θ3 ∈ (0, 1) such that φ(t) > ψ(t), for t > 0, ψ > 0 and θ1+ θ2+ θ3 < 1

satisfying the inequality

α(u, v)φ(d(Hu,Qv)) ≤ ψ(B(u, v)) for all u, v ∈ Y.

If there exists u0 ∈ Y such that α(u0, Hu0) ≥ 1 and H and Q are continuous. Then the mappings H and Q
have a unique common fixed point.

Remark 3.10. By letting α(u, v) = 1 for all u, v ∈ Y and φ = IY in Corollary 3.9, we find the following result.

Corollary 3.11. Let H,Q : Y → Y be self mappings on a metric space (Y, d) which is complete. If there exists
ψ ∈ Ψ, θ1, θ2, θ3 ∈ (0, 1) such that θ1 + θ2 + θ3 < 1 satisfying the inequality

d(Hu,Qv) ≤ ψ(B(u, v)) for all u, v ∈ Y.

Then the mappings H and Q have a unique common fixed point.

Now, we illustrate an example to validate our main Theorem 3.5.

Example 3.12. Let Y = (−1, 1] and d : Y × Y → R defined by d(u, v) = |u − v|. Define the mappings
H,Q : Y → Y by

HY =

{
u
3 , if u ∈ (−1, 0)
u
9 , if u ∈ [0, 1]

, QY =

{
u
2 , if u ∈ (−1, 0)
u
3 , if u ∈ [0, 1].

Also, we define the function α : Y × Y → [0,∞) by

α(u, v) =

{
1, if u, v ∈ [0, 1]

0, otherwise.

Taking ζ(u, v) = ψ(v)− u, for all u, v > 0 in Theorem 3.5, we get

α(u, v)φ(d(Hu,Qv)) ≤ ψ(B(u, v)),
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for all u, v ∈ Y . Let φ(t) = t, ψ(t) = kt, where k = 1√
3
, θ1 = 1

2 , θ2 = 1
4 , θ3 = 1

6 , then φ(t) ≥ ψ(t). Since
0 ≤ u, v ≤ 1, then we get

0 ≤ |u− v| ≤ 1 ⇒ 0 ≤ |u− v| 12 ≤ 1,

0 ≤ 1

2
[|u−Hu|+ |v −Qv|] = [(

1

9
)(4u+ 3v)]

1
4 ≤ (

7

9
)

1
4 ,

0 ≤ 1

2
[|u−Qv|+ |v −Qu|] = [

1

6
(|3u− v|+ |3v − u|)] 16 ≤ (

2

3
)

1
6 and

and 0 ≤ 1

2
[|u−Hv|+ |v −Hu] = [

1

18
(|9u− v|+ |9v − u|)] 1

12 ≤ (
8

9
)

1
12 .

By simple calculation for all u, v ∈ Y , we obtain

α(u, v)φ(d(Hu,Qv)) = α(u, v)|Hu−Qv| = 3

9
|u− 3v| = 1

3
|u− 3v|

≤ 1√
3
|u− v| 12 .[(1

9
)(4u+ 3v)]

1
4 .[

1

6
(|3u− v|+ |3v − u|)] 16 .

[
1

18
(|9u− v|+ |9v − u|)] 1

12

= ψ(B(u, v)).

Therefore the set (H,Q) is an interpolative (φ,ψ)-Banach-Kannan-Chatterjea type Z-contraction with reference
to ζ. If {un} is a sequence in Y such that α(un, un+1) ≥ 1 for all n ∈ N, then {un} ⊆ [0, 1] for all n ∈ N.
Since ([0, 1], d) is a complete metric space, then the sequence {un} converges to u in [0, 1] ⊆ Y . If α(u, v) ≥ 1,
then u, v ∈ [0, 1]. So, Hu,Qv,QHu,HQv ∈ [0, 1]. Therefore, α(u,Qu) = 1 and α(u,Hu) = 1 then
α(Qu,HQu) = 1 and α(Hu,QHu) = 1. Also if α(u, v) = 1 implies α(u,Qv) = 1 and α(u,Hv) = 1. This
implies that the pair (H,Q) is a quasi triangular α-orbital admissible in Y .
Let {un} ⊆ [0, 1] for all n ∈ N. This implies that

lim
n→∞

Hun = lim
n→∞

1

9
un =

1

9
u = Hu,

and
lim

n→∞
Qun = lim

n→∞

1

3
un =

1

3
u = Qu,

This implies that the mappings H and Q are continuous. Thus, all supposition of Theorem 3.5 are fulfilled.
Hence H and Q have a unique common fixed point u = 0.

In the following theorem, we put back the continuity of H and Q with the notion of α-regularity.

Theorem 3.13. Let H and Q be self mappings on a metric space (Y, d) which is complete. Suppose that (H,Q)

is a quasi triangular α-orbital admissible and forms an interpolative (φ,ψ)-Banach-Kannan-Chatterjea type
Z-contraction with respect to ζ. If there exists u0 ∈ Y such that α(u0, Hu0) ≥ 1 and {un} in Y is α-regular,
then the mappings H and Q have a unique common fixed point.

Proof. Let u0 ∈ Y be such that α(u0, Hu0) ≥ 1. Define a sequence {un} in Y such that u2n+1 = Hu2n and
u2n+2 = Qu2n+1 for all n ∈ N. Since the pair (H,Q) is α-orbital admissible, we find that α(un, un+1) ≥ 1,
for all n ∈ N. We suppose that un ̸= un+1 and hence we have d(un, un+1) > 0 for all n ∈ N. By repeating the
process as in the proof of Theorem 3.5, we derived that {un} converges to w. Since {un} in Y is α-regular, then
there exists a subsequence unk

of {un} such that α(unk
, w) ≥ 1, for each k ∈ N ∪ {0}. From (3.1), we get

ζ(α(u2nk
, w)φ(d(Hu2nk

, Qw)), ψ(B(u2nk
, w)) ≥ 0

ζ(α(u2nk
, w)φ(d(u2nk+1

, Qw)), ψ(B(u2nk
, w)) ≥ 0

ψ(B(u2nk
, w))− α(u2nk

, w)φ(d(u2nk+1
, Qw) ≥ 0
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Consequently, we arrive

φ(d(u2nk+1
, Qw) ≤ α(u2nk

, w)φ(d(u2nk+1
, Qw)) < ψ(B(u2nk

, w)) < φ(B(u2nk
, w))

where

B(u2nk
, w) = [d(u2nk

, w)]θ1 .[
1

2
(d(u2nk

, Hu2nk
) + d(w,Qw))]θ2 .[

1

2
(d(u2nk

, Qw)

+ d(w,Qu2nk
))]θ3 .[

1

2
(d(u2nk

, Hw) + d(w,Hu2nk
))]1−θ1−θ2−θ3

= [d(u2nk
, w)]θ1 .[

1

2
(d(u2nk

, u2nk+1
) + d(w,Qw))]θ2 .[

1

2
(d(u2nk

, Qw)

+ d(w, u2nk+1
))]θ3 .[

1

2
(d(u2nk

, Hw) + d(w, u2nk+1
))]1−θ1−θ2−θ3

Taking k → +∞, we get φ(d(w,Qw)) = 0 which implies d(w,Qw) = 0. This shows that w is a fixed point of
Q. Similarly, we can show that (Hw,w) = 0. Hence the mappings H and Q have a common fixed point.

To demonstrate the uniqueness of the common fixed point, we suppose that w∗ is another common fixed point
of H and Q and α(w,w∗) ≥ 1. Assume that w ̸= w∗. From (3.1), we get

ζ(α(w,w∗)φ(d(Hw,Qw∗)), ψ(B(w,w∗))) ≥ 0

ζ(α(w,w∗)φ(d(w,w∗)), ψ(B(w,w∗))) ≥ 0

ψ(B(w,w∗))− α(w,w∗)φ(d(w,w∗)) ≥ 0

−α(w,w∗)φ(d(w,w∗)) ≥ 0.

which is contradiction and hence the mappings H and Q have a unique common fixed point.

Remark 3.14. For H = Q in Theorem 3.13, we get Theorem 2.2 of M. S. Khan et al. [15]

Corollary 3.15. Let Q be a self mapping on a metric space (Y, d) which is complete. Suppose that Q is
quasi triangular α-orbital admissible and forms an interpolative (φ,ψ)-Banach-Kannan-Chatterjea type Z-
contraction with respect to ζ. If there exists u0 ∈ Y such that α(u0, Qu0) ≥ 1 and {un} in Y is α-regular, then
Q has a unique fixed point in Y .

Remark 3.16. Setting ζ(u, v) = ψ(v)− u for all u, v > 0 in Theorem 3.13, we get the following result.

Corollary 3.17. Let H,Q : Y → Y be self mappings on a metric space (Y, d) which is complete. If there exists
α : Y ×Y → R, φ ∈ Φ, ψ ∈ Ψ, θ1, θ2, θ3 ∈ (0, 1) such that φ(t) > ψ(t), for t > 0, ψ > 0 and θ1+ θ2+ θ3 < 1

satisfying the inequality

α(u, v)φ(d(Hu,Qv)) ≤ ψ(B(u, v)) for all u, v ∈ Y.

If there exists u0 ∈ Y such that α(u0, Hu0) ≥ 1 and {un} in Y is α-regular. Then the mappings H and Q have
a unique common fixed point.

Remark 3.18. By letting α(u, v) = 1 for all u, v ∈ Y and φ = IY in Corollary 3.17, we get the following result.

Corollary 3.19. Let H,Q : Y → Y be two self mappings on a complete metric space. If there exists ψ ∈
Ψ, θ1, θ2, θ3 ∈ (0, 1) such that θ1 + θ2 + θ3 < 1, for t > 0, ψ > 0 satisfying the inequality

d(Hu,Qv) ≤ ψ(B(u, v)) for all u, v ∈ Y.

Then the mappings H and Q have a unique common fixed point.
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4. Application

We apply our outcome to find an existence theorem for Fredholm integral equations. Let Y = C[a, b] be
a set of all real continuous functions on [a, b] equipped with metric d(e, j) = maxt∈[a,b]|e(t) − j(t)| for all
e, j ∈ C[a, b]. Then (Y, d) is a complete metric space.
Now, we consider Fredholm integral equations

u(t) = h(t) +

∫ b

a

K(t, s, u(s))ds (4.1)

v(t) = h(t) +

∫ b

a

K(t, s, v(s))ds (4.2)

where t, s ∈ [a, b]. Assume that K : [a, b]× [a, b]× Y → R and h : [a, b] → R continuous.

Theorem 4.1. Let (Y, d) be a metric space equipped with metric d(e, j) = maxt∈[a,b]|e(t)−j(t)| for all e, j ∈ Y

and H,Q : Y → Y are operator on Y defined by

Hu(t) = h(t) +

∫ b

a

K(t, s, u(s))ds (4.3)

Qv(t) = h(t) +

∫ b

a

K(t, s, v(s))ds (4.4)

where t, s ∈ [a, b]. Assume that K : [a, b] × [a, b] × Y → R and h : [a, b] → R is continuous. Further, assume
that the following conditions hold:
(i) If there exists a continuous function q : [a, b]× [a, b] → [0,∞), θ1, θ2, θ3 ∈ (0, 1) with θ1 + θ2 + θ3 < 1 that
for all u, v ∈ Y, s, t ∈ [a, b] fulfilling the following inequality

|K(t, s, u(s))−K(t, s, v(s))| ≤ q(t, s)M(u(s), v(s)) (4.5)

where M(u(s), v(s)) = [|u(s)− v(s)|]θ1 .[ 1
2
(|u(s)−Hu(s)|+ |v(s)−Qv(s)|)]θ2 .

[
1

2
(|u(s)−Qv(s)|+ |v(s)−Qu(s)|)]θ3 [ 1

2
(|u(s)−Hv(s)|

+ |v(s)−Hu(s)|)]1−θ1−θ2−θ3

(ii) If there exists k ∈ [0, 1) and α : Y × Y → (0,∞) such that for each u ∈ Y , we have

maxt∈[a,b]

∫ b

a

q(t, s)ds ≤ k

α(u, v)
.

(iii) If there exists u0 ∈ Y such that α(u0, Hu0) ≥ 1.

Then the integral equations have a unique common solution in Y .
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Proof. From (4.3), (4.4) and (4.5), we obtain

|Hu(t)−Qv(t)| = |
∫ b

a

K(t, s, u(s))ds−
∫ b

a

K(t, s, v(s))ds|

=

∫ b

a

|K(t, s, u(s))−K(t, s, v(s))|ds

≤
∫ b

a

q(t, s)M(u(s), v(s))ds

≤
∫ b

a

q(t, s)([|u(s)− v(s)|]θ1 .[ 1
2
(|u(s)−Hu(s)|+ |v(s)−Qv(s)|)]θ2 .

[
1

2
(|u(s)−Qv(s)|+ |v(s)−Qu(s)|)]θ3 .[ 1

2
(|u(s)−Hv(s)|

+ |v(s)−Hu(s)|)]1−θ1−θ2−θ3)ds.

Taking maximum on both sides for all t ∈ [a, b], we get

d(Hu,Qv) = maxt∈[a,b]|Hu(t)−Qv(t)|

≤ maxt∈[a,b]

∫ b

a

q(t, s)([|u(s)− v(s)|]θ1 .[ 1
2
(|u(s)−Hu(s)|+ |v(s)−Qv(s)|)]θ2 .

[
1

2
(|u(s)−Qv(s)|+ |v(s)−Qu(s)|)]θ3 .

[
1

2
(|u(s)−Hv(s)|+ |v(s)−Hu(s)|)]1−θ1−θ2−θ3)ds

≤ (maxt∈[a,b]([|u(s)− v(s)|]θ1 .[ 1
2
(|u(s)−Hu(s)|+ |v(s)−Qv(s)|)]θ2 .

[
1

2
(|u(s)−Qv(s)|+ |v(s)−Qu(s)|)]θ3 .[ 1

2
(|u(s)−Hv(s)|

+ |v(s)−Hu(s)|)]1−θ1−θ2−θ3))

∫ b

a

q(t, s)ds

≤ [d(u, v)]θ1 .[
1

2
(d(u,Hu) + d(v,Qv))]θ2 .[

1

2
(d(u,Qv) + d(v,Qu))]θ3 .

[
1

2
(d(u,Hv) + d(v,Hu))]1−θ1−θ2−θ3maxt∈[a,b]

∫ b

a

q(t, s)ds

≤ k

α(u, v)
B(u, v)

or α(u, v)d(Hu,Qv) ≤ kB(u, v).

Since Y = C[a, b] is complete metric space. Hence, all the suppositions of Theorem 3.5 are satisfied by
setting ζ(v, u) = ψ(u) − v with ψ(l) = kl and φ(l) = l for all l > 0, where k ∈ [0, 1) and hence the integral
equations have a unique common solution.

5. Conclusion

From our investigations, we conclude that the existence and uniqueness of common fixed point theorem for
pair of quasi triangular α-orbital admissible with an interpolative (φ,ψ)- Banach-Kannan-Chatterjea type Z-
contraction mappings with reference to simulation function in complete metric space. As an application, we find
the existence and uniqueness of common solution for nonlinear Fredholm integral equations. An example is given
in support of our main result. Our result provides new path for the researchers in the concerned field.

178



Common fixed point theorem· · · with application

References

[1] H. AFSHARI, H. AYADI AND E. KARAPINAR, On generalized α−ψ-Geraghty contractions on b-metric spaces,
Georgian Mathematical Journal, (2018), https://doi.org/10.1515/gmj-2017-0063.

[2] M. A. ALGHAMDI, S. GULYAZ-OZYURT AND E. KARAPINAR, A Note on extendedZ-contraction, Mathematics,
8(2)(2020), 1-14, https://doi.org/10.3390/math8020195.

[3] H. ALSAMIR, M. S. NOORANI, W. SHATANAWI AND F. SHADDAD, Generalized Berinde-type contractive
mappings in B-metric spaces with an application, J. Math. Anal., 6(2016), 1-12.

[4] O. ALQAHTANI AND E. KARAPINAR, A Bilateral contraction via simulation function, Filomat, 33(15)(2019),
4837- 4843, https://doi.org/10.2298/FIL1915837A.

[5] A. H. ANSARI, W. SHATANAWI, A. KURDI AND G. MANIU, Best proximity points in complete metric spaces
with (P)-property via C-class functions, J. Math. Anal., 7(2016), 54-67.

[6] H. ARGOUBI, B. SAMET AND C. VETRO, Nonlinear contractions involving simulation functions
in a metric space with a partial order, J. Nonlinear Sci. Appl., 8 (2015), 1082-1094,
https://doi.org/10.22436/jnsa.008.06.18.

[7] M. ARSHAD, E. AMEER AND E. KARAPINAR, Generalized contractions with triangular α-orbital
admissible mapping on Branciari metric spaces, J. of Inequality and Applications, (2016), 63:2016,
https://doi.org/10.1186/s13660-016-1010-7.

[8] V. BERINDE, Sequence of operators and fixed points in quasi metric space, Studia Univ. Babes-Bolyai Math.,
41(4)(1996), 23-27.

[9] A. FARAJZADEH, C. NOYTAPTIM AND A. KAEWCHAROEN, Some fixed point theorems for generalized α −
η − ψ-Geraghty contractive type mappings in partial b-metric spaces, J. of informatics and Mathematical
Sciences, 10(3)(2018), 455-478, https://doi.org/10.26713/jims.v10i3.583.

[10] N. HUSSAIN, E. KARAPINAR AND F. AKBAR, α-admissible mappings and related fixed point theorems, J. of
Inequalities and Applications, (2013), 2013:114, https://doi.org/10.1186/1029-242X-2013-114.

[11] E. KARAPINAR, Fixed points results via simulation functions, Filomat, 30(8)(2016), 2343-2350,
https://doi.org/10.2298/FIL1608343K.

[12] E. KARAPINAR, Revisiting simulation functions via interpolative contrations, Appl. Anal. Discrete Math.,
13(2019), 859-870, https://doi.org/10.2298/AADM190325038K.

[13] E. KARAPINAR, P. KUMAM AND P. SALIMI, On α−ψ-Meir-Keeler contractive mappings, Fixed Point Theory
Appl., 2013(2013), 12 pages, https://doi.org/10.1186/1687-1812-2013-94.

[14] E. KARAPINAR AND F. KHOJASTEH, An approach to best proximity points results via simulation functions, J.
Fixed Point Theory Appl., 19(3)(2017), 1983-1995, https://doi.org/10.1007/s11784-016-0380-2.

[15] M. S. KHAN, Y. M. SINGH AND E. KARAPINAR, On the interpolative (ϕ, ψ)-type Z-contraction, U. P. B. Sci.
Bull., Series A, 83(2)(2021), 25-38.

[16] M. S. KHAN, M. SWALEH AND S. SESSA, Fixed point theorems by altering distances between the points, Bull.
Aust. Math. Soc., 30(1984), 1-9, https://doi.org/https://doi.org/10.1017/S0004972700001659.

[17] F. KHOJASTEH, S. SHUKLA AND S. RADENOVIC, A new approach to the study of fixed point theorems via
simulation functions, Filomat, 29(6)(2015), 1189-1194, https://doi.org/10.2298/FIL1506189K.

179



Rakesh Tiwari and Shashi Thakur

[18] C. LANG AND H. GUAN , Common fixed point and coincidence point results for generalized α −
ϕE-Geraghty contraction mappings in b-metric spaces, AIMS Mathematics, 7(8)(2022), 14513-14531,
https://doi.org/10.3934/math.2022800.

[19] J. LI AND H. GUAN, Common fixed point of generalized αs-ψ-Geraghty contractive mappings
on b-metric spaces, American Journal of Applied Mathematics and Statistics, 9(2)(2021), 66-74,
https://doi.org/10.12691/ajams-9-2-5.

[20] O. POPESCU, Some new fixed point theorems for α-Geraghty contractive type maps in metric spaces, Fixed
Point Theory Appl., (2014), 1-12, https://doi.org/10.1186/1687-1812-2014-190.

[21] Y. M. SINGH, M. S. KHAN AND S. M. KANG, F-convex contraction via admissible mapping and related fixed
point theorems with an application, Mathematics, 6(2018), 1-15, https://doi.org/10.3390/math6060105.

[22] H. QAWAGNEH, M. S. MD NOORANI, W. SHATANAWI AND H. ALSAMIR, Common fixed points
for pairs of triangular α-admissible mappings, J. Nonlinear Sci. Appl., 10(2017), 6192-6204,
https://doi.org/10.22436/jnsa.010.12.06.

[23] A. F. ROLDAN-LEOPEZ-DE-HIERRO, E. KARAPINAR, C. ROLDAN-LOPEZ-DE-HIERRO AND J. MARTINEZ-
MORENOA, Coincidence point theorems on metric spaces via simulation functions, J. Computational and
Appl. Math., 275(2015), 345-355, https://doi.org/10.1016/j.cam.2014.07.011.

[24] J. R. ROSHAN, V. PARVANEH, S. SEDGHI, N. SHOBKOLAEI AND W. SHATANAWI, Common fixed points of
almost generalized (ψ,φ)s- contractive mappings in ordered b-metric spaces, Fixed Point Theory Appl.,
2013(2013), 23 pages, https://doi.org/10.1186/1687-1812-2013-159.

[25] B. SAMET, C. VETRO AND P. VETRO, Fixed points theorems for α− ψ contractive type mappings, Nonlinear
Anal., 75(2012), 2154-2165, https://doi.org/10.1016/j.na.2011.10.014.

[26] W. SHATANAWI, Common fixed points for mappings under contractive conditions of (α, β, ψ)-admissibility
type, Mathematics, 6(2018), 1-11, https://doi.org/10.3390/math6110.

[27] W. SHATANAWI, M. S. NOORANI, H. ALSAMIR AND A. BATAIHAH, Fixed and common fixed point
theorems in partially ordered quasi metric spaces, J. Math. Computer. Sci., 16(2016), 516-528,
http://dx.doi.org/10.22436/jmcs.016.04.05.

[28] W. SHATANAWI AND M. POSTOLACHE, Common fixed point results for mappings under nonlinear
contraction of cyclic form inordered metric spaces, Fixed Point Theory Appl., 2013(2013), 13 pages,
https://doi.org/10.1186/1687-1812-2013-60.

[29] Y. SUN, X. L. LIU, J. DENG AND M. ZHOU, Some fixed point results for α-admissible extended Z-
contraction mappings in extended rectangular b-metric spaces, AIMS Mathematics, 7(3)(2021), 3701-3718,
https://doi.org/10.3934/math.2022205.

[30] S. OMRAN AND L. MASMALI, α-admissible mapping in C∗ algebra-valued b-metric spaces and fixed point
theorems, AIMS Mathematics, 6(9)(2021), 10192-10206, https://doi.org/10.3934/math.2021590.

This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

180



MALAYA JOURNAL OF MATEMATIK
Malaya J. Mat. 11(02)(2023), 181–199.
http://doi.org/10.26637/mjm1102/007

Statistical extension some types of symmetrically continuity

PELDA EVIRGEN1 AND MEHMET KÜÇÜKASLAN*2
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1. Introduction

The conception of continuity is one of the essential notions of mathematical analysis. Let X be a nonempty
subset of R and ϕ : X → R be a function. Continuity of the function ϕ at a point ξ0 ∈ X can be checked in two
ways:

(I) For all ϵ > 0, there is a δ > 0 such that

| ϕ(ξ)− ϕ(ξ0) |< ϵ

holds for all ξ which is satisfying | ξ − ξ0 |< δ.

(II) If ϕ(ξn) tends to ϕ(ξ0) when n→ ∞ holds for all sequence (ξn) tends to ξ0 when (n→ ∞).

The statement given in (I) is known as the Cauchy definition of continuity and (II) as the Heine definition of
continuity. It is well known that definitions (I) and (II) are equivalent on the space, which has a countable basis.

It is more important to classify the discontinuity at that point rather than investigate the continuity of the
function. There are three discontinuity types at a point: removable discontinuity, jump discontinuity, and
infinite discontinuity. In 1958, Pervin and Levine [20] showed that a function with a removable discontinuity is

∗Corresponding author. Email addresses: peldaevirgennn@gmail.com (Pelda Evirgen), mkucukaslan@mersin.edu.tr (Mehmet
Küçükaslan)
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continuous under certain conditions. In addition, in 1960, Halfer [12] proved, with minor modification, given by
Pervin and Levine [20] that the continuity and the removable discontinuity are equivalent under certain conditions.

In recent years, a characterization of symmetrical continuous functions at points of removable discontinuity
has been intensively studied. The symmetric continuity of functions emerged as an application of trigonometric
series theory. Mazurkiewicz [15] first gave symmetric continuity of functions [15] in 1919. Afterward, many
studies have been done in this direction [2, 4, 11, 13, 19, 21, 24, 25, 30]. Afterwards, many studies have been
done on this direction [2, 4, 11, 13, 19, 21, 24, 25, 30].

Let X be a nonempty subset of R. A function ϕ : X → R is called at a point ξ0 ∈ X

(I) symmetrically continuous if for all ϵ > 0 there exists δ > 0 such that

|ϕ(ξ0 + λ)− ϕ(ξ0 − λ)| < ϵ

holds, for every |λ| < δ. This can be also checked as limλ→0 ϕ(ξ0 + λ)− ϕ(ξ0 − λ) = 0.

(II) weakly continuous if there are sequence ξn ↗ ξ0 and sequence ηn ↘ ξ0 so that

lim
n→∞

ϕ(ξn) = lim
n→∞

ϕ(ηn) = ϕ(ξ0)

(III) weakly symmetrically continuous if there is a sequence (λn) ⊂ R+ with (λn) → 0, n→ ∞ such that

lim
n→∞

(ϕ(ξ0 + λn)− ϕ(ξ0 − λn)) = 0.

In addition to symmetric continuity of functions, there are many studies on weak continuity [18, 22] and weak
symmetric continuity of functions [23, 29]. To ensure coordination between published studies, we will stick to
the notations used in the study [23]; SC for the set of symmetrically continuous functions, WC for the set of
weakly continuous functions and WSC for the set of weakly symmetrically continuous functions.

With the help of the definition of natural density given below, these spaces will be expanded and larger spaces
will be obtained. The smallness of a subset of natural numbers depends on its natural density. Natural density of
a subset A of natural numbers is determined by (if limit exists)

δ(A) := lim
n→∞

1

n
|{k ∈ A : k ≤ n}|

where |{k ∈ A : k ≤ n}| denotes the number of elements of A.
Considering the definition of natural density, it can be say that a number sequence (ξk) is statistical convergent

ξ ∈ R if for every ϵ > 0,

lim
n→∞

1

n
|{k ≤ n: | ξk − ξ |≥ ϵ}| = 0.

It is denoted by the symbol st− lim ξk = ξ.
Statistical convergence was first defined by Fast [8] and Steinhaus [28] in 1951. Later, in 1959, Schoenberg

[27] statistical convergence was reintroduced. In [9], Fridy gave specific results on statistical convergence. Last
ten decades, in literature there are several studies in different directions on statistical convergence [1, 3, 5, 7, 10,
14, 16, 17, 26].

The aim of this paper by using natural density to give the statistical version of continuous function, weakly
continuous function, weakly symmetrically continuous function, and strong weakly symmetrically continuous
function. Then, investigate the relationship between these new type continuities regarding inclusion with some
counterexamples.

Throughout this paper, we will consider X as a nonempty subset of R.
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Definition 1.1. [6] The function ϕ : X → R is called to be statistical continuous at a point ξ0 if for all sequence
(ξn) in R such that limn→∞ ξn = ξ0 implies that ∀ϵ > 0,

δ({n: |ϕ(ξn)− ϕ(ξ0)| ≥ ϵ}) = 0

holds.

Let
Lξ0(X) := {(ξn) ⊂ X : (ξn) strictly increasing and lim

n→∞
ξn = ξ0}

Uξ0(X) := {(ηn) ⊂ X : (ηn) strictly decreasing and lim
n→∞

ηn = ξ0}.

Definition 1.2. The function ϕ : X → R is called to be statistical weakly continuous at a point ξ0 if the
undermentioned statements hold:

1. if Lξ0(X) ̸= ∅, then there exists (ξn) ∈ Lξ0(X) such that ∀ϵ > 0,

δ({n: |ϕ(ξn)− ϕ(ξ0)| ≥ ϵ}) = 0,

holds,

2. if Uξ0(X) ̸= ∅, then there exists (ηn) ∈ Uξ0(X) such that ∀ϵ > 0,

δ({n: |ϕ(ηn)− ϕ(ξ0)| ≥ ϵ}) = 0.

holds.

Let
Sξ0(X) := {(λn) ⊂ R+ : lim

n→∞
λn = 0 and ξ0 + λn, ξ0 − λn ∈ X}.

Definition 1.3. The function ϕ : X → R is said to be statistical weakly symmetrically continuous at ξ0 if
Sξ0(X) ̸= ∅, then there exists a sequence (λn) ∈ Sξ0(X) such that ∀ϵ > 0,

δ({n: |ϕ(ξ0 + λn)− ϕ(ξ0 − λn)| ≥ ϵ}) = 0.

holds.

Definition 1.4. The function ϕ : X → R is said to be statistical strong weakly symmetrically continuous at the
point ξ0 if for all real valued sequence (λn) with ξ0 + λn, ξ0 − λn ∈ X and limn→∞ λn = 0 such that ∀ϵ > 0,

δ({n: |ϕ(ξ0 + λn)− ϕ(ξ0 − λn)| ≥ ϵ}) = 0

holds.

Symbolically C st, W C st, W S C st and S W S C st will be used for the set of statistical continuous
functions, statistical weakly continuous functions, statistical weakly symmetrically continuous functions and
statistical strong weakly symmetrically continuous functions, respectively.

Lemma 1.5. Let ϕ : X → R be a function and ξ0 ∈ X . The undermentioned statements are true:

(i) ϕ ∈ W S C st if and only if there exists such a set

T = {t1 < t2 < ... < tn < ...}

that δ(T ) = 1 and limn→∞(ϕ(ξ0 + λtn)− ϕ(ξ0 − λtn)) = 0.
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(ii) ϕ ∈ S W S C st if and only if there exists such a set

T = {t1 < t2 < ... < tn < ...}

that δ(T ) = 1 and limn→∞(ϕ(ξ0 + λtn)− ϕ(ξ0 − λtn)) = 0.

(iii) ϕ ∈ W C st if and only if there exists such a set

T = {t1 < t2 < ... < tn < ...}

that δ(T ) = 1 and limn→∞ ϕ(ξtn) = limn→∞ ϕ(ηtn) = ϕ(ξ0).

Proof. We are going to bestow upon only the proof of (i). Statements (ii) and (iii) can be proved by following
the same steps given in (i).

Assume that Sξ0(X) ̸= ∅ and ∃(λt) ∈ Sξ0(X) such that ∀ϵ > 0,

δ({t ∈ N: |ϕ(ξ0 + λt)− ϕ(ξ0 − λt)| ≥ ϵ}) = 0

holds. Put a set for j = 1, 2, ...,

Tj := {n ∈ N: |ϕ(ξ0 + λn)− ϕ(ξ0 − λn)| <
1

j
}.

It is clear that
T1 ⊃ T2 ⊃ ... ⊃ Tj ⊃ Tj+1 ⊃ ..., (1.1)

satisfies and for all j ∈ N
δ(Tj) = 1. (1.2)

Let an arbitrary element s1 ∈ T1. Considering (1.2) there exists s2 ∈ T2 satisfying s2 > s1 and for all n ≥ s2
we have T2(n)

n > 1
2 . Further, according to (1.2) there exists s3 ∈ T3 with s3 > s2, such that for all n ≥ s3, we

have
T3(n)

n
>

2

3
.

Thus, we obtain a sequence of positive integers

s1 < s2 < ... < sj < sj+1 < ...

that sj ∈ Tj (j = 1, 2, ...) and for all n ≥ sj

Tj(n)

n
>
j − 1

j
(1.3)

holds.
Let us consider the set T as follows: Each natural number of the interval (1, s1) belongs to T further, any

natural number of the interval (sj , sj+1) belongs to T if and only if it belongs to Tj (j = 1, 2, ...). According to
the equations (1.1) and (1.3) for each n, sj ≤ n < sj+1 we get

T (n)

n
≥ Tj(n)

n
>
j − 1

j

From this calculation it is apparent that δ(T ) = 1. Let ϵ > 0. There exists a natural number j such that 1
j < ϵ.

Let n ≥ sj , n ∈ T . Then, there exists such a number l ≥ j that sl ≤ n < sl+1. From the definition of T , we
have n ∈ Tl.
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Hence,

|ϕ(ξ0 + λn)− ϕ(ξ0 − λn)| <
1

l
≤ 1

j
< ϵ

Therefore,
|ϕ(ξ0 + λn)− ϕ(ξ0 − λn)| < ϵ

for each n ∈ T with n ≥ sj , i.e.,

lim
t→∞

(ϕ(ξ0 + λt)− ϕ(ξ0 − λt)) = 0.

For to prove converse implication, assume that there exists a set T = {t1 < t2 < ... < tn < ...} ⊂ N with
δ(T ) = 1 such that

lim
n→∞

(ϕ(ξ0 + λtn)− ϕ(ξ0 − λtn)) = 0

is satisfied. So, for any ϵ > 0, it can choose a number n0 ∈ N that for each n > n0 we have

|ϕ(ξ0 + λtn)− ϕ(ξ0 − λtn)| < ϵ. (1.4)

Put Aϵ = {n ∈ N: |ϕ(ξ0 + λn)− ϕ(ξ0 − λn)| ≥ ϵ}. Then, from (1.4) we get

Aϵ ⊂ N− {tn0+1, tn0+2, ...}.

Therefore δ(Aϵ) = 0 and this completed the proof. ■

Theorem 1.6. Let ϕ : X → R be a function. If ϕ ∈ C st then ϕ ∈ W S C st.

Proof. Let ϕ be statistical continuous at ξ0. Then, for every sequence (ξn) in R for which ξn → ξ0 (n → ∞)

implies that ∀ϵ > 0,
δ({n ∈ N: |ϕ(ξn)− ϕ(ξ0)| ≥ ϵ}) = 0. (1.5)

Since (1.5) is provided for every sequence (ξn) in R which is convergent to ξ0 then, we can choose (ξn) =

(ξ0 + λn) such that (λn) ∈ R+ and λn → 0. Therefore,

δ({n ∈ N: |ϕ(ξ0 + λn)− ϕ(ξ0)| ≥
ϵ

2
}) = 0. (1.6)

Similarly, we can choose (ξn) = (ξ0 − λn) such that (λn) ∈ R+ where λn → 0 and equation (1.5) implies that

δ({n ∈ N: |ϕ(ξ0 − λn)− ϕ(ξ0)| ≥
ϵ

2
}) = 0. (1.7)

So, Sξ0(X) ̸= ∅ and from (1.6) and (1.7) we have

{n ∈ N: |ϕ(ξ0 + λn)− ϕ(ξ0 − λn)| ≥ ϵ} ⊆

⊆ {n ∈ N: |ϕ(ξ0 + λn)− ϕ(ξ0)| ≥
ϵ

2
} ∪ {n ∈ N: |ϕ(ξ0 − λn)− ϕ(ξ0)| ≥

ϵ

2
}

and related inequality

δ({n ∈ N: |ϕ(ξ0 + λn)− ϕ(ξ0 − λn)| ≥ ϵ}) ≤

≤ δ({n ∈ N: |ϕ(ξ0 + λn)− ϕ(ξ0)| ≥
ϵ

2
}) + δ({n ∈ N: |ϕ(ξ0 − λn)− ϕ(ξ0)| ≥

ϵ

2
})

holds. This implies that
δ({n ∈ N: |ϕ(ξ0 + λn)− ϕ(ξ0 − λn)| ≥ ϵ}) = 0.

Hence, ϕ is statistical weakly symmetrically continuous at ξ0. ■
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Theorem 1.7. Let ϕ : X → R be a function. If ϕ ∈ C st, then ϕ ∈ W C st.

Proof. If ϕ ∈ C st then, for every real valued sequence (ξn) in X for which ξn → ξ0 (n → ∞) implies that
∀ϵ > 0,

δ({n ∈ N: |ϕ(ξn)− ϕ(ξ0)| ≥ ϵ}) = 0.

If Lξ0(X) and Uξ0(X) are not empty, then there are (ξn) ∈ Lξ0(X) and (ηn) ∈ Uξ0(X) such that ξn → ξ0 and
ηn → ξ0 holds. Since ϕ statistical continuous, then

δ({n: |ϕ(ξn)− ϕ(ξ0)| ≥ ϵ}) = 0

and
δ({n: |ϕ(ηn)− ϕ(ξ0)| ≥ ϵ}) = 0

are satisfied. This prove our assertion. ■

Theorem 1.8. Let ϕ : X → R be a function. If ϕ ∈ C st, then ϕ ∈ S W S C st.

Proof. Let ϕ be a statistical continuous function at ξ0. Then, for every sequence (ξn) in R for which ξn → ξ0
(n→ ∞) implies that ∀ϵ > 0,

δ({n: |ϕ(ξn)− ϕ(ξ0)| ≥ ϵ}) = 0. (1.8)

If we choose (ξn) = (ξ0 + λn) for λn → 0 when n→ ∞, then, (1.8) implies that ∀ϵ > 0,

δ({n ∈ N: |ϕ(ξ0 + λn)− ϕ(ξ0)| ≥
ϵ

2
}) = 0. (1.9)

Similarly, if we choose (ξn) = (ξ0 − λn) for λn → 0 when n→ ∞, ∀ϵ > 0, from (1.8) we have

δ({n ∈ N: |ϕ(ξ0 − λn)− ϕ(ξ0)| ≥
ϵ

2
}) = 0. (1.10)

Therefore, ∀ϵ > 0 we have

{n ∈ N: |ϕ(ξ0 + λn)− ϕ(ξ0 − λn)| ≥ ϵ} ⊆

⊆ {n ∈ N: |ϕ(ξ0 + λn)− ϕ(ξ0)| ≥
ϵ

2
} ∪ {n ∈ N: |ϕ(ξ0 − λn)− ϕ(ξ0)| ≥

ϵ

2
}

and from (1.9), (1.10) following inequality

δ({n ∈ N: |ϕ(ξ0 + λn)− ϕ(ξ0 − λn)| ≥ ϵ}) ≤

≤ δ({n ∈ N: |ϕ(ξ0 + λn)− ϕ(ξ0)| ≥
ϵ

2
}) + δ({n ∈ N: |ϕ(ξ0 − λn)− ϕ(ξ0)| ≥

ϵ

2
})

holds. Hence,
δ({n ∈ N: |ϕ(ξ0 + λn)− ϕ(ξ0 − λn)| ≥ ϵ}) = 0.

Hence, ϕ is statistical strong weakly symmetrically continuous at ξ0. ■

Theorem 1.9. Let ϕ : X → R be a function. If ϕ ∈ S W S C st, then ϕ ∈ W S C st.

Proof. Suggesting that ϕ is statistical strong weakly symmetrically continuous at ξ0. Then, for sequence ∀(λn) ∈
R with ξ0 + λn, ξ0 − λn ∈ X satisfying limn→∞ λn = 0 such that ∀ϵ > 0,

δ({n ∈ N: |ϕ(ξ0 + λn)− ϕ(ξ0 − λn)| ≥ ϵ}) = 0.

We can choose a subsequence (λnk
) of (λn) such that (λnk

) ∈ R+ with ξ0 + λnk
, ξ0 − λnk

∈ X satisfying
λnk

→ 0 (nk → ∞).
Therefore, ∀ϵ > 0

δ({n ∈ N: |ϕ(ξ0 + λnk
)− ϕ(ξ0 − λnk

)| ≥ ϵ}) = 0.

Thus, ϕ is statistical weakly symmetrically continuous at ξ0. ■
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Following examples are related to Theorem 1.6, Theorem 1.7, Theorem 1.8 and Theorem 1.9.

Example 1.10. Let K = { 1
n3 : n ∈ Z− {0}} ∪ {0} a set and define a ϕ : R → {−1, 0, 1} by

ϕ(ξ) :=


0, ξ ∈ K,

2, ξ > 0 ∧ ξ /∈ K,

−2, ξ < 0 ∧ ξ /∈ K.

If we consider (λn) as

λn :=

{
1
n3 , n ̸= k3,
1

n3+1 , n = k3,

then, it is clear that (λn) ∈ U0(R), (−λn) ∈ L0(R) and

|ϕ(λn)− ϕ(0)| =

{
0, n ̸= k3,

2, n = k3,

holds. This implies that for all ϵ > 0,

{n ∈ N: |ϕ(λn)− ϕ(0)| ≥ ϵ} ⊆ {k3 : k ∈ N}.

Therefore, δ({n ∈ N: |ϕ(λn)− ϕ(0)| ≥ ϵ}) = 0. Similarly, we have

|ϕ(−λn)− ϕ(0)| =

{
0, n ̸= k3,

2, n = k3,

and δ({n ∈ N: |ϕ(−λn)− ϕ(0)| ≥ ϵ}) = 0. Therefore, ϕ is statistical weakly continuous at 0. Now, let us
consider following sequence

λt :=

{
1
t3 , t ̸= k2,
1
t2 , t = k2.

It is clear that (λt) ∈ S0(R) and

|ϕ(0 + λt)− ϕ(0− λt)| =

{
0, t ̸= k2,

4, t = k2.

So, for any ϵ > 0 we have

{t ∈ N: |ϕ(0 + λt)− ϕ(0− λt)| ≥ ϵ} ⊆ {k2 : k ∈ N}

and this inclusion implies that

δ({t ∈ N: |ϕ(λt)− ϕ(−λt)| ≥ ϵ}) = 0.

Therefore, ϕ is statistical weakly symmetrically continuous at 0.
Now, let define

λm :=

{
1
m3 , m ̸= 3k − 1,
1
m2 , m = 3k − 1.

such that λm → 0 (m→ ∞). Then,

|ϕ(0 + λm)− ϕ(0− λm)| =

{
0, m ̸= 3k − 1,

4, m = 3k − 1.
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Let S ⊂ N be a finite set and for any ϵ > 0, we have

{m ∈ N: |ϕ(0 + λm)− ϕ(0− λm)| ≥ ϵ} ⊇ {3k − 1 : k ∈ N}\S

and

δ({m ∈ N: |ϕ(λm)− ϕ(−λm)| ≥ ϵ}) ≥ 1

3
.

Hence, ϕ is not statistical strong weakly symmetrically continuous at 0.
Also, ϕ is not statistical continuous at 0. Because λm → 0 (m→ ∞) for ∀m ∈ N, we have

|ϕ(λm)− ϕ(0)| =

{
0, m ̸= 3k − 1,

2, m = 3k − 1.

There exists S ⊂ N finite set and for ∀ϵ > 0 such that

{m ∈ N: |ϕ(λm)− ϕ(0)| ≥ ϵ} ⊇ {3k − 1 : k ∈ N}\S

satisfies. So,

δ({m ∈ N: |ϕ(λm)| ≥ ϵ}) ≥ 1

3
̸= 0.

Example 1.11. Let K = { 1
n : n ∈ N}, L = {

√
2

n+
√
n
: n ∈ N}, M = {− 1

n : n ∈ N}, P = {−
√
2

n+
√
n
: n ∈ N}

and X = K ∪ L ∪M ∪ P ∪ {0}. Define a function ϕ : X → R by

ϕ(ξ) :=

{
1, ξ ∈ K ∪ P ∪ {0},
ξ, ξ ∈ L ∪M.

For all sequence (λn) ∈ S0(X), we have

|ϕ(0 + λn)− ϕ(0− λn)| =

{ ∣∣1 + 1
n

∣∣ , (λn) ∈ K,∣∣∣ √
2

n+
√
n
− 1

∣∣∣ , (λn) ∈ L.

So, for any ϵ > 0, there exists finite set S ⊂ N such that

{n ∈ N: |ϕ(0 + λn)− ϕ(0− λn)| ≥ ϵ} =

{
N, (λn) ∈ K,

N− S, (λn) ∈ L,

is true. Hence, we have

δ({n ∈ N: |ϕ(0 + λn)− ϕ(0− λn)| ≥ ϵ}) > 0.

Thus, ϕ is not statistical weakly symmetrically continuous at 0. Also, it is known from Theorem 1.9 that the
function ϕ is not statistical strong weakly symmetrically continuous at 0. Let ηt ∈ U0(X) and ξm ∈ L0(X) as
follows

ηt :=

{
1
t , t ̸= k2,

√
2

t+
√
t
, t = k2,

and ξm :=

{
−

√
2

m+
√
m
, m ̸= k2,

− 1
m , m = k2,

respectively. Then, we have

|ϕ(ηt)− ϕ(0)| =

{
0, t ̸= k2,∣∣∣ √

2
t+

√
t
− 1

∣∣∣ , t = k2,
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and

{t ∈ N: |ϕ(ηt)− ϕ(0)| ≥ ϵ} ⊆ {k2 : k ∈ N}

is satisfied for all ϵ > 0. Hence,

δ({t ∈ N: |ϕ(ηt)− ϕ(0)| ≥ ϵ}) = 0.

Similarly,

|ϕ(ξm)− ϕ(0)| =

{
0, m ̸= k2,∣∣ 1

m + 1
∣∣ , m = k2,

and

{m ∈ N: |ϕ(ξm)− ϕ(0)| ≥ ϵ} ⊆ {k2 : k ∈ N}

implies that

δ({m ∈ N: |ϕ(ξm)− ϕ(0)| ≥ ϵ}) = 0.

Therefore, ϕ is statistical weakly continuous at 0.

Example 1.12. Let K = { 1
n : n ∈ Z − {0}}, L = {

√
2

n+
√
n

: n ∈ N}, M = {−
√
2

n+
√
n

: n ∈ N} and
X = K ∪ L ∪M ∪ {0}. Define the function ϕ : X → R by

ϕ(ξ) :=

{
1, ξ ∈ K,

ξ, ξ ∈ X −K.

Let (λn) ∈ S0(X) as

λn :=

{
1
n , n ̸= k2,
√
2

n+
√
n
, n = k2.

So, we have

|ϕ(0 + λn)− ϕ(0− λn)| =

{
0, n ̸= k2,∣∣∣ 2
√
2

n+
√
n

∣∣∣ , n = k2,

and for every ϵ > 0,

{n ∈ N: |ϕ(0 + λn)− ϕ(0− λn)| ≥ ϵ} ⊆ {k2 : k ∈ N}

imply that

δ({n ∈ N: |ϕ(λn)− ϕ(−λn)| ≥ ϵ}) = 0.

Therefore, ϕ is statistical weakly symmetrically continuous at 0. For all (ηm) ∈ U0(X),

|ϕ(ηm)− ϕ(0)| =

{
1, ηm ∈ K,
√
2

m+
√
m
, ηm ∈ L.

Hence, for ∀ϵ > 0, there exists S ⊂ N finite set such that

{m ∈ N: |ϕ(ηm)− ϕ(0)| ≥ ϵ} =

{
N, ηm ∈ K,

N\S, ηm ∈ L.

Therefore,

δ({m ∈ N: |ϕ(ηm)− ϕ(0)| ≥ ϵ}) > 0.

Thus, ϕ is not statistical weakly continuous at 0.
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As a summary of the Theorems and Examples given above, we can provide the following inclusions:

(i) S W S C st ⊆ W S C st and W S C st ⊈ S W S C st

(ii) S W S C st ⊈ W C st and W C st ⊈ S W S C st

(iii) W C st ⊈ W S C st and W S C st ⊈ W C st

(iv) S W S C st ⊈ C st, W S C st ⊈ C st and W C st ⊈ C st

(v) C st ⊆ S W S C st, C st ⊆ W S C st and C st ⊆ W C st

2. Some algebraic properties of new continuities

This section examines the algebraic properties of the set of W S C st. The results concluded that the set W S C st

does not form a linear space over real numbers.

Theorem 2.1. Let ϕ : X → R be a function. If ϕ ∈ W S C st and c ∈ R then, |ϕ|, cϕ ∈ W S C st.

Proof. Suppose that Sξ0(X) ̸= ∅. Then, there exists a sequence (λn) ∈ Sξ0(X) such that

δ({n: |ϕ(ξ0 + λn)− ϕ(ξ0 − λn)| ≥ ϵ}) = 0

holds for all ϵ > 0. So, the following inclusion

{n ∈ N: ||ϕ| (ξ0 + λn)− |ϕ| (ξ0 − λn)| ≥ ϵ} ⊆

⊆ {n ∈ N: |ϕ(ξ0 + λn)− ϕ(ξ0 − λn)| ≥ ϵ}

implies that
δ({n ∈ N: ||ϕ| (ξ0 + λn)− |ϕ| (ξ0 − λn)| ≥ ϵ}) ≤

≤ δ({n ∈ N: |ϕ(ξ0 + λn)− ϕ(ξ0 − λn)| ≥ ϵ})

is true. Then,
δ({n ∈ N: ||ϕ| (ξ0 + λn)− |ϕ| (ξ0 − λn)| ≥ ϵ}) = 0.

Therefore, |ϕ| is statistical weakly symmetrically continuous at ξ0.
Additionally, c ∈ R and ∀ϵ > 0 the following inclusion

{n ∈ N: |(cϕ)(ξ0 + λn)− (cϕ)(ξ0 − λn)| ≥ ϵ} ⊆

⊆ {n ∈ N: |ϕ(ξ0 + λn)− ϕ(ξ0 − λn)| ≥
ϵ

|c|
}

and related inequality
δ({n ∈ N: |(cϕ)(ξ0 + λn)− (cϕ)(ξ0 − λn)| ≥ ϵ}) ≤

≤ δ({n ∈ N: |ϕ(ξ0 + λn)− ϕ(ξ0 − λn)| ≥
ϵ

|c|
})

hold.
So, we have

δ({n ∈ N: |(cϕ)(ξ0 + λn)− (cϕ)(ξ0 − λn)| ≥ ϵ}) = 0.

Hence, cϕ is statistical weakly symmetrically continuous at ξ0. ■

Theorem 2.2. Let ϕ : X → R and ψ : X → R be functions. If ϕ ∈ W S C st and ψ ∈ S W S C st then, ϕ+ ψ,
ϕ− ψ, max{ϕ, ψ} and min{ϕ, ψ} ∈ W S C st.
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Proof. Suppose that ϕ is statistical weakly symmetrically continuous function at the point ξ0 and ψ is statistical
strong weakly symmetrically continuous function at the point ξ0. Then, Sξ0(X) ̸= ∅ implies that there exists a
sequence (λn) ∈ Sξ0(X) such that ∀ϵ > 0,

δ({n ∈ N: |ϕ(ξ0 + λn)− ϕ(ξ0 − λn)| ≥ ϵ}) = 0.

From Theorem 1.9, ψ is statistical weakly symmetrically continuous function at the point ξ0. Then,

δ({n ∈ N: |ψ(ξ0 + λn)− ψ(ξ0 − λn)| ≥ ϵ}) = 0.

holds. Therefore, following equality

{n ∈ N: |(ϕ+ ψ)(ξ0 + λn)− (ϕ+ ψ)(ξ0 − λn)| ≥ ϵ} =

= {n ∈ N: |ϕ(ξ0 + λn)− ϕ(ξ0 − λn)| ≥
ϵ

2
}∪

∪{n ∈ N: |ψ(ξ0 + λn)− ψ(ξ0 − λn)| ≥
ϵ

2
}

implies that
δ({n ∈ N: |(ϕ+ ψ)(ξ0 + λn)− (ϕ+ ψ)(ξ0 − λn)| ≥ ϵ}) = 0.

Similarly, we have

δ({n ∈ N: |(ϕ− ψ)(ξ0 + λn)− (ϕ− ψ)(ξ0 − λn)| ≥ ϵ}) = 0.

Consequently, ϕ+ ψ and ϕ− ψ are statistical weakly symmetrically continuous at the point ξ0.
Now, the following inequality

|max{ϕ, ψ}(ξ0 + λn)−max{ϕ, ψ}(ξ0 − λn)| ≤

≤ |ϕ(ξ0 + λn)− ϕ(ξ0 − λn)|
2

+
|ψ(ξ0 + λn)− ψ(ξ0 − λn)|

2
+

+
||ϕ− ψ| (ξ0 + λn)− |ϕ− ψ| (ξ0 − λn)|

2
≤

≤ |ϕ(ξ0 + λn)− ϕ(ξ0 − λn)|
2

+
|ψ(ξ0 + λn)− ψ(ξ0 − λn)|

2
+

+
|(ϕ− ψ)(ξ0 + λn)− (ϕ− ψ)(ξ0 − λn)|

2
≤

≤ |ϕ(ξ0 + λn)− ϕ(ξ0 − λn)|+ |ψ(ξ0 + λn)− ψ(ξ0 − λn)|

implies that
{n ∈ N: |max{ϕ, ψ}(ξ0 + λn)−max{ϕ, ψ}(ξ0 − λn)| ≥ ϵ} ⊆

⊆ {n ∈ N: |ϕ(ξ0 + λn)− ϕ(ξ0 − λn)| ≥
ϵ

2
}

∪{n ∈ N: |ψ(ξ0 + λn)− ψ(ξ0 − λn)| ≥
ϵ

2
}

holds. So, we have

δ({n ∈ N: |max{ϕ, ψ}(ξ0 + λn)−max{ϕ, ψ}(ξ0 − λn)| ≥ ϵ}) = 0.

Similarly, the following inequality

|min{ϕ, ψ}(ξ0 + λn)−min{ϕ, ψ}(ξ0 − λn)| ≤
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≤ |ϕ(ξ0 + λn)− ϕ(ξ0 − λn)|+ |ψ(ξ0 + λn)− ψ(ξ0 − λn)|

implies that
{n ∈ N: |min{ϕ, ψ}(ξ0 + λn)−min{ϕ, ψ}(ξ0 − λn)| ≥ ϵ} ⊆

⊆ {n ∈ N: |ϕ(ξ0 + λn)− ϕ(ξ0 − λn)| ≥
ϵ

2
}

∪{n ∈ N: |ψ(ξ0 + λn)− ψ(ξ0 − λn)| ≥
ϵ

2
}

holds. Hence,

δ({n ∈ N: |min{ϕ, ψ}(ξ0 + λn)−min{ϕ, ψ}(ξ0 − λn)| ≥ ϵ}) = 0.

Thus, the functions max{ϕ, ψ} and min{ϕ, ψ} are statistical weakly symmetrically continuous at ξ0. ■

Example 2.3. (Exp.3.3. in [23]) Let A = { 1
n : n ∈ Z − {0}} and B = {

√
2
n : n ∈ Z − {0}}. Consider the

functions ϕ, ψ : R → R as follows:

ϕ(ξ) =


ξ, ξ ∈ A ∪ {0},
−1, ξ > 0 ∧ ξ /∈ A,

1, ξ < 0 ∧ ξ /∈ A,

and ψ(ξ) =


ξ, ξ ∈ B ∪ {0},
−2, ξ > 0 ∧ ξ /∈ B,

2, ξ < 0 ∧ ξ /∈ B.

The functions ϕ and ψ are weakly symmetrically continuous at 0 (see in [23]). By Lemma 1.5 the functions ϕ
and ψ are also statistical weakly symmetrically continuous at 0.

(ϕ+ ψ)(ξ) =



−3, ξ > 0 ∧ ξ /∈ A ∪B,
3, ξ < 0 ∧ ξ /∈ A ∪B,
ξ − 2, ξ > 0 ∧ ξ ∈ A,

ξ + 2, ξ < 0 ∧ ξ ∈ A,

ξ − 1, ξ > 0 ∧ ξ ∈ B,

ξ + 1, ξ < 0 ∧ ξ ∈ B,

0, ξ = 0,

(ϕ− ψ)(ξ) =



1, ξ > 0 ∧ ξ /∈ A ∪B,
−1, ξ < 0 ∧ ξ /∈ A ∪B,
ξ + 2, ξ > 0 ∧ ξ ∈ A,

ξ − 2, ξ < 0 ∧ ξ ∈ A,

−ξ − 1, ξ > 0 ∧ ξ ∈ B,

−ξ + 1, ξ < 0 ∧ ξ ∈ B,

0, ξ = 0,

max{ϕ, ψ}(ξ) =



−1, ξ > 0 ∧ ξ /∈ A ∪B,
2, ξ < 0 ∧ ξ /∈ A ∪B,
ξ, ξ > 0 ∧ ξ ∈ A ∪B,
2, ξ < 0 ∧ ξ ∈ A,

1, ξ < 0 ∧ ξ ∈ B,

0, ξ = 0,

192



Statistical extension some types of symmetrically continuity

min{ϕ, ψ}(ξ) =



−2, ξ > 0 ∧ ξ /∈ A ∪B,
1, ξ < 0 ∧ ξ /∈ A ∪B,
−2, ξ > 0 ∧ ξ ∈,
ξ, ξ < 0 ∧ ξ ∈ A ∪B,
−1, ξ > 0 ∧ ξ ∈ B,

0, ξ = 0.

For ∀(λn) ∈ S0(R) and ∀ϵ > 0,

|(ϕ+ ψ)(0 + λn)− (ϕ+ ψ)(0− λn)| =


6, λn /∈ A ∪B,
|2λn − 4| , λn ∈ A,

|2λn − 2| , λn ∈ B.

There exists a finite subset of natural numbers S such that

{n ∈ N: |(ϕ+ ψ)(λn)− (ϕ+ ψ)(−λn)| ≥ ϵ} =

{
N, λn /∈ A ∪B,
N\S, λn ∈ A ∪B,

Hence,

δ({n ∈ N: |(ϕ+ ψ)(λn)− (ϕ+ ψ)(−λn)| ≥ ϵ}) > 0.

Therefore (ϕ+ ψ) is not statistical weakly symmetrically continuous at 0. Similarly, for ∀n ∈ N,

|(ϕ− ψ)(0 + λn)− (ϕ− ψ)(0− λn)| =


2, λn /∈ A ∪B,
|2λn + 4| , λn ∈ A,

|−2λn − 2| , λn ∈ B,

|max{ϕ, ψ}(0 + λn)−max{ϕ, ψ}(0− λn)| =


3, λn /∈ A ∪B,
|λn − 2| , λn ∈ A,

|λn − 1| , λn ∈ B,

|min{ϕ, ψ}(0 + λn)−min{ϕ, ψ}(0− λn)| =


3, λn /∈ A ∪B,
|−λn − 2| , λn ∈ A,

|−λn − 1| , λn ∈ B,

For ∀ϵ > 0,

δ({n ∈ N: |(ϕ− ψ)(λn)− (ϕ− ψ)(−λn)| ≥ ϵ}) > 0,

δ({n ∈ N: |max{ϕ, ψ}(λn)−max{ϕ, ψ}(−λn)| ≥ ϵ}) > 0,

δ({n ∈ N: |min{ϕ, ψ}(λn)−min{ϕ, ψ}(−λn)| ≥ ϵ}) > 0.

Hence, the functions ϕ−ψ, max{ϕ, ψ} and min{ϕ, ψ} are not statistical weakly symmetrically continuous at 0.

Theorem 2.4. Let ϕ : X → R be a statistical weakly symmetrically continuous function at the point ξ0 and let
ψ : X → R be a statistical strong weakly symmetrically continuous function at the point ξ0. If ϕ and ψ are
locally bounded at ξ0, then ϕψ is statistical weakly symmetrically continuous at ξ0.
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Proof. Suppose that ϕ is statistical weakly symmetrically continuous and ψ is statistical strong weakly
symmetrically continuous at the point ξ0. Then, Sξ0(X) ̸= ∅ implies that there exists a sequence
(λn) ∈ Sξ0(X) such that ∀ϵ > 0,

δ({n ∈ N: |ϕ(ξ0 + λn)− ϕ(ξ0 − λn)| ≥
ϵ

2
}) = 0

holds. Also from Theorem 1.9, ψ is statistical weakly symmetrically continuous function at the point ξ0. Then,

δ({n ∈ N: |ψ(ξ0 + λn)− ψ(ξ0 − λn)| ≥
ϵ

2
}) = 0.

holds for ∀ϵ > 0.
Because of ϕ and ψ are locally bounded at ξ0, there exists K,M > 0 and δ > 0 such that |ϕ(ξ)| ≤ M and

|ψ(ξ)| ≤ K for all ξ ∈ (ξ0 − δ, ξ0 + δ) ∩X .
Since (λn) ∈ Sξ0(X), we can pick N ∈ N such that ξ0 + λn, ξ0 − λn ∈ (ξ0 − δ, ξ0 + δ) ∩X for ∀n ≥ N

such that
|(ϕψ)(ξ0 + λn)− (ϕψ)(ξ0 − λn)| =

= |ϕ(ξ0 + λn)ψ(ξ0 + λn)− ϕ(ξ0 − λn)ψ(ξ0 − λn)| ≤

≤ |ϕ(ξ0 + λn)| |ψ(ξ0 + λn)− ψ(ξ0 − λn)|+

+ |ψ(ξ0 − λn)| |ϕ(ξ0 + λn)− ϕ(ξ0 − λn)| ≤

≤M |ψ(ξ0 + λn)− ψ(ξ0 − λn)|+K |ϕ(ξ0 + λn)− ϕ(ξ0 − λn)|

holds. So, following inclusion

{n ∈ N: |(ϕψ)(ξ0 + λn)− (ϕψ)(ξ0 − λn)| ≥ ϵ} ⊆

⊆ {n ∈ N:M. |ψ(ξ0 + λn)− ψ(ξ0 − λn)| ≥
ϵ

2
}∪

∪{n ∈ N:K. |ϕ(ξ0 + λn)− ϕ(ξ0 − λn)| ≥
ϵ

2
}

implies that
δ({n ∈ N: |(ϕψ)(ξ0 + λn)− (ϕψ)(ξ0 − λn)| ≥ ϵ}) = 0.

Therefore, ϕψ is statistical weakly symmetrically continuous at ξ0. ■

The following example shows that if ϕ ∈ W S C st and ψ ∈ S W S C st but at least one of ϕ or ψ is not
locally bounded, then ϕψ /∈ W S C st.

Example 2.5. Consider the functions ϕ, ψ : R → R defined by

ϕ(ξ) = ξ and ψ(ξ) =

{
1

ln(|ξ|+1) , ξ /∈ [− 1
e ,

1
e ]

0, otherwise,

For every (λn) ∈ R with λn → 0, we have for every ϵ > 0

δ({n ∈ N: |ϕ(λn)− ϕ(−λn)| ≥ ϵ}) = 0

and
δ({n ∈ N: |ψ(λn)− ψ(−λn)| ≥ ϵ}) = 0.
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Then, ϕ and ψ are statistical strong weakly symmetrically continuous at 0. The function ϕ is locally bounded
at 0 however ψ is not. By Theorem 1.9, the function ϕ is statistical weakly symmetrically continuous at 0.
Additionally,

(ϕψ)(ξ) =

{
ξ

ln(|ξ|+1) , ξ /∈ [− 1
e ,

1
e ]

0, otherwise.

Hence, ∀λn ∈ S0(R) and ∀ϵ > 0 we have

|(ϕψ)(0 + λn)− (ϕψ)(0− λn)| =
2λn

ln(λn + 1)

{n ∈ N: |(ϕψ)(0 + λn)− (ϕψ)(0− λn)| ≥ ϵ} = N

δ({n ∈ N: |(ϕψ)(λn)− (ϕψ)(−λn)| ≥ ϵ}) > 0.

Hence, ϕψ is not statistical weakly symmetrically continuous at 0.

Theorem 2.6. Let ϕ : X → R be a statistical weakly symmetrically continuous function at ξ0. Suppose that
ϕ(ξ) ̸= 0 for ∀ξ ∈ X and 1

ϕ is locally bounded at ξ0. Then, 1
ϕ is statistical weakly symmetrically continuous at

ξ0.

Proof. Suppose that ϕ be a statistical weakly symmetrically continuous at a point ξ0 and let ϕ(ξ) ̸= 0 for ∀ξ ∈ X

and 1
ϕ is locally bounded at ξ0. Let Sξ0(X) ̸= ∅ then, there exists a sequence (λn) ∈ Sξ0(X) such that ∀ϵ > 0,

δ({n ∈ N: |ϕ(ξ0 + λn)− ϕ(ξ0 − λn)| ≥ ϵ}) = 0

and ∃δ,M > 0 such that
∣∣∣ 1
ϕ(ξ)

∣∣∣ ≤ M , for ∀ξ ∈ (ξ0 − δ, ξ0 + δ) ∩X . Since (λn) ∈ Sξ0(X), then we can pick
N ∈ N such that ξ0 + λn, ξ0 − λn ∈ (ξ0 − δ, ξ0 + δ) ∩X for ∀n ≥ N.

So, following inequality∣∣∣∣ 1

ϕ(ξ0 + λn)
− 1

ϕ(ξ0 − λn)

∣∣∣∣ = |ϕ(ξ0 + λn)− ϕ(ξ0 − λn)|
∣∣∣∣ 1

ϕ(ξ0 + λn)ϕ(ξ0 − λn)

∣∣∣∣
≤M2 |ϕ(ξ0 + λn)− ϕ(ξ0 − λn)|

and related inclusion

{n ∈ N:
∣∣∣∣ 1

ϕ(ξ0 + λn)
− 1

ϕ(ξ0 − λn)

∣∣∣∣ ≥ ϵ} ⊆

⊆ {n ∈ N :M2 |ϕ(ξ0 + λn)− ϕ(ξ0 − λn)| ≥ ϵ}

holds. Then,

δ({n ∈ N:
∣∣∣∣ 1

ϕ(ξ0 + λn)
− 1

ϕ(ξ0 − λn)

∣∣∣∣ ≥ ϵ}) = 0.

Therefore, 1
ϕ is statistical weakly symmetrically continuous at ξ0. ■

Theorem 2.7. Let ϕ : X → R be a statistical weakly symmetrically continuous function at a point ξ0 and locally
bounded at ξ0. Let ψ : X → R be a statistical strong weakly symmetrically continuous function at a point ξ0. If
ψ(ξ) ̸= 0 for all ξ ∈ X and 1

ψ is locally bounded at ξ0 then, ϕψ is statistical weakly symmetrically continuous at
ξ0.

Proof. It is omitted because of similarity with Theorem 2.6. ■

Theorem 2.8. Let ϕ : X → Y and ψ : Y → R. Suppose that ϕ ∈ W S C st and ψ be a uniformly continuous on
Y . Then, ψ ◦ ϕ ∈ W S C st.
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Proof. Suppose that ϕ is statistical weakly symmetrically continuous at ξ0 and ψ is uniformly continuous on Y .
Then, Sξ0(X) ̸= ∅ implies that there exists a sequence (λn) ∈ Sξ0(X) such that ∀ϵ > 0,

δ({n ∈ N: |ϕ(ξ0 + λn)− ϕ(ξ0 − λn)| ≥ ϵ}) = 0

and ∀ϵ > 0, ∃δ ≡ δ(ϵ) > 0 ∋ |ζ0 − ζ1| ≤ δ implies that for ∀ζ0, ζ1 ∈ Y

|ψ(ζ0)− ψ(ζ1)| < ϵ (2.1)

There is N ∈ N such that for all n ≥ N

|ϕ(ξ0 + λn)− ϕ(ξ0 − λn)| < δ. (2.2)

By equation (2.1) and (2.2),

|(ψ ◦ ϕ)(ξ0 + λn)− (ψ ◦ ϕ)(ξ0 − λn)| = |ψ(ϕ(ξ0 + λn))− ψ(ϕ(ξ0 + λn))| < ϵ

So, we have below inclusion

{n ∈ N: |(ψ ◦ ϕ)(ξ0 + λn)− (ψ ◦ ϕ)(ξ0 − λn)| ≥ ϵ} ⊆ {1, 2, ...N}

and

δ({n ∈ N: |(ψ ◦ ϕ)(ξ0 + λn)− (ψ ◦ ϕ)(ξ0 − λn)| ≥ ϵ}) = 0.

Consequently, ψ ◦ ϕ is statistical weakly symmetrically continuous at ξ0. ■

The following example shows that when ϕ ∈ W S C st but ψ is not uniformly continuous on the domain, it
will be ψ ◦ ϕ /∈ W S C st

Example 2.9. Define ϕ, ψ : R → R by

ψ(ξ) =

{
1
ξ , ξ ̸= 0,

0, ξ = 0.
and ϕ(ξ) = ξ cos ξ

The function ϕ is statistical weakly symmetrically continuous at 0 and ψ is not uniformly continuous on R.

(ψ ◦ ϕ)(ξ) =

{
1

ξ cos ξ , ξ ̸= 0 ∧ ξ ̸= (kπ + π
2 ),

0, otherwise,

for all k ∈ Z. For ∀(λn) ∈ S0(R) and ϵ > 0,

|(ψ ◦ ϕ)(0 + λn)− (ψ ◦ ϕ)(0− λn)| =
2

λn cos(λn)

{n ∈ N: |(ψ ◦ ϕ)(λn)− (ψ ◦ ϕ)(−λn)| ≥ ϵ} = N
δ({n ∈ N: |(ψ ◦ ϕ)(λn)− (ψ ◦ ϕ)(−λn)| ≥ ϵ}) = 1 > 0.

Hence, ψ ◦ ϕ is not statistical weakly symmetrically continuous at 0.
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3. Conclusion and some Remarks

P. Pongsriim-T. Thongsiri in [23] classified functions with removable discontinuity, and SC, WC and WSC

classes were created. In this study, functions with removable discontinuities were subjected to a new classification
with the help of natural density, and the following inclusions diagram was obtained. (Note that E → D means
that E ⊆ D)

C

�� ## **
WC

��

C st

{{ %%

SC

��

// WSC

��
W C st S W S C st // W S C st

As a continuation of this study, the first question that comes to mind is to make a similar extension by taking
a different kinds of densities instead of natural density, for example, logarithmic density, uniform density, and
density produced by a regular matrix, generalized density, etc.

Maybe the other problem is determining whether there is any class of functions between X and Y where
X ∈ {SC,WC,WSC} and Y ∈ {S W S C st,W C st,W S C st}.
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1. Introduction

Recurrent spaces have been of great importance and were studied by a large number of authors such as Ruse
[1], Patterson [2] , Walker [3], Singh and Khan([4] and [5]) etc. In 1991, De and Guha [6] introduced and studied
generalized recurrent manifold whose curvature tensor R(X,Y )Z of type (1,3) satisfies the condition:

(DUR)(X,Y )Z = A(U)R(X,Y )Z +B(U)[g(Y,Z)X − g(X,Z)Y ], (1.1)

where A and B are two non-zero 1-forms and D denotes the operator of covariant differentiation with respect
to metric tensor g. Such a space has been denoted by GKn. In recent papers Bandyopadhyay [7], Prakasha
and Yildiz [8], Khan [9] etc explored various geometrical properties by using generalized recurrent manifold on
Sasakian manifold and Lorentzian α-Sasakian manifold.

Further one of the author Prasad [10] considered a non-flat Riemannian manifold (Mn, g)(n > 3) whose
curvature tensor R satisfies the following condition

(DUR)(X,Y )Z = A(U)R(X,Y )Z +B(U)g(Y,Z)X, (1.2)

∗Corresponding author. Email address: bhagwatprasad2010@rediffmail.com (B. Prasad)

https://www.malayajournal.org/index.php/mjm/index ©2023 by the authors.



On nearly recurrent Riemannian manifolds

where A and B are two non-zero 1-forms and D has the meaning already mentioned. Such a manifold called by
the author as semi-generalized recurrent manifold and denoted by (SGK)n. Singh, Singh and Kumar[11],[12]
and Chaudhary, Kumar and Singh [13] extended this notation to Lorentzian α-Sasakian manifold, P-Sasakian
manifold and trans-Sasakian manifold.

The object of the present paper is to study a type of non-flat recurrent Riemannian manifold (Mn, g)(n > 2)

whose curvature tensor R(X,Y )Z of the type (1,3) satisfies the condition

(DUR)(X,Y )Z = [A(U) +B(U)]R(X,Y )Z +B(U)[g(Y, Z)X − g(X,Z)Y ], (1.3)

where A and B are two non-zero 1-forms and ρ1 and ρ2 are two vector fields such that

g(U, ρ1) = A(U) and g(U, ρ2) = B(U). (1.4)

Such a manifold shall be called as a nearly recurrent Riemannian manifold and 1-forms A and B shall be
called its associated 1-forms and n-dimensional recurrent manifold of this kind shall be denoted by (NR)n.
If in particular B = 0, then the space reduced to a recurrent space according to Ruse [14] and Walker [3] which
is denoted by Kn.
Moreover, in particular if A = B = 0 then (1.3) becomes (DUR)(X,Y )Z = 0. That is , a Riemannian manifold
is symmetric accordingly Kobayashi and Nomizu [15] and Desai and Amer [16]. The name nearly recurrent
Riemannian manifold was chosen because if B = 0 in (1.3) then the manifold reduces to a recurrent manifold
which is very close to recurrent space. This justifies the name Nearly recurrent Riemannian manifold for
the manifold defined by (1.3) and the use of the symbol (NR)n for it.

In this paper, after preliminaries, a necessary and sufficient condition for constant scaler curvature of (NR)n
is obtained. Nearly recurrent manifold with cyclic Ricci tensor and Codazzi type Ricci tensor are studied. Finally,
we give examples of (NR)n .

2. Preliminaries

Let S and r denote the Ricci tensor of type (0,2) and scalar curvature respectively and Q denote the symmetric
endomorphism of the tangent space at each point corresponding to the Ricci tensor, i.e.

S(X,Y ) = g(QX,Y ), (2.1)

for any vector field X and Y .
From(1.3), we get

(DUS)(Y, Z) = [A(U) +B(U)]S(Y,Z) + (n− 1)B(U)g(Y, Z). (2.2)

Contracting (2.2), we have

dr(U) = Ur = [A(U) +B(U)]r + n(n− 1)B(U). (2.3)

3. Nature of the 1-forms A and B on a nearly recurrent space

From (2.3) suppose r = 0,then

B(U) = 0

which is not possible. Hence we have the following theorem:

Theorem 3.1. The scalar curvature tensor of (NR)n can not be zero.
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Now we consider (NR)n is of constant scalar curvature then from (2.3), we have

[A(U) +B(U)]r + n(n− 1)B(U) = 0. (3.1)

Again if (3.1) holds, then from (2.3), we get

dr(U) = 0,

r = constant

Hence, we can state the following theorem:

Theorem 3.2. A (NR)n is of constant curvature if and only if (3.1) holds.

Now, taking covariant derivative of (3.1) with respect to V , we get

[(DV A)(U) + (DV B)(U)]r + n(n− 1)(DV B)U = 0. (3.2)

Interchanging U and V in (3.2) and then subtracting, we get

[(dA(U, V ) + dB(U, V )]r + n(n− 1)dB(U, V ) = 0. (3.3)

Thus we have the following theorem:

Theorem 3.3. In a nearly recurrent space of non-zero constant scalar curvature r, if the 1-forms B is closed
then A is closed , if A is closed then B is also closed.

From (1.3), we have

(DV R)(X,Y )Z = [A(V ) +B(V )]R(X,Y )Z +B(V )[g(Y,Z)X − g(X,Z)Y ].

This gives

(DUDV R)(X,Y )Z =[(DUA)(V ) +A(DUV ) + (DUB)(V ) +B(DUV )]R(X,Y )Z

+ [A(U) +B(U)][A(V ) +B(V )]R(X,Y )Z+

[A(V ) +B(V )]B(U)[g(Y,Z)X − g(X,Z)Y ]

(3.4)

Therefore from(3.4), we have

(DV DUR)(X,Y )Z =[(DV A)(U) +A(DV U) + (DV B)(U) +B(DV U)]R(X,Y )Z

+ [A(U) +B(U)][A(V ) +B(V )]R(X,Y )Z+

[A(U) +B(U)]B(V )[g(Y,Z)X − g(X,Z)Y ]

(3.5)

and

(D[U,V ]R)(X,Y )Z = [A ([U, V ]) +B ([U, V ])]R(X,Y )Z+

B ([U, V ]) [g(Y,Z)X − g(X,Z)Y ].
(3.6)

Now, subtracting (3.5) and (3.6) from (3.4), we get

(R(U, V ).R)(X,Y )Z =[(dA(U, V ) + dB(U, V )]R(X,Y )Z+

dB(U, V )[g(Y,Z)X − g(X,Z)Y ]+

[A(V )B(U)−A(U)B(V )].

(3.7)

Thus, we can state the following theorem:
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Theorem 3.4. In a (NR)n with constant scalar curvature , R(X,Y).R=0 if and only if

[(dA(U, V ) + dB(U, V )]R(X,Y )Z + dB(U, V )[g(Y,Z)X − g(X,Z)Y ]+

[A(V )B(U)−A(U)B(V )] = 0.

Next, we consider the case when the scalar curvature r is not constant.
From (2.3) it follows that

V Ur = (DV A)(U)r +A(U)(V r) + n(n− 1)(DV B)(U). (3.8)

Interchanging U and V in (3.8) and then subtracting, we get

[(DV A)(U)− (DUA)(V ) + (DV B)(U)− (DUB)(V )]r+

n(n− 1) {(DV B)(U)− (DUB)(V )}+ [r + n(n− 1)][A(U)B(V )−A(V )B(U)] = 0.

which gives

[dA(V,U) + dB(V,U)]r + n(n− 1)dB(V,U)+

[r + n(n− 1)][A(U)B(V )−A(V )B(U)] = 0.
(3.9)

Thus we have the following theorem:

Theorem 3.5. In a nearly recurrent space of non-zero constant scalar curvature r, the 1-forms A and B are
closed if and only if the 1-forms A and B are co-directional.

4. (NR)n with cyclic Ricci tensor

In this section we consider a (NR)n in which the Ricci tensor is a cyclic tensor, i.e.

(DXS)(Y,Z) + (DY S)(Z,X) + (DZS)(X,Y ) = 0, (4.1)

which implies
dr(X) = 0. (4.2)

From (1.3), we have
dr(X) = [A(X) +B(X)]r + n(n− 1)B(X). (4.3)

Therefore from (4.2) and (4.3), we get

[A(X) +B(X)]r + n(n− 1)B(X) = 0. (4.4)

From (4.1), we have

[A(X) +B(X)]S(Y,Z) + [A(Y ) +B(Y )]S(Z,X) + [A(Z) +B(Z)]S(X,Y )

+ (n− 1)[B(X)g(Y,Z) +B(Y )g(X,Z) +B(Z)g(X,Y )] = 0,

which yields on contraction

A(QX) +B(QX) =
r

n
[A(X) +B(X)]

or S(X, ρ1) + S(X, ρ2) =
r

n
[g(X, ρ1) + g(X, ρ2)]

or S(X, ρ1 + ρ2) =
r

n
[g(X, ρ1 + ρ2)
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Above can be written as

S(X,µ) =
r

n
g(X,µ), (4.5)

where µ = ρ1 + ρ2.
Hence we have the following theorem:

Theorem 4.1. If (NR)n has cyclic Ricci tensor, then r
n is an eigen value of Ricci tensor S and µ is an eigen

vector corresponding to the eigen value.

5. (ER)n with Codazzi type of Ricci tensor

In this section, we consider an (NR)n in which the Ricci tensor is a Codazzi type of Ricci tensor Ferus [17]

(DXS)(Y,Z) = (DZS)(Y,X). (5.1)

By view of Bianchi identity and (5.1), we have

(divR)(X,Y )Z = 0. (5.2)

In view of (1.3), we get on contraction

(divR)(X,Y )Z = A(R(X,Y )Z) +B(R(X,Y )Z) +B(X)g(Y,Z)−B(Y )g(X,Z). (5.3)

Now using (5.2) in (5.3), we get

A(R(X,Y )Z) +B(R(X,Y )Z) +B(X)g(Y,Z)−B(Y )g(X,Z) = 0. (5.4)

In view of (5.4), we get
A(QX) +B(QX) = −(n− 1)B(X). (5.5)

From (2.2) and (5.1), we have

[A(X) +B(X)]S(Y, Z)− [A(Z) +B(Z)]S(Y,X)

+ (n− 1)[B(X)g(Y, Z)−B(Z)g(X,Y )] = 0.
(5.6)

On contracting of (5.6), we have

[A(X) +B(X)]r = [A(QX) +B(QX)]− (n− 1)2B(X). (5.7)

Using (5.5) and (5.7) in (2.3), we have
dr(X) = 0. (5.8)

Again it is known [18] that in a Riemannian manifold (Mn, g)(n > 3)

(divC)(X,Y )Z =
n− 3

n− 2
[(DXS)(Y, Z)− (DZS)(Y,X)]+

1

2(n− 1)
[g(X,Y )dr(Z)− g(Y,Z)dr(X)],

(5.9)

where C denotes the conformal curvature.
As a consequences of (5.1) and (5.8), (5.9) reduces to

(divC)(X,Y )Z = 0,

which shows that the tensor is conservative [19].
Hence we can state the following theorem:

Theorem 5.1. If in a (NR)n the Ricci tensor is a Codazzi type tensor then its conformal curvature tensor is
conservative.
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6. Nearly recurrent with concurrent vector field

In this section first we suppose that the (NR)n admits a concurrent unit vector fields Ṽ ,

DX Ṽ = ρX, (6.1)

where ρ is a non-zero constant .
By Ricci-identity

R(X,Y )Ṽ = 0. (6.2)

Taking covariant derivative of (6.2), we get

(DWR)(X,Y )Ṽ = −ρR(X,Y )W (6.3)

Also by definition of (NR)n,we find

(DWR)(X,Y )Ṽ = [A(W ) +B(W )]R(X,Y )Ṽ +B(W )[g(Y, Ṽ )X − g(X, Ṽ )Y ]. (6.4)

In view of (6.2),(6.3)and (6.4),we get

−ρR(X,Y )W = B(W )[g(Y, Ṽ )X − g(X, Ṽ )Y ].

On contraction, we find
−ρS(Y,W ) = (n− 1)B(W )g(Y, Ṽ ). (6.5)

Again on contraction of (6.5), we get

−ρr = (n− 1)B(Ṽ ) = (n− 1)g(ρ2, Ṽ ), (6.6)

Since ρ ̸= 0 and r ̸= 0,then from (6.6),we get

g(ρ2, Ṽ ) ̸= 0. (6.7)

Hence we have the following theorem:

Theorem 6.1. If a (NR)n the associated vector field ρ2 cannot concurrent vector field .

7. Example

Example (7.1) Let us consider M4 =
{
(x1, x2, x3, x4) ∈ R4

}
be an open subset of R4 endowed with the metric

ds2 = gijdx
idxj = (x4)

3
2 [(dx1)2 + (dx2)2 + (dx3)2] + (dx4)2 (7.1)

where i, j = 1, 2, 3, 4.

Then the only non-vanishes components of the Christoffel symbols and curvature tensor are

Γ1
14 = Γ2

24 = Γ3
34 =

3

4(x4)
, Γ4

11 = Γ4
22 = Γ4

33 = −3

4
(x4)

1
2

R1441 = R2442 = R3443 = − 3

16(x4)
1
2

(7.2)

The non-vanishing components of the Ricci tensor are

R11 = R22 = R33 = − 3

16(x4)
1
2

, R44 = − 3

16(x4)2
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and scalar curvature is
R = giiRii = − 3

16(x4)2

Taking covariant derivative of (7.2), we get

R1441,4 =
3

32(x4)
3
2

, R2442,4 =
3

32(x4)
3
2

, R3443,4 =
3

32(x4)
3
2

(7.3)

Consequently, the manifold under consideration is not recurrent .
Let us choose the associated 1-form as

Ai =

{
3
32 .

64(x4)2−1
(x4)3−4(x4)2 , i = 4

0, otherwise
(7.4)

Bi =

{
3
32 .

1
(x4)3−4(x4)2 , i = 4

0, otherwise
(7.5)

From (1.3), we have
Rhiih,i = (Ai +Bi)Rhiih +Bi[giighh − ghigih] (7.6)

By virtue of (7.2), (7.3),(7.4) and (7.5), it can be easily seen that the Riemannian manifold satisfies relation (7.6).
Hence the manifold under consideration is a nearly recurrent Riemannian manifold (M4, g), which is neither
recurrent nor symmetric.
This leads to the following theorem:

Theorem 7.1. There exist a nearly recurrent Riemannian manifold (M4, g), which is neither recurrent nor
symmetric.

Example (7.2) Let us consider the 3-dimensional manifold M =
{
(x, y, z) ∈ R3, z ̸= 0

}
, where (x, y, z)

are standard co-ordinate of R3.
We choose the vector fields

e1 =
1

2

∂

∂y
, e2 =

∂

∂x
− z

∂

∂y
, e3 =

∂

∂z
(7.7)

which is linearly independently at each point of M.

Let g be the Riemannian metric denoted by

g(ei, ej) =

{
1, i = j

0, i ̸= j
(7.8)

Let D be the Levi-Civita connection with respect to metric g. Then from equation (7.7), we have

[e1, e2] = 0, [e1, e3] = 2e1, [e2, e3] = 0. (7.9)

The Riemannian connection D of the metric g is given by

2g (DXY, Z) =Xg (Y,Z) + Y g (X,Z)− Zg (X,Y )− g (X, [Y,Z])

− g (Y, [X,Z]) + g (Z, [X,Y ]) ,
(7.10)

which is known as Koszul’s formula. Using (7.8) and (7.9) in (7.10), we get

De1e3 = −e2, De1e2 = e3, De1e1 = 0,

De2e3 = e1, De2e2 = 0, De2e1 = −e3,

De3e3 = 0, De3e2 = −e1, De3e1 = e2.

(7.11)
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The curvature tensor is given by

R(X,Y )Z =DXDY Z −DY DXZ −D[X,Y ]Z (7.12)

Using (7.9) and (7.11) in (7.12) , we get

R (e1, e2) e1 = e2, R (e1, e2) e2 = e1, R (e1, e2) e3 = 0

R (e2, e3) e1 = 0, R (e2, e3) e2 = 3e3, R (e2, e3) e3 = e2

R (e1, e3) e1 = −e3, R (e1, e3) e2 = 0 R (e1, e3) e3 = −e1

R (e1, e1) e1 = R (e1, e1) e2 = R (e1, e1) e3 = 0

R (e2, e2) e1 = R (e2, e2) e2 = R (e2, e2) e3 = 0

R (e3, e3) e1 = R (e3, e3) e2 = R (e3, e3) e3 = 0.

(7.13)

The Ricci tensor is given by

S(ei, ei) =

3∑
i=1

g(R(ei, X)Y, ei) (7.14)

From (7.13) and (7.14), we get

S(e1, e1) = 0, S(e2, e2) = 2, S(e3, e3) = 0 (7.15)

and the scalar curvature is 2.
Since {e1, e2, e3} forms a basis of Riemannian manifold any vector field X,Y, Z ∈ χ(M) can be written as

X = a1e1 + b1e2 + c1e3, Y = a2e1 + b2e2 + c2e3, Z = a3e1 + b3e2 + c3e3,

where ai, bi, ci ∈ R+ ( the set of all positive real numbers), i = 1, 2, 3.

Hence
R(X,Y )Z = l1e1 +m1e2 + n1e3 (7.16)

g(Y,Z)X − g(X,Z)Y = l2e1 +m2e2 + n2e3 (7.17)

By view of (7.16), we get

(DeiR)(X,Y )Z = uie1 + vie2 + wie3 for i = 1, 2, 3. (7.18)

where

l1 = a1b2b3 + a2c1c3 − c1c2c3,

m1 = a1b2a3 + a3b1b2 − b1a2a3 + b1c2c3,

n1 = 3b1b3c2 − 3b3c1b2 − a1a3c2,

l2 = a1b2b3 + a1c2c3 − a2b1b3 − a2c1c3,

m2 = a2a3b1 + b1c2c3 − a1a3b2 − b2c1c3,

n2 = a2a3c1 + b2b3c1 − a1a3c2 − b1b3c2,

u1 = a2a3c1 − a2b3c1 − a1b3c2,

v1 = 2b2b3c1 − 2b1b3c2 + a1a3c2 − a2a3c1,

w1 = 2a2a3b1 − 2a1a3b2 − a3b1b2 + 2b1c2c3,

u2 = 4b1b3c2 − 3b2b3c1 − 2a1a3c2 − c1c2c3 + a2a3c1,

v2 = −2a1b2c3 + 2a3b1c2 + a2b1c3 + a2b2c3,

w2 = −4a1b2b3 − 2a2c1c3 + c1c2c3 + 3a2b2b3 − a3c1c2 − 3a3b2c1 + a1a2c3,

u3 = −2a1a3b2 − a3b1b2 + 2a2a3b1 − 2b1c2c3 − 2a1a2b3 + b2c1c3,

v3 = 2a1b2b3 + a2c1c3 − c1c2c3 − a1a2c3 + a3c1c3 + a2b1b3,

w3 = −3a1b3c2 − a3b1c2 + 3a2b3c1 + 2a3b2c1.
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Consequently, the manifold under consideration is not recurrent. Let us now consider 1-form non vanishes

A (ei) =
4(ui + vi + wi)

3(l1 +m1 + n1)− (l2 +m2 + n2)

B (ei) =
−(ui + vi + wi)

3(l1 +m1 + n1)− (l2 +m2 + n2)
(7.19)

such that
3(l1 +m1 + n1)− (l2 +m2 + n2) ̸= 0.

From (1.3), we have

(DeiR) (X,Y )Z = [A(ei) +B(ei)]R(X,Y )Z +B(ei)[g(Y,Z)X − g(X,Z)Y ]. (7.20)

By virtue of (7.16), (7.17), (7.18) and (7.19), it can be easily seen that the Riemannian manifold satisfies relation
(7.20). Hence the manifold under consideration is a nearly recurrent Riemannian manifold (M3, g), which is
neither recurrent nor symmetric. Thus we have the following theorem:

Theorem 7.2. There exist a nearly recurrent Riemannian manifold (M3, g), which is neither recurrent nor
symmetric.
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1. Introduction

The deformation of parametric surfaces family is determined by

Xβ (u, v) =

 cosβ sinu sinh v + sinβ cosu cosh v

− cosβ cosu sinh v + sinβ sinu cosh v

u cosβ + v sinβ

 .

Here, u, β ∈ (−π, π], v ∈ (−∞,∞) , β is the parameter of deformation. Xβ is minimal, i.e., has zero mean
curvature. X0 is the helicoid, Xπ/2 is the catenoid. Therefore, the surfaces are locally isometric, have the same
Gauss map.

In addition, helices of X0 match to parallel circles of Xπ/2. Finally, we meet the classical theorem of the
French mathematician Edmond Bour.

Bour’s Theorem [1]. A helicoidal surface is locally isometric to a rotational surface so that helices of the
helicoidal surface match to parallel circles of the rotational surface.

Some other Euclidean and also Lorentz-Minkowski versions of it were studied by [2]-[14].
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Local isometry of the generalized helicoidal surfaces family in 4-space

Next, we present some fundamental geometric and differential facts of four dimensional Euclidean space. Let

−→x · −→y = x1y1 + x2y2 + x3y3 + x4y4

be a Euclidean inner product, and let X:D ⊂ E2 → E4 be a parametric representation of surface M in Euclidean
4-space E4. The tangent space of M at a point p =X(u, v) is spanned by Xu and Xv , where Xu = ∂X

∂u , Xv = ∂X
∂v .

The first fundamental form matrix of M is obtained by

I =

(
E F
F G

)
where

E = Xu · Xu, F = Xu · Xv, G = Xv · Xv.

We assume the surface M is regular. That is, W 2 = det I = EG − F2 > 0. Let {η1, η2, ζ1, ζ2} be a
orthonormal frame of M where η1, η2 are tangent to M , ζ1, ζ2 are normal to M . The second fundamental form
matrix of M w.r.t. the unit normal vector ζi, i = 1, 2, is described by

IIi =

(
Li Mi

Mi Ni

)
where

Li = Xuu · ζi, Mi = Xuv · ζi, Ni = Xvv · ζi,

and Xuu = ∂2X
∂u2 , Xuv = ∂2X

∂u∂v , Xvv = ∂2X
∂v2 .

We determine by

(a) Hi =
(E)(Ni)+(G)(Li)−2(F)(Mi)

2W 2 , the mean curvature of M w.r.t. ni, i = 1, 2,

(b)
−→
H = H1n1 +H2n2, the mean curvature vector of M,

(c)
−→
H = 0, the surface M is minimal,

(d) K =
(L1)(N1)−(M1)

2
+(L2)(N2)−(M2)

2

W 2 = det(II1)+det(II2)
W 2 , the Gaussian curvature of M , respectively.

An orthonormal tangent frame field {η1, η2} of M is choosen by

η1 =
1√
E
Xu, η2 =

1

W
√
E
(EXv − FXu) ,

with its Gauss map

G =
1

W
(Xu ∧ Xv) .

In this paper, we generalized the work of The Hieu and Ngoc Thang [14].

2. Generalized helicoidal surfaces family in E4

A vector (a,b,c,d) of E4 will be identified with its transpose in the rest of this work.
Let γ : I ⊂ R −→ Π be a curve in a plane Π in E4, ℓ be a line in Π. A generalized rotational surface family

in E4 is described by rotating a profile curve γ about a line (i.e., axis) ℓ.
When γ rotates about ℓ, it simultaneously matches parallel lines perpendicular to the ℓ, so the displacement

speed is proportional to the rotation speed. Therefore, the final surface is named the generalized helicoidal
surface family with axis ℓ and pitch a ∈ R\{0}.
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Parametrization of the profile curve is given by

γ(u) = (f (u) , 0, g (u) , h (u)) ,

where f, g, h : I ⊂ R −→ R are the differentiable functions for all u ∈ I . So, in E4, a generalized helicoidal
surface family with pitch a ∈ R\{0} is defined by

H(u, v) =


f (u) cos v

f (u) sin v

g (u) + av

h (u)

 , (2.1)

where f, g, h are the differentiable functions, u, a ∈ R \ {0}, and 0 ≤ v < 2π. When a = 0, it is just a rotational
surface in E4.

By taking the first derivatives w.r.t. u and v, respectively, of the generalized helicoidal surfaces family defined
by Eq. (2.1), we find the following first quantities of the family

E = f ′2 + g′2 + h′2, F = ag′, G = f2 + a2,

where f ′2 =
(

df
du

)2
, g′2 =

(
dg
du

)2
, h′2 =

(
dh
du

)2
.

We compute two normals of the generalized helicoidal surface family described by Eq. (2.1) as follows

ζ1 =
1

T


h′ cos v

h′ sin v

0

−f ′

 , (2.2)

ζ2 =
1

WT


−ff ′g′ cos v + a

(
f ′2 + h′2) sin v

−a
(
f ′2 + h′2) cos v − ff ′g′ sin v

f
(
f ′2 + h′2)
−fg′h′

 , (2.3)

respectively. Here, T =
√
f ′2 + h′2, W =

√
a2 (f ′2 + h′2) + f2 (f ′2 + g′2 + h′2).

Using the second derivatives of the helicoidal surface defined by Eq. (2.1) w.r.t. u and v, respectively,

Huu = (f ′′ cos v, f ′′ sin v, g′′, h′′) ,

Huv = (−f ′ sin v, f ′ cos v, 0, 0) ,

Hvv = (−f cos v,−f sin v, 0, 0) ,

where f ′′ = ∂2f
∂u2 , g

′′ = ∂2g
∂u2 , h

′′ = ∂2h
∂u2 , and the normals determined by Eq. (2.2) and Eq. (2.3) , we have the

following second quantities of the generalized helicoidal surfaces family described by Eq. (2.1):

L1 =
f ′′h′ − f ′h′′

T
, M1 = 0, N1 = −fh′

T
,

L2 =
f
(
−
(
f ′2 + h′2) g′′ + g′ (f ′f ′′ + h′h′′)

)
WT

, M2 =
af ′ (f ′2 + h′2)

WT
, N2 = −f2f ′g′

WT
.

Hence, the mean curvatures Hi (i = 1, 2) and the Gaussian curvature K of the generalized helicoidal surfaces
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family defined by Eq. (2.1) are given by as follows

H1 =

(
f2 + a2

)
h′f ′′ − f

(
f ′2 + g′2

)
h′ − fh′3 −

(
a2 + f2

)
f ′h′′

2W 2
√
f ′2 + h′2

,

H2 =

{
f
(
a2 + f2

) {
f ′g′f ′′ −

(
f ′2 + h′2) g′′ + g′h′h′′}

−
{
2a2

(
f ′2 + h′2)+ f2

(
f ′2 + g′2 + h′2)} f ′g′

}
2W 3

√
f ′2 + h′2

,

K =

{
−
(
f3f ′2g′2W 2 + fh′2) f ′′ +

(
f3f ′g′

(
f ′2 + h′2)W 2

)
g′′

−
(
f3f ′g′2h′W 2 − ff ′h′)h′′ − a2f ′2 (f ′2 + h′2)2 W 2

}
W 4 (f ′2 + h′2)

.

3. Bour’s theorem on generalized helicoidal-rotational surfaces family in E4

Next, we generalize the Bour’s theorem for the generalized helicoidal-rotational surfaces family in four
dimensional Euclidean space.

Theorem 1. Let H be the generalized helicoidal surfaces family described by Eq. (2.1), and let p(u), q(u),
u > 0 are the differentiable functions supplying the equation

p2 + q2 =
a2 + f2f ′2 +

(
f2 + a2

)
h′2

f2
. (3.1)

Therefore, the generalized helicoidal surface family H defined by Eq. (2.1) is locally isometric to the following
generalized rotational surfaces family

R(u, v) =



√
f2 + a2 cos

(
v +

∫
ag′

f2+a2 du
)

√
f2 + a2 sin

(
v +

∫
ag′

f2+a2 du
)

∫ f p(u)√
f2+a2

du∫ f q(u)√
f2+a2

du

 (3.2)

so that helices on the generalized helicoidal surface correspond to parallel circles on the generalized rotational
surfaces.

Proof. The arc lenght element of the generalized helicoidal surface given by Eq. (2.1) is described by as
follows

ds2 =
(
f ′2 + g′2 + h′2) du2 + 2ag′dudv +

(
a2 + f2

)
dv2.

Setting u = u, v = v +
∫

ag′

f2+a2 du, the generalized helicoidal surface determined by Eq. (2.1) transforms to
H(u, v). Considering the new parameters of the surface, its arc lenght element reduces to

ds2 =

((
f ′2 + h′2)+ f2g′2

a2 + f2

)
du2 +

(
a2 + f2

)
dv2.

On the other side, in E4, the following generalized rotational surfaces family

R(s, t) =


f (s) cos t

f (s) sin t

g (s)

h (s)


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has the following arc lenght element

ds2 =
(
f′2 + g′2 + h′2

)
ds2 + f2dt2. (3.3)

Again setting f =
√
a2 + f2, p(u) = g′, q(u) = h′, we get the following functions

g =

∫
f p(u)√
a2 + f2

du, h =

∫
f q(u)√
a2 + f2

du.

Hence, differential Eq. (3.1) determines that the generalized helicoidal surfaces family given by Eq. (2.1) is
locally isometric to the generalized rotational surfaces family determined by Eq. (3.2).

The helices of H are defined by u = u0; where u0 is a constant, those are match to the curves of R determined
by f =

√
u2
0 + a2; that is, those are the circles of the plane {x3 = g (s) , x4 = h (s)} .

We now taking the isometric surfaces in Theorem 1, consider the following.

Theorem 2. Let H and R be the generalized surfaces family related by Theorem 1. When the family have
the same Gauss map, those are hyperplanar, minimal.

Proof. Let {k1, k2, k3, k4} be the canonical basis in E4 and denote kij = ki ∧ kj , i, j = 1, 2, 3, 4, i < j. So,
the Gauss map of the generalized helicoidal surface (2.1) is

GH =
1

W



ff ′k12
+(af ′ cos v + fg′ sin v) k13

+fh′ sin vk14
+(af ′ sin v − fg′ cos v) k23

−fh′ cos vk24
−ah′k34


, (3.4)

and also the Gauss map of the generalized rotational surface (3.2) is as follows

GR =
1

W



ff ′k12

+fp sin
(
v +

∫
ag′

f2+a2 du
)
k13

+fq sin
(
v +

∫
ag′

f2+a2 du
)
k14

−fp cos
(
v +

∫
ag′

f2+a2 du
)
k23

−fq cos
(
v +

∫
ag′

f2+a2 du
)
k24


, (3.5)

where
W =

√
a2 (f ′2 + h′2) + f2 (f ′2 + g′2 + h′2).

When GH is equal to GR, identically, Eq. (3.4) and Eq. (3.5) give rise to the following

af ′ cos v + fg′ sin v = fp sin (vR) , (3.6)

af ′ sin v − fg′ cos v = −fp cos (vR) , (3.7)

fh′ sin v = fq sin (vR) , (3.8)

−fh′ cos v = −fq cos (vR) , (3.9)

−ah′ = 0, (3.10)

where vR = v +
∫

ag′

f2+a2 du. Using Eqs. (3.8)− (3.10) , we have

h′ = 0 and q = 0.
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That is, generalized surfaces determined by Eq. (2.1) and Eq. (3.2) are hyperplanar.
Now, we prove surfaces given by Eq. (2.1) and Eq. (3.2) are minimal. For this, since q = 0, then p ̸= 0 by

using ((3.6) . cos v + (3.7) . sin v), it gives

af ′ = fp sin

(∫
ag′

f2 + a2
du

)
.

Also, ((3.6) . sin v − (3.7) . cos v) reduces to

fg′ = fp cos

(∫
ag′

f2 + a2
du

)
.

Hence, we have

arc cot

(
fg′

af ′

)
=

∫
ag′

f2 + a2
du.

Derivativing the last equation w.r.t. u, we obtain the following(
f2 + a2

) (
f ′2g′ + ff ′g′′ − ff ′′g′

)
+
(
a2f ′2 + f2g′2

)
g′ = 0. (3.11)

The mean curvatures of the generalized helicoidal surfaces family given by Eq. (2.1) w.r.t. the following
normals

ζ1 =


0

0

0

1

 , ζ2 =
1√

(a2 + f2) f ′2 + f2g′2


−fg′ cos v + af ′ sin v

−fg′ sin v − af ′ cos v

ff ′

0


are described by, respectively,

H1 = 0,

H2 =

(
f2 + a2

) (
fg′f ′′ − ff ′g′′ − f ′2g′

)
− g′

(
a2f ′2 + f2g′2

)
2 ((a2 + f2) f ′2 + f2g′2)

3/2
,

And also, the mean curvatures of the generalized rotational surfaces family defined by Eq. (3.2) w.r.t. the
following normals

ζ1 =


0

0

0

1

 , ζ2 =
1√

(a2 + f2) f ′2 + f2g′2


−
√
f2g′2 + a2f ′2 cos

(
v +

∫
ag′

f2+a2 du
)

−
√

f2g′2 + a2f ′2 sin
(
v +

∫
ag′

f2+a2 du
)

ff ′

0


are determined by, respectively,

H1 = 0,

H2 =
f2g′

[(
f2 + a2

) (
fg′f ′′ − ff ′g′′ − f ′2g′

)
− g′

(
a2f ′2 + f2g′2

)]
2
√
f2 + a2

√
f2g′2 + a2f ′2 ((a2 + f2) f ′2 + f2g′2)

3/2
.

From Eq. (3.11), the helicoidal-rotational surfaces family have the mean curvatures H2 = 0. Finally, the
generalized helicoidal surface family determined by Eq. (2.1) and the generalized rotational surfaces family
described by Eq. (3.2) are minimal. That is,

−→
H = 0.
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Theorem 3. Let the generalized helicoidal surfaces family defined by Eq. (2.1), and the generalized
rotational surfaces family given by Eq. (3.2) having the same Gauss map be the locally isometric surfaces
family related by Theorem 1. Therefore, the parametrizations of the family are described by

H(u, v) =


f (u) cos v

f (u) sin v

g (u) + av

c

 ,

R(u, v) =



√
f2 + a2 cos

(
v +

∫
ag′

f2+a2 du
)

√
f2 + a2 sin

(
v +

∫
ag′

f2+a2 du
)

b arg cosh

(√
f2+a2

b

)
d

 ,

respectively. Here,

g(u) =
√
b2 − a2 ln

√√
f2 + a2 +

√
f2 + a2 − b2√

f2 + a2 −
√
f2 + a2 − b2

− a arctan

(√
(b2 − a2) (f2 + a2)

a2 (f2 + a2 − b2)

)
,

and a, b, c, d ∈ R, b ≥ a, f >
√
b2 − a2.

Proof. Generalized surfaces H and R are the hyperplanar from Theorem 2. Assume H covered by the
hyperplane f (s) = c, and also R covered by the hyperplane f (s) = d. Since R is minimal, it is just a catenoid.
Thus, g (s) = b arg cosh

(
s
b

)
, where b ̸= 0. Therefore,

b arg cosh

(√
f2 + a2

b

)
=

∫ √
f2g′2 + a2f ′2

f2 + a2
du.

Then, we get

g′ =

√
b2 − a2

√
f2 + a2

f
√
f2 + a2 − b2

. (3.12)

Finally, after some computations, we obtain

g′ =
√
b2 − a2 ln

√
w + 1

w − 1
− a arctan

(√
b2 − a2

a
w

)
,

where w =
√

f2+a2

f2+a2−b2 > 0.

4. Conclusion

Considering the findings in the previous section, we obtain the following results.

Corollary 1. When g′ = 0, generalized helicoidal surfaces family H describe the helicoid. The mean
curvature of the generalized rotational surfaces family R is zero. That is, the generalized rotational surfaces
family is transform to the catenoid. By using Eq. (3.12), the pitch a is equals to b.
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Example 1. Taking f(u) = u, c = d = 0, b = 2, a = 1 in Theorem 3, the other function is described by

g(u) =
√
3 ln

√√
u2 + 1 +

√
u2 − 3√

u2 + 1−
√
u2 − 3

− arctan

(√
3 (u2 + 1)

u2 − 3

)
.

Then, we have the projection of the isometric helicoidal-rotational surfaces from dimension four to three. See
Figure 1 for the graphics of the helicoidal surface, and also see Figure 2 for the rotational surface.

Figure 1: Helicoidal surface

Figure 2: Rotational surface
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1. Introduction

Let A denote the class of all analytic functions f(z) of the form

f(z) = z +

∞∑
k=2

ak z
k (ak ≥ 0, n ∈ N = {1, 2, 3, ...}) (1.1)

which are analytic and univalent in the open unit disk

U = {z : z ∈ C; |z| < 1}.

We shall denote the class of all functions in A which are univalent in U by S, for details (see [9]; see also the
work [7], [8], [17]). For 0 < q < 1, we introduce the family of new functions defined as follows:

Qq
λ(β) =

{
f ∈ A : Re

(
(1− λ)

f(z)

z
+ λDqf(z)

)
> β, β < 1, λ ≥ 0

}
(1.2)

where Dq stands for q-derivative of the function f(z) introduced by Jackson [14]. For q → 1− it reduces to class
of analytic function introduced by Ding et al. [6].

∗Corresponding author. Email address: mgshrigan@gmail.com(M.G. Shrigan)
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For function f(z) ∈ A given by (1.1) and 0 < q < 1, the q-derivative of a function f(z) is defined by (also
refer [12], [21])

Dqf(z) =
f(qz)− f(z)

(q − 1)z
; (z ̸= 0, q ̸= 0), (1.3)

from (1.3), we deduce that

Dqf(z) = 1 +

∞∑
k=2

[k]qak z
k−1 (1.4)

where

[k]q =
1− qk

1− q
. (1.5)

It is well known that every function f ∈ S has a inverse f−1, defined by

f−1(f(z)) = z, (z ∈ U)

and

f−1(f(w)) = w,

(
|w| < r0(f); r0(f) ≥

1

4

)
where

f−1(w) = w − a2w
2 + (2a22 − a3)w

3 − (5a32 − 5a2a3 + a4)w
4 + ... .

A function f(z) ∈ A is said to be bi-univalent in U if both f(z) and f−1(z) are univalent in U. We denote by Σ

the class of all functions f(z) which are bi-univalent in U and are given by the Taylor-Maclaurin series
expansion (1.1). The familiar Koebe function is not a member of Σ because it maps the unit disk U univalently
onto the entire complex plane minus a slit along the line − 1

4 to −∞. Hence image domain does not contain in
U. A systematic study of the class Σ of bi-univalent function in U, which is introduced in 1967 by Lewin [17].
Ever since then, several authors investigated various subclasses of the class Σ of bi-univalent functions. By
using Grunsky inequalities Lewin showed that |a2| < 1.51. Subsequently, Brannan and Clunie [4] conjectured
that |a2| ≤

√
2. Netanyahu [18], showed that max

f∈σ
|a2| = 4

3 . In 1985 Branges [1] proved Bieberbach conjecture

which state that, for each f(z) ∈ S given by Taylor-Maclaurin expansion (1.1) the following coefficient
inequality holds true:

|an| ≤ n; (n ∈ N− 1),

N being positive integer.
Brannan and Taha [6](see also [5]) introduce certain subclass of the bi-univalent function class Σ similar to

the familiar subclasses S∗(α) and K(α) of starlike and convex functions of order α (0 < α ≤ 1), respectively.
According to Brannan and Taha [6] (see also [3]) a function f(z) ∈ A is in the class S∗

Σ(α) of strongly bi-
univalent functions of order α (0 < α ≤ 1) if each of the following conditions is satisfied

f ∈ Σ and
∣∣∣∣arg(zf ′(z)

f(z)

)∣∣∣∣ < απ

2
; (0 < α ≤ 1, z ∈ U)

and ∣∣∣∣arg(wg′(w)

g(w)

)∣∣∣∣ < απ

2
; (0 < α ≤ 1, w ∈ U),
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where g is the extension of f−1 in U. Recently, several researchers such as (see [2, 11, 13, 15, 16, 19]) obtained
coefficients |a2| and |a3| of bi-univalent functions for the various subclasses of the function class Σ. For a further
historical amount of functions of class Σ, see the recent pioneering work by Srivastava et al. [22, 23]. The
coefficient estimate problem involving the bound of |an|(n ∈ N \ {1, 2}) for each f ∈ Σ given by (1.1) is still an
open problem.

The main aim of the present investigation is to introduce and study two new subclasses of the function class
Σ and find estimates on the initial coefficients |a2| and |a3| for functions in these new subclasses of the function
class Σ using q-differential operator.

2. Coefficient bounds for the function class Hq
Σ(α, λ)

We now introduce the following class of bi-univalent functions.

Definition 2.1. : A function f(z) given by (1.1) is said to be in the class Hq
Σ(α, λ) if the following conditions

satisfied:

f ∈ Σ and
∣∣∣∣arg((1− λ)

f(z)

z
+ λDqf(z)

)∣∣∣∣ < απ

2
; (0 < α ≤ 1, λ ≥ 1, z ∈ U) (2.1)

and ∣∣∣∣arg((1− λ)
g(w)

w
+ λDqg(w)

)∣∣∣∣ < απ

2
; (0 < α ≤ 1, λ ≥ 1, w ∈ U) (2.2)

where the function g is given by

g(w) = w − a2w
2 + (2a22 − a3)w

3 − (5a32 − 5a2a3 + a4)w
4 + · · · . (2.3)

We note that for λ = 1 and q → 1−, the class Hq
Σ(α, λ) reduces to the class Hα

Σ introduced and studied by
Srivastava et al. [24] and for q → 1−, the class Hq

Σ(α, λ) reduces to the class BΣ(α, λ) introduced and studied
by Frasin and Aouf [11]. We begin by finding the estimates on the coefficients |a2| and |a3| for function in the
class Hq

Σ(α, λ).
In order to derive our main results, we have to recall here the following lemma.

Lemma 2.2. [9] If p ∈ P then |ck| ≤ 2 for each k, where P is the family of all functions p analytic in U for
which Re{p(z)} > 0

p(z) = 1 + c1z + c2z
2 + c3z

3 + ... for z ∈ U.

For functions in the class Hq
Σ(α, λ) the following result is obtained.

Theorem 2.3. Let f(z) be given by (1.1) be in the function class Hq
Σ(α, λ), 0 < α ≤ 1; 0 < q < 1 and

λ ≥ 1.Then

|a2| ≤
2α√

2(1− λ+ [3]qλ)α+ (1− α)(1− λ+ [2]qλ)2
(2.4)

and

|a3| ≤
4α2

(1− λ+ [2]qλ)2
+

2α

(1− λ+ [3]qλ)
. (2.5)
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Proof: It follows from (2.1) and (2.2) that

(1− λ)
f(z)

z
+ λDqf(z) = [p(z)]α (2.6)

and

(1− λ)
g(w)

w
+ λDqg(w) = [q(w)]α (z, w ∈ U), (2.7)

respectively, where
p(z) = 1 + p1z + p2z

2 + ...

q(w) = 1 + q1w + q2w
2 + ...

in P . Now, upon equating the coefficients of z and z2 in (2.6) and (2.7), we get

(1− λ+ [2]qλ) a2 = αp1, (2.8)

(1− λ+ [3]qλ) a3 = αp2 +
α(α− 1)

2
p21, (2.9)

− (1− λ+ [2]qλ) a2 = αq1 (2.10)

and

(1− λ+ [3]qλ) (2a
2
2 − a3) = αq2 +

α(α− 1)

2
q21 . (2.11)

From (2.8) and (2.10), we obtain
p1 = −q1 (2.12)

and
2 (1− λ+ [2]qλ)

2
a22 = α2

(
p21 + q21

)
. (2.13)

Also, from (2.9), (2.11) and (2.13), we find that

2 (1− λ+ [3]qλ) a
2
2 = α (p2 + q2) +

(α− 1) (1− λ+ [2]qλ)
2
a22

α
. (2.14)

Therefore, we obtain

a22 =
α2

2(1− λ+ [3]qλ)α+ (1− α)(1− λ+ [2]qλ)2
(p2 + q2) . (2.15)

Applying lemma 2.2 for the coefficients p2 and q2, yields

|a2| ≤
2α√

2(1− λ+ [3]qλ)α+ (1− α)(1− λ+ [2]qλ)2
, (2.16)

which gives desired estimate on |a2| as asserted in (2.4).
Next, in order to find the bound on |a3|, we subtract (2.11) from (2.9), We thus get

2 (1− λ+ [3]qλ) a3 = α (p2 − q2) +
α2

(
p21 + q21

)
(1− λ+ [3]qλ)

(1− λ+ [2]qλ)
2 . (2.17)

Applying lemma 2.2 for the coefficients p1, q1, p2 and q2 in above equality, we get

|a3| ≤
4α2

(1− λ+ [2]qλ)2
+

2α

(1− λ+ [3]qλ)
. (2.18)

This completes the proof.
If we choose λ = 1 and q → 1− in Theorem 2.3, we have the following result.
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Corollary 2.4. ([24]). Let f(z) given by (1.1) be in the class Hα
Σ, (0 < α ≤ 1). Then

|a2| ≤ α

√
2

2 + α
(2.19)

and

|a3| ≤
α(3α+ 2)

3
. (2.20)

If we take q → 1− in Theorem 2.3, we have the following result.

Corollary 2.5. ([11]). Let f(z) given by (1.1) be in the class BΣ(α, λ), (0 < α ≤ 1) and (λ ≥ 1). Then

|a2| ≤
2α√

(λ+ 1)2 + α(1 + 2λ− λ2)
(2.21)

and

|a3| ≤
4α2

(λ+ 1)2
+

2α

2λ+ 1
. (2.22)

3. Coefficient bounds for the function class Hq
Σ(β, λ)

We now introduce the following class of bi-univalent functions.

Definition 3.1. : A function f(z) given by (1.1) is said to be in the class Hq
Σ(β, λ) if the following conditions

satisfied:

f ∈ Σ and Re

(
(1− λ)

f(z)

z
+ λDqf(z)

)
> β; (0 ≤ β < 1, λ ≥ 1, z ∈ U) (3.1)

and

Re

(
(1− λ)

g(w)

w
+ λDqg(w)

)
> β; (0 ≤ β < 1, λ ≥ 1, w ∈ U). (3.2)

For functions in the class Hq
Σ(β, λ) the following result is obtained.

Theorem 3.2. Let f(z) be given by (1.1) be in the function class Hq
Σ(β, λ), 0 ≤ β < 1; 0 < q < 1 and

λ ≥ 1.Then

|a2| ≤ min

{
2(1− β)

(1− λ+ [2]qλ)
,

√
2(1− β)

(1− λ+ [3]qλ)

}
(3.3)

and

|a3| ≤ min
{

2(1− β)

(1− λ+ [3]qλ)
,

4(1− β)2

(1− λ+ [2]qλ)2
+

2(1− β)

(1− λ+ [3]qλ)

}
. (3.4)
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Proof: It follows from (3.1) and (3.2) that

(1− λ)
f(z)

z
+ λDqf(z) = β + (1− β)p(z) (3.5)

and

(1− λ)
g(w)

w
+ λDqg(w) = β + (1− β)q(w) (z, w ∈ U), (3.6)

respectively, where
p(z) = 1 + p1z + p2z

2 + ...

q(w) = 1 + q1w + q2w
2 + ...

in P . Now, upon equating the coefficients of (3.5) and (3.6), we obtain

(1− λ+ [2]qλ) a2 = (1− β)p1, (3.7)

(1− λ+ [3]qλ) a3 = (1− β)p2, (3.8)

− (1− λ+ [2]qλ) a2 = (1− β)q1 (3.9)

and
(1− λ+ [3]qλ) (2a

2
2 − a3) = (1− β)q2. (3.10)

From (3.7) and (3.9), we obtain
p1 = −q1 (3.11)

and
2 (1− λ+ [2]qλ)

2
a22 = (1− β)2

(
p21 + q21

)
. (3.12)

Also, from (3.8) and (3.10), we have

2 (1− λ+ [3]qλ)a
2
2 = (1− β) (p2 + q2) . (3.13)

Applying lemma 2.2 for (3.12) and (3.13), we get

|a2| ≤ min

{
2(1− β)

(1− λ+ [2]qλ)
,

√
2(1− β)

(1− λ+ [3]qλ)

}
, (3.14)

we get desired estimate on |a2| as asserted in (3.3).
Next, in order to find the bound on |a3|, we subtract (3.10) and (3.8), we get

2(1− λ+ [3]qλ) a3 = (1− β) (p2 − q2) + 2(1− λ+ [3]qλ) a
2
2, (3.15)

which, upon substitution of the value of a22 from (3.12), yields

|a3| =
(1− β)2

2(1− λ+ [2]qλ)2
(p21 + q21) +

(1− β)

(1− λ+ [3]qλ)
(p2 − q2). (3.16)

On the other hand, by using (3.13) into (3.15), it follows that

|a3| =
(1− β)

2(1− λ+ [3]qλ)2
p2. (3.17)

Applying lemma 2.2 for (3.16) and (3.17), yields

|a3| ≤ min
{

2(1− β)

(1− λ+ [3]qλ)
,

4(1− β)2

(1− λ+ [2]qλ)2
+

2(1− β)

(1− λ+ [3]qλ)

}
. (3.18)

This completes the proof.
The next Corollary can be easily obtained from Theorem 3.2.
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Corollary 3.3. . Let f(z) given by (1.1) be in the class Hα
Σ, 0 ≤ β < 1. Then

|a2| =


√

2(1−β)
3 , for 0 ≤ β ≤ 1/3

1− β, for 1/3 ≤ β < 1
(3.19)

and

|a3| ≤
2(1− β)

3
. (3.20)

Remark 3.4. Corollary (3.3) provides an improvement for the estimates obtained by Srivastava et al. ([24]).

Corollary 3.5. ([24]). Let f(z) given by (1.1) be in the class Hβ
Σ, (0 ≤ β < 1). Then

|a2| ≤
√

2(1− β)

3
(3.21)

and

|a3| ≤
(1− β)(5− 3β)

3
. (3.22)

If we choose q → 1− in Theorem 3.2, we have the following result.

Corollary 3.6. ([11]). Let f(z) given by (1.1) be in the class BΣ(β, λ), (0 ≤ β < 1) and (λ ≥ 1). Then

|a2| ≤
√

2(1− β)

2λ+ 1
(3.23)

and

|a3| ≤
4(1− β)2

(λ+ 1)2
+

2(1− β)

2λ+ 1
. (3.24)

Remark 3.7. . For λ = 1 the results obtained in this paper are coincides with the results discussed in ([2]).
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[22] H. M. SRIVASTAVA, S. BULT AND M.ÇAĞLAR, Coefficient estimates for a general subclass of analytic and
bi-univalent functions, Filomat, 27(2013), 831–842, https://doi.org/10.2298/FIL13058315

226



Initial coefficient estimates for subclasses of bi-univalent functions

[23] H. M. SRIVASTAVA AND D. BANSAL, Coefficient estimates for a subclass of analytic and bi-univalent
functions, Egypt. Math. Soc. J., 23(2014), 242–246, https://doi.org/10.1016/j.joems.2014.04.002.

[24] H. M. SRIVASTAVA, A. K. MISHRA AND P. GOCHHAYAT, Certain subclass of analytic and bi-univalent
functions, Appl. Math. lett., 23(2010), 1188–1192, https://doi.org/10.1016/j.aml.2010.05.009.

This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

227



MALAYA JOURNAL OF MATEMATIK
Malaya J. Mat. 11(02)(2023), 228–238.
http://doi.org/10.26637/mjm1102/011

Double domination number of the shadow (2,3)-distance graphs
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Abstract. Let G = (V,E) be a graph with the vertex set V (G) and S be a subset of V (G). If every vertex of V is
dominated by S at least twice, then the set S is called a double domination set of the graph. The number of elements of the
double domination set with the smallest cardinality is called double domination number and denoted by γ×2(G) notation. In
this paper, we discussed the double domination parameter on some types of shadow distance graphs such as cycle, path, star,
complete bipartite and wheel graphs.
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1. Introduction and Background

Many real-life problems can be modeled mathematically by using differential equations, integral equations,
algebraic relations, etc. However, the graphical representation of such problems, showing how the various
components are related, appeals to anyone working on it. Although the beginning of these graphic representations
dates back many years, its emergence as a concrete mathematical structure was shaped by the finding of a new
branch of mathematics, graph theory. As one of the most important characterizations, graph domination, has been
associated with various application areas such as analyzing chemical structures, electrical and communication
networks, and database management. Thus, graph domination has attracted interest from many mathematicians
due to its application potential to apply many problems such as design and analysis of communication networks
as well as defense supervision [4, 14, 19].

Now, we provide some basic information and definitions that will form the basis of this study. In general,
we follow [8, 15]. Let G = (V (G), E(G)) be a graph. The open neighborhood of a vertex v ∈ V (G) is
N(v) = NG(v) = {u ∈ V (G) | uv ∈ E(G)}, and its closed neighborhood N [v] = N(v) ∪ {v}. The degree
of v, denoted by deg(v), is the size of its open neighborhood. One degree vertex is called as a pendant vertex
or a leaf, and its neighbor is called a support vertex. An edge incident to a leaf (or a pendant vertex ) is called a
pendant edge.

Let D be a subgraph of the vertex set of a graph G. If D is a dominating set in a graph G then every vertex
in V (G)\D is adjacent to at least one vertex in D, and the number of elements of the minimum cardinality

∗Corresponding author. Email address: aysun.aytac@ege.edu.tr (Aysun AYTAÇ), ayshhen.mutlu@gmail.com (Ayşen MUTLU )

https://www.malayajournal.org/index.php/mjm/index ©2023 by the authors.
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domination set is called the domination number of G, denoted by γ(G) [15]. Many variants of domination
parameter are studied in the literature [1–3, 6, 7, 11, 13, 16, 17].

In this paper, we focused on the double domination parameter. Double dominating set (abbreviated DDS )
is introduced in [12]. A set S ⊆ V is a double dominating set for G if each vertex in V is dominated by at least
two vertices in S. The smallest cardinality of a double dominating set is called the double domination number
γ×2(G). If S is a DDS of G of size as double domination number, then it is called as γ×2(G)-set [12, 13].
Frankly, double domination is defined only for graphs without isolated vertices.

Let D be the set of all distances between distinct pairs of vertices in G and let Ds ⊆ D is called the distance
set. The distance graph of G denoted by D (G,Ds) is the graph having the same vertex set with G and if
d(u, v) ∈ Ds then two vertices u and v are adjacent in D (G,Ds). The shadow distance graph of G, denoted by
Dsd (G,Ds) is formed from G to satisfy the following properties [12, 18, 20] :

P1 : G has two copies say G itself and G′

P2 : if u ∈ V (G) is first copy then the corresponding vertex as u′ ∈ V (G′) is second copy

P3 : the vertex set of shadow distance graph, Dsd (G,Ds), is V (G) ∪ V (G′)

P4 : the edge set of shadow distance graph , Dsd (G,Ds), is E(G) ∪E (G′) ∪Eds where Eds is the set of all
edges between two distinct vertices u ∈ V (G) and v′ ∈ V (G′) that satisfy the condition d(u, v) ∈ Ds in
G.

2. Main Results

We recall the following results related to the double domination number of a graph.

Theorem 2.1. [10] Let G be a graph with no isolated vertices. Then 2 ≤ γ×2(G) ≤ n.

Theorem 2.2. [10] If G is any graph without isolated vertices, then γ(G) ≤ γ×2(G)− 1.

Theorem 2.3. [5, 10, 12]

a) If G ∼= Pn is a path graph for n ≥ 2, then γ×2 (Pn) =
[
2n+2

3

]
b) If G ∼= Cn is a cycle graph for n ≥ 3, then γ×2 (Cn) =

⌈
2n
3

⌉
c) If G ∼= K1,m is a star graph for m > 1, γ×2 (K1,m) = m+ 1.

Observation 2.4. [9] Each DD − set generated for any graph must contain all leaves and support vertices of
the graph.

We begin our results with the some distance shadow graphs.

Theorem 2.5. If G ∼= Pn for n ≥ 8, then

γ×2 (Dsd (G, {2})) =



⌈
4(n+ 1)

5

⌉
, n ≡ 3, 4 (mod 5)⌈

4(n+ 1)

5

⌉
+ 1 , n ≡ 0 , 2 (mod 5)⌈

4(n+ 1)

5

⌉
+ 2 , n ≡ 1 (mod 5)
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Proof. Consider two copies of G, one G itself and the other denoted by G′. Let V1 = {1, 2, . . . , n} be the
vertices of G and let V2 = {n+ 1, n+ 2, . . . , 2n} be the vertices of G′. We first establish upper bounds on
γ×2 (Dsd (G, {2})). Let

D1 =
⌊n

5 ⌋−1⋃
i=0

{(5i+ 2) , (5i+ 3)}, D2 =
⌊n

5 ⌋−1⋃
i=0

{(n+ 5i+ 2) , (n+ 5i+ 3)} and D = D1 ∪D2.

If n ≡ 0 (mod 5), let S = D ∪ {(n− 1) , (2n− 1)}. If n ≡ i (mod 5) where i ∈ {1, 2, 3, 4}, let S =

D ∪ {(n− 1) , (n− 2) , (2n− 1) , (2n− 2)}. In all cases, the set S is a DD − set of Dsd (G, {2}). Further
if n ≡ 0, 2 (mod 5), then |S| =

⌈
4(n+1)

5

⌉
+ 1, while if n ≡ 1 (mod 5), then |S| =

⌈
4(n+1)

5

⌉
+ 2. Finally,

if n ≡ 3, 4 (mod 5), then |S| =
⌈
4(n+1)

5

⌉
. Hence, γ×2 (Dsd (G, {2})) ≤

⌈
4(n+1)

5

⌉
if n ≡ 3, 4 (mod 5),

γ×2 (Dsd (G, {2})) ≤
⌈
4(n+1)

5

⌉
+ 1 if n ≡ 0, 2 (mod 5) and γ×2 (Dsd (G, {2})) ≤

⌈
4(n+1)

5

⌉
+ 2 if n ≡

1 (mod 5).
Now let’s prove the lower bounds on γ×2 (Dsd (G, {2})). Let’s assume that the set

X = {u1, u2, . . . , ui, . . . , um, um+1, . . . , uj , . . . , ux} is a γ×2 − set. Here; ui and uj are any two positive
integers such that u1 < u2 < · · · < ui < · · · < um < um+1 < · · · < uj < · · · < ux , where 1 ≤ ui ≤ n

i ∈ {1, 2, . . . ,m} and n+ 1 ≤ uj ≤ 2n j ∈ {n+ 1, . . . , x}. We have ft = ut+2 − ut for t ∈ {1, 2, . . . , x− 2}
and t ̸= m− 1. To show the inverse of the inequality, we need to show that ft ≤ 5.

Suppose ft ≥ 6 for at least one value of x. Without loss of generality, assume that ft = 6. In accordance
with this claim; the following sets are obtained.

D1
′ = {2, 3, 8, 9} ∪


⌈n−12

5 ⌉−1⋃
i=0

{(5i+ 13) , (5i+ 14)}

 and

D2
′ = {(n+ 2) , (n+ 3) , (n+ 4) , (n+ 8) , (n+ 9) , (n+ 10)}∪


⌈n−12

5 ⌉−1⋃
i=0

{(n+ 5i+ 13) , (n+ 5i+ 14)}


In this case, X = D1

′ ∪ D2
′ and |X| = 10 + 4

⌈
n−12

5

⌉
. If n ≡ 3 (mod 5) , then |X| = 10 + 4

(
n−8
5

)
=

4n+18
5 . However, this value contradicts the upper value we found earlier as |S| = 4n+8

5 for n ≡ 3 (mod 5). A
similar situation can easily be seen that the values obtained for n ≡ 0, 1, 2, 4 (mod 5) according to the X set
contradict the upper limits we obtained earlier. For all values of n according to mod 5, it is easily seen that
u1 + u2 + um+1 + um+2 = 2n+ 10 since u1 = 2 , u2 = 3 , um+1 = n+ 2 and um+2 = n+ 3.

If n ≡ 0 (mod 5), then
m−3∑
t1=1

ft1 +
x−3∑

t2=m+1
ft2 + fm−2 + fx−2 ≤ 5 (x− 6) + 4. Thus, we get

m−3∑
t1=1

ft1 +

x−3∑
t2=m+1

ft2 = (um−1 + um−2 + ux−1 + ux−2) − (2n+ 10) + fm−2 + fx−2. For n ≡ 0 (mod 5), um−1 =

n− 2 , um−2 = n− 3 , ux−1 = 2n− 2 and ux−2 = 2n− 3 , fm−2 = fx−2 = 2. So, we have 6n− 10− 2n−
10 + 4 ≤ 5x− 30 + 4 and x ≥

⌈
4n+10

5

⌉
. In this case, |X| = x ≥

⌈
4n+10

5

⌉
=

⌈
4(n+1)

5

⌉
+ 1. This implies

that γ×2 (Dsd (G, {2})) ≥
⌈
4(n+1)

5

⌉
+ 1.

If n ≡ 1 (mod 5), then
m−4∑
t1=1

ft1 +
x−4∑

t2=m+1
ft2 + fm−3 + fm−2 + fx−3 + fx−2 ≤ 5 (x− 8) + 8. Thus, we

get
m−4∑
t1=1

ft1 +
x−4∑

t2=m+1
fx2 = (um−2 + um−3 + ux−2 + ux−3) − (2n+ 10) + fm−3 + fm−2 + fx−3 + fx−2.

For n ≡ 1 (mod 5), um−2 = n − 3, um−3 = n − 4 , ux−2 = 2n − 3, ux−3 = 2n − 4 and fm−3 = fm−2 =

fx−3 = fx−2 = 2. So, we have 6n− 14− 2n− 10 ≤ 5x− 40 and x ≥
⌈
4n+16

5

⌉
. In this case, |X| = x ≥⌈

4n+16
5

⌉
=

⌈
4(n+1)

5

⌉
+ 2. This implies that γ×2 (Dsd (G, {2})) ≥

⌈
4(n+1)

5

⌉
+ 2.
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If n ≡ 2 (mod 5), then
m−4∑
t1=1

ft1 +
x−4∑

t2=m+1
ft2 + fm−3 + fm−2 + fx−3 + fx−2 ≤ 5 (x− 8) + 16. Thus, we

get
m−4∑
t1=1

ft1 +
x−4∑

t2=m+1
ft2 = (um−2 + um−3 + ux−2 + ux−3)− (2n+ 10)+ fm−3 + fm−2 + fx−3 + fx−2. For

n ≡ 2 (mod 5), um−2 = n− 4, um−3 = n− 5, ux−2 = 2n− 4, ux−3 = 2n− 5 and fm−3 = fm−2 =fx−3 =

fx−2 = 4. So, we have 6n − 18 − 2n − 10 ≤ 5x − 40 and x ≥
⌈
4n+12

5

⌉
=

⌈
4(n+1)

5

⌉
+ 1. In this case,

|X| = x ≥
⌈
4n+12

5

⌉
=

⌈
4(n+1)

5

⌉
+ 1. This implies that γ×2 (Dsd (G, {2})) ≥

⌈
4(n+1)

5

⌉
+ 1.

If n ≡ 3 (mod 5), then
m−2∑
t1=1

ft1 +
x−2∑

t2=m+1
ft2 ≤ 5 (x− 4). Thus, we get

m−2∑
t1=1

ft1 +
x−2∑

t2=m+1
ft2 = (um + um−1 + ux + ux−1) − (2n+ 10). For n ≡ 3 (mod 5),

um = n, um−1 = n − 1, and ux = 2n, ux−1 = 2n − 1. So, we have 6n − 2 − 2n − 10 ≤ 5x − 20 and
x ≥

⌈
4n+8

5

⌉
. In this case, |X| = x ≥

⌈
4n+8

5

⌉
=

⌈
4(n+1)

5

⌉
. This implies that

γ×2 (Dsd (G, {2})) ≥
⌈
4(n+1)

5

⌉
.

If n ≡ 4 (mod 5), then
m−2∑
t1=1

fx1
+

x−2∑
t2=m+1

ft2 ≤ 5 (x− 4). Thus, we get

m−2∑
t1=1

ft1 +
x−2∑

t2=m+1
ft2 = (um + um−1 + ux + ux−1) − (2n+ 10). For n ≡ 4 (mod 5),

um = n− 1, um−1 = n− 2, ux = 2n− 1 and ux−1 = 2n− 2 So, we have 6n− 6− 2n− 10 ≤ 5x− 20 and
x ≥

⌈
4n+4

5

⌉
. In this case, |X| = x ≥

⌈
4n+4

5

⌉
=

⌈
4(n+1)

5

⌉
. This implies that

γ×2 (Dsd (G, {2})) ≥
⌈
4(n+1)

5

⌉
. Thus, the desired equality is obtained as a result of the lower and upper

bounds on γ×2 (Dsd (G, {2})) .
This completes the proof.

■

Theorem 2.6. If G ∼= Cn for n ≥ 11, then

γ×2 (Dsd (G, {2})) =



⌈
4n

5

⌉
, n ≡ 0, 4 (mod 5)⌈

4n

5

⌉
+ 1 , n ≡ 1, 3 (mod 5)⌈

4n

5

⌉
+ 2 , n ≡ 2 (mod 5)

Proof. Let the vertices of the Dsd (G, {2}) graph be divided into two sets of V (Dsd (G, {2})) = V1 ∪ V2

where V1 = {1, 2, . . . , n} and V2 = {n+ 1, n+ 2, . . . , 2n}.We first establish upper bounds on
γ×2 (Dsd (G, {2})). Let

D1 = {1, n} ∪


⌈n−6

5 ⌉−1⋃
i=0

{(5i+ 5) , (5i+ 6)}

 ,

D2 = {(n+ 1) , (2n)} ∪

⌈n−6
5 ⌉−1⋃
i=0

{(n+ 5i+ 5) , (n+ 5i+ 6)}

 and D = D1 ∪D2.

If n ≡ 1 (mod 5), let S = D ∪ {(n− 1) , (2n− 1)}, in other cases S = D. In all cases, the set S is a DD − set

of Dsd (G, {2}). Further if n ≡ 0, 4 (mod 5), then |S| =
⌈
4n
5

⌉
, while if n ≡ 1, 3 (mod 5), then |S| =

⌈
4n
5

⌉
+ 1.
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Finally, if n ≡ 2 (mod 5), then |S| =
⌈
4n
5

⌉
+ 2. Hence, γ×2 (Dsd (G, {2})) ≤

⌈
4n
5

⌉
if n ≡ 0, 4 (mod 5),

γ×2 (Dsd (G, {2})) ≤
⌈
4n
5

⌉
+ 1 if n ≡ 1, 3 (mod 5) and γ×2 (Dsd (G, {2})) ≤

⌈
4n
5

⌉
+ 2 if n ≡ 2 (mod 5).

Now let’s prove the lower bounds on γ×2 (Dsd (G, {2})). Let’s assume that the set
X = {u1, u2, . . . , ui, . . . , um, um+1, . . . , uj , . . . , ux} is a γ×2 − set. Here; ui and uj are any two positive
integers such that u1 < u2 < · · · < ui < · · · < um < um+1 < · · · < uj < · · · < ux , where 1 ≤ ui ≤ n

i ∈ {1, 2, . . . ,m} and n + 1 ≤ uj ≤ 2n j ∈ {n+ 1, . . . , x}. We have ft = ut+2 − ut for
t ∈ {1, 2, . . . , x− 2}and t ̸= m− 1. To show the inverse of the inequality, we need to show that ft ≤ 5.
Suppose ft ≥ 6 for at least one value of t. Without loss of generality, assume thatft = 6. In accordance with
this claim; the following sets are obtained.

D1
′ = {1 , n} ∪

⌈n−7
5 ⌉−1⋃
i=0

{(5i+ 6) , (5i+ 7)}

 and

D2
′ = {(n+ 1) , (n+ 2) , (n+ 5) , (2n)} ∪

⌈n−7
5 ⌉−1⋃
i=0

{(n+ 5i+ 6) , (n+ 5i+ 7)}

.

In this case, X = D1
′ ∪ D2

′ and |X| = 6 + 4
⌈
n−7
5

⌉
. If n ≡ 0 (mod 5), then |X| = 6 + 4

(
n−5
5

)
= 4n+10

5 .
However, this value contradicts the upper value we found earlier as |S| = 4n

5 for n ≡ 0 ( mod 5). A similar
situation can easily be seen that the values obtained for n ≡ i (mod 5), i ∈ {1, 2, 3, 4} according to the X set
contradict the upper limits we obtained earlier. This contradicts our claim. Thus, it must befx ≤ 5. In this case,

we have
m−2∑
t1=1

ft1 +
x−2∑

t2=m+1
ft2 ≤ 5 (x− 4). Furthermore, for all values of n according to mod 5, it is easily

seen that u1 + u2 + um+1 + um+2 = 2n+ 13 since u1 = 1 , u2 = 6 , um+1 = n+ 1 and um+2 = n+ 5.

If n ≡ 0 (mod 5), then
m−3∑
t1=1

ft1 +
x−3∑

t2=m+1
ft2 + fm−2 + fx−2 ≤ 5 (x− 6) + 8. Thus, we get

m−3∑
t1=1

ft1 +
x−3∑

t2=m+1
ft2 + fm−2 + fx−2 = (um−1 + um−2 + ux−1 + ux−2) − (2n+ 13) + fm−2 + fx−2. For

n ≡ 0 (mod 5), um−1 = n− 4 , um−2 = n− 5 , ux−1 = 2n− 4, and ux−2 = 2n− 5 , fm−2 = fx−2 = 4. So,
we have 6n− 18− 2n− 13 ≤ 5(x− 6) and x ≥

⌈
4n−1

5

⌉
. In this case, |X| = x ≥

⌈
4n−1

5

⌉
=

⌈
4n
5

⌉
. This

implies that γ×2 (Dsd (G, {2})) ≥
⌈
4n
5

⌉
.

If n ≡ 1 (mod 5), then
m−2∑
t1=1

ft1 +
x−2∑

t2=m+1
ft2 ≤ 5 (x− 4). Thus, we get

m−2∑
t1=1

ft1 +
x−2∑

t2=m+1
ft2 =

(um + um−1 + ux + ux−1) − (2n+ 13). For n ≡ 1 (mod 5), um = n , um−1 = n − 1 , ux = 2n and
ux−1 = 2n − 1. So, we have 6n − 2 − 2n − 13 ≤ 5x − 20 and x ≥

⌈
4n+5

5

⌉
=

⌈
4n
5

⌉
+ 1. In this case,

|X| = x ≥
⌈
4n
5

⌉
+ 1. This implies that γ×2 (Dsd (G, {2})) ≥

⌈
4n
5

⌉
+ 1.

If n ≡ 2 (mod 5), then
m−3∑
t1=1

ft1 +
x−3∑

t2=m+1
ft2 + fm−2 + fx−2 ≤ 5 (x− 6) + 4. Thus, we get

m−3∑
t1=1

ft1 +
x−3∑

t2=m+1
ft2 + fm−2 + fx−2 = (um−1 + um−2 + ux−1 + ux−2) + fm−2 + fx−2 − (2n+ 13). For

n ≡ 2 (mod 5), um−1 = n − 1 , um−2 = n − 2 , ux−1 = 2n − 1 , ux−2 = 2n − 2. So, we have
6n − 6 − 2n − 13 ≤ 5 (x− 6) and x ≥

⌈
4n+12

5

⌉
=

⌈
4n
5

⌉
+ 2. In this case, |X| = x ≥

⌈
4n
5

⌉
+ 2. This

implies that γ×2 (Dsd (G, {2})) ≥
⌈
4n
5

⌉
+ 2.

If n ≡ 3 (mod 5), then
m−3∑
t1=1

ft1 +
x−3∑

t2=m+1
ft2 + fm−2 + fx−2 ≤ 5 (x− 6) + 6. Thus, we get

m−3∑
t1=1

ft1+

x−3∑
t2=m+1

ft2 + fm−2 + fx−2 = (um−1 + um−2 + ux−1 + ux−2) − (2n+ 13) + fm−2 + fx−2. For

n ≡ 3 (mod 5), um−1 = n− 2 , um−2 = n− 3 , ux−1 = 2n− 2 , ux−2 = 2n− 3 and fm−2 = fx−2 = 3. So,
we have 6n− 10− 2n− 13 ≤ 5 (x− 6) and x ≥

⌈
4n+7

5

⌉
=

⌈
4n
5

⌉
+1. In this case, |X| = x ≥

⌈
4n
5

⌉
+1.

This implies that γ×2 (Dsd (G, {2})) ≥
⌈
4n
5

⌉
+ 1.
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If n ≡ 4 (mod 5), then
m−3∑
t1=1

ft1 +
x−3∑

t2=m+1
ft2 + fm−2 + fx−2 ≤ 5 (x− 6) + 8. Thus, we get

m−3∑
t1=1

ft1+
x−3∑

t2=m+1
ft2 + fm−2 + fx−2= (um−1 + um−2 + ux−1 + ux−2) − (2n+ 13) + fm−2 + fx−2. For

n ≡ 4 (mod 5), um−1 = n− 3, um−2 = n− 4, ux−1 = 2n− 3, ux−2 = 2n− 4 and fm−2 = fx−2 = 4. So, we
have 6n − 14 − 2n − 13 ≤ 5 (x− 6) and x ≥

⌈
4n+3

5

⌉
=

⌈
4n
5

⌉
. In this case, |X| = x ≥

⌈
4n
5

⌉
. This

implies that γ×2 (Dsd (G, {2})) ≥
⌈
4n
5

⌉
.

Thus, the desired equality is obtained as a result of the lower and upper bounds on γ×2 (Dsd (G, {2})) .
This completes the proof.

■

Theorem 2.7. For m ≥ 1 and n ≥ 2, let G ∼= Km,n be a bipartite complete graph with (m+ n)-vertices. Then,
the double dominance number of the graph (Dsd(G, {2}) is γ×2 (Dsd(G, {2})) = 4.

Proof. Let the vertices of the Dsd (G, {2}) graph be divided into four sets of V (Dsd (G, {2})) = V1∪V2∪V ′
1 ∪

V ′
2 , where V1 = {v1, v2, . . . , vm}, V2 = {v1, v2, . . . , vn}, V ′

1 = {v′1, v′2, . . . , v′m} and V ′
2 = {v′1, v′2, . . . , v′n}.

We first establish upper bounds on γ×2 (Dsd (G, {2})). If S = {v1, v1, v′1, v′1}, then the set S is the DD − set

of the graph Dsd (G, {2}). Thus, γ×2 (Dsd (G, {2})) ≤ 4.
For the lower bound, let the set T be the γ×2 (Dsd (G, {2}))−set. Assume that |T | = 3. This requires that every
vertex in T has at least one neighbor still in T . Taking into account that V1

∼= V ′
1and V2

∼= V ′
2 , the following

cases are obtained.

Case 1. Let ui ∈ V1 , vj ∈ V2 , v′t ∈ V ′
2 . Assume that T = {ui, vj , v

′
t} i ∈ {1, . . . ,m} , j, t ∈ {1, . . . , n}

and j ̸= t. However, in this case, there will be vertices in the graph Dsd (G, {2}) that are not double
dominated.

Case 2. Let ui, uj ∈ V1 , u′
t ∈ V ′

1 . Assume that T = {ui, uj , u
′
t} i, j, t ∈ {1, . . . ,m} and i ̸= j ̸= t. However,

in this case, there will be vertices in the graph Dsd (G, {2}) that are not double dominated.

Case 3. Let vi, vj ∈ V2 , v′t ∈ V ′
2 . Assume that T = {vi, vj , v′t} i, j, t ∈ {1, . . . , n} and i ̸= j ̸= t. However,

in this case, there will be vertices in the graph Dsd (G, {2}) that are not double dominated.

Case 4. Let ui ∈ V1 , u′
j ∈ V ′

1 , v′t ∈ V ′
2 . Assume that T =

{
ui, u

′
j , v

′
t

}
i, j ∈ {1, . . . ,m} , t ∈ {1, . . . , n}

and i ̸= j. However, in this case, there will be vertices in the graph Dsd (G, {2}) that are not double
dominated.

Case 5. Let vj ∈ V2 , v′t ∈ V ′
2 , ui ∈ V ′

1 . Assume that T = {vj , v′t, ui} j, t ∈ {1, . . . , n}, i ∈ {1, . . . ,m}
and j ̸= t. However, in this case, there will be vertices in the graph Dsd (G, {2}) that are not double
dominated.

Case 6. Let ui ∈ V1 , vj ∈ V2 , u′
t ∈ V ′

1 . Assume that T = {ui, vj , u
′
t} i, t ∈ {1, . . . ,m}, j ∈ {1, . . . , n}

and i ̸= t. However, in this case, there will be vertices in the graph Dsd (G, {2}) that are not double
dominated.

In all cases, some vertices of the graph cannot be double dominated. Thus, we get γ×2 (Dsd (G, {2})) =

|T | ≥ 4. Thus, the desired equality is obtained as a result of the lower and upper bounds on γ×2 (Dsd (G, {2})) .
This completes the proof.

■

Corollary 2.8. Let G ∼= S1,n be a star graph with (n+ 1)-vertices. Then, the double dominance number of the
graph (Dsd(G, {2}) is γ×2 (Dsd(G, {2})) = 4.
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Proof. If m = 1 and n ≥ 2, then Km,n
∼= K1,n. Thus, the proof of the result is easily seen from Theorem

2.7. ■

Theorem 2.9. Let G ∼= W1,n be a wheel graph with (n + 1)-vertices. Then, the double dominance number of
the graph (Dsd(G, {2}) is γ×2 (Dsd(G, {2})) = 4.

Proof. Let the vertices of the Dsd (G, {2}) graph be divided into two sets of V (Dsd (G, {2})) = V (G)∪V (G′),
where V (G) = {c1, u1, . . . , un} and V (G′) = {c′1, u′

1, . . . , u
′
n}. Let c1 be the central vertex of the graph G.

We first establish upper bounds on γ×2 (Dsd (G, {2})). If S = {c1, u1, c
′
1, u

′
1}, then the set S is the DD − set

of the graph Dsd (G, {2}). Thus, γ×2 (Dsd (G, {2})) ≤ 4.
To complete the proof, we need to prove the lower bound. Let the set T be the γ×2 (Dsd (G, {2})) − set.

Assume that |T | = 3. For double dominating of vertices in T , at least one neighbor of each vertices must be in
T . Thus, we have the following states.

Case 1. Let every vertex in T be at V (G). Since deg (c1) = n, one of the vertices must be c1 ( or every vertex
in T be at V (G′)). However, in this case, there will be vertices in the graph Dsd (G, {2}) that are not
double dominated.

Case 2. Let two vertices in T be at V (G) and the other at V (G′). Since deg (c1) = n, one of the vertices must
be c1 (or two vertices in T be at V (G′)and the other at V (G)). However, in this case, there will be
vertices in the graph Dsd (G, {2}) that are not double dominated.

In all cases, some vertices of the graph cannot be double dominated. Thus, we get γ×2 (Dsd (G, {2})) =

|T | ≥ 4. The desired bounds are obtained as a result of the upper bounds on γ×2 (Dsd (G, {2})) that were
established earlier.

This completes the proof. ■

Theorem 2.10. If G ∼= Pn for n ≥ 10, then

γ×2 (Dsd (G, {3})) =


⌈
4n+ 8

5

⌉
+ 1 , n ≡ 1 (mod 5)⌈

4n+ 8

5

⌉
, otherwise

Proof. We first establish upper bounds on γ×2 (Dsd (G, {3})). We have deg (u1) = deg (un) = deg (un+1) =

deg (u2n) = 2, deg (ui) = 2, i ∈ {2, 3, n− 1, n− 2, n+ 2, n+ 3, 2n− 1, 2n− 2} and deg (uj) = 4 , j ∈
{4 , . . . , n− 3 , n+ 4 , 2n− 3}. Let the set D be a DD− set of the graph Dsd (G, {3}). Therefore, in order
to double dominate the vertex u1, it must have neighbors as well. Similarly, this is valid for the vertex un+1. So,
{u2, u4, un+2, un+4} ∈ D. In order for the vertices in D to be double dominated, u5 and its duplicate, un+5,
must be added to S. In this case the vertices u6 , u7 and similarly the vertices un+6 , un+7 that are copies of
these peaks are double dominated by the set D. For double dominating of the vertices u6 and u7, the vertices
un+9 , un+10 are added to D since D is a DD − set. Add the vertices u9 , u10 for un+6 and un+7. Continuing
in this way, upper limits on γ×2 (Dsd (G, {3})) are obtained. Let

D =

⌊n
5 ⌋−1⋃
i=0

{u5i+4 , u5i+5 , un+5i+4 , un+5i+5} ∪ {u2 , un+2}.

If n ≡ 0 (mod 5 ), let S = D. If n ≡ 1, 2, 3 (mod 5), let S = D ∪ {un, u2n}. Otherwise, n ≡ 4 (mod 5 ),
S = D ∪ {un, un−1, u2n, u2n−1}. In all cases, the set S is a DD − set of Dsd (G, {3}). Further if
n ≡ 1 (mod 5 ), then |S| =

⌈
4n+8

5

⌉
+ 1, while if n ̸= 1 (mod 5), then |S| =

⌈
4n+8

5

⌉
. Hence,

γ×2 (Dsd (G, {3})) ≤
⌈
4n+8

5

⌉
+ 1 if n ≡ 1 (mod 5 ) and otherwiseγ×2 (Dsd (G, {3})) ≤

⌈
4n+8

5

⌉
+ 1.
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Now let’s prove the lower bounds on γ×2 (Dsd (G, {3})). Let’s assume that the set
X = {u1, u2, . . . , ui, . . . , um, um+1, . . . , uj , . . . , ux} is a γ×2 − set. Here; ui and uj are any two positive
integers such that u1 < u2 < . . . < ui < . . . < um < um+1 < . . . < uj < . . . < ux , where 1 ≤ ui ≤ n

i ∈ {1, 2, . . . ,m} and n + 1 ≤ uj ≤ 2n j ∈ {n+ 1, . . . , x}. We have ft = ut+2 − ut for
t ∈ {1, 2, . . . , x− 2} and t ̸= m− 1, m. To show the inverse of the inequality, we need to show that ft ≤ 5.
Suppose ft ≥ 6 for at least one value of t. Without loss of generality, assume thatft = 6. In accordance with
this claim; the following sets are obtained.

D′ = {2, 4, 5, (n+ 2) , (n+ 4) , (n+ 6) , (n+ 9)}∪
⌈n−9

5 ⌉−1⋃
i=0

{(5i+ 10) , (5i+ 11) , (n+ 5i+ 10) , (n+ 5i+ 11)}


In this case, X = D′ and |X| = 8 + 4

⌈
n−9
5

⌉
. If n ≡ 0 (mod 5), then |X| = 8 + 4

(
n−5
5

)
= 4n+20

5 .
However, this value contradicts the upper value we found earlier as |S| = 4n+10

5 for n ≡ 0 (mod 5). A similar
situation can easily be seen that the values obtained for n ≡ i (mod 5), i ∈ { 1, 2, 3, 4 } according to the X

set contradict the upper limits we obtained earlier. This contradicts our claim. It must be ft ≤ 5. So, we have
m−2∑
t1=1

ft1 +
x−2∑

t2=m+1
ft2 ≤ 5 (x− 4). For all values of n according to mod 5, it is easily seen that u1 + u2 + um +

um+1 = 2n+ 12 since u1 = 2 , u2 = 4 , um = n+ 2 , um+1 = n+ 4.

If n ≡ 0 (mod 5), then
m−2∑
t1=1

ft1 +
x−2∑

t2=m+1
ft2 = (um + um−1 + ux + ux−1) − (2n+ 12). For n ≡ 0 (mod 5),

um = n , um−1 = n − 1 , ux = 2n and ux−1 = 2n − 1. So, we have 6n − 2 − 2n − 12 ≤ 5 (x− 4) and
x ≥

⌈
4n+6

5

⌉
. In this case, |X| = x ≥

⌈
4n+6

5

⌉
=

⌈
4n+8

5

⌉
. This implies that γ×2 (Dsd (G, {3})) ≥

⌈
4n+8

5

⌉
.

If n ≡ 1, 2, 3, 4 (mod 5), then
m−3∑
t1=1

ft1 +
x−3∑

t2=m+1
ft2 + fm−2 + fx−2 ≤ 5 (x− 6) + fm−2 + fx−2. Moreover,

m−3∑
t1=1

ft1 +
x−3∑

t2=m+1
ft2 + fm−2 + fx−2 = (um−2 + um−1 + ux−2 + ux−1)− (2n+ 12) + fm−2 + fx−2.

If n ≡ 1 (mod 5), then we have 4n − 18 ≤ 5 (x− 6) and x ≥
⌈
4n+12

5

⌉
since um−2 = n − 2 , um−1 = n −

1 , ux−2 = 2n−2 , ux−1 = 2n−1 and fm−2 = fx−2 = 2. In this case, |X| = x ≥
⌈
4n+12

5

⌉
=

⌈
4n+8

5

⌉
+1.

This implies that γ×2 (Dsd (G, {3})) ≥
⌈
4n+8

5

⌉
+ 1.

If n ≡ 2 (mod 5), then we have 6n− 10− 2n− 12 ≤ 5 (x− 6) and x ≥
⌈
4n+8

5

⌉
since um−2 = n− 3 , um−1 =

n−2 , ux−2 = 2n−3 , ux−1 = 2n−2 and fm−2 = fx−2 = 3. In this case, |X| = x ≥
⌈
4n+8

5

⌉
. This implies

that γ×2 (Dsd (G, {3})) ≥
⌈
4n+8

5

⌉
.

If n ≡ 3 (mod 5), then we have 6n− 14− 2n− 12 ≤ 5 (x− 6) and x ≥
⌈
4n+4

5

⌉
since um−2 = n− 4 , um−1 =

n− 3 , ux−2 = 2n− 4 , ux−1 = 2n− 3 and fm−2 = fx−2 = 4. In this case, |X| = x ≥
⌈
4n+5

5

⌉
=

⌈
4n+8

5

⌉
.

This implies that γ×2 (Dsd (G, {3})) ≥
⌈
4n+8

5

⌉
.

If n ≡ 4 (mod 5), then

m−4∑
t1=1

ft1 +

x−4∑
t2=m+1

ft2 + fm−3 + fm−2 + fx−3 + fx−2

≤ 5 (x− 8) + fm−3 + fm−2+fx−3 + fx−2

Moreover,
m−4∑
t1=1

ft1 +
x−4∑

t2=m+1
ft2 = (um−2 + um−3 + ux−2 + ux−3) − (2n+ 12). For n ≡ 4 (mod 5), we

have 6n − 18 − 2n − 12 ≤ 5x − 40 and x ≥
⌈
4n+10

5

⌉
since um−2 = n − 4, um−3 = n − 5, ux−2 = 2n − 4,
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ux−3 = 2n − 5 and fm−3 = fm−2 = fx−3 = fx−2 = 4. In this case, |X| = x ≥
⌈
4n+10

5

⌉
=

⌈
4n+8

5

⌉
. This

implies that γ×2 (Dsd (G, {3})) ≥
⌈
4n+8

5

⌉
.

Thus, the desired equality is obtained as a result of the lower and upper bounds on γ×2 (Dsd (G, {3})).
This completes the proof. ■

Theorem 2.11. If G ∼= Cn for n ≥ 10, then

γ×2 (Dsd (G, {3})) =



⌈
4n+ 10

5

⌉
− 1 , n ≡ 1 (mod 5)⌈

4n+ 10

5

⌉
+ 1 , n ≡ 3 (mod 5)⌈

4n+ 10

5

⌉
, otherwise

Proof. Let the vertices of the Dsd (G, {3}) graph be divided into two sets of V (Dsd (G, {3})) = V1 ∪ V2

whereV1 = {1, 2, . . . , n} and V2 = {n+ 1, n+ 2, . . . , 2n}. We first establish upper bounds on
γ×2 (Dsd (G, {3})). Let

D1 = {n, (n− 1) , (n− 2)} ∪


⌈n−7

5 ⌉−1⋃
i=0

{(5i+ 4) , (5i+ 5)}

 ,

D2 = {2n , 2n− 1 , 2n− 2} ∪

⌈n−7
5 ⌉−1⋃
i=0

{(n+ 5i+ 4) , (n+ 5i+ 5)}

 and D = D1 ∪D2.

If n ≡ 0, 1, 3, 4 (mod 5), let S = D. If n ≡ 2 (mod 5), let S = D ∪ {n− 3 , 2n− 3}. Otherwise,
n ≡ 4 (mod 5), S = D ∪ {un, un−1, u2n, u2n−1}. In all cases, the set S is a DD − set of Dsd (G, {3}).
Further if n ≡ 1 (mod 5), then |S| =

⌈
4n+10

5

⌉
− 1, while if n ≡ 3 (mod 5), then |S| =

⌈
4n+10

5

⌉
+ 1 and

otherwise |S| =
⌈
4n+10

5

⌉
. Hence, γ×2 (Dsd (G, {3})) ≤

⌈
4n+10

5

⌉
− 1 if n ≡ 1 (mod 5), γ×2 (Dsd (G, {3})) ≤⌈

4n+10
5

⌉
+ 1 if n ≡ 3 (mod 5) and otherwise γ×2 (Dsd (G, {3})) ≤

⌈
4n+10

5

⌉
.

Now let’s prove the lower bounds on γ×2 (Dsd (G, {3})). Let’s assume that the set
X = {u1, u2, . . . , ui, . . . , um, um+1, . . . , uj , . . . , ux} is a γ×2 − set. Here; ui and uj are any two positive
integers such that u1 < u2 < . . . < ui < . . . < um < um+1 < . . . < uj < . . . < ux , where 1 ≤ ui ≤ n

i ∈ {1, 2, . . . ,m} and n+1 ≤ uj ≤ 2n j ∈ {n+ 1, . . . , x}. We have ft = ut+2−ut for t ∈ {1, 2, . . . , x− 2}
and t ̸= m , m− 1 , m− 2. To show the inverse of the inequality, we need to show that ft ≤ 5.
Suppose ft ≥ 6 for at least one value of t. Without loss of generality, assume thatft = 6. In accordance with
this claim; the following sets are obtained. Let

D′ = {n, (n− 1) , (n− 2) , 2n, 2n− 1, 2n− 2}∪
⌈n−7

6 ⌉−1⋃
i=0

{(6i+ 4) , (6i+ 5) , (n+ 6i+ 4) , (n+ 6i+ 5)}


However, the vertices (6i+ 6) , (n+ 6i+ 6) cannot be double dominated with this set. In this case, some

vertices must be added to the set D′. This contradicts the upper bound we found earlier. Hence, it must be ft ≤ 5.
So, we get

m−5∑
t1=1

ft1 +

x−5∑
t2=m+1

ft2 + fm−4 + fm−3 + fm−2 + fx−4+ fx−3 + fx−2

≤ 5 (x− 10) + fm−4 + fm−3 + fm−2 + fx−4 + fx−3 + fx−2.
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Also, the right-hand side of the inequality is equal to (um−4 +um−3 +ux−4 +ux−3) +fm−4 +fm−3 +fm−2

+fx−4 +fx−3 +fx−2. For all values of n according to mod 5, it is easily seen that u1 + u2 + um+1 + um+2 =

2n+ 18 since u1 = 4 , u2 = 5 , um+1 = n+ 4 , um+2 = n+ 5.
For n ≡ 0 (mod 5), we have 6n − 22 − 2n − 18 ≤ 5x − 50 and x ≥

⌈
4n+10

5

⌉
since um−4 = n − 6 ,

um−3 = n− 5 , ux−4 = 2n− 6 , ux−3 = 2n− 5 and fm−4 = fx−4 = fm−3 = fx−3 = 4, fm−2 = fx−2 = 2.
In this case, |X| = x ≥

⌈
4n+10

5

⌉
. This implies that γ×2 (Dsd (G, {3})) ≥

⌈
4n+10

5

⌉
.

For n ≡ 1 (mod 5), we have 6n − 26 − 2n − 18 ≤ 5 (x− 10) and x ≥
⌈
4n+6
10

⌉
since um−4 = n − 7 ,

um−3 = n− 6 , ux−4 = 2n− 7 , ux−3 = 2n− 6 and fm−4 = fx−4 = fm−3 = fx−3 = 3, fm−2 = fx−2 = 2.
In this case, |X| = x ≥

⌈
4n+6
10

⌉
=

⌈
4n+10

6

⌉
− 1. This implies that γ×2 (Dsd (G, {3})) ≥

⌈
4n+10

5

⌉
+ 1.

If n ≡ 2 (mod 5) , then
m−4∑
t1=1

ft1 +
x−4∑

t2=m+1
ft2 + fm−3 + fm−2 + fx−3 + fx−2 ≤ 5 (x− 8) + fm−3 + fm−2

+fx−3 + fx−2. For n ≡ 2 (mod 5), fm−3 = fm−2 = fx−3 = fx−2 = 2 . Then, we have
m−4∑
t1=1

ft1+
x−4∑

t2=m+1
ft2 +

28 =(um−3 + um−2 + ux−3 + ux−2) − (2n+ 18) + 8. Furthermore, we get 6n − 10 − 2n −18 ≤ 5x − 40

and x ≥
⌈
4n+12

5

⌉
since um−3 = n − 3, um−2 = n − 2, ux−3 = 2n − 3 ux−2 = 2n − 2. In this case,

|X| = x ≥
⌈
4n+12

5

⌉
=

⌈
4n+10

5

⌉
. This implies that γ×2 (Dsd (G, {3})) ≥

⌈
4n+10

5

⌉
.

If n ≡ 3 (mod 5), then the formula in n ≡ 0, 1 (mod 5) is valid. For n ≡ 3 (mod 5), we have 6n−14−2n−18 ≤
5 (x− 10) and x ≥

⌈
4n+18

5

⌉
since um−4 = n − 4, um−3 = n − 3, ux−4 = 2n − 4, ux−3 = 2n − 3 and

fm−4 = fm−3 = fm−2 = fx−4 = fx−3 = fx−2 = 2. In this case, |X| = x ≥
⌈
4n+18

5

⌉
=

⌈
4n+10

5

⌉
+ 1.

This implies that γ×2 (Dsd (G, {3})) ≥
⌈
4n+10

5

⌉
+ 1.

If n ≡ 4 (mod 5), then the formula in n ≡ 0, 1, 3 (mod 5) is valid. For n ≡ 4 (mod 5), we have 6n− 18− 2n−
18 ≤ 5 (x− 10) and x ≥

⌈
4n+14

5

⌉
=

⌈
4n+10

5

⌉
since um−4 = n− 5, um−3 = n− 4, ux−4 = 2n− 5, ux−3 =

2n − 4 and fm−4 = fm−3 = fx−4 = fx−3 = 3 and fm−2 = fx−2 = 2. In this case, |X| = x ≥
⌈
4n+10

5

⌉
.

This implies that γ×2 (Dsd (G, {3})) ≥
⌈
4n+10

5

⌉
.

Thus, the desired equality is obtained as a result of the lower and upper bounds on γ×2 (Dsd (G, {3})).
This completes the proof. ■
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